

CO2 HUMAN EMISSIONS

Synthesis of results 2018-2020 & next steps

Gianpaolo Balsamo, for CHE coordination

10.9.2020 ESA-CCI Coloc 2020

CHE project (2017 - 2020) – Month 35 of 39 ©

Empa

EUMETSAT Lab

UEA

for life

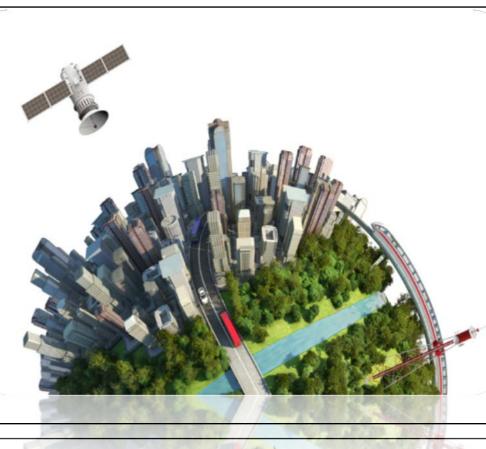
Aim:

Build European monitoring capacity for anthropogenic CO₂ emissions

How:

CO₂ emission estimation system driven by Earth observations (remote sensing and in situ) combined with enhanced modelling system

AIRBUS


Why:

CECMWF

LUND UNIVERSITY

To support the Paris Climate Agreement and its implementation

SPASCIA SRON

Resemblight Nucleolands Messemblightch Institute Miniparizien Japarnatzar et

cea

WAGENINGEN

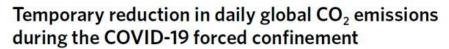
Project Duration: 39 month (35

Project Funding: 3.75 M€ (1.25 M€/year)

Consortium Numbers 22 partners Institutes

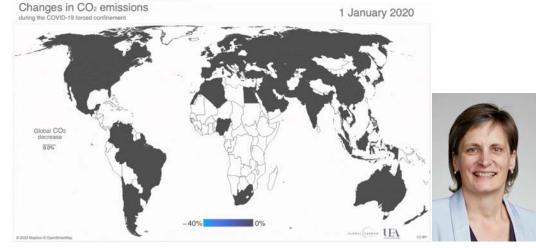
Work Content Numbers
7 work-packages:
5-Science development,
1-International liaison,
1-Management & Coms
7 Milestones (6
45 Deliverables (29)

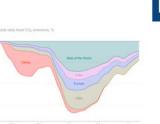
344.25 Person Month (Eq 8.8 FTE)


CHE efforts...both a Sprint & a Marathon...

Already about 10 publications within CHE, documenting efforts on CO₂ monitoring & verification progress: short-term & long-term

n	ature					
cl	imate	c	ha	n	ge	


ARTICLES



Corinne Le Quéré^{® 1,2}, Robert B. Jackson^{® 3,4,5}, Matthew W. Jones^{® 1,2}, Adam J. P. Smith^{1,2}, Sam Abernethy^{® 3,4}, Robbie M. Andrew^{® 7}, Anthony J. De-Gol^{1,2}, David R. Willis^{1,2}, Yuli Shan⁸, Josep G. Canadell^{® 9}, Pierre Friedlingstein^{® 10,11}, Felix Creutzig^{® 12,13} and Glen P. Peters^{® 7}

Government policies during the COVID-19 pandemic have drastically altered patterns of energy demand around the world. Many international borders were closed and populations were confined to their homes, which reduced transport and changed consumption patterns. Here we compile government policies and activity data to estimate the decrease in CO₂ emissions during forced confinements. Daily global CO₂ emissions decreased by -17% (-11 to -25% for \pm to) by early April 2020 compared with the mean 2019 levels, just under half from changes in surface transport. At their peak, emissions in individual countries decreased by -26% on average. The limpact on 2020 annual emissions depends on the duration of the confinement, with a low estimate of -4% (-2 to -7%) if prepandemic conditions return by mid-June, and a high estimate of -7% (-3 to -13%) if some restrictions remain worldwide until the end of 2020. Government actions and economic incentives postcrisis will likely influence the global CO₂ emissions path for decades.

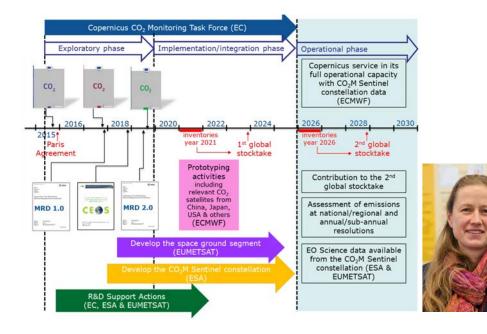
BAMS

Abstract

Footnotes

Article Contents

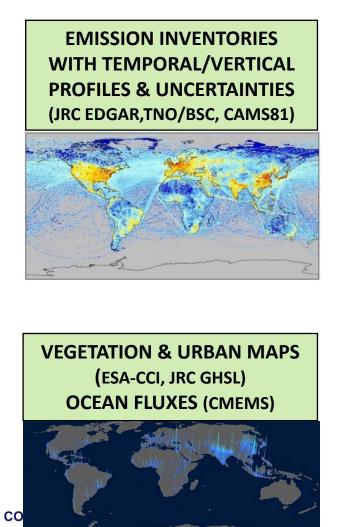
RESEARCH ARTICLE | 10 FEBRUARY 2020


Towards an operational anthropogenic CO, emissions monitoring and verification support capacity $\hat{\mathbf{o}}$

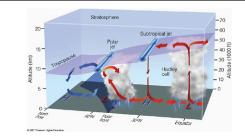
ISSUES EARLY ONLINE RELEASE COLLECTIONS FOR AUTHORS & ABOUT &

G. Janssens-Maenhout 🛎 ; B. Pinty; M. Dowell; H. Zunker; E. Andersson; G. Balsamo; J.-L. Bézy; T. Brunhes; H. Bösch; B. Bojkov D. Brunner; M. Buchwitz; D. Crisp; P. Clais; P. Counet; D. Dee; H. Denier van der Gon; H. Dolman; M. Drinkwater; O. Dubovik; R. Engelen; T. Fehr; Y. Fernandez; M. Heimann; K. Holmund; S. Houveling; R. Husband; O. Juvyns; A. Kentarchos; J. Landgraf; R. Lang; A. Löscher; J. Marshall; Y. Meijer; M. Nakajima; Pl. Palmer; P. Peylin; P. Rayner; M. Scholze; B. Sierk; J. Tamminen; P. Veefkind

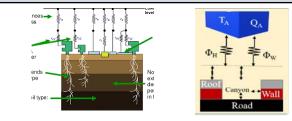
Bull. Amer. Meteor. Soc. (2020)


https://doi.org/10.1175/BAMS-D-19-0017.1

Global system based on ECMWF IFS


INPUT DATASETS

IFS FORECAST MODEL & DATA ASSIMILATION

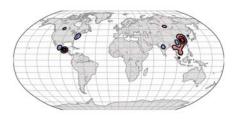


©EU, 2016

IFS ATMOSPHERIC TRANSPORT

URBAN & VEGETATION MODEL, LAND SURFACE DATA ASSIMILATION

CAMS REACTIVE SPECIES (NOx, CO, CH4)



ENSEMBLE APPROACH (uncertainty propagation)

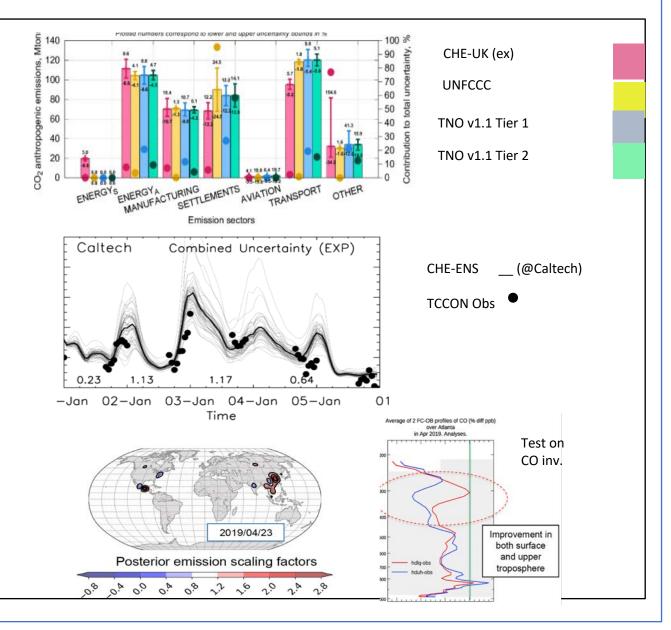
4DVAR ATMOSPHERIC ANALYSIS & INVERSION CAPABILITY

10 0

Thanks to Anna Agusti-Panareda ECMWF

CHE: 3 achievements to prepare the Global- MVS

CO₂ Anthropogenic Sectors Mapping:


CO₂ Global Fossil-fuel emissions from IPCC / UNFCCC / JRC-EDGAR gridded & clustered in 7 groups for IFS *Choulga et al. 2020 (in discussion)*

CO₂ Ensemble-based Modelling:

CO₂ emissions and concentrations represented using HRES & ENS to characterise Uncertainties *McNorton et al. 2020 (final accepted) Agustì-Panareda et al. 2019, 2020 (in prep.)*

CO₂ 4D-Var-based Inversion:

Using the ACV infrastructure CO2 fluxes & concentration are corrected *Bousserez et al. 2020 (in prep.)*

Global forecasts of CO₂ atmospheric values

20150101 03 UTC XCO₂

User requirements from:

- EUMETSAT (S-4/-5)
- MicroCarb

404

402

400

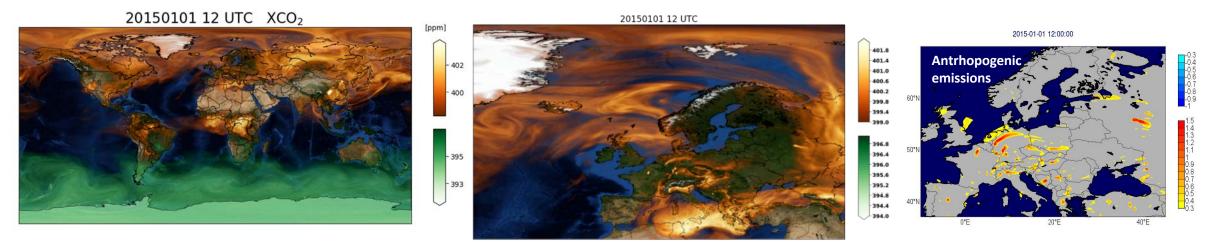
397

395

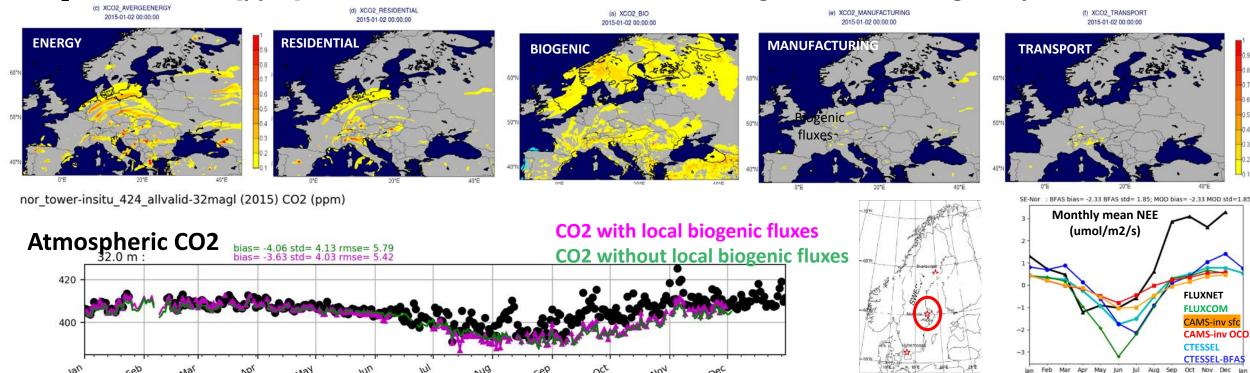
393

- flight campaigns
- boundary conditions

CO₂, CH₄, and linear CO at Tco1279 (~9km) L137 in ECMWF IFS


- CTESSEL NEE (+bias correction) ٠
- EDGAR+CAMS81 anthropogenic emissions ٠
- SOCAT Carbo-Scope, CMEMS ocean fluxes ٠
- GFAS biomass burning
- IFS transport (Bermejo & Conde mass fixer)

CO2 HUMAN EMISSIONS

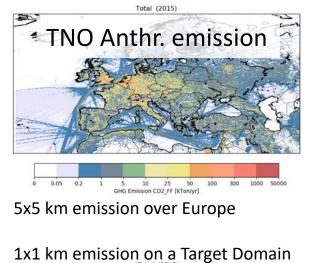

Developments are aligned with ECMWF's Earth system modelling strategy (e.g., strengthen IFS land surface modelling).

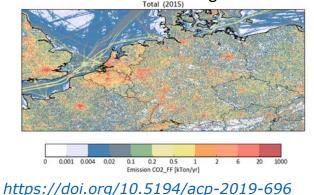
Thanks to Anna Agusti-Panareda ECMWF

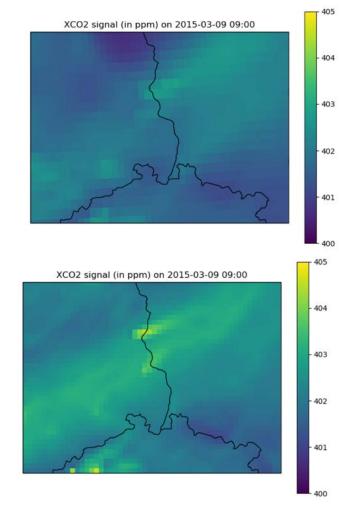
Global nature runs: tier-2 better than tier-1, biogenic show key role

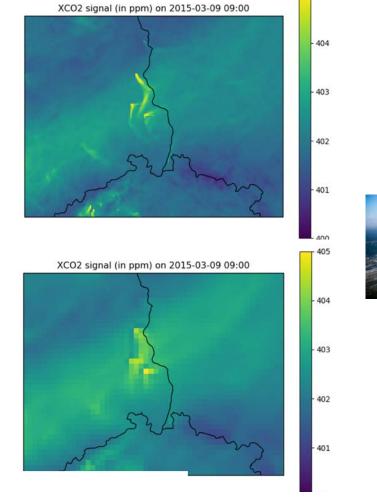
XCO₂ enhancement [ppm] associated with emission sectors and biogenic fluxes during 1-day FC

2015


Linking Global to Regional/Local-scale runs: the value of resolution


Tier-1 (CAMS), 9km, EDGAR emissions

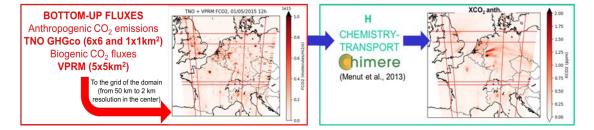



Point sources will need km-scale!

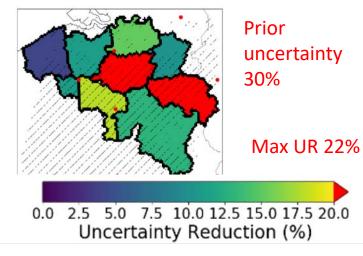
8

CO₂ HUMAN EMISSIONS

COSMO 5km, EDGAR emissions

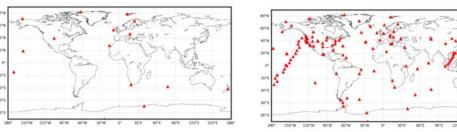

COSMO 5km, TNO emissions

Thanks to Ingrid Super, Hugo Denier van der Gon, TNO

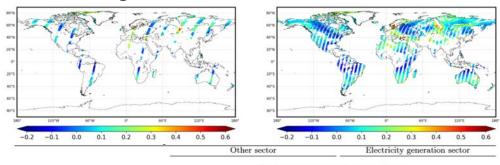

Thanks to Jean-Matthieu Haussaire, Dominik Brunner, EMPA

Learning how to assimilate CO₂ Co-Emissions & design Obs-Net

Assimilation of CO and CO₂ observations in winter (2015-01-05)



Uncertainty reductions over Belgium between prior and posterior daily CO2 anthropogenic budgets



CO₂ HUMAN EMISSIONS

Testing CCFFDAS with 15 vs 141 in-situ sites

Testing CCFFDAS with 1 vs 4 satellites

		Emission rate uncertainty (MtC/week)									
Scenario	Description	AUS	BRA	CHN	DEU	POL	AUS	BRA	CHN	DEU	POL
1	surface 15 sites	9.03	16.70	177.31	12.18	4.70	0.28	0.17	2.36	0.43	0.23
2	surface 141 sites	4.57	8.21	8.29	2.60	2.10	0.28	0.17	2.36	0.43	0.23
3	1 satellite (default)	0.30	0.42	3.43	0.97	0.38	0.27	0.17	2.21	0.43	0.23
4	4 satellites	0.25	0.29	2.38	0.79	0.33	0.26	0.17	2.07	0.43	0.23
5	default with ocean	0.29	0.41	2.93	0.94	0.37	0.27	0.17	2.20	0.43	0.23
6	default with repr. error	0.35	0.68	4.68	1.36	0.62	0.28	0.17	2.28	0.43	0.23
7	default with nat. inventory	0.03	0.16	1.84	0.08	0.05	0.04	0.06	1.43	0.07	0.05
		Annual average weekly emission rate (MtC/week)									
	national inventory	0.90	1.67	17.73	2.43	0.73	1.15	0.22	16.36	1.76	0.83

Uncertainty reductions with simplified scenarios

9

Thanks to Frederic Chevallier & LSCE/CEA

CoCO2 project (2021 – 2023) approved ☺

Observations of atmospheric CO2

already kno

Aim:

Consolidate a Copernicus CO2 pre-operational prototype for the 1st Global Stock Take (GST-1)

How:

CO₂ emission estimation system driven by Earth observations (remote sensing and in situ) combined with modelling to build an information products portfolio

Why:

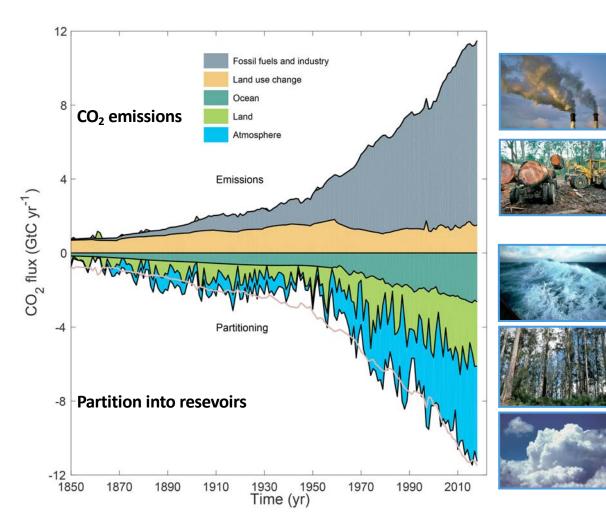
To support the Paris Agreement in its operational implementation phase

THROPOGENIC CO2 EMISSION MONITORING CAPACIT rting the Paris Agree and policymakers Local scale Supporting green citie CoCO2 Prototype system for a Copernicus CO₂ service

Project Duration: 36 month

Project Funding: 9.00 M€ (3.00 M€/year)

Consortium Numbers 25 partners Institutes


Work Content Numbers 9 work-packages:

-Science development, -Prototype integration, 1-Observations & Nat. link. -Information Products, -Coordination & Outreach 1-Fthics Milestones

67 Deliverables

920 Person Month (Eq 25.5 FTE)

Global Carbon budget – in CHE & COCO2

Integrated Forecasting System (IFS) Approach

7 CO2 emissions groups in CHE \rightarrow CoCO2 urban Monthly maps maps+modelling

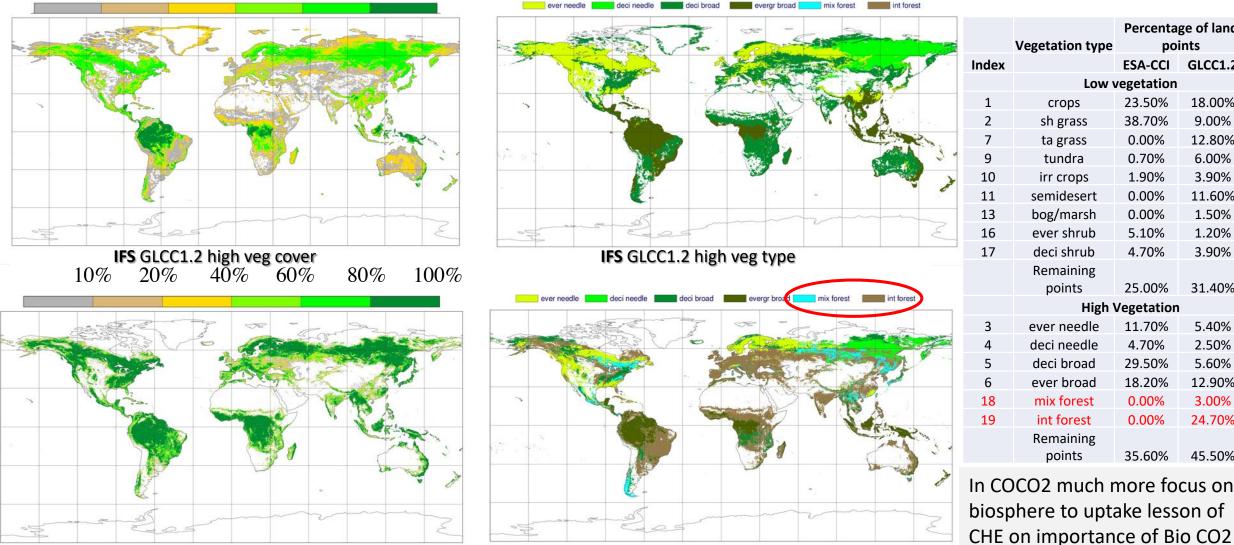
Currently GLCC → C3S Land-Use in CoCO2 No-change Annual change

Currently in CHE \rightarrow CMEMS CO2 in CoCO2 Monthly maps

Currently CHTESSEL-Ags → CTESSEL+ C3S LC BFAS BFAS+Var CoCO2

Currently CO2 CAMS → Greater interactions No Radiation 7 emission groups tracers or DA interaction

Global Carbon Budget, Friedlingstein et al., 2019


CO₂ HUMAN EMISSIONS

GLOBAL

Biosphere: importance of land use

NEW ESA-CCI high veg cover 80% 100% 10% 20% 40%60%

NEW ESA-CCI high veg type

lex		ESA-CCI	GLCC1.2					
	Low vegetation							
1	crops	23.50%	18.00%					
2	sh grass	38.70%	9.00%					
7	ta grass	0.00%	12.80%					
9	tundra	0.70%	6.00%					
0	irr crops	1.90%	3.90%					
1	semidesert	0.00%	11.60%					
3	bog/marsh	0.00%	1.50%					
6	ever shrub	5.10%	1.20%					
7	deci shrub	4.70%	3.90%					
	Remaining							
	points	25.00%	31.40%					
	High Vegetation							
3	ever needle	11.70%	5.40%					
1	deci needle	4.70%	2.50%					
5	deci broad	29.50%	5.60%					
5	ever broad	18.20%	12.90%					
8	mix forest	0.00%	3.00%					
9	int forest	0.00%	24.70%					
	Remaining							
	points	35.60%	45.50%					
COCO2 much more focus on								

Percentage of land

points

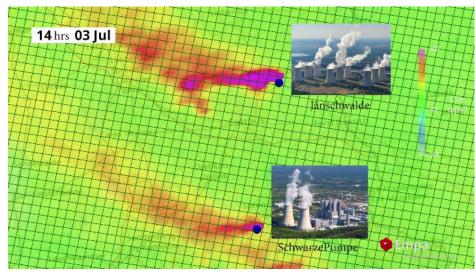
Thanks to Souhail Boussetta

Summary of CHE Development Streams

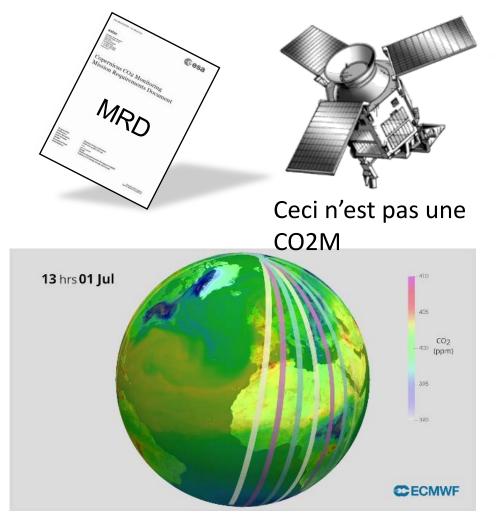
Lessons learnt within CHE allow define MVS prototype requirements:

- Modelling emissions & concentrations requirements
 - High-resolution global ensemble, improved conservation & transport, biosphere enhancement.
 - Learning from regional modelling experience, elevated source emissions, temporal disaggregation
- Mapping & Modelling accuracy requirements
 - Anthropogenic sources groups + point-source database for powerstations, stacks height.
 - Coordinated Land-Use/Land-Cover dataset at km-scale including relevant Urban-scale
 - Urban modelling description to further characterise CO2 temperature-based variability
- Multi-scale & Multi-source requirements for Data Assimilation
 - CO2 & Co-Emissions (NO2, CO) consistently treated to enable 4D-Var inversion capability

• Regional/Local-scale enable account for spatial, vertical, different inventories in Hybrid Ens-4D-Var CO₂ HUMAN EMISSIONS


, CO₂ Human Emissions

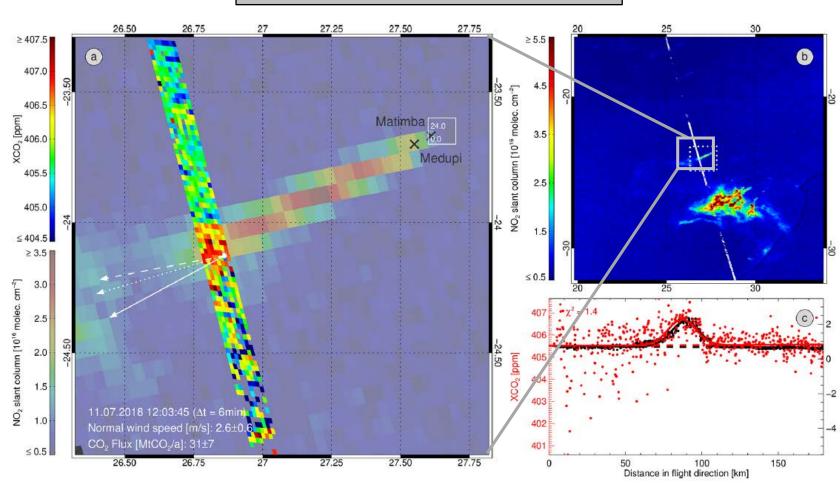
THANKS


Thank You on behalf of the CHE Team Follow Us on the CHE Media Channel https://mobile.twitter.com/che_project

Preparing for the Copernicus CO₂ Monitoring mission

Mission requirements for XCO_2 & NO_2 :Spatial resolution4 km² XCO_2 precision:0.7 ppm (veg. scene, 50° SZA) NO_2 precision:1.5 · 10¹⁵ molec/cm²Imaging swath> 250 kmViewing modes:nadir (land) & sun-glint (water)

CO₂ measured at 2x2 km² grid (credit: EMPA)



Examining plume inversions for hotspot emissions

ESTIMATION OF CO₂ EMISSION HOTSPOTS (POWER PLANTS, CITIES) USING SATELLITE DATA:

- NO₂ plume detection and cross-section CO₂ flux estimation Reuter et al (2019)
- Gaussian plume model Bo Zheng et al. (VERIFY), Nassar et al. (2017)
- High resolution Eulerian transport model Zheng et al. (2019), Ye et al. (2020)
- Lagrangian transport model Wu et al. (2020)

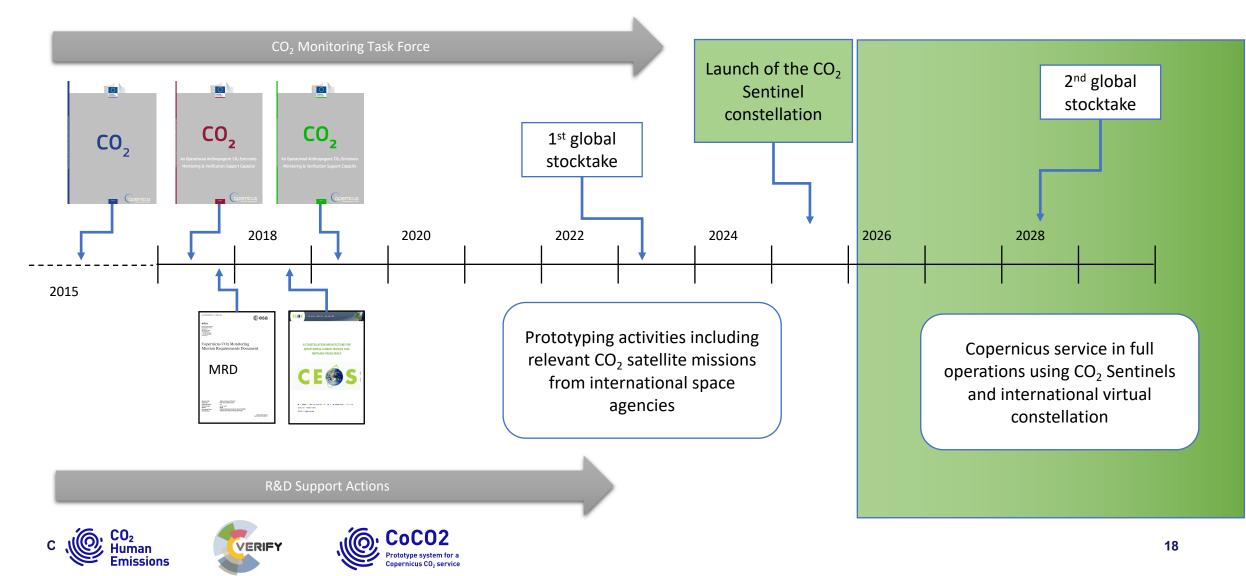
CO2 HUMAN EMISSIONS

Example: Power plant (South Africa)

Reuter et al. (2019)

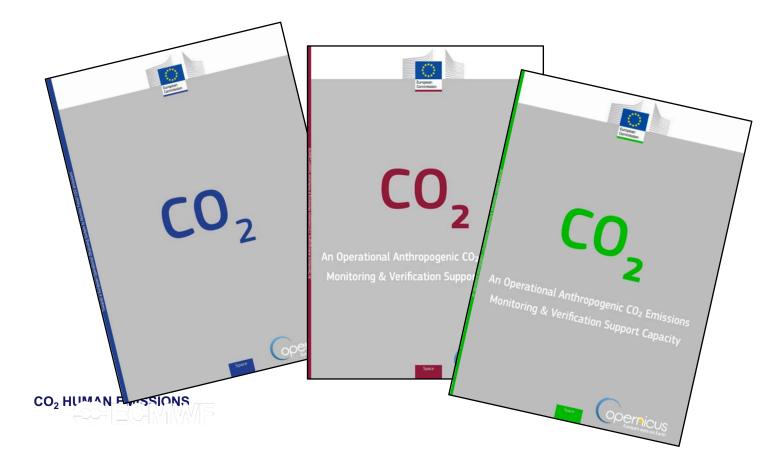
Ő

CHE is in the last 4-month run ... to CoCO2

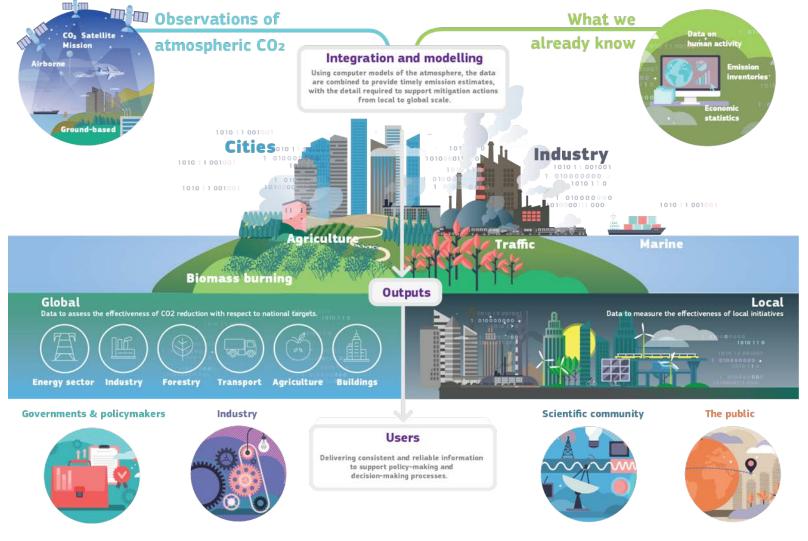

CHE will complete the remaining 16 deliverables (of 45 total).

CHE will transfer Outcomes to CoCO2-H2020 starting in 2021

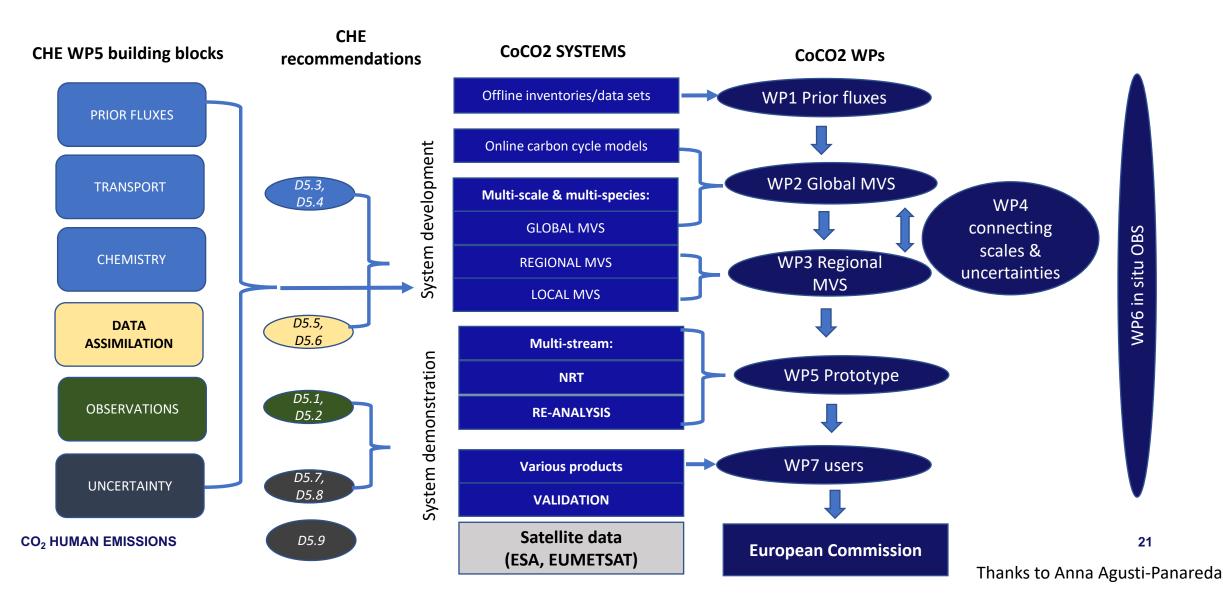
D1.3	Reconciliation of top-down and bottom-up estimates of the carbon balance
	Stakeholder report on the requirements for future space-based instruments to
D1.4	deliver products suitable for CO2 emission monitoring
D2.7	Impact of urban aerosols on satellite retrieved total column CO2
D2.8	LES Simulation Report
D3.5	Inversion strategy based on OSSEs
D3.6	Inversion strategy based on joint QND assessment
D4.4	Sampling Strategy for additional tracers
D5.2	Final report on service elements for CO2 Earth Observation Integration
	Final report on service elements for CO2 Emission and Transport Models
D5.4	Integration
D5.6	Final report on service elements requirements for data assimilation methodology
D5.8	Final report on service elements requirements for uncertainty representation
	Report on synthesis of service elements for an integrated CHE monitoring
D5.9	infrastructure
D6.3	Strategic Research Agenda document 3
D6.4	Report on workshops organised by CHE
D7.7	Final Dissemination and Exploitation Report



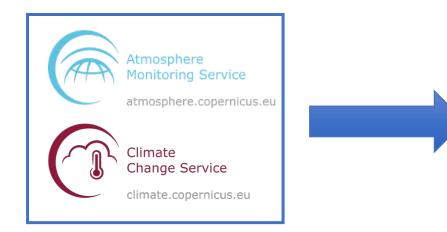
Roadmap towards Copernicus CO₂ service


Anthropogenic CO2 emission monitoring

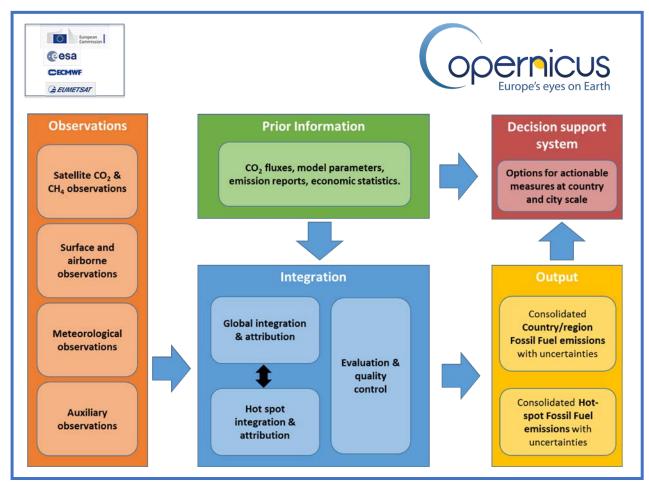
Recommendations by the European Commission CO₂ Monitoring Task Force for an Anthropogenic CO₂ Emissions Monitoring & Verification Support (MVS) capacity


- 1. Detection of emitting hot spots such as megacities or power plants,
- 2. Monitoring the hot spot emissions to assess emission reductions of the activities,
- 3. Assessing emission changes against local reduction targets to monitor impacts of the NDCs,
- 4. Assessing the national emissions and changes in 5year time steps to estimate the global stock take.

Proposed Copernicus MVS capacity



CoCO2: from system design to deployment



Developing a new CAMS service element

Synergies with existing Copernicus services shall be exploited.

Especially the CAMS existing infrastructure and the plans for estimating emissions of CO and NO₂ fits very well with the planned CO_2 MVS.

Also linking with co2 Other services and national activities.

Thanks to Richard Engelen ECMWF