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1. Summary 

This document provides a description of the bases of two novel algorithms for the retrieval of lake 
ice thickness (LIT) and products generation using data from altimetry missions. The document covers 
the details required for users to gain an informed understanding of the technical and scientific 
considerations underlying these products, ranging from the scientific description to functional 
(inputs, outputs) and mathematical definitions of the algorithms. Both algorithms show good potential 
for the estimation of LIT, an essential climate variable (ECV) not currently covered in the lakes_cci 
baseline product generation. 
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2. Introduction 

Lake ice is a major landscape feature in the winter season at northern latitudes and plays a key role 
in climate moderation and the energy balance (Brown and Duguay, 2010). Lake ice conditions, 
particularly the length of the ice season and ice thickness, have a significant impact on the economy 
of northern regions through their influence on transportation, travel, fishing, and recreation activities 
(Ghiasi et al., 2020). Therefore, accurate knowledge about lake ice properties, such as lake ice 
thickness (LIT), is necessary. Furthermore, LIT is a key climate change indicator recognized as one of 
six thematic variables under the GCOS Essential Climate Variable (ECV) Lake. LIT integrates changes 
in surface air temperature and on-ice snow mass (depth and density) (Brown and Duguay, 2011). 
Decreasing trends in maximum (late winter) ice thickness have been documented in recent years for 
lakes on the North Slope of Alaska (ca. 20 cm 1991-2011; Surdu et al., 2014) and in Russia (10-15% 
decrease 1980-2010; Vuglinsky, 2017). 

A limited number of remote sensing investigations have shown the potential of passive microwave, 
thermal infrared, and active microwave (SAR and altimetry) data for estimating LIT. Kang et al. (2014) 
found the temporal evolution of Tb measurements from AMSR-E at 10.7 GHz and 18.7 GHz frequency 
(V polarization) during the ice growth season to be strongly related to ice thickness (Great Bear Lake 
and Great Slave Lake, Canada). The authors proposed simple linear regression equations to estimate 
LIT for the lakes using 18.7 GHz V-pol data (2002-2009) with mean bias error (MBE) of 0.06 m and root 
mean square error (RMSE) of 0.19 m when compared to in situ measurements. Lake surface (ice/snow) 
temperature observations from MODIS have also been evaluated for estimating lake ice thickness 
(Kheyrollah Pour et al., 2017). Using heat balance terms derived from the Canadian Lake Ice Model 
(CLIMo; Duguay et al., 2003), the authors retrieved ice thicknesses up to 1.7 m from MODIS with RMSE 
of 0.17 m and MBE of 0.07 m when compared to field measurements acquired on Great Slave Lake 
and Baker Lake, Canada. Murfitt et al. (2018) evaluated RADARSAT-2 C-band synthetic aperture radar 
(SAR) data for estimating LIT in Central Ontario, Canada. They reported RMSE values of 0.12 m and 
attributed the uncertainty to unexplored questions about scattering mechanisms and the interaction 
of the radar signal with mid-latitude lake ice. A recent study by Murfitt and Duguay (2021) further 
supports the fact that the evolution of backscatter from C-band imaging SAR can largely be explained 
by an increase at the ice-water interface during the ice growth period and not LIT. Finally, Beckers 
et al. (2017) explored waveforms from CryoSat-2 Ku-band radar altimetry to estimate LIT on Great 
Bear Lake and Great Slave Lake. The study reports ice thickness estimates with RMSE of 0.33 m when 
compared to in-situ measurements made in Back Bay on Great Slave Lake, a site that is located 
several tens of km away from the CryoSat-2 tracks and not experiencing the same snow and ice 
conditions. Overall, work on the estimation of LIT from satellite remote sensing is still in its infancy. 

This document contains a detailed description of two novel algorithms for the retrieval of LIT using 
data from altimetry missions. The first algorithm (empirically-based) uses both backscatter (radar 
altimeter) and brightness temperature (passive microwave radiometer) measurements for the 
estimation of LIT, while the second algorithm (physically-based) is founded on the exploitation of 
radar waveforms (Low Resolution Mode). The mathematical formulations, processing steps, input and 
output data as well as statistical metrics used for quality assessment/validation of each algorithm 
are provided in the next two sections.  
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3. Algorithm Based on Radar Backscatter and Brightness Temperature 

The algorithm is based on the use of altimetric radar backscatter and brightness temperature, 
simultaneously measured at nadir on the same satellite platform. This algorithm is fully empirical 
and requires a calibration step. The algorithm consists of two modules. The first module is dedicated 
to the determination of ice phenology dates (ice appearance and melt) while the second module is 
aimed at estimating LIT when ice is present.  

3.1. Description 

The lake ice phenology dates algorithm has been developed and validated at LEGOS in 2003-2015 
(Kouraev et al., 2003, 2004, 2007a,b, 2008a,b, 2015; Kouraev, 2004). This algorithm has been applied 
to several saltwater seas (Caspian and Aral) and freshwater lakes (Ladoga, Onega and Baikal). The 
algorithm draws from the synergy of passive and active microwave satellite data - simultaneous active 
(radar altimeter) and passive (radiometer) observations available from various satellite altimetry 
missions (TOPEX/Poseidon, Jason-1,-2, ENVISAT, Geosat Follow-On and SARAL/AltiKa). 

The method is based on the analysis of the spatio-temporal evolution of two parameters: 1) the 
altimeter backscatter coefficient (σ0); and 2) an average value of the brightness temperature at two 
frequencies (TB/2). The backscatter coefficient is the ratio between the power reflected from the 
surface and the incident power emitted by the onboard radar altimeter, expressed in decibels (dB). 
The backscatter at Ku-band (13.6 GHz) is usually used. The second parameter is the average value of 
the brightness temperature at two frequencies (such as 18 and 37 GHz for T/P and Jason; 23.8 and 
36.5 GHz for ENVISAT, etc.). For nadir-looking instruments, open water has a low backscatter 
coefficient and low brightness temperature values, while ice cover is characterised by a high 
backscatter coefficient and elevated brightness temperatures.  

The distribution of altimetric observations in the space of backscatter versus TB/2 is presented in 
Figure 1. A cluster marked A with low backscatter coefficient (about 7 dB) and low brightness 

temperature (TB/2 about 152 K) represents open water. At the beginning of the freezing period, the 
formation of young ice brings some observations with high (25-35) backscatter but still low TB/2. 
Further ice thickening leads to the formation of a cluster of observations (cluster B) characterised by 
high backscatter coefficient (mainly 15-25 dB) and high brightness temperatures (TB/2 about 230-250 

K). Once the ice starts growing, it gets thicker and more rigid. Wind and currents lead to ice 
deformation, formation of cracks and ridging, which increases the surface roughness. Snow 
accumulates, preferentially near the roughest surfaces. All these processes change the dielectric 
properties of the ice and thus the microwave signal. In general, ice growth, roughening and snow 
cover on ice lead to decrease of backscatter to 15-20 dB (Ulaby et al., 1986), while TB/2 slightly 
increases (area between clusters B and C). At the end of the ice season, an ice transformation 
(melting/refreezing) change the ice surface properties and can result in a backscatter drop of 5-10 
dB and slightly increasing TB/2 values (see left limits of cluster C). The formation of melt ponds 
denotes the beginning ice cover decay and backscatter and TB/2 return to values close to those 
typical for young ice (right limits of cluster B).  



D2 (Technical Note): Algorithm Theoretical Basis Document (ATBD) 

 8 

 

Figure 1. Two-dimensional histograms (number of observations) of ENVISAT and SARAL data for 
Lake Baikal in the space of backscatter coefficient (Ka or Ku bands) versus the TB/2 (average 

value of brightness temperature at two frequencies) (Kouraev et al., 2015). 

 

During ice growth, the value of radar altimeter backscatter decreases (Figure 2). This can be 
explained by the volumetric scattering/absorption of the radar signal within thickening ice. The 
backscatter decrease is proportional to the ice thickness (Duguay et al., 2018; Zakharova et al., 
2020). At Ku-band, the penetration depth into dry freshwater ice is in the order of 5-12 m and depends 
on temperature and properties of the ice (Legrésy and Rémy, 1997). Therefore, in the case of thin 
lake ice, the penetration depth for waves emitted at altimetric radar frequencies (C and Ku-band) 
allows for the estimation of ice thickness.  

The brightness temperatures at 18 GHz measured at nadir angle by radiometers installed on altimetric 
missions also demonstrate a good sensitivity to growing lake ice and can be used for LIT retrievals. 
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(Figure 3). 

   

Figure 2. Temporal variability of ice thickness and snow depth as well as altimetry radar and 
radiometer measurements at the Great Slave Lake. 

 

3.2. Algorithm Definition 

The overall scheme of LIT retrievals is presented in Figure 3. The calibration step of the algorithm is 
based on in situ ice thickness measurements (if available) or simulated with the 1-D thermodynamic 
lake ice model CLIMo (Duguay et al., 2003). In the LIT production step, the algorithm uses the static 
calibrated parameters and ice flag initialy obtained from the ice phenology dates module.   

 

 

Figure 3. Major steps in LIT processing. 
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3.2.1. Ice phenology dates definition algorithm 

The algorithm for lake ice phenology dates (LIPD) definition consists in the separation of water and 
ice clusters using two-dimensional σ0-TB/2 histograms and definition of an equation of a separation 
line (red line in Figure 2) passing through the minimum of  the 2-D histogram. Linear equation (1) 
provides results with good accuracy (Kouraev et al., 2003, 2004, 2007a,b, 2008a,b, 2015; Kouraev, 
2004). It has been shown that a specification of parameters in Equation (1) for each lake and for each 
satellite mission allows for lower uncertainties. 

 

𝑇𝐵/2𝑤𝑖 = 𝑎 ∗ 𝜎0 + 𝑏          (1) 

 

where TB/2wi is water/ice discrimination threshold, and a and b are parameters.  

 

The water/ice flags are defined by comparing the TB/2j values for each cycle with TB/2wi values 
obtained from the Equation 1 and σ0j for the same cycle (Equation 2). 

 

{
𝑖𝑓 𝑇𝐵/2𝑗 ≤  𝑇𝐵/2𝑤𝑖 , 𝐹𝑙𝑎𝑔 = 0 (𝑤𝑎𝑡𝑒𝑟)

𝑖𝑓 𝑇𝐵/2𝑗 > 𝑇𝐵/2𝑤𝑖 ,    𝐹𝑙𝑎𝑔 = 1 (𝑖𝑐𝑒)        
      (2) 

 

3.2.2. LIT retrieval 

The LIT retrieval empirical module is based on functional relations between LIT and backscatter or 
LIT and brightness temperature (Figure 4). The relations are lake- and mission-specific and require 
the calibration of parameters. For Canadian lakes, calibration of the parameters is based on four 
years of simultaneous satellite measurements and CLIMo simulations. The selected years allow for 
characterisation of a variety of ice, snow-on-ice and weather conditions.  

Geophysical characteristics affecting ice appearance and melt in near-shore areas, where in situ 
measurements are acquired, differ from that of in off-shore areas. As no ground measurements exist 
in off-shore areas, the CLIMo model is run with different scenarios of snow depth on ice and depth of 
lake water mixed layer (Duguay et al., 2003). The calibration of parameters for LITCliMo- σ0 and  
LITCliMo- TB relations is run for LITCliMo issued from different scenarios. The scenario that demonstrates 
the highest correlation and lowest LIT uncertainties is selected. This scenario is specific to each lake, 
as the amount of snow-on-ice and the lake mixing depth differ from lake to lake (Table 1). As the 
next step, the best scenario LITCliMo- σ0 and  LITCliMo- TB relations is fitted with a first-order polynomial 
function.    
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(a)                                             (b)                                            (c) 

Figure 4. Relation between altimetric and radiometric measurements and modelled ice 
thickness for two extreme scenarios of on-ice snow depth and lake mixed-layer depth for (a) 

Great Slave Lake, (b) Great Bear Lake, and (c) Baker Lake (Canada). 

 

Table 1. An example of the best-fit CLIMo scenarios used with Jason-2 altimetric and 
radiometric measurements. Snow depth is given in % from snow depth measured at local 

meteorological stations. 

Lake name and Jason-2 
track or track sub-part 

CLIMo scenarios for σ0_Ku  CLIMo scenarios for TB18  

Baker_Lake_Tr19 Snow (0%), mixing depth 30m Snow (0%), mixing depth 10m 

Great Bear_Tr225 Snow (0%), mixing depth 30m Snow (0%), mixing depth 30m 

Great Bear_Tr47 Snow (50%), mixing depth 40m Snow (75%), mixing depth 30m 

Great Slave_Tr254_South Snow (50%), mixing depth 30m Snow (0%), mixing depth 30m 

Great Slave_Tr45_East Snow (50%), mixing depth 30m Snow (0%), mixing depth 30m 

 

3.2.3. LIT retrievals editing  

Studies using SARAL/AltiKa (Kouraev et al., 2015) and Jason-3 (Kouraev et al., 2021) altimeter data 

demonstrate that in early spring, when air temperatures are still mostly negative, lake snow can 

undergo metamorphism under the influence of solar radiation. At that time, a drop in backscatter in 

the order of 5-10 dB and small peak of TB measurement can be observed at all frequencies (Figure 

5). This backscatter decrease and TB increase result in high LIT overestimation. As the pre-melting 

σ0 drop/TB rise are not related to ice growth, the period of snow metamorphism needs to be removed 

from the processing. Since at this moment the difference between TB24 and TB18 (in the case of 

Jason-2) becomes close or above zero (Figure 5, low panel), the criteria dTB24-18 ≥ 0 is used for 

identification of such cases and for corresponding detection and rejection of outliers in LIT output 

product.   
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Figure 5. Winter changes of Jason-2 altimetric and radiometric measurements over the Great 

Slave Lake. Periods of snow pre-melt metamorphism are highlighted by blue dashed-line boxes. 

 

3.3. Input Data 

Input data for the empirical algorithm include backscatter measurements at Ku-band, brightness 
temperature measurements at 18 GHz, 24 GHz and 37/34 GHz, CLIMo LIT simulations and MODIS/Terra 
Corrected Reflectance True Color composite images. Satellite altimetry data are available via AVISO+ 
(https://www.aviso.altimetry.fr) portal and CTOH (http://ctoh.legos.obs-mip.fr/data) for Jason-2 
and ENVISAT missions, respectively. The CLIMo LIT simulations are provided by H2O Geomatics. MODIS 
images for each lake are downloaded from NASA’s WorldView data portal 
(https://worldview.earthdata.nasa.gov/). Detailed input data access description is provided in D1.2: 
Data Access Requirement Document (DARD).  

3.3.1. Satellite altimeter backscatter measurements 

Satellite altimeter backscatter measurements at Ku-band (13.6 GHz, wavelength 2.2 cm) retrieved 
with the ICE retracker are extracted from geophysical data records products (GDR) of ENVISAT and 
Jason-2 missions. The measurements are taken along satellite tracks with 20 Hz frequency and provide 
a spatial resolution of 300 m. Data are extracted using lake boundaries, excluding near-coastal buffer 
zones defined from MODIS images. The width of coastal zone buffers depends on satellite track/lake 
over-crossing length; equal to 20 km for large lakes and 10 km for narrow lakes.    



D2 (Technical Note): Algorithm Theoretical Basis Document (ATBD) 

 13 

3.3.2. Satellite altimeter brightness temperature measurements 

Radiometer brightness temperature measurements at frequencies of 18.7 GHz, 23.8GHz and 
36.5GHz/34.0GHz (ENVISAT/Jason) are extracted from geophysical data records products (GDR) of 
ENVISAT and Jason-2 missions. The measurements are done along satellite track with 1 Hz frequency. 
They are interpolated using a spline function to match 20 Hz radar measurements. Similar to 
backscatter measurements, the TB data are extracted using lake boundaries, excluding near-coastal 
buffer zones defined from MODIS images.   

3.3.3. CLIMo LIT simulations 

CLIMo LIT simulations represent daily ice thickness data for a combination of on-ice snow 
depth/mixing layer scenarios. The following range of scenarios is used for on-ice snow depth: 0%, 
25%, 50% 75%, 100% and for lake mixed-layer depth: 10 m, 20 m, 30 m, 40 m, 50 m, and 60 m. On-ice 
snow depth represents the percentage of snow measured at a nearby local meteorological station (or 
atmospheric reanalysis data) on a given date. 

3.3.1. MODIS/Terra Corrected Reflectance images 

MODIS/Terra Corrected Reflectance True Color (Red = Band 1, Green = Band 4, Blue = Band 3) 
composite images extracted from MOD02QKM doi:10.5067/MODIS/MOD02QKM.061; 
MOD02HKM doi:10.5067/MODIS/MOD02HKM.061; MOD021KM doi:10.5067/MODIS/MOD021KM.061 
product via WorldView portal (https://worldview.earthdata.nasa.gov/) are used as auxiliary data. 
They serve for the geographical selection of satellite altimeter measurements and definition of 
coastal buffer zones allowing to avoid or reduce (for narrow lakes) the effect of land contamination 
on radar and radiometric measurements.    

3.4. Output Data 

The structure of LIT output product from the empirical algorithm is presented in Table 2. Data will 
be provided in csv format. 

Table 2. List of LIT product variables.   

 

Variable 
name 

Description Units Type Dims 

time Time of measurement decimal 
year 

do time 

year Year of measurement 
 

do time 

month Month of measurement 
 

do time 

day Day of measurement 
 

do time 

lon Lake center longitude  
[-180;+180] 

degrees do time 

lat Lake center latitude  
[-90;+90] 

degrees do time 

LIT_sigKu Ice thickness retrieved from Ku-band backscatter by 
empirical method [0; 3] 

m do time 

https://doi.org/10.5067/MODIS/MOD02QKM.061
https://doi.org/10.5067/MODIS/MOD02HKM.061
https://doi.org/10.5067/MODIS/MOD021KM.061
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LIT_tb18 Ice thickness retrieved from brightness temperature 
measurements at 18 GHz frequency by empirical 
method [0; 3] 

m do time 

LIT_sigKu_std Standard deviation of Ice thickness retrieved from Ku-
band backscatter by empirical method for a given date 
[0; 3] 

m do time 

LIT_tb18_std Standard deviation of Ice thickness retrieved from 
brightness temperature measurements at 18 GHz 
frequency by empirical method for a given date [0; 3] 

m do time 

mission Satellite mission name used for LIT retrieval 
 

char time 

 

3.5.  Quality Assessment 

Uncertainties of fitting as well as the errors inf LIT retrievals are assessed using the mean absolute 
bias (Equation 3) and the root mean squared error (RMSE) (Equation 4) estimated between satellite-
retrieved LIT and the LIT simulated by the model. Fitting errors are estimated for calibration period, 
while the LIT retrievals errors are evaluated on an independent dataset. Correlation coefficients are 
also provided. 

 

𝐵𝑖𝑎𝑠 =
∑(𝐿𝐼𝑇𝐶𝑙𝑖𝑀𝑜− 𝐿𝐼𝑇𝑠𝑎𝑡)

𝑁
 (3) 

𝑅𝑀𝑆𝐸 = √
∑(𝐿𝐼𝑇𝐶𝑙𝑖𝑀𝑜−𝐿𝐼𝑇𝑠𝑎𝑡)2

𝑁
, (4) 

 

where LITCliMo and LITsat are modelled and satellite-retrieved ice thickness, respectively, and N is 

number of retrievals.  
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4. Algorithm Based on Radar Waveforms 

This section describes the algorithm for the Lake Ice Thickness (LIT) production chain based on the 
exploitation of altimeter waveforms (Low Resolution Mode) that contain information correlated with 
the seasonal evolution of ice thickness over freshwater lakes. A detailed description of the algorithm 
and results are provided in Mangilli et al. (in preparation). 

4.1. Modelling of the LIT signal in radar waveforms 

The radar waveforms from altimetry missions show a specific signature on ice covered lakes. For LRM 
waveforms, this signature corresponds to a step-like break in the leading edge. This break is 
understood as the double back-scattering of the radar wave at 1) the snow-ice interface and at 2) 
the ice-water interface. The width of the step in the leading edge is directly related to the ice 
thickness. When the waveforms, measured along track each ~50 milliseconds (~350 meters), are lined 
up into a radar echogram, the step-like feature associated with the LIT translates into a 
distinguishable fringe, as shown in Figure 6. 

 

Figure 6. Example of LRM radar echogram over the iced-covered Great Slave Lake. Jason-3 data 
(pass 45, cycle 148, February 2020). 

 

Given the specific signature of the LIT in radar LRM echograms, a physical model can be constructed, 
based on Brown’s modelling of the radar echoes over an ocean surface, where the waveform is 
described as the sum of two backscattered echoes. The radar waveform, as a function of the range 
gates, S(x), can therefore be defined as the sum of two positive definite error functions: 

 (5)  

where x is the range gates array of N gates samples, erf(z) is the error function: 

 (6) 

xc is the central gate of the first echo and ICE
gates is the ice thickness expressed in number of gates, 

that is, the width of the step in the leading edge. The modelled waveform takes the form: 
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 (7) 

where = [0, 1] is the amplitude of the second echo,  is the parameter associated to the attenuation 
of the second plateau, modelled as a decreasing exponential, ^x is the normalized samples vector, 
and Nt is the term associated to the thermal noise. The normalized waveform re-scaled by the overall 
amplitude Awf , can therefore be modelled as: 

 (8) 

where ^ S(x) is the model function of Eq. (4) normalized to unit and 

 (9) 

is the five parameters vector. The ice thickness in unit of meters, ICE, is defined by applying the 
following conversion from range gates to meters: 

       (10) 

where B is the radar bandwidth, cice = c /nice is the light speed in the ice, with c the speed of light in 
the vacuum and nice the refractive index of ice. 

4.2. Algorithm Definition 

The LRM LIT algorithm is a retracker specific to the LIT analysis of the radar waveforms, based on the 
modelling described in section 4.1. For each data cycle, and a given analysis window defined by a 
latitude cut LWLIT = [latmin, latmax] over a given target lake, the LIT analysis consists of two steps: 1) 
the optimization step, that is, the waveform fit, and 2) the estimation of the parameters’ mean and 
standard deviation, as described below and summarized in Figure 7. 

 

 

Figure 7. Major steps in LIT processing. 
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4.2.1. Step 1: Optimisation and best fit parameters 

The optimisation step consists of performing a Least Square Levenberg-Marquardt weighted fit of 
each echo in the LIT analysis window with the model described in Sect. 4.1. The optimized function 
is: 

        (11) 

where, r = y(x) – Smodel(x; p) is the vector of residuals between the waveform data, y(x), and the 

model, Smodel(x; p). The weights, i, are computed as the standard deviation of the echoes within 
the LIT analysis window. For each data cycle, a set of best fit values for each of the five parameters 
is provided from the fit of the individual echoes in the analysis window. 

4.2.2. Step 2: Parameters estimation and LIT retrieval  

The second step of the retracking analysis is the parameter estimation which provides, as the main 
output, the LIT measurement with the associated uncertainty. The estimation is done by computing 
the mean and standard deviation of the best fit parameters for each data cycle in the LIT analysis 
window. To get the constraints on the five parameters with the corresponding uncertainties for each 
cycle, the histograms of the five parameters best fit values estimated from the fit of each echo is 
computed. A Gaussian fit on the histograms is performed to get, for each parameter, the mean and 
variance.  

In order to manage eventual outliers, we consider the fit results for which the model and the 
observations agree within three standard deviations (that is, a reduced chi-squared < 3) . We also  
discard fit  results  that  could  give unrealistic  LIT  values  of ∆ICE>3 meters before computing the 
LIT histograms and performing the Gaussian fit. 

4.2.3. Quality checks  

We perform reduced chi-squared goodness of fit tests. An example of LIT estimation as a function of 
latitude along a Jason-2 altimeter track (step 1 of the LRM_LIT retracker) with the reduced chi-
squared values for each fitted waveform over Great Slave Lake is shown in Figure 8. Reduced chi-
squared values around 1 indicate that the fit performs correctly.  

 

Figure 8. Example of LIT estimation as a function of the latitude along Jason-2 track 45 over 
the Great Slave Lake (Mangilli et al., in preparation).  
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4.3. Input Data 

4.3.1.  Input 1 

For each data cycle and pass over a target lake, the input for Step 1 are the radar waveforms in the 
LIT analysis window. 

4.3.2. Input 2 

For each data cycle and pass over a target lake, the input for Step 2 are the best fit values of the 
five parameters for each fitted echo in the analysis window (that is the output of Step 1). 

 

4.4. Output Data 

The output data product contains: 

• Main outputs (Step 2 output): LIT mean and standard deviation within the analysis window. 

• Complementary outputs (Step 1 output): the best fit LIT estimations from the fit of each 
radar waveform in the LIT analysis window over the target lake with the corresponding 
coordinates. This typically consists of a ~100 LIT estimations for each cycle. It is useful to 
have this output to check the spatial evolution of the LIT in the analysis window and to 
eventually extract LIT estimates from a smaller region in the analysis window. 

 

4.5.  Validation and Quality Assessment 

The LRM_LIT retracker has been validated on simulations representative of Jason-like missions. A 
summary is given in Figure 9, where the top plots refer to winter-like simulated waveforms (left 
panel) and the LIT histogram (right panel). 
 

 
 

Figure 9. Summary of validation tests on Jason-like simulations (Mangilli et al., in preparation). 
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The input value used to generate the simulations is shown as a dashed line. The same description 
applies to the bottom plots, for the summer-like simulations without the ice signature. In both cases 
the LRM_LIT retracker gives unbiased LIT results with an uncertainty of ~10 cm. 
 
LIT retrievals from satellite missions have been evaluated against LIT simulations from the 
thermodynamic lake ice model CLIMo (described in Sec. 2.2.3). A qualitative comparison with in-situ 
data was also performed when possible1. Figure 10 provides an example of the comparison of the LIT 
estimations obtained within a winter season over Great Slave Lake with the LRM_LIT retracker applied 
to Jason-2 data (blue triangles) and Jason-3 data (red stars) and LIT from CLIMo (Duguay et al., 2003) 
simulations with different on-ice snow depth scenarios (diamonds) and in situ data (circles). There is 
an excellent agreement between Jason-2 and Jason-3 LIT estimates, which are fully compatible with 
the thermodynamic simulations and qualitatively in agreement with in situ data. We note that, in 
general, the LIT melting phase is detected earlier with the satellite-based measurements because of 
snow melting that perturbs the radar echoes. 
 

 

Figure 10. Example of the comparison of LIT estimates over the Great Slave Lake for one winter 
season (2015-2016): Jason-2 data (blue triangles), Jason-3 data (red stars), LIT from  CLIMo 
simulations with different on-ice snow depth scenarios (diamonds) and in situ data (circles) 

(Mangilli et al., in preparation). 

 
 
For a quantitative comparison between LIT estimates, the same metrics described in Sec. 2.4 are 
used, that is the Mean Bias Error (MBE) and the Root Mean Square Error (RMSE).  

The LRM_LIT retracker provides consistent LIT estimates with an accuracy of the order of 10 cm and 
has the capability of capturing the LIT seasonal transitions (ice formation and melt) and the LIT inter-
seasonal variations. It is therefore a powerful tool for LIT trend studies and monitoring. 

 
 
 

 

1 It is worth noting that the comparison between LIT estimates from satellite missions and in situ data must be 

taken with caution. In fact, in situ data are collected near the shore, while satellite data are taken from the 
middle of the lake to avoid land contamination. These are indeed two different environments in terms of 
bathymetry, wind exposure, snow type and quantity. All these parameters play a key role on ice formation and 
thickness and they can lead to significant LIT differences. 
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