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Summary

This document describes the algorithms used for generating the small-fire dataset for the
three demonstrator areas selected in Sub-Sahara South Africa within the Fire_cci project.
It includes the description of the Sentinel-1 C-band data pre-processing, as well as the
ancillary data used to derive burned area over the tropical Africa.
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1. Executive Summary

This Algorithm Theoretical Basis Document (ATBD), corresponding to the SAR-O
algorithm, describes the algorithm, methods, and approaches that lead to the generation
of a small fire dataset for three 400x400 km areas of interest (AOI) in Africa. Test sites
for algorithm development and calibration have been selected based on representative
vegetation types (i.e., grasslands, crops and forests) that burn on a regular basis. The
theoretical basis described here identifies the data sets used to classify burned area and
the methods used to derive the cartographic products. Burned area mapping products
derived from Sentinel-1/2 imagery were created for the three AOIs for the year 2019. The
resulting maps will be independently validated using BA perimeters derived from
multispectral optical datasets (e.g., Sentinel-2, Landsat-8, PLANET).

2. Introduction

2.1. Background

The European Space Agency (ESA) Climate Change Initiative (CCI) initiative stresses
the importance of providing a higher scientific visibility to data acquired by ESA sensors,
especially in the context of the Intergovernmental Panel on Climate Change (IPCC)
reports. This implies producing consistent time series of accurate Essential Climate
Variables products, which can be used by the climate, atmospheric and ecosystem
scientists. The importance of keeping long-term observations and the international links
with other agencies currently generating ECV data is also stressed.

Fires influence greenhouse gases budget, with a causal relationship between biomass
burning and inter-annual variability of related emissions being observed (Simmonds et
al. 2005). Worldwide, about 350 million hectares are affected by large fires (i.e., mapped
from 500 m spatial resolution data) annually (Giglio et al. 2013), exerting a major
influence on carbon release from terrestrial ecosystems (Andreae and Merlet 2001,
Simmonds et al. 2005). Fires are also a major factor in land cover changes, and hence
affect fluxes of energy and water to the atmosphere. In this context, spatial and temporal
monitoring of burned areas can be inferred using remote sensing, a cost effective,
objective, and time-saving method to monitor and quantify location, extent and intensity
of fire events (Chuvieco 1999; Laneve et al. 2006; Stroppiana et al. 2003). The Fire
Disturbance Essential Climate Variable (ECV) provides baseline products to allow such
monitoring activities at global scales.

This ECV identifies burned area (BA) as the primary fire variable. Accordingly, the
Fire_cci project focuses on developing and validating algorithms to meet Global Climate
Observing System (GCOS) ECV requirements for (consistent, stable, error-characterised)
global satellite data products from multi-sensor data archives. Burned Area is defined as
any vegetated area that has been completely or partially consumed by a fire, regardless of
whether that fire was of human or natural origin, or whether that fire affected wildland
areas or human managed territories (agricultural or pastures).

BA can be combined with information on burn efficiency and available fuel load to
estimate emissions of trace gases and aerosols. Measurements of BA may be used as
direct input (driver) to climate and carbon cycle models or, when long time series of data
are available, to parameterize climate-driven models for BA. Even though most
destructive fires are large, small fires (<100 ha) may have a relevant contribution on
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atmospheric emissions and carbon budgets (van der Werf et al. 2017). However, precise

assessments of that contribution are not yet available. Model based studies estimated that
small fires may account for 35% of global burned area (Randerson et al. 2012).

Global BA products are based on coarse resolution sensors (from 250 to 1000m). Since
coarse resolution burned area detection algorithms require that a substantial fraction of
an individual pixel’s area undergo burning for successful attribution (to avoid
commission errors from other forms of land cover change), detection of small fires
becomes difficult. Therefore, the likelihood of detecting small burns (i.e. < 50ha) is low,
and the products are frequently affected by omission errors (Giglio et al. 2009; Padilla et
al. 2015), particularly coming from small fires (Kloster et al. 2012). To improve the
characterization of small fires, the Fire_cci project generated a small fire database (SFD)
based on medium resolution sensors (10 to 100m). Considering the massive processing
effort when generating products at global level, the SFD was focused on the African
continent (Roteta et al. 2019), the most burned worldwide (Chuvieco et al. 2016; Giglio
et al. 2013), with additional areas being a posteriori selected over tropical South-east Asia
(Lohberger et al. 2017) and South America (Belenguer-Plomer et al. 2019b).

The aim of WP2100 (Fire_cci+ Phase 1) is to better understand the impact of different
sensors for the detection of burned areas. The combined SAR-optical (SAR-O) BA
algorithm was developed to seamlessly integrate information from different sensor types
at pixel level. The algorithm integrates pixel-based approaches with object recognition
and contextual information. The algorithm detects changes within optical indices and/or
SAR backscatter coefficient between consecutive periods and relates them to burned
areas by training a convolution neural network (CNN) (LeCun et al. 2015; Zhu et al.
2017). The iterative multi-temporal analysis takes advantage of ancillary information on
land cover and thermal anomalies (hotspots) to label the fire affected areas used for CNN
training.

2.2. Purpose of the document

This document provides the description of the SAR-O algorithm together with
preliminary validation results over five Military Grid Reference System (MGRS) tiles
distributed worldwide. The document draws from the ATBDs already provided within
Fire_cci Phase 2.

2.3. Applicable Documents

[RD-1] | Bastarrika A., Roteta E. (2018) ESA CCI ECV Fire Disturbance: D2.1.2
Algorithm Theoretical Basis Document-SFD, version 1.0. Available at:
https://www.esa-fire-cci.org/documents

[RD-2] | M.A. Tanase, M.A. Belenguer-Plomer (2018) ESA CCl ECV Fire
Disturbance: 03.D1 Algorithm Theoretical Basis Document — S1 South
America, v2.0. Available at: https://www.esa-fire-cci.org/documents

2.4. The SAR-Optical algorithm: general considerations

The growing availability of medium resolution (10-50 m) optical sensors, such as
Sentinel-2 Multispectral Instrument (MSI) and Landsat Operational Land Imager (OLI),
has opened new opportunities to characterize the impact of small fires, although their use
is limited by the persistent cloud cover in tropical regions. SAR data provide the means
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to overcome the drawbacks of the optical sensors in areas with persistent cloud cover.
Over the past decade, radar sensors have become of interest for tracking fire disturbance
due to their independence of cloud cover and solar illumination (Bourgeau-Chavez et al.
2002; Tanase et al. 2010). The standard derivative from radar data is the backscatter
coefficient which provides an indication of the amount of returned energy that is scattered
in a backward direction towards the sensor. A priori, the removal of vegetative material
reduces the number of scattering elements and thus the total backscatter, as elements of a

size similar with the wavelength constitute important sources for microwave scattering
(Rignot and Zyl 1993).

The combined use of optical and SAR sensors may reduce omission errors over areas
with frequent cloud cover at the cost of making global processing computationally
demanding. Indeed, despite the increasing processing power of cloud computing systems
generation of continental BA products from Sentinel-2 sensors requires significant effort.
Therefore, a combined SAR-Optical algorithm needs to efficiently integrate and use the
two data types. Such efficiency may be achieved by dynamic inclusion of SAR datasets
into the processing chains depending on pixel-wise availability of optical information
over the selected detection period. Further, computational efficiency may be achieved by
using state of the art algorithms such as deep leaning (DL). DL has been applied in many
remote sensing-based studies over the last years and constitutes an efficient way of
integrating multiple data sources. Among the deep learning methods, convolutional
neural networks (CNN) are widely used in the remote sensing field and has been selected
as the basis for the development of the optical-radar algorithm (Ban et al. 2020; Pinto et
al. 2020).

As with all change detection methods, it is essential to link the change in optical
reflectance and/or backscatter coefficient to fire activity. Contextual information data
may help reduce uncertainties by taking advantage of information from the temporal (e.g.,
higher fire probabilities for certain months) or spatial (e.g., burned area size, shape and
distance to neighbours) domains. Furthermore, high resolution active fire products (e.g.,
Visible Infrared Imaging Radiometer Suite -VIIRS sensor, aboard the Suomi National
Polar-orbiting Partnership — NASA (NPP) satellite may be linked to changed patches
based on location and acquisition time and thus provide additional means when
identifying areas affected by relatively small fires.

3. Data

3.1. Sentinel-1 system and data products

Sentinel-1 is a two-satellite constellation (A - since April 2014, B - since April 2016) with
the prime objectives of Land and Ocean monitoring (Table 1). The satellites carry a C-
band SAR sensor, which offers medium and high-resolution imaging in all weather
conditions making it useful for land monitoring. The radar operates in two main modes,
with the Interferometric Wide (IW) swath (250 km width) being the default operation
mode over land. The IW mode images three sub-swathes using the Terrain Observation
with Progressive Scans SAR (TOPSAR) to provide high quality, homogeneous images.
The advantages of Sentinel-1 sensor over other C-band SAR missions, besides the free
data access policy, are three-fold: i) high temporal frequency (6 days exact repeat cycle
with two satellites), ii) high spatial resolution (5 m in azimuth and 20 m in range) and, iii)
dual-polarization (VV and VH).
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Sentinel-1 products are released in two Level 1 formats, Ground Range Detected (GRD)
and Single Look Complex (SLC). GRD products are projected, intensity images,

radiometrically and terrain corrected. SLC data are designed for interferometric
applications, containing both phase and intensity information.

The SAR-O algorithm uses the systematically distributed Level-1 Ground Range
Detected, focused data that has been detected, multi-looked and projected to ground range
using an Earth ellipsoid model. Pixel values represent detected magnitude (i.e., no phase
information). The ellipsoid projection of the GRD products is corrected using the terrain
height (as specified in the product general annotation) which varies in azimuth but is
constant in range. The products are delivered as GeoTiffs together with ancillary files
containing information about orbit, noise and calibration.

Table 1: Main characteristics of the Sentinel-1 satellite sensor.

Mission and Characteristics

instrument
Sentinel-1 Orbit: near-polar, sun-synchronous, 180° orbit phasing between A and B
(A/B) Repeat-pass: 12 days per satellite.

Combined A/B satellite passes: 6 days.

Combined A/B satellites Ascending/Descending passes: 3 days.
Instrument: C-band (5.3 GHz) synthetic aperture radar
Acquisition modes:

Strip map (SM) — on demand

Extra Wide Swath (EW) — basic operation mode over sea/ocean
Interferometric Wide Swath (IW) — basic operation mode over land
Spatial resolution (IW): range: 5 m / azimuth: 20 m

Swath width (IW): 250 km

3.2. Sentinel-2 system and data products

The data used for the SAR-O algorithm are Sentinel-2 MSI Level-1C product, which
contains Top-of-atmosphere reflectance projected in UTM WGS84 system. Bottom-of-
atmosphere reflectance and a Scene Classification (SCL) were generated using the ESA
toolbox. The Sentinel-2 mission allows a high revisit frequency (5 days at the equator
with the Sentinel 2A and 2B satellites). The MSI sensor provides a unique combination
of high spatial resolution (which varies from 10 m to 60 m), wide field of view (290 km)
and spectral coverage, with 13 spectral bands spanning from the visible and the near
infrared to the short-wave infrared (Table 2).

Table 2: Band characteristics of the Sentinel-2 MSI

MSI Band Number |Centre Wavelength (nm)| Bandwidth (nm) | Resolution (m)
1 443 20 60
2 490 65 10
3 560 35 10
4 665 30 10
5 705 15 20
6 740 15 20
7 783 20 20
8 842 115 10
8a 865 20 20
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MSI Band Number |Centre Wavelength (nm)| Bandwidth (nm) | Resolution (m)
9 945 20 60
10 1380 30 60
11 1610 90 20
12 2190 180 20

3.3. Ancillary datasets

The main ancillary datasets used for BA algorithm development and calibration are
Landsat 8 imagery (used to derive reference burned perimeters) and the thermal
anomalies (hotspots) detected by the Visible Infrared Imaging Radiometer Suite (VIIRS)
and Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. In addition, the
ESA CCI Land cover v2.0.7 dataset (ESA 2017) at 300 m spatial resolution is used to
provide information on land cover types and non-burnable areas (e.g., water bodies).

3.3.1. Landsat-8 data products

For back-comparability, the SAR-O algorithm development was processed over 10
MGRS tiles used during cal/val activities of the SAR-based Reed-Xiaoli detector (RXD)
in Fire_cci Phase 2 (Belenguer-Plomer et al. 2019b). Landsat-8 images were used to
generate reference burned areas perimeters due to the limited availability of Sentinel-2
imagery at the time.

Landsat-8 was launched on February 2013 as a combined effort of NASA and the United
States Geological Survey (USGS). Landsat-8 ensures the continued acquisition and
availability of Landsat data. It carries two observation sensors, the OLI and the Thermal
InfraRed Sensor (TIRS) collecting data in nine shortwave bands and two longwave
thermal bands (Table 3 and Figure 1). Landsat-8 Pre-Collection! products were used
when generating the reference burned area maps for algorithm development and
calibration sites.

Table 3: Landsat 8 OLI and TIRS bands description

Bands Wavelength (um) Resolution (m)
Band 1 - Coastal aerosol 0.43 - 0.45 30
Band 2 — Blue 0.45-0.51 30
Band 3 — Green 0.53 - 0.59 30
Band 4 — Red 0.64 - 0.67 30
Band 5 - Near Infrared (NIR) 0.85-0.88 30
Band 6 - SWIR 1 1.57-1.65 30
Band 7 - SWIR 2 2.11-2.29 30
Band 8 - Panchromatic 0.50 - 0.68 15
Band 9 — Cirrus 1.36 - 1.38 30
Band 10 - Thermal Infrared (TIRS) 1 10.60 - 11.19 100 * (30)
Band 11 - Thermal Infrared (TIRS) 2 11.50 - 12.51 100 * (30)

11n 2016, the USGS began making changes to manage the Landsat archive as a tiered Collection of Landsat
data. Since October 2017 Landsat Pre-Collection data are no longer available.
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Figure 1: Comparison of Landsat and Sentinel 2 spectral bands (source: NASA)

3.3.2. Active fire products

The SAR-O BA detection algorithm uses active fire products to attribute changes in
surface reflectance and backscatter to fire affected areas. The hotspots detected by the
VIIRS sensor, onboard the Suomi-NPP satellite (375 m product) seem the most adequate
over the areas selected for algorithm development due to its better spatial resolution and
a greater response over fires of relatively small areas. Although the MODIS-acquired
thermal anomalies were of significant less quality over the selected areas they are used to
complement the VIIRS ones. Therefore, vector files of VIIRS and MODIS hotspots
downloadable from the Archive Download Tool (https:/firms.modaps.eosdis.
nasa.gov/download/) are used during various stages of the algorithm. One should notice
that VIIRS hotspots are affected by errors which are currently being solved by the Fire
Information for Resource Management System (FIRMS) team.

3.3.3. Other datasets

The ESA CCI Land cover dataset (300 m spatial resolution) was used to provide
information on non-burnable areas (e.g., water bodies) and drive the BA detection and
mapping algorithm as a function of land cover type. The land cover CClI product (LC_cci)
is an annual series of global land cover maps at 300 m spatial resolution, covering the
1992-2015 period. The maps were produced using a multi-year and multi-sensor strategy
to make use of all suitable data and maximize product consistency. The most recent ESA
land cover map (i.e., 2015) was used. To account for the different spatial resolution, this
layer was resampled to 40 m, i.e. the spatial resolution used for burned area detection and
mapping.

The Shuttle Radar Topography Mission DEM (SRTM DEM) provides the reference for
SAR data geocoding. The NASA SRTM provides digital elevation information over 80%
of the globe. The data is distributed by USGS and is available for download from the
National Map Seamless Data Distribution System or the USGS ftp site. The SRTM DEM
was derived from single pass SAR interferometric data acquired in 2000. For algorithm
development and satellite data processing the enhanced DEM is used. The enhanced DEM
was released worldwide in 2016 at 1 arc-seconds resolution (30 m at equator) in 1° tiles.
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4. Methods

4.1. Site selection for algorithm development and preliminary validation

Ten areas were selected for algorithm development and preliminary validation? (Table 4
and Figure 2) considering: i) the fire activity (from active fire products, i.e., hotspots), ii)
the main types of land cover iii) the availability of cloud-free Landsat 8 data. Once the
areas for algorithm development and preliminary validation were chosen, burned area
perimeters were generated for the 2015-2016 fire seasons, Sentinel-1/2 data were
processed, and the BA algorithm was developed, calibrated, and a preliminary validation
was carried out.

Table 4: Landsat 8 and Sentinel-1/2 data used for algorithm development and preliminary
validation

MGRS | Reference period | MGRS | Reference period

10SEH | 04/10/17-05/11/17 | 29TNG | 05/10/17-06/11/17
10UEC | 05/07/17-22/08/17 | 33NTG | 28/11/15-16/02/16
20LQP | 20/07/16-22/09/16 | 36NXP | 30/12/16-15/01/17
20LQQ | 04/07/16-22/09/16 | 50JML | 07/03/17-10/05/17
29TNE | 05/10/17-06/11/17 | 52LCH | 05/04/17-21/04/17

10UEC
. -
[-] i .
10SEH m29TNG 36NXP 52:4CH
|

= wme| B

20g u 50JML

20 QP 3 3NTG - I Development tiles

Il Validation tiles

Figure 2: Areas selected for algorithm development and preliminary validation. Terrestrial eco-
regions are also shown.

4.2. Sentinel-1 pre-processing

A Sentinel-1 pre-processing chain based on the Orfeo ToolBox (OTB)? was selected as it
provides for a platform-independent, open source pre-processing solution. The OTB
chain was developed by the Centre for the Study of the Biosphere from Space (CESBIO)

2 The validation of the BA products over the three AOIs will be carried out independently.
3 OTB is developed by the National Centre for Space Studies (CNES), France
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as an operational tool for Sentinel-1 GRD data tiling and processing per the 100 km
MGRS used by the Sentinel-2 processing system. The chain is highly scalable
(multithreading/multiprocessor) and autonomous once few parameters are set. The chain
also deals with data download from the PEPS (Plateforme d’Exploitation des Produits
Sentinel) repository that mirrors ESA’s Scihub. Alternatively, ESA’s Sentinels hub or
Copernicus Data and Information Access Services (DIAS) platforms may be used for data

download. S1-OTB processing may be grouped in several steps: pre-processing, geo-
reference, and multi-temporal filtering (Figure 3).

Data preparatian Ceencoding Filterimg
MGES grid - T
?1 MGES gnd hfr.axmL Y
——" —— \ filering J
j *Calibratan /'_'I:. codmg #‘ T |
alibratzar Geacoding ™ ff P F /ﬁ_m‘/?l_)

| md tlig A ad filterad
- mmages

‘backscaner

s neuaght
= mbagriey

Figure 3: Flowchart for SAR data processing with Orfeo Toolbox

The pre-processing steps include data download (ascending and descending passes) for
the specified MGRS tiles, calibration to gamma nought, and multi-look to the desired
spatial resolution. The geocoding steps include orthorectification to the desired spatial
resolution, subset of Sentinel-1 data to the current processing tile as well as slice assembly
for data acquired from the same orbital path but provided within different slices. The last
step of the OTB chain is multi-temporal filtering of the products according to satellite
pass. Notice that OTB pre-processing chain setup provides images at 20 m spatial
resolution. To further reduce speckle and, more importantly, the BA algorithm processing
time, the temporally filtered Sentinel-1 images are resampled (i.e. aggregated) to 40 m
spatial resolution.

4.3. Sentinel-2 pre-processing

The ESA’s atmospheric correction algorithm sen2cor (v.2.4.0) was used to derive bottom
of atmosphere (BOA) Sentinel-2 images and correct for topographic effects on surface
reflectance. The bi-cubic interpolation was subsequently used to resample the 20m
Sentinel-2 images to the pre-processed Sentinel-1 output resolution of 40m.

To reduce the number of cloud-affected pixels, temporal composites were generated using
both Sentinel-2 A and B images. The sen2cor-based SCL was considered when
generating such composites for a given reference date (i.e., pre- or post-fire). Pixels
affected by clouds or shadows were gap filled using data from Sentinel-2 imagery
acquired at the closest date. Gap filling considered a period of up to 30 days from the
reference date. Depending on the reference date, pre-fire or post-fire, the temporal pixel
filling was carried using images acquired before or after the reference, respectively
(Figure 4).
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Satellite  B02  BO3 B04 BO5  BO6 BO7 B8a B1l B12

S2A 4924 5598 6646 7041 7405 7828 8647 16137 22024
S2B 492.1 559.0 06650 7038 739.1 779.7 8640 16104 21857

t_n t
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i E Fire date

Compositep,,(,i_ff,.t. ComPOSiteposr—ffre

. Cloud affected
D Cloud unaffected

Figure 4: Central wavelength (nm) by bands number of the MSI onboard Sentinel-2 A and B, and
Graphical representation of temporal composite formation

Along with surface reflectance for each of the two temporal composites (pre- and post-
fire), the following indices were computed and used for BA detection and mapping: NBR,
NDVI, NDWI and MIRBI.

NBR = (B8a - B12) / (B8a + B12) (1)
NDVI = (B8a - BO5) / (B8a + B05) )
NDWI = (B8a - B11) / (B8a + B11) (3)
MIRBI = 10 x B12 — 9.8 x B11 + 2 (4)

where: B- stands for the band number of Sentinel 2 sensors

4.4. SAR-optical data integration

The burned area detection and mapping algorithm uses time series of Sentinel-1/2
imagery collected with a reasonably short time gap between them. The algorithm is
sensitive to the timing of images acquired at t-1 and t+1 which need to be spaced
reasonably (< 30 days) as recovering vegetation may obscure the burn signal. Detection
and classification are carried out on consecutive acquisition dates for which Sentinel-1
and 2 imagery need to be combined. The SAR-optical data integration is carried out by
stacking consecutive pre-fire (t-1) and post fire (t+1) dates of radar-derived metrics with
temporal composites of optical-derived Sentinel-2 metrics (spectral bands). As Sentinel-
1 and Sentinel-2 acquisition dates may not coincide, the Sentinel-1 dates are always
selected as the detection period due to their complete spatial coverage (e.g., no missing
pixels due to cloud cover). Sentinel-2 images are then matched to the Sentinel-1 dates for
the current detection period as follows: i) for the pre-fire date, the closest Sentinel-2 image
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acquired before (if no coincident image is available) is selected as t-1 date and, ii) for the
post-fire date, the closest image acquired after (if no coincident image is available
coincident) is selected as t+1 date. Once the Sentinel-2 interval is ‘matched’ with the

Sentinel-1detection interval, the temporal composite process (see Section 4.3) kicks in
and cloud related gaps are filled in.

The input pairs of Sentinel-1 metrics and Sentinel-2 image composites for the current
detection period are subsequently fed into the classification algorithm and optical indices
are derived (see Section 4.3).

4.5. Reference burned perimeters and validation

The reference burned perimeters extraction for validation purposes was based on a well-
established framework (Padilla et al. 2014; Padilla et al. 2015; Padilla et al. 2017). The
reference data were obtained from Landsat-8 images using a random forest (RF) classifier
and training polygons selected by an independent operator. The validation perimeters
were generated from multi-temporal pairs of images with a maximum separation of 32
days. The temporal separation of the pairs was short to ensure that fire scars were clearly
visible in the post-fire image. Before running the classification, clouds were removed
using the pixel quality band of the Landsat product and each pair of images was clipped
to the extent of its corresponding MGRS tile. Training areas were selected using a false
colour composite (RGB: SWIR, NIR, R) that allowed for a clear discrimination of burned
areas. Three training classes were considered: burned, unburned and no data.

The variables selected as input for the RF classifier were: (i) Landsat-8 bands 5 and 7; (ii)
the Normalized Burn Ratio (NBR); and (iii) the temporal difference between the pre- and
post-fire NBR values (ANBR). The NBR (5) is defined as the normalized difference
between the reflectance of NIR and SWIR wavelengths (Key and Benson 2006; Lépez-
Garcia and Caselles 1991).

NBR = (NIR — SWIR)/(NIR + SWIR) (5)

where near infra-red (NIR) has a wavelength of 0.85-0.88 um and shortwave infra-red
(SWIR) has a wavelength of 2.11-2.29 um.

After the RF classification, fire perimeters were visually revised to correct possible errors.
New training fields were iteratively added, and the RF was re-run until the classification
results were deemed accurate. Reference BA perimeters were resized using a nearest-
neighbour interpolation to the selected pixel spacing of the Sentinel-1 product (40 m).
Temporal gaps between the Landsat-8 reference period and the Sentinel-1 detection
period were filled in by photointerpretation of Sentinel-2 images.

Confusion matrices were used to validate the burned area maps (Table 5). The Dice
coefficient (6), omission errors (7), and commission errors (8), were used to assess the
quality of the mapping products obtained within different CNN configurations. For global
climate modelling needs, BA products should have commission errors (CE) in the range
of 4% (ideal) to 17 % (maximum), with omission errors (OE) above 19% deemed less
useful for the modelling efforts (Mouillot et al. 2014).
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Table 5: Confusion matrix (example)
Refererence data

Detection Burned Unburned Row total

Burned Pii P2 Py

Unburned Pg 1 PQQ 1DQ+

Col. total P,y P N
DC = 2P11 / (P1s +P+1) (6)
OE = Py1 / Pxt (7)
CE = P12/ Pis 8

4.6. Burned area mapping

The burned area mapping algorithm identifies changes in C-band backscatter and surface
reflectance associated with burning events. The algorithm considers i) multi-temporal
changes of incoherent SAR-based metrics (VV and VH backscatter coefficients and their
ratio VH/VV) and ii) changes in surface reflectance (individual bands and derived indices.
For algorithm training, ancillary information on thermal anomalies (hotspots) and land
cover are also used.

4.6.1. Convolutional Neural Networks (CNN) - background

Deep learning methods are increasingly applied to remote sensing problems (Zhu et al.
2017) with convolutional neural networks (CNN) being widely used in land cover
classification, the retrieval of bio-geophysical variables (Ma et al. 2019) or burned area
detection and classification (Ban et al. 2020; Pinto et al. 2020). CNN are often structured
by more than two stacked stages of convolution, non-linearity and pooling, followed by
at least one fully connected layer (LeCun et al. 2015; Zhu et al. 2017). Each convolutional
layer carries out a spatial-spectral feature extraction (Zhong et al. 2019), generating a set
of new filtered data where visual and signal patterns such as edges are emphasized (Strigl
et al. 2010). From the convoluted filtered data, each neuron takes a vector and applies an
activation function of a weighted linear summation (9) (Maggiori et al. 2016).

a=f(wx+h) 9)

where: a is the neuron output, w is the weight given to the vector x, b is the bias value,
and f is the activation function which introduces non-linearity into the network and
permits learning complex features from data (Agostinelli et al. 2014; Saha et al. 2019).
The most common activation function in remote sensing applications is the rectified linear
unit (ReLU) (Nair and Hinton 2010), which activates values greater or equal than zero,
while it converts the rest to zero (10).

xx=0
flx)r=
0, x<0
(10)
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A loss function is used to quantify the errors when classifying a training vector data,
comparing the CNN-based prediction with the label of such vector (Maggiori et al. 2016).
The weights and biases of each neuron are adjusted using backpropagation during the
network training, carrying out multiple iterations forward and backward (Anantrasirichai
et al. 2019) to minimize the errors via gradient descent (Schmidhuber 2015). The
activated data is sub-sampled often to reduce the tensor size, which increases the receptor
field to the next convolutional layer of the network (Kellenberger et al. 2018; Strigl et al.
2010). The last layer of the network oversees the classification instead of the feature
extraction. Thus, a fully connected neural network layer is used. Usually, such a fully
connected network is followed by a softmax layer, which models the input data to the
probability of belonging to each considered class (Anantrasirichai et al. 2019; Zhang et
al. 2018).

4.6.2. Selection of training data

CNN is a supervised learning method and thus it needs sample data (burned and unburned
pixels) for algorithm training. The extraction of the training dataset takes advantage of
hotspots (active fire events) derived from thermal sensors (i.e., VIIRS and MODIS) which
provide both algorithm autonomy and results replicability (i.e., avoids operator
interpretation of burned/unburned areas). The use of hotspots, well established for burned
area mapping (Belenguer-Plomer et al. 2019b; Roteta et al. 2019), is essential particularly
when using the radar derived metrics to differentiate changes due to fires (Huang and
Siegert 2006). Burned training pixels were selected within a spatial buffer determined as
the double of the thermal sensor spatial resolution (Langner et al. 2007; Sitanggang et al.
2013). The unburned training pixels were those outside the hotspot buffer areas as well
as from not burnable (e.g. water) land cover classes according to CCI land cover map
reference.

4.6.3. Assessment of optimum CNN configuration for BA mapping

The parameters that define a CNN model such as the number of layers, neurons and filters
for each dataset need to be adjusted (Bashiri and Geranmayeh 2011). To determine the
optimal network for BA detection and mapping, eight combinations (Table 6) were
analysed as a function of network complexity (i.e., number of hidden layers),
dimensionality of feature extraction (i.e., spatial or spectral) and data normalization (i.e.,
0-1 or z-score). The generated CNNs were based on AlexNet (Krizhevsky et al. 2012),
integrating convolutional hidden layers, the ReL U activation function, max-pooling, fully
connected layers, dropout and softmax classification. Four architectures were analysed
after combining two CNN-groups that differed in terms of (i) the number of hidden layers
and filters, and (ii) the image domain (i.e., spatial or spectral) where the convolutional
feature extraction was executed over the input data.

The first group included two CNN models with a different number of hidden layers and
filters. The first model had two hidden layers with 32 and 64 filters, respectively, whereas
the second model had a third additional hidden layer where 128 filters were applied.
Hereafter the models with two and three hidden layers are referred to as the simple (S)
and the complex (C), respectively. The second group involved two convolution-based
filters for feature extraction. The first filter implies convolution over the spectral domain,
considering one dimension as defined by the number of image-bands (1D). The second
filter used the spatial domain at each image-band which implies two dimensions (2D)
through the rows and columns (Kussul et al. 2017; Xu et al. 2017) (see Figure 5).
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Figure 5: Configuration of 1D (left) and 2D (right) CNNs (Belenguer-Plomer et al., in preparation)

Two normalization methods were tested separately with each image band being
normalized (i) in the interval [0,1] (Benedetti et al. 2018) and (ii) applying the z-score
normalization (Zhong et al. 2017) (11).

x—pu(b)
a (!)) (11)

z-score (x) =

where: x is a given pixel of a band b of the image, and pand ¢ are the mean and standard
deviation, respectively. Thus, in Table 6 there are the eight configurations considered
whose performance when mapping BA is going to be assessed in this study for each
dataset (i.e., SAR, optical and SAR-optical combination).

Table 6: The eight configurations assessed for each input dataset (S — simple, C — complex).

CNN model | Convolution dimension | Data normalization
S 1D Z-score
S 1D 0-1
S 2D Z-score
S 2D 0-1
C 1D Z-score
C 1D 0-1
C 2D Z-score
C 2D 0-1

The utility of land cover specific CNN training was also considered as it may affect
burned area mapping, particularly when using radar datasets (Belenguer-Plomer et al.
2019a; Belenguer-Plomer et al. 2018; Boschetti et al. 2004; Padilla et al. 2015).

4.7. Preliminary results and significance for BA mapping algorithm
development

The next sub-sections provide an overview of the BA algorithm configuration as a
function of the analysis carried out to determine the optimum CNN configuration as well
as the integration of SAR and optical data within a seamless mapping algorithm. Three
CNN algorithms were trained and analysed: SAR based (S-1), optical based (S-2) and
SAR and optical (S-1 + S-2). The latter algorithm was based on feeding both radar- and
optical-derived metrics (e.g. backscatter coefficient, surface reflectance, indices) into the
CNN training.
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4.7.1. Optimum CNN configuration
Depending on the MGRS tile, the optimum CNN configuration varied (Figure 6). When
Sentinel-1 (S1) data was fed into the CNN, accuracy metrics of dispersion (i.e., between
tiles) at any CNN configuration were larger than when compared to feeding Sentinel-2
(S2) data or both Sentinel-1 and Sentinel-2 data (S1+S2). For the radar-fed CNN (S1)
inter-tiles accuracy dispersion was reduced when the convolution and feature extraction
was carried out through the spatial domain of the image (2D) by decreasing omission
errors (36NXP, 20LQQ and 50JML) despite a slight increase in commission errors for
some tiles (10UEC and 29TNE). Similar results were achieved when using only Sentinel-
2 data. When feeding both types of data (S1+S2) into the CNN, the convolution
dimension (i.e., 1D, 2D) did not influence algorithm accuracy. In addition, the time
required when training 2D models was lower compared to 1D, particularly when
considering complex (C) networks and regardless of data normalization type. The use of
more complex (C) CNN models, as opposed to using the simplest ones (S), did not result
in increased accuracy, regardless of the type of data fed into the algorithm. Similarly,
computing time differences as a result of different data normalization method (z-score vs
0 to 1 values) were marginal for any of the input data. However, marginal increments in
accuracy where observed when using the z-score normalization for the Sentinel-1 fed
algorithm, particularly in tile 50JML (Australian grasslands) where OE where reduce
significantly (for 2D CNN). Conversely, when feeding Sentinel-2 or Sentinel-1 and -2
data, the 0 to 1 normalization provided slightly more accurate BA detections.
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Figure 6: Dice coefficient (DC), commission and omission errors (CE and OE) by calibration tiles
when training different CNN configuration and input data.

The results show that more complex networks are not adequate when mapping BA from
either SAR, optical or both datasets since training is more computationally intensive but
BA accuracy does not improve. However, convolution dimensionality and data
normalization warrant further investigation as their effect changes with the studied area,
i.e., vegetation type and fire regimes (Figure 7).
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Figure 7: Mean and standard error of Dice coefficient (DC), commission and omission errors (CE
and OE) by land cover classes when training different CNN configuration and input data. O: other.
F: forest. S: shrubland. G: grassland. C: cropland.

By land cover classes, the lowest BA mapping accuracy was observed for Grasslands,
particularly when using Sentinel-1 data due to high omission errors. However, combining
2D convolution with z-score normalization resulted in improving the DC by 59% from
1D convolution-based approaches with z-score (DC 0.35+0.24 vs 0.22+0.2, being + the
standard deviation). The same configuration (2D and z-score) also improved the accuracy
over Crops, especially when compared to 1D with 0-1 data normalization (DC 0.37+0.14
vs 0.30+0.25), although to a lesser extent, while over Forests the improvement was
marginal. Accuracy metrics were stable for Shrubs over all configurations tested,
although the 2D and z-score configuration provided less overall dispersion among the
analysed tiles. For the remaining land cover types, included in class Others, the highest
mapping accuracy was achieved using the convolution in spectral domain (1D).

Although S-2 fed CNN achieved better accuracies when compared to S-1 fed CNN, such
improvements were also conditioned by land cover classes and configurations. When
using optical data, the most accurate dimension for convolution was the spectral one (1D)
except for Crops where the spatial convolution (2D) provided improved results. Marginal
differences in BA accuracy were found between the two data normalization types with
the z-score normalization providing higher DC values over all land cover classes except
for Forests.
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When both, Sentinel-1 and Sentinel-2 data were fed to the CNN algorithm the BA
classification did not improved when compared to only using Sentinel-2 data except for
Crops. Over cropping areas, SAR or optical data alone provided low mapping accuracies
(highest DCs achieved 0.37+0.14 and 0.42+0.05, respectively). However, combining the
two sensor types (S1+S2) improved the mapping accuracy (DC 0.44+0.09) by reducing
OE. Such an improvement was maximum for the 2D convolution and z-score
normalization. For the remaining land cover classes, mixing SAR and optical data seem
not necessary when cloud cover is not an issue. As for the CNN optimum configuration,

1D convolution and 0 to 1 normalization provided improved mapping accuracies as for
S-1 based algorithm.

The highest mapping accuracy was observed for Forests regardless of data normalization
method, convolution dimensionality and input remote sensing data (S-1, S-2, S1+S2).
The optimum CNN configuration for each land cover class is presented in Table 7 as a
function of the input remote sensing data.

Table 7: Optimum CNN configuration and the average Dice Coefficient of the calibration tiles (DC
+ standard deviation) achieved by land cover class and input data

LC S-1 DC (S-1) S-2 DC (S-2) S-1+8-2 DC (S-1+8-2)
O ID|z-score 0.46+0.29 1D |z-score 0.50+0.31 1D | 0-1 0.42+0.38
F  2D|z-score 0.60+£0.23 1D | 0-1 0.64+0.18 ID | 0-1 0.58+0.24
S 2D z-score 0.50+0.23 1D|z-score 0.56+0.22 1D | 0-1 0.53+0.21
G 2D|z-score 0.35+£0.24 1D |z-score 0.38+0.20 all 0.31+0.25
C  2DJz-score 0.37+0.14 2D|z-score 0.43+0.05 2D |z-score 0.44+0.09

The layer of the CNNs (softmax) predicts the probability of each pixel to belong to burned
and unburned classes, and thus results into mapped burned and unburned categories. All
previous analyses assigned a pixel as burned when the softmax probability was above
50%. However, such a fixed threshold may not always provide optimum results
depending on the input datasets and land cover class (Figure 8).
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Figure 8: Variation of mapping accuracy as a function of changes in softmax probability by land
cover class and input data sets

To improve BA mapping accuracy and balanced CE and OE the effect of a using a
variable threshold probability was studied. Such variation depended on land cover class
and the input data fed to the CNN algorithm. Over Grasslands, Crops and Shrubs, the
classes with the highest OE, improved accuracies where observed when the softmax
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probability was reduced (40 to 50%) with its extent depending on the input dataset. The
best trade-off between CE and OE was provided by thresholds of 45% and 40% over
Shrubs and respectively Grasslands, when using S1+S2 data. When S1 or S2 data were
used separately a 45% threshold was optimum over Crops and Grasslands. Conversely,
for Forests class a more restrictive threshold improved BA mapping accuracy. The
optimum threshold differed with the input data, from 65% when using S1 or S2 data alone
to 75% when integrating SAR and optical data (S1+S2). For class Others the BA accuracy
improved marginally when varying the threshold until a probability of 80% for S1 and
70% for S2. However, when using S1+S2 the improvement was considerable with within
the 55-75% interval with the highest accuracy being achieved for a softmax of 70%. Such
improvement allowed S1+S2 based detection achieving higher accuracies when
compared to separate S1 or S2 detection. Past the optimum threshold, mapping accuracy
reduces considerably, particularly when using S2 data. This effect was observed for all
land cover classes except Grasslands, where the opposite was true.

4.7.2. SAR-optical mapping strategy

BA mapping accuracy was comparatively analysed by land cover class for three different
strategies of combining SAR and optical datasets: (a) stacking radar and optical metrics
(e.g., backscatter coefficient, surface reflectance, indices) and feed them to the CNN
algorithm; (b) using BA detected from the optical data and filling the gaps (e.g., due to
cloud cover) with pixels mapped from radar data and; (c) joining BA detected by either
radar or the optical-based algorithms (Figure 9).

Over Forests, the three mapping strategies provided similar results (i.e., DC values).
However, joining individual S-1 and S-2 detections may provide an advantage by
reducing areas not detected due to clouds or shadows. For Shrubs the observed DC values
were similar for all mapping strategies with radar-filled optical-based BA maps showing
slightly higher DCs when compared to the remaining two strategies. Over Grasslands the
radar-filled optical-based BA maps, provided more accurate results when compared to
the remaining ones.

Over the two remaining land cover classes (i.e., Others, Crops), the use of radar-optical
stacks into the CNN allowed for improved accuracies when compared to using radar or
optical data separately and combining the result. In particular, for class Others the radar-
optical stacks allowed for reduced CE (20% less).
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Figure 9: Mean and standard error of Dice coefficient (DC), commission and omission errors (CE
and OE) by land cover classes when combining Sentinel-1 and -2 applying four different
approaches, being a - a SAR and optical data integration before the CNN based classification; b —
the Sentinel-2 BA based maps pixels affected by no data pixels were filled using BA from Sentinel-
1; and ¢ - a SAR and optical integration of all burned pixels.

4.8. Preliminary algorithm validation

The optimum CNN configuration and mapping strategy, as observed over the calibration
tiles, was assessed over the validation tiles (Table 8) with the mapping accuracy varying
depending on the input data (i.e., S-1, S-2 and S-1+S-2). Higher mapping errors (DC<0.6)
were observed over grassland dominated tiles in Africa and Australia (33NTG and
52LCH, respectively), regardless of the input data. Over the remaining tiles, DC values
were above 0.7. Over two tiles (20LQP and 33NTG), the radar-based maps where more
accurate when compared to the optical based maps (DC of 0.81 vs 0.71 and 0.50 vs 0.46)
with the opposite being valid for the remaining three tiles. However, the use of Sentinel-
1 data (cloud cover independent) allowed for wall to wall mapping (marginal percentages
of unobserved pixels at image borders). In tile 52LCH the optical-based maps did not
provide information for 21.5% when compared to 0.3% when using the radar data (Figure
10).

By land cover type (Figure 11), the highest accuracy was observed over forested areas
when mapping BA through the SAR-optical combination (DC 0.72) as opposed to only
using SAR (DC 0.63) or optical (DC 0.66) information (Figure 11). The most relevant
improvement was combining S-1 and S-2 was found over class Others where the synergy
of both sensors reduced considerably OE and CE when compared to the single sensor
approaches. Over the remaining land cover classes, the radar-optical approach provided
the lowest OE, particularly when compared to the SAR-based maps. The CE values of
the radar-optical combination were equal or marginally higher when compared to maps
derived from Sentinel-2 optical data. Finally, the lowest accuracy was achieved over the
Crops, mainly due to unusually high CE (near of 0.8) observed for both sensor types when
compared to the other land cover types. In addition, for the radar-based maps, BA
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accuracy over cropping areas was also negatively influenced by high OE, which did not
occur when using optical datasets.

The optimum combination of Sentinel-1 and Sentinel-2 data generally improved or
maintained the accuracy achieved from maps based on SAR or optical data separately
except for tile 20LQP, where the SAR-based maps achieved the highest. Improvements
when combining the two sensor types where related to a considerable reduction in OE
coupled with marginal increase in CE. The average OE reduction and CE increase over
the five validation tiles was 0.22+0.22 and 0.05+0.17 when compared to radar-based
maps and 0.09+0.08 and 0.05+0.05 when compared to optical-based maps. Apart from
accuracy improvements, using both optical and radar data reduced gaps due to cloud
cover to almost non-existent, a major advantage of combining active and passive sensors.
Although computationally intensive, a combined SAR-optical approach takes advantage
of the optical sensor improved BA mapping accuracy and the radar atmospheric
independence to provide consistent, wall to wall products.

Table 8: Error metrics for Sentinel-1 burned area detections for each MGRS tile analysed

MGRS C Reference period Sat Detection period DC OE CE % Nd
5-1 28/09/2017-03/11/2017  0.46 0.69 0.13  0.00
10SEH NA  04/10/2017-05/11/2017  S-2 07/10/2017-01/11/2017  0.70 0.12 041 226

S§-1+8-2  28/09/2017-03/11/2017  0.70 0.10 043 0.00

5-1 03/07/2016-25/09/2016  0.81 0.08 0.27  0.00
20LQP SA  20/07/2016-22/09/2016  S-2 17/07/2016-25/09/2016  0.71 0.20 037  0.00
5-1+8-2  03/07/2016-25/09/2016  0.73 0.04 041 0.00

5-1 28/09/2017-09/11/2017  0.64 0.44 025  0.00
29TNG Eu  05/10/2017-06/11/2017  §-2 05/10/2017-09/11/2017  0.75 0.27 022 0.06
S§-1+8-2  28/09/2017-09/11/2017  0.77 0.23 022  0.00

5-1 15/01/2016-20/02/2016  0.50 0.53 047  0.00
33NTG Af  15/01/2016-16/02/2016  S-2 18/01/2016-/17/02/2016  0.47 0.65 031 039
§-1+8-2  15/01/2016-20/02/2016  0.56 0.47 042  0.00

5-1 26/03/2017-19/04/2017  0.36 0.75 034  0.00
52LCH Au  05/04/2017-21/04/2017 S-2 19/03/2017-08/04/2017  0.55 0.59 0.15  17.56
S-1+8-2 26/03/2017-19/04/2017  0.56 0.55 0.24  0.00

C - continent for each tile (Af-Africa, Au-Australia, Eu-Europe, NA-North America and SA-South America); Ref-
erence period - period for which it was derived the reference burn perimeters using Landsat-8; Sat - input dataset
considered; Detection period - first and last Sentinel-1 or Sentinel-2 images of the temporal series; DC - Dice Coeffi-
cient; OE - Omission Error; CE - Commission Error; and %Nd - the percentage of no data pixels over all the MGRS

tile.
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Figure 10: BA mapping from active (S1), passive (S2) and active-passive (S1+S2) sensors

Others Forests Shurhs Grasslands Crops
ns - = < = —
= = s = El < o )
T . o0 % 55 35 §% f% o 54 ¢
a2 3§ = =} = =} = = = = _ _ _
04 = 9_ = ; = = = = -
= H = ™ +H +H +
0z & = - Ei. = 5‘&
= d. = o
e
3° e =
s 5 3 ) =
T E = — ] = =
|1 S = — - z o = =
o 2 H 3 - = = = = i S o
04 = 3 +H H = = ol ] = =
= = " 3 = ||E Ti = E i 5
02 o ot A A A i
= o - =] =
- = - = =
= = -
LI 3 i e
8 06 S = E E 1 ol s = E
- o — — = (=]
] =7 = = o =
”" S 3 3 I8 (% 33 I8 2] 37 ¢
2 =
02 gi = =z = P z =
=3

® 51 ® 52 @ 514512

Figure 11: BA mapping accuracy for the validating tiles as a function of the sensor used
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AOI Area Of Interest NBR Normalized Burn Ratio

ATBD | Algorithm Theoretical Basis NDVI Normalized Difference
Document Vegetation Index

BA Burned Area NDWI | Normalized Difference Water

BOA Bottom of atmosphere Index

CCl Climate Change Initiative NIR Near InfraRed

CE Commission Error OE Omission Error

CESBI | Centre for the Study of the OLI Operational Land Imager

) Biosphere from Space OoTB Orfeo ToolBox

CNES | France National Centre for PEPS Plateforme d’Exploitation des
Space Studies Produits Sentinel

CNN Convolution neural networks R Red

DC Dice Coefficient RF Random Forest

DEM Digital Elevation Model RGB Red-Green-Blue composite

DIAS Data and Information Access RelL U Rectified Linear Unit
Services RXD Reed-Xiaoli Detector

DL Deep Learning S1 Sentinel-1

ECV Essential Climate Variables S2 Sentinel-2

ESA European Space Agency SAR Synthetic Aperture Radar

EW Extra Wide swath mode SAR-O | SAR-Optical

FIRMS | Fire Information for Resource SCL Scene Classification
Management System SFD Small Fire Database

GCOS | Global Climate Observing SLC Single Look Complex
System SM Strip Map mode

GRD Ground Range Detected SRTM | Shuttle Radar Topography

IPCC Intergovernmental Panel on Mission
Climate Change SWIR Short Wave InfraRed

W Interferometric Wide swath TIRS Thermal InfraRed Sensor
mode TOPSA | Terrain Observation with

LC Land Cover R Progressive Scans SAR

MGRS | Military Grid Reference System USGS | United States Geological Survey

MIRBI | Mid-InfraRed Burnt Index UTM Universal Transverse Mercator

MODIS | Moderate-Resolution Imaging VIIRS | Visible Infrared Imaging
Spectroradiometer Radiometer Suite

MSI Multi Spectral Instrument WGS84 | World Geodetic System 1984

NASA | National Aeronautics and Space
Agency
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