Glaciers_cci+: Investigating new algorithms to reveal the dynamics of unstable glaciers in the Arctic and HMA

UNIVERSITY OF LEEDS A UNIVERSITY OF OSLO

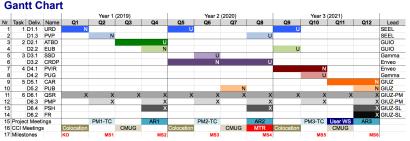
Frank Paul and the Glaciers_cci+ Team* Department of Geography, University of Zurich, Switzerland

* P. Rastner (Uni Zurich), T. Nagler, J. Wuite (Enveo), R. McNabb, A. Kääb (Uni Oslo), A. Shepherd, L. Gilbert (Uni Leeds), T. Strozzi, A. Wiesmann (Gamma), A.-M. Trofaier (ESA)

Team and schedule

enveo

Consortium


Country	Short name	Full name	Role	Uni/Comp.	WP lead
CH	GIUZ	Department of Geography, University	Prime	University	500, 600
		of Zurich	contractor		
CH	GAMMA	Gamma Remote Sensing AG	Sub-contractor	Company	300, 400
AU	ENVEO	Environmental Earth Observation	Sub-contractor	Company	400, 300
NO	GUIO	Department of Geosciences, University of Oslo	Sub-contractor	University	200
UK	SEEL	School of Earth and Environment, University of Leeds	Sub-contractor	University	100

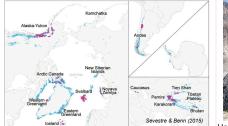
GAMMA REMOTE SENSING

Climate Research Group

Organisat Locat Liss GTN-G Advisor IACS Uni. Bremen, DE Glacier modelling Climate impact Uni. Toulouse, FR LEGOS-CNRS NSIDC WGMS Boulder, CO, US GLIMS da Data Standards, Quality

Location of the two study regions

Study region and project goals



Surging outlet glacier of the Vavilov Ice Cap (Sentinel-2 12.9.2017)

- Focus on two regions with several instable / surge-type glaciers (Arctic / HMA)
- Following changes in extent, elevation and velocity at high temporal resolution
- Use full suite of satellite sensors providing such data (optical, microwave, DEM)
- Create longest possible time series (full archive) to reveal the historic development
- Analyse the densest possible time series to follow fast events (S1/2 & combi w/ L8)
- Use the best algorithms to derive quantitative data with high quality

What are dynamically unstable glaciers?

Global occurrence of surge-type glaciers

Uphill view of the surge

chniques

s (mass ristics)

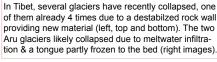
- · A dynamically unstable or surging glacier suddenly bursts into a high speed mode (factor 10-100), resulting in a highly crevassed surface and massive downward mass transport
- · Such glaciers are found in selected regions around the world
- They can create natural hazards (outburst of damned lakes), collapse (examples from Tibet), and contribute to sea level
- Their behaviour is still not well understood and requires the
- full range of remote sensing data being applied

Algorithm development

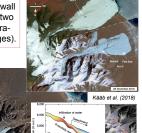
Possibilities of further algorithm development

	Glacier extent	Elevation change	Velocity	
Algorithm development	(a) Excluding ocean water & sea ice with band ratio	(c) Estimation of radar pene- tration into snow/firn/ice	(g) Interferometric techniqu for IV & drainage divides	
Activity	Threshold finding, filtering	Comparison with ArcticDEM	Comparison with optical	
Satellites	Optical (Landsat, Sentinel 2, ASTER)	Cryosat-2 / TanDEM-X vs. ICESat-2 / ArcticDEM	SAR (Sentinel 1, ERS1/2, JERS, PALSAR, Radarsat	
Aux. datasets	ArcticDEM, TanDEM-X	Field data Svalbard	ArcticDEM, TanDEM-X	
Validation	intercomparison	2 m Arctic DEM	DGPS (Svalbard)	
ADC and [TR]	(3) [TR-18a]	(1), (3) and (7)	(6), [TR-16]	
Algorithm development	-	(f) Accumulation / ablation rates, seasonal trends	(h) Dense time series (mas flux & surge characteristics	
Activity	-	Measure dh/dt	Combining different senso	
Satellites	-	Cryosat-2 Sentinel-3	SAR & ontical sensors	

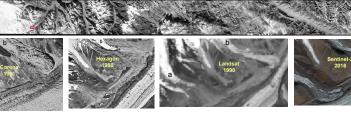
Surging Shisperglacier in the Karakoram

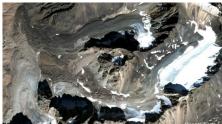



Surging glaciers in Svalbard

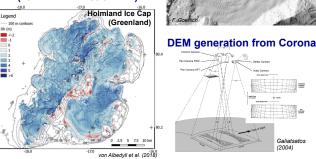


Collapsing glaciers in Tibet


nstable rock wall provides ice & debris

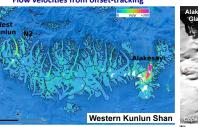


Extending the time series of glacier extents with Corona & Hexagon images Corona strip



Radar penetration (TanDEM-X-Arctic DEM) Hillshade of a DEM created from Corona stereo scene

Debris-Cover mapping and rock glaciers



Aux. datasets	-	Reference DEM, outlines	DEM & bed topography
Validation	-	Pleiades, field data, ICESat	
ADC and [TR]	-	(6), [TR-15]	(6), (7) and (9), [TR-16]
Algorithm development	(a) Automated mapping of debris-covered glaciers	(d) Removal of sensor biases (voids / artefact interpolation)	(h) Dense time series, match Landsat/Sentinel w/ SAR
Activity	Test of new methods	Thresholds if surging?	Co-registration?
Satellites	Optical, thermal & SAR (coherence images)	Various DEMs: SRTM, ALOS AW3D30, TanDEM-X, HMA	Landsat 8 / Sentinel-2, various SAR
Aux. datasets		Glacier outlines	Accurate DEMs
Validation	SPOT, Plejades	Spatially complete DEM	Independent datasets
ADC and [TR]	(1) and (6), [TR-14]	(1) and (7)	(6), (7) and (9), [TR-16]
Algorithm development	(b) Historic glacier extents and DEMs)	(e) Seasonal elevation changes	-
Activity	Orthorectification / mapping		-
Satellites	Corona / Hexagon	ICESat-2, TDX/TSX	-
Aux. datasets	External DEM	Useful reference DEM	-
Validation	Glacier outlines	Consistency with flow	-
ADC and [TR]	(4) and (7)	(6), [TR-15]	-

Flow velocities from offset-tracking

19

velocities derived from Sentinel-1

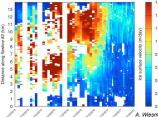
The surging glacier from Time-distance plot of flow velocities from Sentinel-1 S2 with flow lines (red)

is often challenging, even at very high spatial resolution.

To investigate these glaciers at the required level of detail, we have to further improve algorithms and develop new ones, e.g.:

- · use keyhole mission data to extend the time series (CDR), create DEMs from stereo images, and analyse surge cycles
- find methods to detect DEM artefacts, correct radar penetration and create dense elevation time series (seasonal mass balance)
- determine the spatio-temporal variability of flow velocities from dense time series of satellite scenes, incl. merging S1, L8 & S2

ating artefacts from real elevation changes Discrir


Novaya Zemlya 2010 [Year]

Revealing seasonal mass changes from CS-2

Elevation differences from SRTM - TanDEM-X DEM

Mass change time series from 3 different sensor

series along flow lines

volution of flow velocities during the surge of Vavilov Ice Cap

Vavilov Ice Cap

Multi-temporal velocity time series

Contact: frank.paul@geo.uzh.ch