

CCI – C3S – collaboration on R&D

ESA UNCLASSIFIED - For Official Use

European Space Agency

Introduction

- CCI-C3S workshop on common R&D interests took place in April-May 2020, including
 - Gap analysis on current activities, i.e. ECV having been transferred from CCI to C3S and are common to both agencies
 - Update on ECVs only run by CCI, that might be of interest to C3S in future
 - Potential future activities, to be included in the portfolio
- Discussion was split into atmosphere, land and ocean ECVs
- All ESA and C3S technical officers provided input and participated in the discussion
- This presentation will cover
 - Main recommendations/ atmosphere & ocean & land
 - Potential future activities

ESA UNCLASSIFIED - For Official Use

= !! 🛌 :: 🖛 + !! 💻 🚝 = !! !! = = :: :: 🖬 🛶 🔯 !! = :: :: :: :: :: ::

Programmatic background

ESA

- CCI+ mid-term review in Dec 2020
- Definition of activities for CCI+ phase 2 in Feb 2021
- New climate programme for ESA Ministerial Council in 2022

Need for collaboration & coordination

C3S

- Copernicus new MFF
- New C3S programme proposal due Q3 2020
- Expected start of Copernicus
 2.0 Q3 2021
- Continuity rather than enhancement but possible expansion in the list of ECVs

ESA UNCLASSIFIED - For Official Use

		Cesa	1			Ć		GCOS	S			Climate Change Service climate.copernicus.	eu	
					CCI					C3S	_312			
SA Technical Officer	ESA Support	Science Lead	Project	Next Annual Review	I- +T			Alexandra	U -	а	b	Project(s)	Contract Offcer	_
imon Dinnock		M Hagalin (II Deading) 9 M Se	h Water Veneur CCI	10 / 20 May 2020	1		453	Atmospheric Water Vanour			11	C25 212h Lot1 Water Venous	Hans Harshash	_
mon Pinnock	-	M. Steppel (DWD)	Cloud CCI	19 / 20 Iviay 2020	1	94	4.5.5	Water vapour	~	_	LI	C35_312b Lot1 - Water Vapour	Hans Hersbach	_
mon Pinnock	-	wi. stenger (DwD)		8 Apr 2020 (KO)	• 2	94	4.5.4	Cloud Properties	~	1.6	10	C25, 212a Lat5 8, C25, 212b Lat2, CO2	Discard Schenere	-
nristian Retscher	-	M.Buchwitz (U.Bremen)	Greenhouse Gases CCI		• 2		4.7.1	Methano	~		12	C35_312a Lot6 & C35_312b Lot2 - CO2	Dinand Schepers	_
bristian Datashar		Muan Regrandadi (RIRA)	Orono CCI		• 2	9	4.7.2	Orene	~	LO	12	C35_312a Loto & C35_312b Lot2 - Methane	Dinand Schepers	-
men Dinneck	-	T Dopp (DLP)	Ozone CCI	thd . Apr 2020	• 2	94	4.7.4	Acrosol	~	1.5	12	C35_312a Lot4 & C35_312b Lot2 - Ozone	Dinand Schepers	-
TION PINNOCK	-	1.Popp (DLR)	Aerosor CCI	tbu ; Apr 2020	• 2	94	4.7.5	Aerosol	~	LS		C35_3128 Lot1 Dresinitation	Unand Schepers	-
						94	4.3.5	Precipitation	-	_	11	C35_312b Lot1 - Precipitation	Hans Hersbach	_
						94	4.3.0	Surface Radiation Budget	_	_	11	C35_312b Lot1 - Surface Radiation Budget	Hans Hersbach	-
						94	4.5.5				LI	C35_5120 LOLT - Farth Radiation Budget	Hans Hersbach	-
aig Donlon	Paolo Cipollini	C Merchant (II Reading)	Sea Surface Temperature CCI	19 Jun 2020	2	5	531	Sea-Surface Temperature	~	13	13	C35 312a Lot3 & C35 312b Lot3 - SST	Iulian Nicolas	-
aig Donion	Paolo Cipollini	L Boutin (LOCEAN-IDSL) / N. Rei	Ul Sea Surface Salinity CCI	thd : lun/lul 20	. 2	5	532	Sea-Surface Salinity	-	1.5	5	C35_5128 L015 & C35_5120 L015 - 551	Julian Nicolas	-
roma Banyanista	- adio cipolinii	A Carenave (CNES)	Sea Level CCI	100, 301/30120	2	5	5 3 3	Sea Loval	~	12	12	C25, 212a Lot2 & C25, 212b Lot2 - Sea Lovel	Iulian Nicolas	-
aig Doplon	Paolo Cinollini	E Ardhuin (CNPS)	Sea State CCI	thd : lun/lul 20	. 2	5	534	Sea State	-	LZ	1.5	C35_5128 L0(2 & C35_5120 L0(5 - 568 Level	Julian Nicolas	-
alg Domon Maria Trofaior		T Lavergne (Met no)	Sea lea CCI	5 / 6 Mar 2020	2	50	5.2.5	Sealco	~	11	12	C25, 2125 Lot1 & C25, 2126 Lot2 - Sea los	Julian Nicolas	-
nia Maria Trotaler	- Paolo Cinollini	S Sathyondranath (DMI)	Ocean Colour CCI	thd : lun/lul 20	. 2	5	5.2.7	Ocean Colour	-		12	C35_3128 Lot1 & C35_3120 Lot3 - Sea ICe	Julian Nicolas	-
	Paolo Cipolilili	5.5athyendranath (Pivit)	ocean colour cer	100, 301/30120	. 2	3-	5.5.7	Torroctrial			LJ	C33_3120 L0(3 - OCEAN COIDUI	Julian Nicolas	-
ament Albergel *	Paolo Cipollini	LE Crétaux (CNES) / S. Simis (PI	Miskes CCI	1 / 2 Apr 2020	1	54	634	lakes	~		14	C35 312h ot4 - akes	loaquín Muñoz Sabater	
ana Maria Trofaiar		T Nagler (ENIVEO)	Spow CCI	thd : Sen 2020	1	50	635	Snow Cover		-	L.4	C33_3120 L0(4 - Lakes	Joaquin Munoz Jabater	-
ana Maria Trofaier	-	E Paul (11 Zürich)	Glaciers CCI	tou , sep 2020	2	54	636	Glaciers & Ice Cans	~	18	14	C2S 212a Lot 8 & C2S 212b Lot 4 - Glaciers	loaguín Muñoz Sabater	-
	-	A Shaphard (ULLoads)	Antarctic Ico Shoot CCI		. 2	7 3	0.5.0	Giaciers & ice caps	~	LO	L4	C35_5128 L018 & C35_5120 L014 - Glaclers	Joaquín Muñoz Sabater	
arcus Engdahl	-	R Forsborg (DTU)	Greenland Ice Sheet CCI		. 2	- 50	6.3.7	Ice Sheets	->		L4	C3S_312b Lot4 - Ice Sheets	Joaquin Munoz Sabater	-
ancus Enguann	-	A Partsch (bGEOS)	Bormafrost CCI		. 2	5	629	Bormafrost						-
ivior Arino	-	P. Defeurpy (LLC Louvein)	Landsover CCL		2	7 3	0.3.0	Fermanosc						-
ivier Arino	-	P.Deloutity (O.C.Louvain)	High Resolution Landsover CC	ר ר	. 2	- 50	6.3.10	Landcover	->	-	L5	C3S_312b Lot5 - Land Cover	Joaquín Muñoz Sabater	
ank Martin Saifart	-	S. Ouegap (U.Shoffield)	Riemass CCI	-I	1	-	6 2 1 2	Above Ground Biomass	_					-
amont Alborgol *	-	5.Quegan (0.Sherneld)	Eiro CCI	2 / 4 Max 2020	2	90	6 2 15	Fire Disturbance			15	C25, 212b LotE - Fire Disturbance	looguín Muñoz Cabator	
ement Albergel *	-	W/ Derige (TLL Wien)	File CCI	37 4 Widi 2020	. 2	90	6 2 16	File Disturbance		17		C35_3120 Lot3 & C35_312b Lot4 - Soil Moisturo	Joaquín Muñoz Sabater	
ement Albergel *	-	W.Dorigo (10 Wien)	Soli Moisture CCI	23 / 24 Apr 2020	. 2	90	5.3.10	Soli ivioisture	~~	L/	L4	C35_3128 L0t7 & C35_3120 L0t4 - Soli Moisture	Joaquin Wunoz Sabater	_
TION PINNOCK	-	D.Gnent (U.Leicester)	Land Surface Temperature CC	, 24 / 26 Jun 2020 (Osei	L T	90	5.3.17	Albedo	e	10	15	C25, 212a Lot0 & C25, 212b Lot5, Alboda	looguín Muñoz Sabator	_
						90	5.3.9	Albedo		19	LS	C35_312a Lot9 & C35_312b Lot5 - Albedo	Joaquin Wunoz Sabater	_
						90	6 2 12	Loof Aroo Index	-	10	15	C35_312a L019 & C35_312b L013 - FAPAK	Joaquin Muñoz Sabater	
						90	9.3.12	Lear Area index		19	13	C22_2159 F012 & C22_2150 F012 - FVI	Joaquin Wunoz Sabater	_
non Pinnock	-	R. Jones(UKMO)	CMUG	tbd ; Nov 2020	. 3									
na Maria Trofaier	-	-	Living Planet Fellowships		. 3									
rome Benveniste	-	-	Sea-Level Budget Closure		1.			Cross ECU						
arcus Engdahl	-	A.Shepherd (U.Leeds)	IMBIE		. 3			Cross-ECV						
ement Albergel *	-	P.Ciais (LSCE)	RECCAP		. 3			Q Knowledge Evebenge						
usanne Mecklenburg	Paul Fisher Sophie Hebden	Carsten Brockmann (BC)	CCI Knowledge Exchange		4			knowledge Exchange						-

ESA

Current portfolio of satellite ECVs: \rightarrow closing the budget

ECVs requirements

- 1: top-down requirements based on climate science /climate monitoring principles
- 2: requirements driven by our own internal use of ECVs (both C3S and ECMWF as a whole)
- 3: requirements formulated by some of our ~60K users
- 4: new and emerging requirements

<u>ype 1 requirement → Permafrost</u>

#thawing_permafrost_matters

- Releases large amounts of GHG
- Reinforces global warming feedback loop
- Active layer deepens & threatens wetlands
- Increasing concern of the speed of permafrost thawing and the role in global warming

#thawing_permafrost_matters

- Permafrost degradation makes the ground unstable
- Makes difficult to build and maintain infrastructure
- Already costs billions of dollars in losses and repairs

Courtesy of Joaquin Muñoz

European

Several variables describing the state of permafrost can be derived from satellite observations

 e.g. depth of active layer (m) and permafrost temperature (K) can be obtained by combining LST, SWE and land cover EO (cross-ECV activity)

European State of the Climate | 2019

Climate monitoring of the Eurasian arctic

Annual publication since 2018

- Update of climate in Europe compared to long-term trends
- Builds on 20+ datasets in the CDS + • others
- Written by experts across the C3S ٠ community & other Copernicus services

> climate.copernicus.eu/ESOTC

European

Commission

Type 1: e.g. cryosphere

		ECV	Products	ESA CCI	EUMETSAT	C3S	CGLS
		<u>Glaciers</u>	Glacier Thickness	NO	NO	NO	NO
	12		Glacier Mass Change	YES	NO	YES	NO
	12		Glacier Elevation Change	YES	NO	YES	NO
с			Glacier Area	YES	NO	YES	NO
R	13	<u>Ice sheets and ice</u> <u>shelves</u>	Grounding Line and Thickness	YES	NO	NO	NO
o Y			Ice Volume Change	YES(+)	NO	NO	NO
s	13		Ice Velocity	YES	NO	YES	NO
P H			Surface Elevation Change	YES	NO	YES	NO
	14	<u>Permafrost</u>	Permafrost extent	YES (+)	NO		NO
E			Rock Glacier Kinematics	YES(+)	NO		NO
F	14		Active Layer Thickness	YES (+)	NO		NO
E			Thermal State of Permafrost	YES (+)	NO		NO
			Snow water equivalent	YES(+)	YES		YES
	15	Snow	Snow Depth	NO	NO	NO	NO
			Area Covered by Snow	YES (+)	YES		YES

Courtesy of Joaquin Muñoz

LAI high/low vegetation disaggregation operator

- *Courtesy of Gianpaolo Balsamo*
- SW Russia case shows that using new LAI disaggregation correct for an overestimation of the LAI that lead to a cold/wet bias.
- Overall beneficial for the scores of near surface atmosphere (although some adjustment of the vegetation parameters might be necessary to overcome the autumn bad scores over Eur context

Type 2 requirement: e.g. biosphere

Change

		ECV	Products	ESA CCI	EUMETSAT	C3S	CGLS
	1	Above-ground biomass	Above-ground biomass	YES (+)	NO		?
	2	Albedo	Albedo	NO	YES	YES	YES
			Transpiration	NO	YES	NO	NO
			Interception Loss	NO	YES	NO	NO
	3	Evaporation from land	Bare Soil Evaporation	NO	YES	NO	NO
В			Sensible Heat Flux	NO	YES	NO	NO
i			Latent Heat Flux	NO	YES	NO	NO
	4	<u>Fire</u>	Burnt Area	YES	NO	YES	YES
0			Active Fires	?	YES	NO	NO
S			Combustion Completeness	?	NO	NO	NO
p h			Fire Radiative Power	Partly	YES	YES	NO
	5	Fraction of absorbed photosynthetically active radiation (FAPAR)	Fraction of Absorbed Photosynthetically Active Radiation (FAPAR)	NO	YES	YES	YES
r	6	Land cover	Maps of key IPCC land use, related changes and land management types	?	NO	NO	NO
			Maps of High Resolution Land Cover	YES (+)	NO	NO	YES
e			Maps of Land Cover	Partly	NO	YES	NO
	7	Land Surface Temperature	Land Surface Temperature	YES (+)	YES	10	YES
	0	Leaf are index		r NO	NO	VES	VES
	0	Lear or e-mack	Peatlands total depth of profile area and location	NO	NO	123	NO
			Mineral soil bulk density to 30 cms and 1m	NO	NO		NO
	9	<u>Soil carbon</u>	Carbon in Soil	NO	NO		NO

ype 1 + 3 requirements

Change

Soil moisture derived from direct satellite observations

- Satellite observations are only sensitive to the water content of the top few cms of soil. Dense forests mask the soil signal.
- High variability in time and space may limit representativeness

However, for many applications the variable of interest is the root-zone soil moisture

- The root-zone determines the depth at which plants extract water from the soil. ٠
- Key variable for hydrological and ecosystem processes (flood and agricultural forecasting). •
- Prediction of the severity of forest fires can be improved ٠
- Important role in weather predictability particularly in the sub-seasonal to seasonal, ٠
- Provides a more realistic representation of ET feedbacks for climate change projections ٠

Root-zone soil moisture from satellite observations

- Not directly observable from current satellite platforms •
- But it can be derived from surface soil moisture observations (ERS, ASCAT, SSM/I, AMSRE, SMOS, SMAP) or • by constraining LSM by several EO data sets (LST, SSM, ...)
 - cross ECV activity \rightarrow

Courtesy of Joaquin Muñoz

User driven programme

URDB operational since last year

Requirements per sector

Water

management

6%

Biodiversity

3%

Energy

14%

Edit

Edit

Agriculture &

forestry

15%

Requirements per Dataset Category

Most common GCOS ECVs

Courtesy

Obregon

Andre

Precipitation (260) Surface air temperature (194) Sea level (54) Sea state (48) Snow (43) Land cover (29) Earth radiation budget (29) Soil moisture (24) LAI (23) FPAR (23) Pressure (23) SST (21) Evaporation from land (16) Surface water vapour (16) Sea ice (12) Lakes (12)

*actual numbers higher as respective field not always filled; revision in progress

Analysis of URDB

Land ECVs: River Discharge & Groundwater

SECTOR	APPLICATIONS	USER REQUIREMENTS FOR RESOLUTION AND COVERAGE	Courtesy of Chiara Cagnazzo		
Coastal, Fishery	Coastal Eutrophication Marine Spatial Planning	High resolution for resolving coastal areas	Cugnuzzo		
Water Management	Flooding	River basin area Municipality level			
Infrastructure	Road conditions and management	2km resolution, daily			
Energy	Hydropower generation Power blackouts	Sub-daily, country level and cluster scale			
Insurance	Specific risk analysis	-			
Health	Pathogens impact Decision support tools for waterborne and foodborne infection	European domain			

Other : Inland navigation, Extremes in wet and dry conditions, Specific hydrological studies, Environmental analyses

European Commission

Bridging the observation gap

Emergency Manageme

Hydrological observations

Limited availability/numbers/quality

Courtesy of EFAS team

Hydrological simulations

Copernicus Emergency Management Service (CEMS) offers hydrological estimates through the Climate Data Store with homogeneous

coverage

Mean daily river discharge from 1979-2018 for GloFASv2.1 reanalysis

Type 1+3 requirements: e.g. hydrology

Change

		ECV	Products	ESA CCI	EUMETSAT	C3S	CGLS		
			Groundwater Quality	NO	NO	NO	NO		
			WellheadLevel	NO	NO	NO	NO		
	16	Groundwater	Groundwater Discharge	NO	NO	NO	NO		
	10		Groundwater Recharge Groundwater Storage Change	NO	NO	NO	NO		
				NO	NO		NO		
			Groundwater Level		NO	NO	NO		
			Lake foe Cover		NO	NO	TES NO		
			Lake Water Leaving Reflectance	YES (+)	NO	NO	NO		
	17	Lakes	Lake surface water temperature	VES (+)	NO	VES	VES		
			Lake Water Extent		NO	NO	VES		
			Lake Water Extent	YES (+)	NO	VES	VEC		
			Water Level		NO	TES	VES		
	18	River discharge	River discharge	NO	NO		NO	<u> </u>	
H Y D R O L O G G Y			Freeze/thaw Surface Inundation (dynamic surface water)	surface					
	19	19	<u>Soil moisture</u>	Root zone soil moisture	YES	YES		NO	
			Surface soil moisture	YES	YES	YES	YES	Col	

GAPs

urtesy of Joaquin Muñoz

Type 4 requirements \rightarrow Biodiversity

Ocean habitats

 Investigate EO + in situ observations for determining ocean/coastal habitats (coral reefs, seagrass, mangroves, macroalgae)

Policy drivers

- Nature based solutions contributing to NDCs (Paris Agreement)
- SDG 14 Life Below Water
- European Green Deal
- Quantifying contributions to the **Convention on Biological Diversity** (Aichi target 11)
- Maritime spatial planning (MSFD)
- Assessing marine protected areas (Natura 2000)
- Marine renewable Energy

Courtesy of Samantha Burgess

Image - ESA

- Partnerships required with:
- Global Ocean Observing System (GOOS)
- Group on Earth Observations Biodivdersity Observations Network (GEO BON)
- Intergovernmental Science Policy Platform on Biodiversity and Ecosystem Services (IPBES)

ESA UNCLASSIFIED - For Official Use

C3S ESA-CCI

A COMMON WAY FORWARD

European Space Agency

Main points / Atmosphere

Ozone/GHG/Aerosol/WV/Cloud

General points

- Extend CDRs with new/oncoming sensors (e.g. Sentinel-3/4/5P, IASI-NG, IRS, JPSS, Aeolus, Earthcare etc)
- Coordination between CCI, C3S, CAMS and EUMETSAT, in particular for Ozone and GHG, but also WV and Aerosol, for requirements definitions and responsibilities
- Higher level products needed L2/L3, in particular for Ozone and GHG

Detailed points

Aerosol

- Improve existing algorithms and test new ones (e.g. CISAR/Rayference)
- · Address gaps: uncertainty estimates, extension back in time with AVHRR over ocean, multi-sensor CDR
- Possible new products: Mineral dust, joint aerosol-cloud product, PSC, merged multi-sensor AOD

WV

- C3S interest in work on case studies: e.g. atmospheric rivers and WV total column for evaluation of CMIP6, ERA5 and MERRA
- Coordinate with CAMS on enhanced WV product for stratosphere (e.g. merged limb/nadir UTLS water vapour)

Cloud

- Include geostationary ring to satisfy GCOS requirements on frequent updates
- Surface radiation budget can be derived from retrieved aerosol, cloud and surface temp fields. Need to confirm interest by C3S and required accuracy.

ESA UNCLASSIFIED - For Official Use

= 11 🛌 == + 11 = 🚝 = 11 11 = = = 🛯 🖬 = 🚺 11 = = 🕬 💥 🔚

Main points / Ocean SST/OC/SL/Sea Ice/SSS/Sea State (currents)

- C3S: increasing the synergies among Copernicus Services and streamlining the production of ECVs in coordination with other relevant service (e.g. Mercator for Ocean ECV, Land for terrestrial...)
- On existing ECVs, available from both CCI and C3S
 - Link SST R&D to CAMS' requirements for the CO2 service
 - Recognise that **Ocean Colour** (including Primary Production) is crucial input for carbon budget
 - Sea Level: clarify R&D activities between CCI and C3S
 - Sea Ice: special situation with CCI providing R&D input to OSISAF SIC. New R&D activities could consider round robin exercise on algorithm selection for melt-pond fraction, which is important auxiliary data for both SIC and SIT, building on previous inter-comparison exercise of sea ice drift algorithms to create a CCI Sea Ice drift CDR.
- On ESA only ECVs
 - Sea Surface Salinity: R&D useful for C3S to understand whether SSS will be included in their portfolio
 - Sea State: CDR useful for quantification of ocean/atmosphere exchange
 - Possible future activity: surface geostrophic current is a possible addition to ECV portfolio scope for discussion with CMEMS

ESA UNCLASSIFIED - For Official Use

_ II ⊾ :: ■ + II ■ ≝ _ II II _ _ = := M II _ II _ . . .

Main points / Land SM/Fire/Lakes/Glaciers/Permafrost/Biomass/Snow/LST/ Ice sheets

Need for coordination amongst the different soil moisture related activities in Europe (C3S, CGLS, EUM, CCI)

Soil moisture new R&D topics to include

- Retrieval of higher spatial (0.1-1 km) and temporal (<1-day) resolutions
- Inclusion of state-of-the-art sensors, candidate missions
- Development of a global satellite-based Root-zone soil moisture product by constraining Land Surface Models with several EOs (soil moisture, vegetation...)

Vegetation

- Leaf Area Index (LAI), one of the most important terrestrial ECV
 - Prototype at C3S / EUMETSAT
 - Latest ECV requirement review 2020: develop higher spatial and temporal resolutions LAI
 - → Combining information from Sentinels data
 - →VOD can be used as an analogue to vegetation product (~daily availability)
 - Strong user requirement that LAI is provided with provision of the related Land Use / Land Cover
- Biomass new R&D topics to include
 - Inclusion of new sensors in a "Golden Age" of biomass estimation
 - Consistency of data sets in both time and space: combination of high spatial resolution estimates with more frequent estimates from coarser resolution data

ESA UNCLASSIFIED - For Official Use

= ■ ► = + ■ + ■ = ≔ = 1 ■ ■ = = = = ■ ■ ■ ■ = = = ₩ = |

Fire

- Adapting CCI MODIS algorithm to S-3 OLCI & Homogenization of time series (MODIS and OLCI BA products)
- · Generation of fire severity from OLCI and SLSTR data

LST

- Great potential for many use cases (assimilation into atmosphere/ice sheet model, UHI and urban climate studies, upscaling of biosphere-atmos CO2 and CH4 fluxes, monitoring evapotranspiration and water stress
- Ongoing work to capture global diurnal cycle
- Foster link with model community (evaluation & development, data assimilation)

Lakes (LWE, LWL, LSWT, LWLR, LIC, *LIT*)

- Ensure consistency of Lake variables (5 variables, 6th to come)
- New algorithms for LWE (Combined with LWL, consistent with Land Cover)
- Extending the CDR & further address product uncertainty

ESA UNCLASSIFIED - For Official Use

= II 🛌 == + II = 😇 = II II = = = 📰 🖬 🖬 = 🖬 🖽 💥 🔚

Main points / Land SM/Fire/Lakes/Glaciers/Permafrost/Biomass/Snow/LST/ Ice sheets

Snow

- Great potential for user application
- R&D on L-band SAR to compute higher resolution SWE data in mountain areas is needed

Glacier

- Improve products in mountainous regions (new Copernicus DEN)
- Glacier thickness (Retrieval from high-res DEM)
- Possible use of CryoSat-2 data (accumulation and ablation rates from altimeters)
- Improvements required: clouds, snow or debris on glacier, automation

Ice sheet

- IMBIE cross-ECV project
- Surface melting from active/passive MW
- Grounding Line Location (GLL) Antarctica-wide.
- Ice shelf volume changes

ESA UNCLASSIFIED - For Official Use

Main points / Land (continued) **Terrestrial Hydrology**

Reviewed by J. Benveniste at CCI/C3S WS April 2020

- Key variable in the water cycle
- Essential for water resources management (floods and drought)
- Necessary for the flood prediction * (hydraulic risk)
- Important for the reduction of the * ocean salinity and the thermohaline circulation.

ESA UNCLASSIFIED - For Official Use

Main points / Land (continued) Terrestrial Hydrology

Maturity of River Level and Discharge

• First, the **level** of the river is computed from altimetry at virtual stations (intersections river / satellite track)

- River/Lake Level is quite mature (techniques similar to those in Lakes CCI)
 - ESA has considerable experience since early 2000s ('River & Lake' project

 products were promoted at tens of international events for more than a
 decade
 - Other relevant European expertise: Hydroweb (CTOH Toulouse) → Theia
 → Copernicus LMS , DAHITI (TU Munich)
- Challenge: The real benefit for users is to derive RIVER DISCHARGE from Altimetric River Stage and auxiliary data -- from space (optical, SAR imagers), in situ and/or model.
- The international community is working on it (see for istance dedicated WG in NASA/SWOT, and recent review paper from Gleason et al., 2020
- Based on the State-of-the-art and the level of maturity, we propose to add River Discharge to the ESA CCI ECV Portfolio.

ESA UNCLASSIFIED - For Official Use

= 11 🛌 == + 11 = 🚝 = 11 11 = = = = 🖬 🖬 🖬 = 11 👭 🔚

Thanks for your attention!

Carlo Buontempo and Susanne Mecklenburg

ESA UNCLASSIFIED - For Official Use

European Space Agency