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Summary 

This document describes the algorithms used for generating the small-fire database for 

the large demonstrator area (LDA) in tropical South America within the Fire_cci project. 

It includes the description of the Sentinel-1 C-band data pre-processing, as well as the 

ancillary data used to derive burned area over the tropical Amazon. 
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1 Executive Summary 

Forest fires are an important source of atmospheric aerosols and greenhouse gases, with 

a causal relationship between biomass burning and inter-annual variability of related 

emissions being observed (Simmonds et al. 2005). Worldwide, about 350 million hectares 

are affected by large fires (i.e., mapped from 500 m spatial resolution data) annually 

(Giglio et al. 2013), exerting a major influence on carbon release from terrestrial 

ecosystems (Andreae and Merlet 2001; Simmonds et al. 2005). Fires are also a major 

factor in land cover changes, and hence affect fluxes of energy and water to the 

atmosphere. In this context, spatial and temporal monitoring of burned areas can be 

inferred using remote sensing, a cost effective, objective, and time-saving method to 

monitor and quantify location, extent and intensity of fire events (Chuvieco 1999; Laneve 

et al. 2006; Stroppiana et al. 2003). The Fire Disturbance Essential Climate Variable 

provides baseline products for the land-surface to allow such monitoring activities at 

global scales. 

Burned area (BA), as derived from satellites, is considered the primary variable that 

requires climate-standard continuity. It can be combined with information on burn 

efficiency and available fuel load to estimate emissions of trace gases and aerosols. 

Measurements of BA may be used as direct input (driver) to climate and carbon cycle 

models or, when long time series of data are available, to parameterize climate-driven 

models for BA. However, global burned area may be underestimated by up to 35% since 

small fires are often missed by coarse resolution sensors (Kloster et al. 2012). 

The aim of Option 3 of the Fire_cci project is to provide Sentinel-1 burned area products, 

at high spatial resolution, over a large demonstrator area (LDA) located in tropical South 

America. The Option complements the baseline project by developing a C-band 

backscatter change detection algorithm adapted to the fire regimes encountered in tropical 

South America. Option 3 also extends the areas mapped within the “Small fire database” 

(SDF) to tropical regions in South America. The algorithm complements those proposed 

within the baseline (i.e., pixel-based coherence) and CCN-1: Indonesia Fires and El Niño 

Special Case (object-based backscatter) by integrating pixel-based approaches with 

object recognition and contextual information. The algorithm detects anomalous 

backscatter changes within an iterative multi-temporal analysis and takes advantage of 

ancillary information on land cover and thermal anomalies (hotspots) to label the fire 

affected areas being autonomous and adapting to the local conditions. 

This document is the Algorithm Theoretical Basis Document (ATBD) corresponding to 

the generation of the small fires database over one LDA located in the tropical South 

America. The document describes the algorithm, methods, and approaches that lead 

to the generation of the small fire database for the Amazon LDA within the Phase 2 

of the Fire_cci project. In this document approaches based on synthetic aperture radar 

(SAR) data are described. Test sites for algorithm development and calibration have been 

selected based on representative vegetation types (i.e., grasslands, crops and forests) that 

burn on a regular basis. The theoretical basis described here identifies the data sets used 

to classify burned area and the methods used to derive the cartographic products. 

Assessment of algorithm`s performance and comparisons with the remaining SFD 

algorithms are described in separate documents [RD-2] and [RD-4]. Burned area 

maps derived from Sentinel-1 imagery were created for the tropical Amazon basin for 

year 2017. The resulting maps were validated using BA perimeters derived from 

multispectral optical datasets (e.g., Sentinel-2, Landsat-8).  
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2 Introduction 

2.1 Purpose of the document 

This document supplements existing ATBDs developed for Africa and South-East Asia. 

The document follows and draws from the SFD ATBDs already provided within Fire_cci 

Phase 2. It describes the theoretical basis of the algorithm used to map burned areas from 

Sentinel-1 SAR data over the tropical South America.  

2.2 Reference Documents 

[RD-1] O3.D2: Burned area database for the candidate validation tiles 

[RD-2] O3.D3: Intermediate validation results: SAR pre-processing and Burned 

Area detection. 
[RD-3] O3.D4: Product validation report 

[RD-4] O3.D5: Radar - Algorithm intercomparison document 

2.3 Background 

The ESA CCI initiative stresses the importance of providing a higher scientific visibility 

to data acquired by ESA sensors, especially in the context of the IPCC reports. This 

implies producing consistent time series of accurate Essential Climate Variables (ECV) 

products, which can be used by the climate, atmospheric and ecosystem scientists. The 

importance of keeping long-term observations and the international links with other 

agencies currently generating ECV data is also stressed. 

The fire disturbance ECV identifies burned area (BA) as the primary fire variable. 

Accordingly, the Fire_cci project focuses on developing and validating algorithms to 

meet GCOS ECV requirements for (consistent, stable, error-characterised) global satellite 

data products from multi-sensor data archives.  

Global BA products are based on coarse resolution sensors (from 300 to 1000m). 

Therefore, the likelihood of detecting small burns (i.e. < 50ha) is low, and the products 

are frequently affected by omission errors (Giglio et al. 2009; Padilla et al. 2015), 

particularly coming from small fires (Kloster et al. 2012). To improve the characterization 

of small fires, one of the objectives of the Fire_cci Phase 2 project is to generate a small 

fires database based on medium resolution sensors (10 to 100m). Considering the massive 

processing effort when generating products at global level, the SFD is focused on the 

African continent, the most burned worldwide (Chuvieco et al. 2016; Giglio et al. 2013), 

with additional areas being a posteriori selected over tropical South-east Asia and South 

America. The SFD shall add value to the global BA products generated within the 

Fire_cci and the global characterization of fire activity. 

3 The Small Fire Database 

Burned area is defined in this document as any vegetated area that has been completely 

or partially consumed by a fire, regardless of whether that fire was of human or natural 

origin, or whether that fire affected wildland areas or human managed territories 

(agricultural or pastures). 

Since several coarse-resolution burned area detection algorithms require that a substantial 

fraction of an individual pixel’s area undergo burning for successful attribution (to avoid 
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commission errors from other forms of land cover change), detection of small fires 

becomes difficult (Roy and Landmann 2005). At a global scale, it has been estimated that 

accounting for small fires may increase burned area and global carbon emissions by 

approximately 35% (Kloster et al. 2012). 

The strategy of using active fire products for BA detection and mapping may provide 

additional information on small fires contribution to total burned area because of the 

strong nonlinearity in radiative power as a function of fire temperature. Active fires 

products have shown very low commission errors, but very diverse omission rates (36-

86%) depending on the ecosystem and fire size (Hantson et al. 2013). In this context, 

there is a need to link coarse resolution products with data on small burned patches, in 

locations where these are the dominant fire types. This could be achieved with higher 

resolution remote sensing data such as Landsat-OLI (30 m) or Sentinel-2 optical data 

(down to 10 m). However, in areas with frequent clouds such as the Amazon, the mapping 

capability of optical data is diminished.  

Sentinel-1 SAR data may provide the means to overcome the drawbacks of the optical 

sensors in areas with persistent cloud cover. Over the past decade, radar sensors have 

become of interest for tracking fire disturbance due to their independence of cloud cover 

and solar illumination (Bourgeau-Chavez et al. 2002; Tanase et al. 2010). In addition, 

radar sensors are ideal for long-term monitoring, as the signal is directly influenced by 

vegetation structure and thus more sensitive to temporal changes when compared to 

optical data (Kasischke et al. 2011). The radar backscatter includes different scattering 

mechanisms (e.g. crown, trunk, and ground) depending on the land cover type. The 

relative importance of such scattering mechanisms depends on the structural properties 

of the vegetation, with crown components being the primary source of scattering at C-

band (λ ≈ 5 cm; f ≈ 5.4 GHz), the wavelength of interest for Option 3. 

The standard derivative from radar data is the backscatter coefficient. This provides an 

indication of the amount of returned energy that is scattered in a backward direction 

towards the sensor. The contribution of understory vegetation and ground surface is 

primarily conditioned by the upper canopy architecture (e.g., crown closure, shape, etc.). 

Over sparsely vegetated areas most of the scattering comes from the ground surface, with 

some attenuation (two-ways) from the vegetation layer. A priori, the removal of 

vegetative material reduces the number of scattering elements and thus the total 

backscatter, as elements of a size similar with the wavelength constitute important sources 

for microwave scattering (Rignot and Zyl 1993). However, variations in the post-fire 

response caused by topographic and environmental conditions are widely documented 

(Huang and Siegert 2006; Menges et al. 2004; Rignot et al. 1999; Tanase et al. 2010). 

Overall, C-band co-polarized (VV or HH polarizations) backscatter showed little 

sensitivity to fire impacts, particularly for slopes pointing away from the sensor, in some 

environments (e.g., Mediterranean). Nevertheless, using co-polarized waves, fire affected 

areas could be delineated in tropical environments (Huang and Siegert 2006) suggesting 

differentiated sensitivities across biomes. Cross-polarized backscatter (HV or VH 

polarizations) show lower values over burned areas at most SAR frequencies, and the 

sensitivity to burns was rather constant over the entire range of local incidence angles 

(Tanase et al. 2010).  

Regional to global burned area algorithms using Sentinel-1 data have not been yet 

published, but considering the better spatial and temporal resolution, improved 

characteristics when compared to past C-band sensors (e.g., signal to noise ratio, 

shallower incidence angle over land, higher temporal frequency, multiple polarizations) 
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past results regarding C-band sensitivity to fire impacts remain valid and change-

detection radar-based algorithms used for fire impact assessment (Fieber et al. 2015) 

could be repurposed for BA detection within a multi-temporal framework. However, 

backscatter changes may result from non-fire-related landscape changes (e.g., crop 

harvest, logging, pests), as well as environmental variables (e.g., changes in the 

background humidity or surface roughness). As with all time-series change detection 

methods, it is essential to link the change in backscatter coefficient to fire activity. The 

complex task of identifying only the fire affected areas may pose an undetermined 

problem when only using the two backscatter channels (polarizations) regularly acquired 

over land by the Sentinel-1 mission. However, contextual information data may help 

reduce uncertainties by taking advantage of information from the temporal (e.g., higher 

fire probabilities for certain months) or spatial (e.g., burned area size, shape and distance 

to neighbours) domains. Furthermore, high resolution active fire products (e.g., Visible 

Infrared Imaging Radiometer Suite -VIIRS sensor, aboard the Suomi-NPP satellite) may 

be linked to changed patches based on location and acquisition time and thus provide 

additional means when identifying areas affected by relatively small fires. 

The results of the SFD will be integrated with results from the Fire_cci project using a 

consistent product specification, detailed in the project’s Product Specification Document 

(PSD). The products generated through Option 3 shall follow the PSD for the small fire 

database. However, considering the higher resolution of Sentinel-1 data, the use of 

Ground Range Detected (GRD) data sets and the developed algorithm, an adaptation of 

the product specification was necessary: 

 Target resolution: 1 hectare or better. BA smaller than this threshold may not be 

mapped. The minimum mapping unit area shall contain several Sentinel-1 adjacent 

pixels thus avoiding spurious backscatter changes. Each pixel consists of multi-

looked full resolution pixels (5 in range and 4 in azimuth, at 40 m resolution) for 

speckle reduction. Additional speckle reduction is achieved by temporal filtering.  

 Projection: Geographic projection (latitude-longitude). 

 Temporal resolution: Day of detection in monthly (bi-monthly for less than nominal 

S-1 acquisition frequency) composites. 

4 Data 

4.1 Sentinel-1 system and data products 

Sentinel-1 is a two-satellite constellation (A - since April 2014, B - since April 2016) with 

the prime objectives of Land and Ocean monitoring (Table 1). The goal of the mission is 

to provide C-Band SAR data continuity following the end of ERS-2 and Envisat missions. 

The satellites carry a C-band SAR sensor, which offers medium and high-resolution 

imaging in all weather conditions making it useful for land monitoring. The operational 

lifespan of the satellites is 7 years (with consumable for 12). However, ESA ensured the 

procurement of replacement satellites (Sentinel-1 C/D) to extend the operational 

monitoring component of Copernicus programme at least until the end of 2030. The radar 

operates in two main modes, with the Interferometric Wide (IW) swath (250 km width) 

being the default operation mode over land. The IW mode images three sub-swathes using 

the Terrain Observation with Progressive Scans SAR (TOPSAR) to provide high quality, 

homogeneous images. The advantages of Sentinel-1 sensor over other C-band SAR 

missions, besides the free data access policy, are three-fold, i) high temporal frequency 

(6 days exact repeat cycle with two satellites), ii) high spatial resolution (5 m in azimuth 
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and 20 m in range) and, iii) dual-polarization (VV and VH). One should notice that 

nominal temporal frequency is not yet achieved over areas outside Europe and North 

America and that areas with frequent seismic activity (e.g., the Andes) are imaged in 

single polarization mode (VV) for increased spatial resolution. 

Sentinel-1 products are released in two Level 1 formats, Ground Range Detected (GRD) 

and Single Look Complex (SLC). GRD products are projected, intensity images, 

radiometrically and terrain corrected. SLC data are designed for interferometric 

applications, containing both phase and intensity information. The most commonly 

available SLC and GRD data are acquired in IW mode.  

As for the SFD Indonesia, this Option uses the systematically distributed Level-1 Ground 

Range Detected data, focused data that has been detected, multi-looked and projected to 

ground range using an Earth ellipsoid model (typical product size is 1GB for dual-pol IW 

mode). Pixel values represent detected magnitude (i.e., no phase information). The 

ellipsoid projection of the GRD products is corrected using the terrain height (as specified 

in the product general annotation) which varies in azimuth but is constant in range. The 

products are delivered as GeoTiffs together with ancillary files containing information 

about orbit, noise and calibration. Notice that for SFD Africa, Single Look Complex 

(SLC) images (contain phase information) are used as the Sentinel-1 algorithm in Africa 

is based on temporal changes of the interferometric coherence. The complex SLC data 

processing, drastically increased data storage (eight times more when compared to GRD) 

and computing requirements, and C-band high temporal decorrelation over vegetated 

areas were considered when selecting the GRD datasets as the main product for the 

development of the BA algorithm in South America. 

Table 1. Main characteristics of the Sentinel-1 satellite sensor. 

Mission and 

instrument 

Characteristics 

Sentinel-1 

(A/B) 

Orbit: near-polar, sun-synchronous, 180° orbit phasing between A and B 

Repeat-pass: 12 days per satellite.  

Combined A/B satellite passes: 6 days.  

Combined A/B satellites Ascending/Descending passes: 3 days. 

Instrument: C-band (5.3 GHz) synthetic aperture radar 

Acquisition modes:  

Strip map (SM) – on demand 

Extra Wide Swath (EW) – basic operation mode over sea/ocean 

Interferometric Wide Swath (IW) – basic operation mode over land  

Spatial resolution (IW): range: 5 m / azimuth: 20 m 

Swath width (IW): 250 km 

4.2 Ancillary datasets 

The main ancillary datasets used for BA algorithm development and calibration are 

Landsat 8 imagery (used to derive reference burned perimeters), hotspots detected by the 

Visible Infrared Imaging Radiometer Suite (VIIRS) and Moderate Resolution Imaging 

Spectroradiometer (MODIS) sensors. In addition, ESA CCI Land cover dataset (300 m 

spatial resolution) is used to provide information on land cover types and non-burnable 

areas (e.g., water bodies).  
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4.2.1 Landsat-8 data products 

Due to the limited availability of Sentinel-2 imagery over the period considered for 

algorithm development (2015-2016 fire seasons), Landsat-8 images were used to generate 

reference burned areas maps over the sites selected for the calibration and preliminary 

validation of the algorithm. Landsat-8 was launched on February 2013 as a combined 

effort of NASA and the United States Geological Survey (USGS). Landsat-8 ensures the 

continued acquisition and availability of Landsat data. It carries two observation sensors, 

the Operational Land Imager (OLI) and the Thermal InfraRed Sensor (TIRS) collecting 

data in nine shortwave bands and two longwave thermal bands (Table 2, Figure 1). 

Landsat-8 Pre-Collection1 products were used when generating the reference burned area 

maps for algorithm development and calibration sites.  

Table 2. Landsat 8 OLI and TIRS bands description 

Bands 
Wavelength 

(micrometers) 

Resolution 

(meters) 

Band 1 - Coastal aerosol 0.43 - 0.45 30 

Band 2 – Blue 0.45 - 0.51 30 

Band 3 – Green 0.53 - 0.59 30 

Band 4 – Red 0.64 - 0.67 30 

Band 5 - Near Infrared (NIR) 0.85 - 0.88 30 

Band 6 - SWIR 1 1.57 - 1.65 30 

Band 7 - SWIR 2 2.11 - 2.29 30 

Band 8 - Panchromatic 0.50 - 0.68 15 

Band 9 – Cirrus 1.36 - 1.38 30 

Band 10 - Thermal Infrared (TIRS) 1 10.60 - 11.19 100 * (30) 

Band 11 - Thermal Infrared (TIRS) 2  11.50 - 12.51 100 * (30) 

 

 

Figure 1: Comparison of Landsat and Sentinel 2 spectral bands (source: NASA) 

4.2.2 Active fire products 

Option 3 Sentinel-1 based BA detection algorithm uses active fire products to attribute 

changes in backscatter to fire affected areas. The hotspots detected by the Visible Infrared 

Imaging Radiometer Suite (VIIRS) sensor, onboard the Suomi-NPP satellite (375 m 

product) seem the most adequate over the areas selected for algorithm development due 

                                                 

1 In 2016, the USGS began making changes to manage the Landsat archive as a tiered Collection of Landsat 

data. Since October 2017 Landsat Pre-Collection data are no longer available. 

https://en.wikipedia.org/wiki/NASA
https://en.wikipedia.org/wiki/United_States_Geological_Survey
https://en.wikipedia.org/wiki/Operational_Land_Imager
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to its better spatial resolution and a greater response over fires of relatively small areas. 

Although the MODIS acquired thermal anomalies were of significant less quality over 

the selected areas they are used to complement the VIRS ones. Therefore, vector files of 

VIIRS and MODIS hotspots downloadable from the Archive Download Tool 

(https://firms.modaps.eosdis.nasa.gov/download/) are used during various stages of the 

algorithm. One should notice that VIIRS hotspots are affected by errors which are 

currently being solved by the FIRMS team. 

4.2.3 Other datasets 

The ESA CCI Land cover dataset (300 m spatial resolution) is used by the algorithm to 

provide information on non-burnable areas (e.g. water bodies) and drive the BA detection 

and mapping algorithm as a function of land cover type. To account for the different 

spatial resolution, this layer is resampled to the spatial resolution used within Option 3 

(i.e. 40m). The LC_cci land cover product is an annual series of global land cover maps 

at 300 m spatial resolution, covering the 1992-2015 period. The maps were produced 

using a multi-year and multi-sensor strategy to make use of all suitable data and maximize 

product consistency. The most recent ESA land cover map (i.e., 2015) is used within 

Option 3. 

The Shuttle Radar Topography Mission DEM (SRTM DEM) provides the reference for 

SAR data geocoding. The NASA SRTM provides digital elevation information over 80% 

of the globe. The data is distributed by USGS and is available for download from the 

National Map Seamless Data Distribution System or the USGS ftp site. The SRTM DEM 

was derived from single pass SAR interferometric data acquired in 2000. For Option 3, 

the enhanced DEM is used. The enhanced DEM was released worldwide in 2016 at 1 arc-

seconds resolution (30 m at equator) in 1-degree tiles. 

5 Methods 

5.1 Site selection for algorithm development and preliminary validation 

Five areas (defined by Landsat path/row number) were selected for algorithm 

development and preliminary validation2 considering: i) the fire activity (from active fire 

products, i.e., hotspots), ii) the main types of land cover in tropical Amazon (i.e., 

grasslands, cropping areas, and forests), and iii) the availability of concurrent cloud-free 

Landsat 8 and Sentinel-1 datasets. The selected Landsat path/rows were imaged by the 

Sentinel-1 sensors within the relative orbital paths 10, 54, 77, 149, and 170 (Table 3). As 

explained in the following sections, the selected Sentinel-1 pre-processing chain uses the 

100 km Military Reference Grid System (MRGS) for data tiling. Therefore, only the 10 

MGRS tiles corresponding to the selected Landsat path/rows were processed (Figure 2 

and Table 3). Once the areas for algorithm development and preliminary validation were 

chosen, burned area perimeters were generated for the 2015-2016 fire seasons, Sentinel-

1 data were processed, and the BA algorithm was developed, calibrated, and a preliminary 

validation3 was carried out. 

                                                 

2 the validation of the BA product over the Amazon LDA was carried out independently as described in 

O3.D2: Burned area database for the candidate validation tiles and O3.D4: Product validation report. 

3 the results of the preliminary validation are described in O3.D3: Intermediate validation results: SAR pre-

processing and Burned Area detection. Notice that the preliminary validation was carried out within the 

MGRS tiles not used during the algorithm development and calibration). 
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Figure 2:  Areas selected for algorithm development and preliminary validation. Terrestrial eco-

regions are also shown. 

Table 3.  Correspondence between Landsat 8 and Sentinel -1 data used for algorithm development 

and preliminary validation (see D3 and D5 for validation results) 

Landsat-8  Sentinel-1 

Path/ 

Row 

Period Image 

pairs* 

Mean time-

range 

(days) 

Relative 

orbit 

MGRS tile Period 

001/066 2016.06.30-

2016.08.18 

1 32 

54 19LGL** 

2016.05.01-

2016.10.15 

007/057 2015.09.26-

2016.02.01 

1 128 

77 18NYK*** 

2014.10.22-

2016.12.16 

007/059 2016.10.30-

2017.02.19 

1 111 

149 18NXG** 

2016.09.10-

2017.03.30 

224/069 2016.05.23-

2016.08.11 

5 29 

170 22LCL*** 

2016.04.01-

2016.09.30 

230/066 2016.05.01-

2016.09.06 

5 26 

10 

20LQR, 20LRR, 

20LQQ, 20LRQ*** 

2016.04.01-

2016.10.30 

230/067 2016.07.20-

206.09.22 

3 21 

10 

20LQQ, 20LRQ, 

20LQP, 20LRP** 

2016.04.01-

2016.10.30 

*cloud free image pairs used to derive multi-temporal reference burned areas; ** tile used for independent 

validation; *** tile used for algorithm calibration. 

5.2 Generation of burned area perimeters from Landsat 8 datasets  

Reference burned area perimeters were generated using the Burned Area Mapping 

Software, BAMS. BAMS uses several spectral indexes, commonly used in burned area 

detection, through a two-phase supervised strategy to map areas burned between two 

Landsat multitemporal images (Bastarrika et al., 2014). The algorithm needs user 

interaction in form of visual delimitation of burned areas, from which statistics are 

extracted. After the discrimination of burned patches the user can visually assess the 
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results and iteratively select additional sampling areas to improve classification. The 

output is a vector layer with polygons being classified as: 

- Burned (class 1): areas detected as burned  

- Non-observed (class 2): areas commonly covered by clouds or by missing sensor data. 

If there are clouds in one of the two images, this area is masked. The mask is generated 

using the quality information provided with the Landsat data. 

- Unburned (class 3): areas not detected as burned between the two dates; burned areas 

that were already burned in the earlier images are also classified in this category. 

BAMS results were visually assessed, and missed burned area perimeters were added 

when changes of reflectance values matched VIIRS hotspots. In each MGRS tile, multi-

temporal BA perimeters were created. Their number depended on the available Landsat 

images pairs with a cloud cover below 30% (Table 3). In total, 16 vector files, 

corresponding to 16 Landsat image pairs (pre-fire and post-fire images) were generated. 

5.3 Classification of Burned and Non-Burned Vegetation from Sentinel-1 

The algorithm is based on the use of temporal time-series of Sentinel-1 SAR data to 

identify changes in C-band backscatter and associate them with biomass burning events. 

The backscatter coefficient gives an indication of the amount of energy that is returned 

from the surface. The algorithm considers multi-temporal changes of incoherent SAR-

based metrics (i.e. backscattering coefficient intensities), for each SAR channel (i.e., VV 

and VH) as well as changes of incoherent radar indices (RI) computed from the available 

radar channels. To derive the BA maps the algorithm is divided in three steps: SAR data 

pre-processing, detection of backscatter changes, and BA classification.  

5.3.1 SAR data pre-processing  

The outputs of two separate SAR chains were evaluated for Sentinel-1 data pre-

processing over the LDA Amazon. The first chain is based on commercial software (i.e., 

Gamma Remote Sensing, GRS) while the second chain uses open-source libraries 

(Inglada and Christophe 2009) available through Orfeo ToolBox4, (OTB). The 

comparison was necessary as the Burned Area (BA) algorithm was developed using S-1 

images pre-processed through the GRS chain, a chain available at the start of Option 3. 

The comparison allowed for validating BA algorithm`s transferability from the 

development environment (GRS-based) to a cloud computing environment (OTB-based). 

Following the evaluation process, OTB outputs were deemed compatible with GRS 

outputs (i.e., no modification was needed for the BA algorithm) and the OTB pre-

processing chain was selected for implementation into a cloud computing environment as 

it provides for a platform-independent pre-processing solution. The agreement between 

the two pre-processing chains was evaluated regarding product geometric and radiometric 

accuracies. In addition, the BA algorithm was applied to Sentinel-1 data processed 

through both pre-processing chains and the results were compared5.  

                                                 

4 OTB is developed by the National Centre for Space Studies (CNES), France 

5 A detailed description of the two SAR pre-processing chains (GRS and OTB) together with the results of 

the evaluation analysis are available in O3.D3: Intermediate validation results: SAR pre-processing and 

Burned Area detection. 



 

 

Fire_cci 
Algorithm Theoretical Basis Document 

LDA South America 

Ref.: Fire_cci_O3.D1_ATBD-S1-SA_2.0 

Issue 2.0 Date 31/08/2019 

Page 15 
 

The Sentinel-1 processing chain with OTB (S1-OTB) was developed by the Centre for 

the Study of the Biosphere from Space (CESBIO) as an operational tool for Sentinel-1 

GRD data tiling and processing per the 100 km NATO MGRS (Military Grid Reference 

System) used by the Sentinel-2 processing system. The chain is highly scalable 

(multithreading/multiprocessor) and autonomous once few parameters are set. The chain 

also deals with data download from the PEPS (Plateforme d’Exploitation des Produits 

Sentinel) repository that mirrors ESA`s Scihub. Alternatively, ESA`s Sentinels hub may 

be used for data download. S1-OTB processing may be grouped in several steps, pre-

processing, and geo-reference, and multi-temporal filtering (Figure 3). 

 
Figure 3: Flowchart for SAR data processing with Orfeo Toolbox 

The pre-processing steps include data download (ascending and descending passes) for 

the specified MGRS tiles, calibration to gamma nought and multi-look to the desired 

spatial resolution. The geocoding steps include orthorectification to the desired spatial 

resolution, subset Sentinel-1 data to the current processing tile as well as slice assembly 

for data acquired from the same orbital path but provided within different slices. The last 

step of the OTB chain is multi-temporal filtering of the products according to satellite 

pass. Notice that, OTB pre-processing chain setup provides images at 20 m spatial 

resolution. To further reduce speckle and, more importantly, the BA algorithm processing 

time, the temporally filtered Sentinel-1 images are resampled (i.e. aggregated) to a coarser 

(40 m) spatial resolution. 

5.3.2 Burned area classification 

The algorithm considers multi-temporal changes of incoherent SAR-based metrics (i.e. 

backscattering coefficient intensities), for each SAR channel (i.e., VV and VH). The 

algorithm assumes time series of images that have been collected with a reasonably short 

time gap between them (Table 4. 4). As such, the algorithm is sensitive to the timing of 

images acquired in epoch -1 and +1 which need to be acquired within a reasonable amount 

of time as recovering vegetation may obscure the burn signal. 

For the classification, consecutive acquisitions of the study area are needed to detect the 

burned area. The reason is that, in general, for undisturbed vegetated areas, Sentinel-1 

backscatter coefficient tends to be relatively stable; for backscatter measured between 

scenes before and after a burn event, the backscatter coefficient drops significantly (up to 

3 dB over forested areas) and is again stable between scenes following a burn event. 

Table 4. List of Sentinel-1 SAR data being used in the classification 

Classification Input Layers (from 

4-scene time series) 

Description (data means co- and cross-polarized 

backscatter) 

Epoch -2 Backscatter Intensity (γ°)  Radiometric, Temporally Filtered and Terrain Corrected C-

band backscatter – power – acquired two dates before burn.  

Epoch -1 Backscatter Intensity (γ°) Radiometric, Temporally Filtered and Terrain Corrected C-

band backscatter – power – acquired before burn. 
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Epoch +1 Backscatter Intensity (γ°) Radiometric, Temporally Filtered and Terrain Corrected C-

band backscatter – power – acquired after burn. 

Epoch +2 Backscatter Intensity (γ°) Radiometric, Temporally Filtered and Terrain Corrected C-

band backscatter – power –acquired two dates after burn. 

We classify burned area between epochs -1 and +1. Epoch -2 is an earlier acquisition 

date; epoch +2 is a more recent acquisition date. Epoch -2 is needed as an early check on 

previous changes and to establish the status of the area before burn. Between epoch -1 

and +1 is where we detect burned area. Epoch +2 is a check that burns have indeed taken 

place. Epochs -2 and +2 provide also a means to account for the observed temporal 

decorrelation between fire and backscatter coefficient decrease. Temporal indices are 

computed: i) between epochs -2 and -1, ii) between epochs -1 and +1, and iii) between 

epoch +1 and +2. The temporal indices may be computed based on the co-polarized 

channel (over areas where only VV polarization is available), and the cross-polarized 

channel for areas where both polarizations are acquired. The algorithm has six stages with 

its simplified structure being provided in Figure 4. The following paragraphs explain in 

detail each stage. 

 
Figure 4: Burned area detection algorithm flowchart 

5.3.2.1 Stage 1: Anomaly change detection 

An anomalous change implies variations outside the typical behaviour expected for a 

given area and time. Burned areas are considered anomalies since fires are inconsistent 

spatial and temporal events. The Reed-Xiaoli detector (RXD), proposed by (Reed and Yu 

1990), detects signatures that are distinct from the surroundings without the need for a priori 

information. Anomalies have two characteristics that make them outliers: (i) spectral 

signatures differ when compared to the surrounding pixels; and (ii) low occurrence 

probability (Kwon and Nasrabadi 2005; Stein et al. 2002). RXD uses the covariance 

matrix which calculates the Mahalanobis distance from a given pixel to the mean of the 

background pixels (Dabbiru et al. 2012). For a given pixel x, the score of the Anomalous 

Change (AC) for the current detection period (CDP) is given by Eq. 1: 

𝐴𝐶(𝑥) = (𝑥 − 𝜇)𝑇𝐶−1 (𝑥 − 𝜇) (1) 

where µ is a vector composed by the mean value of the background pixels in each image band and 

C is the covariance matrix of the images bands of background pixels. 

The background value may be computed as the global sample mean of a subset image. 

When a priori information is available the background value may be computed from areas 

where anomalies are not expected. For BA detection, a priori information was provided 

by MODIS and VIIRS active fire databases. MODIS and VIIRS hotspots corresponding 
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to the CDP were used to mask areas likely affected by fires while the remaining pixels 

were used to calculate the background values. The burned area masks were derived by 

taking a buffer of 0.75 km around each hotspot. The buffer was considered the influence 

area of each individual hotspot (IAhs) and it roughly corresponds to the pixel size for 

VIIRS and MODIS thermal channels while also considering location uncertainty.  

The RXD was applied to a set of temporal ratios of backscatter coefficient in power units 

(Eq. 2 and 3). Such temporal indices were previously used for estimating the impact of 

different disturbance agents (e.g., fire, insect, wind) on vegetation (Tanase et al. 2018; 

Tanase et al. 2015). The selected temporal radar indices mainly use the VH backscatter 

which is more responsive to volumetric scattering from vegetation and less affected by 

changes in surface properties (e.g. soil moisture, surface roughness) when compared to 

the co-polarized (VV polarization) channel (Freeman and Durden 1998; van Zyl et al. 

2011; Yamaguchi et al. 2005). 

𝑅𝐼1 =  𝛾0𝑉𝐻𝑡−1/𝛾0𝑉𝐻𝑡+1 (2)  

𝑅𝐼2 =  (𝛾0𝑉𝐻𝑡−1/𝛾0𝑉𝑉𝑡−1) /(𝛾0𝑉𝐻𝑡+1/𝛾0𝑉𝑉𝑡+1) (3)  

where γ0 is the backscatter intensity (linear scale) of VV or VH polarizations, t − 1 and t + 1 are 

pre- and post-detection dates, being the CDP delimited by these. 

To reduce errors related to signal variation due to fire unrelated sources (e.g. variation in 

soils surface moisture, vegetation regrowth) the AC values for the CDP, are modulated by 

the AC values recorded for the previous detection period (Eq. 4). Practically, AC scores 

for the most recently detected change are subtracted from the current AC scores. The result 

is a Modulated Anomalous Changes (MAC) score used in all subsequent detection stages. 

𝑀𝐴𝐶(𝑥) = 𝐴𝐶(𝑥)[𝑡−1..𝑡+1] − 𝐴𝐶(𝑥)[𝑡−2..𝑡−1] (4) 

5.3.2.2 Stage 2: Burned and unburned regions of interest 

In this stage, burned and unburned Regions of Interest (ROIs) were automatically 

extracted using the MAC scores and ancillary information from hotspots and land cover 

data. Burned ROIs (bROI) were extracted in two steps seeding and growing, an approach 

previously used for global burned area mapping algorithms (Alonso-Canas and Chuvieco 

2015; Bastarrika et al. 2011). To obtain the seeds, spatially connected IAhs pixels were 

first grouped in uniquely identified objects (q1 : n, where n is the number of the unique 

objects). A pixel x inside an object q, was considered burned seed (bSeed) if conditions 

in Eq. 5 were met. 

x = bSeed if     (5) 

 MAC(x) ≥ min (s,v) > 0 OR 

 MAC(x) ≥ max (s,v) > 0 AND min (s,v) < 0 

where s = µ (MACqꞌ), with µ being the mean and qꞌ a region around q bounded by distq and distq 

+ √distq, with distq being the maximum span of object q. Thus, qꞌ delineates likely unburned 

areas near q; and v = µ (MACNG), with NG being the neighbor pixels of G, where G is a pool of 

pixels inside q with MAC values below µ (MACq).  

 

The bSeed pixels were extracted considering the major land cover type for each q object. 

Therefore, pixels in qꞌ region were stratified by land cover type with only pixels of the 

same land cover type as q being used for computations. In addition, the selected qꞌ pixels 

need to be outside the IAhs of any other hotspot. Figure 5 shows graphically the concepts 

of q, qꞌ, and distq. Once bSeed pixels for q were extracted, an open morphological operator 

(3 × 3 window) was used to eliminate isolated pixels. 



 

 

Fire_cci 
Algorithm Theoretical Basis Document 

LDA South America 

Ref.: Fire_cci_O3.D1_ATBD-S1-SA_2.0 

Issue 2.0 Date 31/08/2019 

Page 18 
 

 

 

Figure 5: Graphical representation of concepts needed to extract bROIs, HS-hotspot, dist-distance. 

The growing phase started by masking out image pixels when their MAC values were 

below the mean value for the predominant land cover class (k) of the object q. The 

remaining pixels were used to compute the MAC value used as the minimum threshold to 

label Likely Burned Pixels (LBP) (Eq. 6). 

x=LBP if  (6) 

MAC(x) > µ (MAC> µ(MACk)) 

Connected LBP pixels were grouped and subsequently overlapped with the extracted 

bSeed pixels for the q objects. LBP groups overlapping bSeed pixels were assigned to the 

bROIs and constitute the first component of the detected burned areas. The second 

component was detected using no parametric classification (i.e., random forests) as 

explained in Section 5.3.2.4. 

The unburned ROIs (uROIs) were derived iteratively by land cover type. The histogram 

of bROIs pixels identified in the previous step was used to calculate the MAC values for 

the 25 and 75 percentiles (P25 and P75, respectively). These values constituted thresholds 

used to classify the MAC image in burned (1) and unburned (0). Pixels with MAC values 

below P25 or above P75 were considered possible unburned seeds since: (i) MAC values 

below P25 indicate small changes, likely unrelated to fires (e.g. vegetation growth, 

changes in vegetation water content); and (ii) MAC values above P75 were usually 

associated with significant changes such as logging, crop harvesting, or floods. One 

should note that, high severity fires may also result in MAC values above P75. However, 

such areas are regularly associated to hotspots and therefore were not labelled as uROIs. 

An open morphological operator (3 × 3 window) was applied to the classified binary 

image to remove noise. The effect of the open morphological operator is increasing the 

number of unburned (0) pixels. The uROIs, for the current land cover type, were obtained 

by: (i) filtering out pixel overlapping IAhs or bROIs; and (ii) adding all pixels from the 

not burnable LC map classes (i.e. bare soils, water, snow and ice, urban areas). 

Additionally, for the crop land cover class, groups of unburned pixels over 56 ha (0.75 x 

0.75 km) not overlapping hotspots were included as uROIs to account for fire-unrelated 

changes such as crop harvesting or changes in surface properties (roughness) due to 

agricultural works (e.g., ploughing). 

 

distq 
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5.3.2.3 Stage 3: Adjustment for temporal decorrelation 

During algorithm development, a temporal decorrelation between fire events (i.e., 

hotspots date) and backscatter coefficient change was observed. Such decorrelation 

events may be the result of delayed backscatter decrease after fire due to multiple factors 

including: (i) pre-fire conditions, e.g. drier than usual weather may results in low values 

for the pre-fire backscatter coefficient; (ii) post-fire weather, e.g. precipitations may 

temporally increase the backscatter coefficient; and (iii) vegetation-dependent backscatter 

response to fire events. For example, over forests, VH backscatter decrease may be 

delayed as there are still sufficient scattering elements (tree trunks and branches) present 

after fire. As time passes, trunks and branches dry up which results in decreased 

backscattering from vegetation. 

To account for temporal decorrelation, the burned area was detected iteratively for each 

period. Delayed changes in backscatter were accounted for by using the bROIs detected 

in periods formed by the current pre-fire image (t-1) and images acquired during the 

following 90 days past the CDP (i.e., t+2, t+3).  Such bROIs were labelled as burned in 

the CDP (t-1 to t+1) when overlapping hotspots from the CDP. Additionally, these bROIs 

must not overlap hotspot recorded past the CDP. 

5.3.2.4 Stage 4: Random forests burned/unburned classification 

Only a fraction of the anomalous pixels was labelled as burned based on information from 

hotspots due to the rather restrictive criteria used in Stage 2. Pixels not meeting the 

imposed criteria also needed labelling. To avoid subjectivity, such pixels were labelled 

using a land cover specific non-parametric classifier (i.e., random forests) trained with 

data extracted from bROIs and uROIs. Random forests (RF) is an ensemble classifier that 

consists in a group of decision trees {h (x, Θz , z=1, ...}, where x is the input vector, and Θz 

are independently bootstrap sampled vectors, with replacement, in each decision tree (z). 

Each tree provides a unique class for x, being the class of x assigned as the most popular 

voted class by the trees group (Breiman 2001).  In this study, TreeBagger from the 

MATLAB® software package was used to construct the RF classifiers. 

RF classifiers are customizable through different parameters such as: (i) number of trees; 

(ii) number of training samples; (iii) proportion of training samples by class; and (iv) 

number of independent variables. The number of trees is a key adjustment in RF 

classification since for more trees the generalization error converges and models are not 

over-fit (Breiman 2001; Pal 2005; Rodriguez-Galiano et al. 2012). On the other hand, 

using more trees demands more computational resources. An empirical analysis (not 

shown) concluded that 250 trees provided the best trade-off between speed and accuracy 

for burned area classification in this study. Since the number of pixels in bROIs and uROIs 

is high, computational costs may be reduced by using just a fraction for training purposes. 

This fraction was determined, by land cover classes, as 1% of all bROIs and uROIs pixels 

divided by the number of trees (250).  

Unbalanced training samples may result in infra-classification of the minority classes. 

According to (Chen et al. 2004), several approaches may be used to address such problems: 

(i) reducing the overall learning cost, with high costs being assigned to the miss-

classification of the minority classes (Pazzani et al. 1994); (ii) under-sampling the 

majority and over-sampling the minority classes; or (iii) a combination of both techniques 

(Chawla et al. 2002). The latter approach was used in this study. Depending on the 

misclassification cost, the TreeBagger function generates in-bag samples by oversampling 
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the burned class and under sampling the unburned class. The proportion of training data 

was empirically adjusted to 40% and 60% for burned and unburned classes respectively. 

The number of variables considered for trees growing in each split was computed as the 

square root of the total number of variables (Gislason et al. 2006), as it reduces the 

correlation of trees and thus improves global accuracy (Gislason et al. 2006; Rodriguez-

Galiano et al. 2012). In addition to the SAR based metrics used for RXD (Eq. 2 and 3), 

up to 30 SAR metrics were used for RF classification. These metrics were computed as 

in Eq. 7 to 12. The non-parametric classification was carried out considering the land 

cover type with specific models being built for each land cover class. The burned area 

detected by RF was added to the one detected in Stage 2 (bROIs) and formed the total 

BA for the CDP. 

𝜇(𝛾0𝑋𝑌[𝑡Ꞌ,𝑡−1]) − 𝛾0𝑋𝑌𝑡+𝑖) (7)  

𝜇(𝛾0𝑋𝑌[𝑡Ꞌ,𝑡−1]) / 𝛾0𝑋𝑌𝑡+𝑖) (8)  

𝛾0𝑋𝑌𝑡−1 − 𝛾0𝑋𝑌𝑡+𝑖 (9)  

𝛾0𝑋𝑌𝑡−1 / 𝛾0𝑋𝑌𝑡+𝑖 (10) 

(𝛾0𝑉𝐻𝑡−1/ 𝛾0𝑉𝑉𝑡−1) / (𝛾0𝑉𝐻𝑡+𝑖/ 𝛾0𝑉𝑉𝑡+𝑖) (11) 

 𝜇(𝛾0𝑉𝐻[𝑡Ꞌ,𝑡−1]/ 𝛾0𝑉𝑉[𝑡Ꞌ,𝑡−1]) / (𝛾0𝑉𝐻𝑡+𝑖/ 𝛾0𝑉𝑉𝑡+𝑖) (12) 

where γ0XY is the backscatter intensity (linear scale) of VV and VH polarizations, tꞌ is t-1 minus 

the double of days distance between t-1 and t+1, and i is 1 or 2, being 30 the maximum number 

of indices computed. 

5.3.2.5 Stage 5: Post processing 

Post-processing was needed to account for temporal decorrelation and improve detection 

results over problematic land covers such as cropping areas. To adjust for temporal 

decorrelation, the BA detected by the non-parametric classifier for the CDP was 

compared to the IAhs of previous detection periods, up to 90 days before the pre-fire 

image (t-1). If burned areas detected in the current CDP (i.e., objects formed by 

contiguous pixels) overlap previous IAhs (objects) by more than 75% they were masked 

out and considered previous burns. Three additional post-processing steps were then 

carried out to further improve the results: (i) on cropping lands, groups of burned pixels 

(objects) with areas above 56 ha that did not overlap IAhs (i.e., no local hotspot) are 

removed. The rationale was that the lack of hotspots over a large changing cropping area 

is an indication of harvesting rather than fire; (ii) burned objects below one hectare were 

removed; and (iii) a modal filter with a convolution kernel of 3 × 3 pixels was applied to 

smooth the salt and pepper effects typical for SAR based classifications. 

5.3.2.6 Stage 6: Burned area detection without hotspots 

As clouds may prevent the propagation of radiation from active fires to the thermal 

sensors on board satellites, the algorithm was built with a backup mechanism to cope with 

the absence of hotspots for a specific land cover type and detection period. However, for 

the algorithm to work, hotspots need to be available for each land cover class at some 

point during the analysed fire season. 

The algorithm first detected the burned area for all land cover types during detection 

periods for which hotspots were available. For detection periods with no hotspots, the data 

were temporally stored for later processing. During detection, the algorithm saved a 

database containing the P25 and P75 MAC values (Stage 2) and the trained RF models (Stage 

4) for each land cover class. The database is hereinafter referred to as the Classifier Model 



 

 

Fire_cci 
Algorithm Theoretical Basis Document 

LDA South America 

Ref.: Fire_cci_O3.D1_ATBD-S1-SA_2.0 

Issue 2.0 Date 31/08/2019 

Page 21 
 

and Criteria (CMC). Once detections for land cover classes and detection periods with 

hotspots ended, the CMC database was used to classify the temporally stored data (i.e., 

land cover types during detection periods without hotspots) if two conditions were met: 

(i) the current detection period was within the fire season. The fire season was computed 

using the hotspots daily frequency, for the processed MGRS tile, as the interval between 

the dates corresponding to the 5th and respectively the 95th percentiles; and (ii) the 

difference between the detection period and the date for the nearest CMC was less than a 

month, thus avoiding possible confusions due to changes in vegetation phenology. When 

CMC entries from different detection periods met the second condition, the one closest 

to the CDP was used. The MAC image for the CDP was segmented into burned and 

unburned based on the CMC P25 and P75 with the possible burned pixels being subsequently 

classified using the stored RF models by land cover class. When CMC entries are spaced 

equally in time when compared to the CDP (i.e., one entry is from a previous period and 

one from a posterior period), each entry was used separately and only the commonly 

detected burned area was kept. The post processing operations from stage 5 were carried 

out on the detected BA from this stage. 

An additional operation was carried out to reduce possible commission errors during this 

stage. The operation was carried out over burned areas detected on different relative 

orbits. Note that detections always used time-series of images from the same relative orbit. 

If several relative orbits intersect a given tile, the algorithm worked through the data from 

each relative orbit separately. BA products composites were subsequently formed using 

detections from different relative orbits and the same detection period. For each detection 

period, burned area pixels detected in different relative orbits were grouped in objects. If 

all pixels of an object were classified as not burned in one orbit the object was removed 

from the detected burned area for the CDP. Since, dual pass (ascending and descending) 

acquisition were not available for all tiles and spatially overlapping relative orbits only 

partially cover any given tile, this additional operation reduces commission errors where 

burned area detections intersect. 

6 Uncertainty estimation framework  

Burn probability of each pixel was estimated through an analysis based on the statistical 

similarity of temporal radar indices (Eqs. 2 and 3) between each pixel with the mean of 

bROIs of the same land cover type (k). The RXD (Eq. 1) is employed again, but using as 

background the bROIs(k). Thus, the RXD(x) show the statistical distance between a given 

pixel x of land cover k and the bROIs(k). Notice that bROIs were selected based on 

significant changes of the SAR signal and the exitance of hotspots at the same location 

which indicates a very strong likelihood of burned areas. The conversion of RXD(x) 

values to burn probability was based on an empirical cumulative distribution function 

(eCDF) where a low RXD(x) value corresponds to low differences to bROIs statistics 

which in turn indicates a high burn probability. Pixels detected as burned that are located 

within a 0.75 km buffer centered at each hotspot receive a maximum burn probability 

(100%). Pixels detected as unburned received a burn probability of 0%. Therefore, 

uncertainty values are relevant for pixels labels as burned which is a caveat of the current 

uncertainty framework adopted.  
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Figure 6: Example of burn probability for two different tiles 
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Annex 1: Acronyms and abbreviations 

ATBD Algorithm Theoretical Basis Document 

BA Burned Area 

BAMS Burned Area Mapping Software 

CBERS-4 China-Brazil Earth Resources Satellite 4 

CCI Climate Change Initiative 

CCN Contract Change Notice 

CESBIO Centre for the Study of the Biosphere from Space 

DEM Digital Elevation Model 

ECV Essential Climate Variables 

ERS-2 European Remote Sensing 2 satellite 

ESA European Space Agency 

FIRMS Fire Information for Resource Management System 

GCOS Global Climate Observing System 

GRD Ground Range Detected 

GRS Gamma Remote Sensing 

INPE Instituto Nacional de Pesquisas Espaciais (Brazil) 

IPCC Intergovernmental Panel on Climate Change 

IW Interferometric Wide swath 

LC Land Cover 

LC_cci Land Cover CCI 

LDA Large demonstrator area 

MGRS Military Grid Reference System 

MLI Multi-Looked Image 

MODIS Moderate-Resolution Imaging Spectroradiometer  

MSI Multi Spectral Instrument 

NASA National Aeronautics and Space Agency 

NTDI Normalized Difference Temporal Index 

OLI Operational Land Imager 

OTB Orfeo ToolBox 

PEPS Plateforme d’Exploitation des Produits Sentinel 

PSD Product Specification Document  

RI Radar Indices 

SAR Synthetic Aperture Radar 

SFD Small Fire Database 

SLC Single Look Complex 

SPOT Satellite Pour l'Observation de la Terre 

SRTM Shuttle Radar Topography Mission 

TIRS Thermal InfraRed Sensor 

TOA Top of Atmosphere 

TOPSAR Terrain Observation with Progressive Scans SAR 

USGS United States Geological Survey 

UTM Universal Transverse Mercator 

VIIRS Visible Infrared Imaging Radiometer Suite 

WGS84 World Geodetic System 1984 

WRS Worldwide Reference System 
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