

**New Developments** from the Terrestrial **Observation Panel** for Climate - TOPC



Antonio Bombelli, GCOS Secretariat (on behalf of the TOPC panel)

ESA CCI Colocation meeting 26-27 October 2022, ESA-ESRIN, Frascati, Italy

Supported by the European Union









# New Developments from TOPC – PPT Outline

# 1- intro on TOPC

# 2- GCOS IP, TOPC and Space Agencies

# **3. Terrestrial ECVs requirements**



#### GCOS 3 Panels



Atmosphere – AOPC Ocean – OOPC Land – TOPC

GCOS · GOOS · WCRP





### **TOPC - Terrestrial Observation Panel for Climate**

**TOPC AIMS** 

GCOS • WCRP



To develop a balanced and integrated system of

#### air - in situ - space borne

observations of the terrestrial ecosystems for long-term monitoring of land

Biosphere Cryosphere Hydrosphere Anthroposphere

properties and attributes

GCOS

which: i) control the physical, biological and chemical processes affecting climate

ii) are themselves affected by climate change, are indicators of climate change and provide information on impacts of climate change.

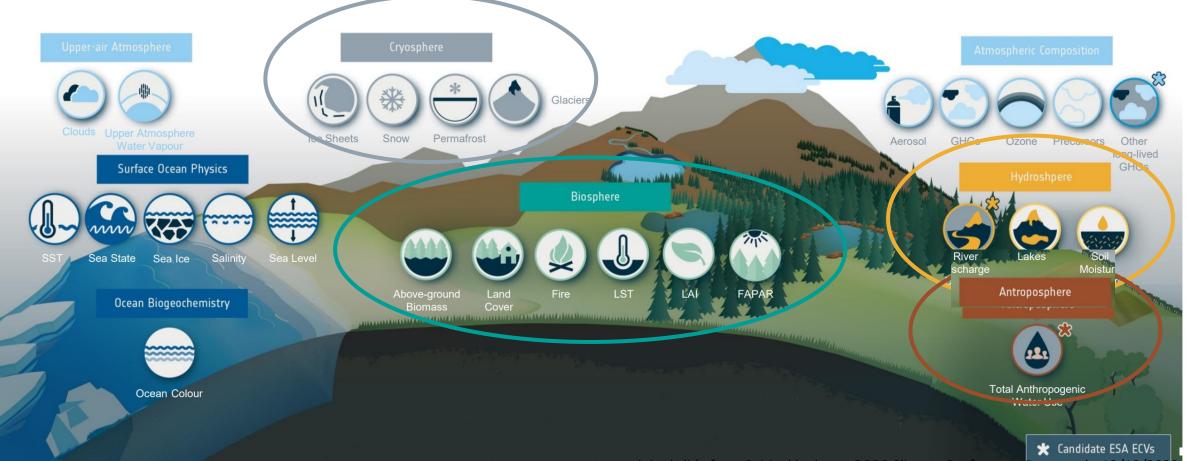
### **TOPC - Terrestrial Observation Panel for Climate**



#### **TOPC** activities:

GCO

- identification of terrestrial observation requirements
- assisting the establishment of observing networks (in-situ, air borne and satellitebased)
- providing guidance on observation standards and norms
- facilitating access to climate data and information and its assimilation
- encouraging the use of best practices and promoting climate studies and assessments.




| ECV                  | ECV Product 2022                                                                                                                             | $ESA CCI \Rightarrow 11 terrestrial ECVs$ |                                                                          |              |                                           |                                                                                |  |  |  |  |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------|--------------|-------------------------------------------|--------------------------------------------------------------------------------|--|--|--|--|
| Groundwater          | Groundwater Storage Change                                                                                                                   | + 2 candidates (+ RECCAP-2)               |                                                                          |              |                                           |                                                                                |  |  |  |  |
| Groundwater          | Groundwater Level                                                                                                                            |                                           |                                                                          |              |                                           |                                                                                |  |  |  |  |
|                      | Lake Water Level (LWL)                                                                                                                       |                                           |                                                                          |              |                                           |                                                                                |  |  |  |  |
|                      | Lake Water Extent (LWE)                                                                                                                      | ECV                                       | ECV Product 2022                                                         | ECV          |                                           | ECV Product 2022                                                               |  |  |  |  |
| Lakes                | Lake Surface Water Temperature (LSWT)                                                                                                        | Fraction of FAPAR                         | Fraction of Absorbed Photosynthetically                                  |              |                                           | Anthropogenic CO <sub>2</sub> Emissions from Fossil                            |  |  |  |  |
| Lukes                | Lake Ice Cover (LIC)                                                                                                                         | Leaf Area Index                           | Active Radiation<br>Leaf Area Index (LAI)                                |              |                                           | Fuel Use, Industry, Agriculture, Waste and Products Use                        |  |  |  |  |
|                      | Lake Ice Thickness (LIT)                                                                                                                     | Albeao                                    | Spectral and Broadband (Visible, Near                                    |              |                                           | Anthropogenic CH <sub>4</sub> Emissions from Fossil                            |  |  |  |  |
|                      | Lake Water-Leaving Reflectance                                                                                                               | Albedo                                    | Infrared and Shortwave) DHR & BHR with                                   |              |                                           | Fuel, Waste, Agriculture, Industrial                                           |  |  |  |  |
| River Discharge      | River Discharge                                                                                                                              |                                           | Associated Spectral Bidirectional                                        |              | Anthropogenic<br>Greenhouse-Gas<br>Fluxes | Processes and Fuel Use<br>Anthropogenic N <sub>2</sub> O Emissions from Fossil |  |  |  |  |
| River Discharge      | Water Level                                                                                                                                  |                                           | Reflectance Distribution Function (BRDF)<br>Parameters                   |              |                                           | Fuel Use, Industry, Agriculture, Waste                                         |  |  |  |  |
|                      | Surface Soil Moisture                                                                                                                        | Land-Surface                              | Land Surface Temperature (LST)                                           |              |                                           | and Products Use, Indirect from N-<br>Related Emissions/Depositions            |  |  |  |  |
| Soil Moisture        | Freeze/Thaw                                                                                                                                  | Temperature                               | Soil Temperature <sup>1</sup>                                            | Anth         |                                           | Anthropogenic F-Gas Emissions from                                             |  |  |  |  |
| Soli Moiscure        | Surface Inundation                                                                                                                           | Above-Ground<br>Biomass                   |                                                                          |              |                                           | Industrial Processes and Product Use                                           |  |  |  |  |
|                      | Root Zone Soil Moisture                                                                                                                      |                                           | Above-Ground Biomass (AGB)                                               | Tiuxe        |                                           | Total Estimated Fluxes by Coupled Data                                         |  |  |  |  |
| Terrestrial Water    |                                                                                                                                              |                                           | Land Cover                                                               |              |                                           | Assimilation/Models with Observed<br>Atmospheric Composition – National        |  |  |  |  |
| Storage <sup>1</sup> | Terrestrial Water Storage Anomaly                                                                                                            | Land Cover                                | Maps of High-Resolution Land Cover                                       |              |                                           | Total Estimated Fluxes by Coupled Data                                         |  |  |  |  |
|                      | Area Covered by Snow                                                                                                                         |                                           | Maps of Key IPCC Land Classes, Related Changes and Land Management Types |              |                                           | Assimilation/Models with Observed<br>Atmospheric Composition - Continental     |  |  |  |  |
| Snow                 | Snow Depth                                                                                                                                   |                                           | Carbon in Soil                                                           |              |                                           | Anthropogenic CO <sub>2</sub> Emissions/Removals                               |  |  |  |  |
|                      | Snow-Water Equivalent                                                                                                                        | Soil Carbon                               | Mineral Soil Bulk Density                                                |              |                                           | by Land Categories                                                             |  |  |  |  |
|                      | Glacier Area                                                                                                                                 |                                           | Peatlands                                                                |              |                                           | High-Resolution Footprint Around Point<br>Sources                              |  |  |  |  |
| Glaciers             | Glacier Elevation Change                                                                                                                     |                                           | Burned Area                                                              |              |                                           | Sensible Heat Flux                                                             |  |  |  |  |
|                      | Glacier Mass Change                                                                                                                          | Fire                                      | Active Fires                                                             |              |                                           | Latent Heat Flux                                                               |  |  |  |  |
|                      | Surface Elevation Change                                                                                                                     |                                           | Fire Radiative Power (FRP)                                               | Evap<br>Land | oration from                              | Bare Soil Evaporation                                                          |  |  |  |  |
| Ice Sheets and       | Ice Velocity                                                                                                                                 |                                           | Anthropogenic CO <sub>2</sub> Emissions from Fossil                      |              |                                           | Interception Loss                                                              |  |  |  |  |
| Ice Shelves          | Ice Volume Change                                                                                                                            | Curre                                     | Fuel Use, Industry, Agriculture, Waste<br>and Product: Use               |              |                                           | Transpiration                                                                  |  |  |  |  |
|                      | Grounding Line Location and Thickness                                                                                                        | FSA-CCI                                   | Environment CH4 Emissions nem Fossil                                     | Anth         | ropogenic<br>er Use                       | Anthropogenic Water Use                                                        |  |  |  |  |
|                      | Permafrost Temperature (PT)                                                                                                                  |                                           | Fuel, waste, Agriculture, Industrial<br>Processes and Fuel use P-2       | wale         |                                           |                                                                                |  |  |  |  |
| Permafrost           | Active Layer Thickness (ALT)                                                                                                                 |                                           | Processes and Mile Use P-2                                               |              |                                           |                                                                                |  |  |  |  |
|                      | Rock Glacier Velocity (RGV)       Anthropogenic N <sub>2</sub> O Emissions from Fostiandidate         Fuel Use, Industry, Agriculture, Waste |                                           |                                                                          |              |                                           |                                                                                |  |  |  |  |
| COCOS                | Fraction of Absorbed Photosynthetically<br>Active Radiation environment                                                                      | Anthropogonic                             |                                                                          | -CCI E       | CVs                                       |                                                                                |  |  |  |  |

|             | Terrestrial                  |                                              |                                       |
|-------------|------------------------------|----------------------------------------------|---------------------------------------|
|             | ECV                          | ECV Product 2016                             | ECV Product 2022                      |
|             |                              | Groundwater Volume Change                    | Groundwater Storage Change            |
|             |                              | Groundwater Level                            | Groundwater Level                     |
| New GCOS    | Groundwater                  | Groundwater Recharge                         |                                       |
|             | Groundwater                  | Groundwater Discharge                        |                                       |
| Terrestrial |                              | Wellhead Level                               |                                       |
| ECVs        |                              | Water Quality                                |                                       |
|             |                              | Lake Water Level                             | Lake Water Level (LWL)                |
|             |                              | Water Extent                                 | Lake Water Extent (LWE)               |
|             | Lakes                        | Lake Surface-Water Temperature               | Lake Surface Water Temperature (LSWT) |
|             | Lanes                        | Lake Ice Cover                               | Lake Ice Cover (LIC)                  |
|             |                              | Lake Ice Thickness                           | Lake Ice Thickness (LIT)              |
|             |                              | Lake Colour (Lake Water-Leaving Reflectance) | Lake Water-Leaving Reflectance        |
|             |                              | River Discharge                              | River Discharge                       |
|             | River Discharge              | Water Level                                  | Water Level                           |
|             |                              | Flow Velocity                                |                                       |
|             |                              | Cross-Section                                |                                       |
|             |                              | Surface Soil Moisture                        | Surface Soil Moisture                 |
|             | Soil Moisture                | Freeze/Thaw                                  | Freeze/Thaw                           |
|             |                              | Surface Inundation                           | Surface Inundation                    |
|             |                              | Root-Zone Soil Moisture                      | Root Zone Soil Moisture               |
|             | Terrestrial<br>Water Storage |                                              | Terrestrial Water Storage Anomaly     |
|             |                              | Area Covered by Snow                         | Area Covered by Snow                  |

#### terrestrial ECVs





original slide from S. Mecklenburg, GCOS Climate Conference, Darmstadt, 19/10/2022

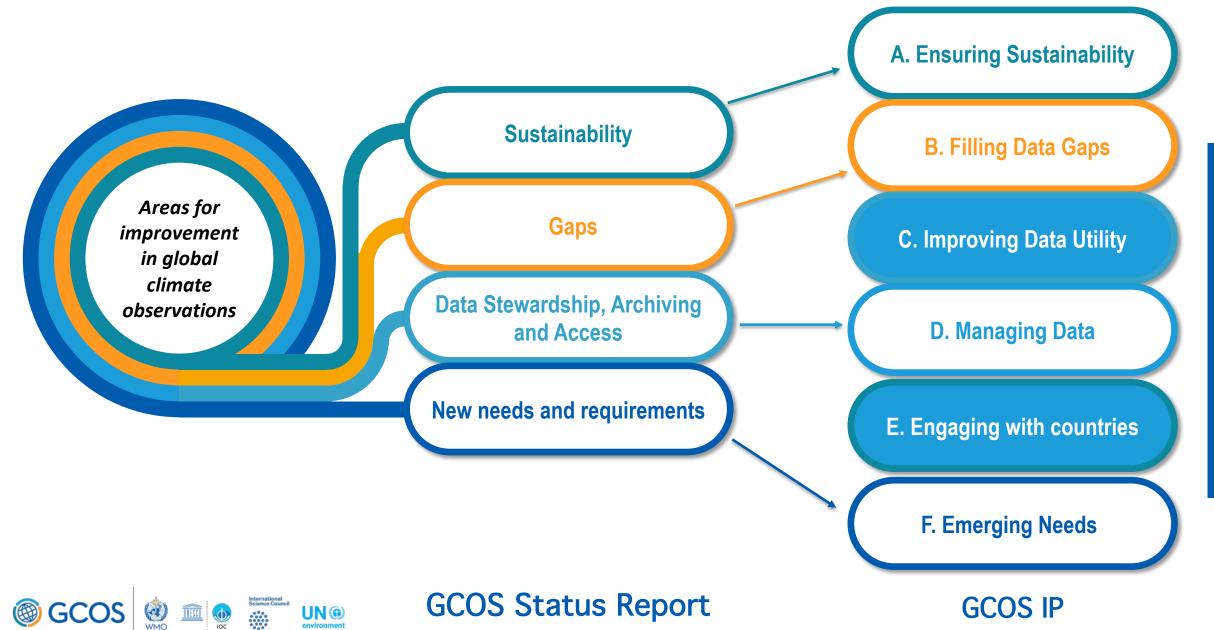
cesa

# New Developments from TOPC – PPT Outline

# 1- intro on TOPC

# 2- GCOS IP, TOPC and Space Agencies

# 3. Terrestrial ECVs requirements




# TOPC: highlights from the new GCOS-IP

Particular emphasis on:

- Integrated approach (1) for IP Actions: going beyond the "individual" ECV monitoring, addressing more ECVs in different domains (more coordination across GCOS panels)
- Integrated approach (2) for global climate observations, considering energy, water and carbon cycles, cutting across the atmosphere, ocean and land domains (more coordination across GCOS panels)
- EO feeding models / models complementing observations.
- Addressing critical gaps to establish long-term records (i.e. biomass)
- Expanding and sustaining ground reference networks (incl. fiducial reference measurements)
- Evolving requirements for more rapid data delivery (incl. near-real time) to make ECV records more useful and actionable, addressing climate change mitigation and adaptation
- Transforming original observational data into user-relevant information: integrating different individual ECV records driven by policy requirements like AFOLU, GHG GCOS or itoring climate change adaptation

### Themes for action identified in the GCOS IP



### GCOS IP and Space Agencies

|     | Theme                         | Actions                                                                                                                                  | olementing Bodies <sub>ខ្ព</sub> |      |          |                |      |                    |                     |                      |                   |                   |          |                  |     |
|-----|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------|----------|----------------|------|--------------------|---------------------|----------------------|-------------------|-------------------|----------|------------------|-----|
|     |                               | <b>31 actions<br/>16 (&gt;50%) relevant to Space Agencies</b>                                                                            |                                  | оммо | NMHS     | Space agencies | GOOS | Reanalysis Centers | Global Data Centers | Research organizatio | National Agencies | Parties to UNFCCC | Academia | Funding Agencies | cos |
|     | A: ENSURING<br>SUSTAINABILITY | A1. Ensure necessary levels of long-term funding support for in situ networks, from observations to data delivery                        |                                  | x    | ×        | V              |      |                    |                     | x                    |                   |                   | x        | x                | ×   |
|     |                               | A2. Address gaps in satellite observations likely to occur in the near future                                                            |                                  |      |          | x              |      |                    |                     |                      |                   |                   |          |                  |     |
|     |                               | A3. Prepare follow-on plans for critical satellite missions                                                                              |                                  |      |          | x              |      |                    |                     |                      |                   |                   |          |                  |     |
| j   | B: SILLING DATA               | B1. Development of reference networks (in situ and satellite Fiducial Reference Measurement (FRM) programs)                              |                                  | x    | x        | x              |      |                    |                     | ×                    |                   |                   |          | ×                | ×   |
|     |                               | B2, Development and implementation of the Global Basic Observing Network (GBON)                                                          |                                  | x    | x        |                | x    |                    |                     |                      |                   |                   |          |                  | x   |
|     |                               | B3. New Earth observing satellite missions to fill gaps in the observing systems                                                         |                                  |      |          | x              |      |                    |                     |                      |                   |                   |          |                  |     |
|     |                               | B4. Expand surface and in situ monitoring of trace gas composition and aerosol properties                                                |                                  |      | x        |                |      |                    |                     | x                    | x                 |                   |          | x                |     |
|     |                               | B5. Implementing global hydrological networks                                                                                            |                                  | x    | x        | x              |      |                    | x                   |                      |                   |                   |          |                  |     |
|     |                               | B6. Expand and build a fully integrated global ocean observing system                                                                    |                                  |      | x        | x              | x    |                    |                     | x                    | х                 |                   | x        |                  |     |
|     |                               | B7. Augmenting ship-based hydrography and fixed-point observations with biological and biogeochemical                                    |                                  |      |          |                | x    |                    |                     | x                    |                   |                   |          |                  |     |
|     |                               | parameters                                                                                                                               |                                  |      |          |                |      |                    |                     |                      |                   |                   |          |                  |     |
|     |                               | B8. Coordinate observations and data product development for ocean CO2 and N2O                                                           |                                  | x    |          |                | х    |                    |                     | x                    | х                 |                   |          |                  |     |
|     |                               | B9. Improve estimates of latent and sensible heat fluxes and wind stress                                                                 |                                  |      | x        | x              | x    |                    |                     | x                    |                   |                   | x        |                  |     |
|     |                               | B10. Identify gaps in the climate observing system to monitor the global energy, water and carbon cycles                                 |                                  |      |          |                |      |                    |                     | x                    |                   |                   |          | x                | x   |
| - 1 | C: IMPROVING                  | C1. Develop monitoring standards, guidance and best practices for each ECV                                                               |                                  | x    |          | x              | x    |                    |                     |                      |                   |                   |          |                  | x   |
|     | DATA OUNLIT                   | C2. General improvements to satellite data processing methods                                                                            |                                  |      |          | x              |      |                    |                     | x                    |                   |                   | x        |                  |     |
|     | AVAILABILIT                   | C3. General improvements to in situ data products for all ECVs                                                                           |                                  |      | x        | ^              |      |                    |                     | x                    |                   |                   | x        |                  |     |
|     | UTILITY,                      | C4. New and improved reanalysis products                                                                                                 |                                  |      | <u> </u> | x              |      | ×                  |                     | ~                    |                   |                   | x        |                  |     |
|     | INCLUDING                     | C5. ECV-specific satellite data processing method improvements                                                                           |                                  |      |          | x              |      | Ŷ                  |                     |                      |                   |                   | ^        |                  |     |
|     | REPROCESSING                  |                                                                                                                                          |                                  |      |          | <u>^</u>       |      | ^                  |                     |                      |                   |                   |          |                  |     |
| - 1 | D: MANAGING                   | D1. Define governance and requirements for Global Climate Data Centres                                                                   |                                  | x    |          |                |      |                    | x                   |                      |                   |                   |          |                  | x   |
|     | DATA                          | D2. Ensure Global Data Centres exist for all in situ observations of ECVs                                                                |                                  | x    | x        |                | x    |                    |                     |                      | x                 |                   |          | x                | x   |
|     |                               | D3. Improving discovery and access to data and metadata in Global Data Centres                                                           |                                  |      |          |                |      |                    | x                   |                      |                   |                   |          | x                | x   |
|     | <ul> <li>``</li> </ul>        | D4. Create a facility to access co-located in situ cal/val observations and satellite data for quality assuranc<br>of satellite products | e                                | x    | ×        | x              |      |                    |                     | ×                    |                   |                   |          |                  |     |
|     |                               | D5. Undertake additional in situ data rescue activities                                                                                  |                                  | x    | x        |                |      |                    |                     |                      |                   | x                 |          | x                | x   |
|     | E: SNG GING WITH              | E1. Foster regional engagement in GCOS                                                                                                   |                                  | x    |          |                | x    |                    |                     |                      |                   | x                 |          |                  | x   |
|     | COUNTRIES                     | E2. Promote national engagement in GCOS                                                                                                  |                                  |      | x        |                |      |                    |                     |                      |                   | х                 | x        |                  | x   |
|     |                               | E3. Enhance support to national climate observations                                                                                     |                                  |      |          |                |      |                    |                     |                      |                   | x                 |          | x                | x   |
|     | F: 01.5R                      | F1. Responding to user needs for higher resolution, real time data                                                                       |                                  | x    | x        | x              |      |                    |                     | x                    |                   |                   | x        |                  | x   |
|     | EMERGINT NEEDS                | F2. Improved ECV satellite observations in polar regions                                                                                 |                                  |      |          | x              |      |                    |                     | x                    |                   |                   | x        |                  |     |
| •   |                               | F3. Improve monitoring of coastal and Exclusive Economic Zones                                                                           |                                  |      | x        | x              | x    |                    |                     | x                    |                   |                   | x        |                  |     |
|     |                               | F4. Improve climate monitoring of urban areas                                                                                            |                                  | x    | x        |                |      |                    |                     | x                    | x                 |                   | x        |                  | x   |
|     |                               | F5. Develop an Integrated Operational Global GHG Monitoring System                                                                       |                                  | x    |          | x              |      |                    |                     | x                    | x                 |                   | x        |                  | x   |

**@** GCOS

#### Action A2: Address gaps in satellite observations likely to occur in the near future

GCOS

Science

UN@

| Activities     | Urgent actions are needed to ensure continuity of the following satellite observations:                                                                                                                                                                                                                                                                                                                            |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | <sup>1.</sup> Altimetry in the polar regions – ECV Ice sheets                                                                                                                                                                                                                                                                                                                                                      |
|                | 2. Gravimetry missions – ECV TWS, Terrestrial Water Storage                                                                                                                                                                                                                                                                                                                                                        |
|                | 3. Biomass measurements – ECV Above Ground Biomass                                                                                                                                                                                                                                                                                                                                                                 |
|                | 4. Limb-sounding missions capable of measuring several ECV species in the Upper                                                                                                                                                                                                                                                                                                                                    |
|                | Troposphere/Lower Stratosphere (UTLS) and stratosphere                                                                                                                                                                                                                                                                                                                                                             |
|                | 5. Sea Surface Salinity (SSS) measurements                                                                                                                                                                                                                                                                                                                                                                         |
|                | 6. Wind lidar                                                                                                                                                                                                                                                                                                                                                                                                      |
|                | 7. Global scale ice surface elevation – ECV Glaciers                                                                                                                                                                                                                                                                                                                                                               |
| Issue/Benefits | Monitoring of many ECVs which are critically important to climate science are now dependent on satellite observations. There is a real danger that some observations will stop in the next 5-10 years, or even sooner for missions that have already exceeded their expected lifetime. The continuity of these measurements is essential to develop and extend the long time series needed for climate monitoring. |

#### Action A2: Address gaps in satellite observations likely to occur in the near future

|                    | scale ice surface elevation.                                                                         |
|--------------------|------------------------------------------------------------------------------------------------------|
| Progress           | missions for altimetry, gravimetry, biomass, limb-sounding, sea surface salinity, wind lidar, global |
| Means of Assessing | From 1 to 7: Established plans of Space agencies that ensure the continuation of satellite           |
| Implementers       | From 1 to 7: Space agencies                                                                          |

Additional Details These address some of the gaps identified in the GCOS Status Report.

WMO

.....

1. Sea surface height has been measured with satellite altimeters since 1992 usually with a 2-satellite configuration as a baseline. Several missions are currently in operation or designed for the near future including Jason-3, Sentinel-3 SRAL, Sentinel-6 series and the Copernicus expansion missions (CRISTAL and SNG-topography). In order to address the potential future gap in polar satellite altimetry, alternative approaches should be explored, including the lifetime extension of CryoSat-e or ICESat-2; an alternative satellite manoeuvred into a high-inclination orbit; the acceleration of CRISTAL and/or S3NG-T launches; or a systematic airborne measurement programme as a bridging capacity. Without successful mitigation, there will be a gap of between 2 and 5 years in our polar satellite altimetry capability. This would jeopardise long-term records of ice sheet and sea ice thickness change and polar oceanography.

2. Satellite gravimetry missions provide critical ECVs data, including for sea level, terrestrial water storage (TWS) and ice sheet monitoring. There is also potential for data from this source to supersede or complement the assessment of existing low (time and space) resolution anthropogenic water use and groundwater monitoring, or to serve early warning systems for large-scale flood events or drought monitoring and forecasts. Current and past measurements originate from Gravity Recovery and Climate Experiment (GRACE) during 2002-2017, GOCE (2009-2013) and the GRACE-FO (2018 – until now). ... continue ...

#### Action A2: Address gaps in satellite observations likely to occur in the near future

# Additional Details 2. ... continuation ... Feasibility studies for next-generation gravity missions with potentially higher spatial and/or temporal resolution are underway at Space agencies, but the realisation of such missions for ensuring the long-term climate records is not assured.

- 3. Biomass: Space-based estimates of aboveground biomass and associated carbon stocks and changes are essential to monitor this ECV globally. Several dedicated satellite missions (such as NASA-GEDI/ICESAT/NISAR, ESA-BIOMASS, JAXA-MOLI) have been developed and are operating but none of them are part of a dedicated programme for regular, high-quality biomass monitoring in the long-term. Agencies and the EU Copernicus programme are encouraged to explore synergy and harmonise among available mission data and put in place a coordinated, continuous and consistent space-based biomass observation programme for global and national monitoring of aboveground biomass and associated carbon stock changes.
- 4. ...

Actions

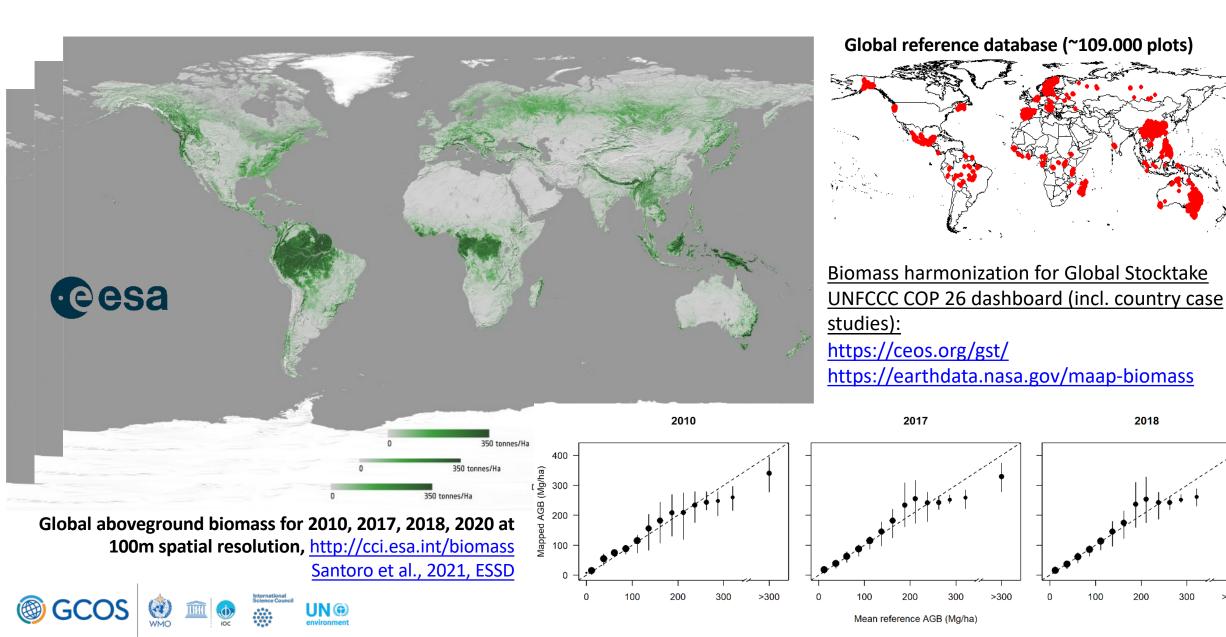
7. The freely available optical stereo data, such as those from Terra ASTER, are coming to an end of its lifetime and there are no plans for a replacement, that would be urgently required for the continuation of the dataset on global ice surface elevation.

**Links with other IP** Satellite observations are related to many other actions. In particular:

- C5 (Activity 2): enhancement biomass estimation at global and subnational levels.
  - F1 (Activity 2): higher-resolution biomass data.
  - F2 (Activity 1): sea surface salinity in polar regions.

| Action B1: Develo  | opment of reference networks (in situ and satellite Fiducial Reference Measurement,                                                                                                                                                                                                                                                                                                                                     |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FRM, programs)     |                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Activities         | 3. Better align the satellite FRM program to the reference tier of tiered networks and enhance / expand FRM to fill gaps in satellite cal/val.                                                                                                                                                                                                                                                                          |
| Issue/Benefits     | The FRM programs of satellite agencies have been carried out independent of broader concerns<br>around tiered network design, yet these measurements should be sustained as part of reference<br>networks and not be funded or considered separately from broader observational strategies.<br>There is also a need to undertake additional FRM measurements to fill critical cal/val capability<br>gaps for some ECVs. |
| Additional Details | <ul> <li>Networks and additional FRM measurements to fill gaps to support satellite cal/val of ECVs:</li> <li>Ground-based in situ measurements of above-ground biomass and vegetation dynamics;</li> <li>Ground-based time-series in situ measurements of surface albedo, FAPAR and LAI;</li> <li>An open-access network of sites for burned area products.</li> </ul>                                                 |
|                    | Relevant ECVs: Biomass, Fire, FAPAR and LAI                                                                                                                                                                                                                                                                                                                                                                             |




#### Importance of space-based & on-the-ground biomass monitoring

2018

200

300

>300



#### Action B3: New Earth observing satellite missions to fill gaps in the observing systems

Activities 1. Improve diurnal sampling of observations and coverage of GHGs, precursor aerosols, and solar-induced fluorescence (SIF) to improve estimation of emissions and vegetation carbon uptake

5. Develop operational techniques to estimate permafrost extent.

Relevant ECVs: Biomass, FAPAR, LAI, Permafrost and future(?) SIF

#### Action B5: Implementing global hydrological networks

Activities 1.b Increase the number of in situ river level observations that are exchanged internationally and can be used to calibrate satellite observations of water levels.

#### **Relevant ECV: River Discharge**

#### Action C1: Develop monitoring standards, guidance and best practices for each ECV

Activities

- 1. Review existing monitoring standards, guidance and best practices for each ECV, ensuring these reflect current state-of-the-art. Maintain a repository of this guidance for ECVs.
  - 2. Ensure the development of monitoring standards, guidance and best practices, including intercomparison procedures, for those ECVs where such guidance does not exist.

**Relevant ECVs: all!** 

#### Action C5: ECV-specific satellite data processing method improvements

Activities

- Generate timely permafrost, land cover change, burnt area, and fire severity/burning efficiency products from high resolution data satellite observations (e.g. Sentinel1/-2 and Landsat).
- 2. Produce harmonised and validated Above Ground Biomass (AGB) and change datasets from different satellite data streams, for enhancing aboveground biomass estimation at global and (sub-national) levels.
- 3. Ensure that the Bidirectional Reflectance Distribution Function (BRDF) parameters are provided together with surface albedo.
- 6. Improve consistency of the inter-dependent land products.

**Relevant ECVs: Biomass, Fire, Land Cover, Permafrost** 

#### Action F1: Responding to user needs for higher resolution, near real time data

Activities2. Improve biomass, land cover, land surface temperature, and fire data with sub-annual<br/>observations and improved local detail and quality.

Relevant ECVs: Biomass, Fire, Land Cover, Land Surface Temperature



| Action F3: Improve | monitoring of coastal and Exclusive Economic Zones                                                                         |  |  |  |  |  |  |  |  |
|--------------------|----------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Activities         | 1. Develop new satellite-based products for coastal biogeochemistry.                                                       |  |  |  |  |  |  |  |  |
|                    | 2. Produce land cover datasets in coastal areas without land surface masks and in near real time, including uncertainties. |  |  |  |  |  |  |  |  |
|                    | Relevant ECVs: Land Cover                                                                                                  |  |  |  |  |  |  |  |  |
| Action F5: Develop | an Integrated Operational Global GHG Monitoring System                                                                     |  |  |  |  |  |  |  |  |
| Activities         | The overall aim here is to develop an integrated operational global greenhouse gas monitoring                              |  |  |  |  |  |  |  |  |
|                    | infrastructure. The first steps are:                                                                                       |  |  |  |  |  |  |  |  |
|                    | 2. Design a constellation of operational satellites to provide near-real time global coverage of                           |  |  |  |  |  |  |  |  |
|                    | $CO_2$ and $CH_4$ column observations (and profiles to the extent possible).                                               |  |  |  |  |  |  |  |  |
|                    | 4. Improve and coordinate measurements of relevant ECVs at anthropogenic emissions                                         |  |  |  |  |  |  |  |  |
|                    | hotspots (large cities, powerplants) to support emission monitoring and the validation of                                  |  |  |  |  |  |  |  |  |
|                    | tropospheric measurements by satellites.                                                                                   |  |  |  |  |  |  |  |  |
|                    | Relevant ECV: Anthropogenic GHG Fluxes                                                                                     |  |  |  |  |  |  |  |  |



# New Developments from TOPC – PPT Outline

# 1- intro on TOPC

# 2- GCOS IP, TOPC and Space Agencies

# 3. Terrestrial ECVs requirements



### Terrestrial ECVs requirements – an example: LAI -1

| Leaf Area Index (LAI)                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Leaf Area Index of a plant canopy or ecosystem is defined as one half of the total green leaf area per<br>unit horizontal ground surface area and measures the area of leaf material present in the specified<br>environment (projection to the underlying ground along the normal to the slope). |
| $m^2 m^{-2}$                                                                                                                                                                                                                                                                                      |
| Effective Leaf Area Index is the LAI value that would produce the same indirect ground measurement as that observed assuming foliage distribution (LAIeff=LAItrue x canopy clumping index).                                                                                                       |
| The conversion of data measurements to true values is an essential step and requires additional information about the structure and architecture of the canopy, e.g. gap size distributions, at the appropriate spatial resolutions.                                                              |
| Leaf Area Index controls important mass and energy exchange processes, such as radiation and rain interception, as well as photosynthesis and respiration, which couple vegetation to the climate system. Length of record: Threshold: 20 years; Target: >40 years.                               |
|                                                                                                                                                                                                                                                                                                   |



### Terrestrial ECVs requirements – an example: LAI -2

| Requirements             |      |        |     |       |                                                                                                                                                                                                                                                                                                                             |
|--------------------------|------|--------|-----|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Item needed              | Unit | Metric | [1] | Value | Notes                                                                                                                                                                                                                                                                                                                       |
| Horizontal<br>Resolution |      |        |     | 10    | For (e.g.) climate adaptation and agricultural monitoring<br>Best practices published here:<br>http://www.ga4ecv.eu/sites/default/files/D4.2.pdf                                                                                                                                                                            |
|                          |      |        | В   | 100   | neep 1/ / manqu reerreu, eleep derduit, mee, D merpui                                                                                                                                                                                                                                                                       |
|                          |      |        | т   | 250   | For regional and global climate modeling                                                                                                                                                                                                                                                                                    |
| Vertical<br>Resolution   |      |        |     | -     | N/A. In theory, a vegetation canopy can be stratified into various<br>layers to describe its vertical structure in a discrete way. However<br>actual methods of LAI observation, e.g. optical sensors, can only<br>measure the total canopy leaf area index. Therefore, no<br>requirements for vertical resolution are set. |
| Temporal<br>Resolution   | D    |        | G   | 1     | When assimilated by model, this value corresponds to the climate model temporal resolution (to derive a better phenology accuracy).                                                                                                                                                                                         |
|                          |      |        | В   |       |                                                                                                                                                                                                                                                                                                                             |
|                          |      |        | Т   | 10    | When using for crops or ecosystems modeling, or Land Surface /<br>Earth System Model evaluation.                                                                                                                                                                                                                            |
| Timeliness               | d    |        | G   | 1     | For climate change services.                                                                                                                                                                                                                                                                                                |
|                          |      |        | В   | 5     | For environmental change services. Can be longer (~months) for historic climate/environmental change assessments.                                                                                                                                                                                                           |
|                          |      |        | Т   | 10    | For NWP (ECMWF)                                                                                                                                                                                                                                                                                                             |

International Science Count

UN @

🛞 GCOS

(a) WMO

IHH

### Terrestrial ECVs requirements – an example: LAI -3

| Required<br>Measurement<br>Uncertainty | % or<br>m² m² | 1 sigma | G<br>B<br>T | 10% for<br>values<br>≥0.5;<br>0.05<br>(absolute<br>value) for<br>smaller<br>values<br>20% for<br>values | One standard deviation or<br>PDF shape (functional form<br>term). The goal value of u<br>literature review of impact<br>earth system models (see<br>2016; https://www.earth-<br>They show impact on LAI of<br>RCP scenarios. If we take<br>demonstrate that the uncer<br>~0.20 for a 2 deg. C devia<br>be approximated to ~1.5.<br>This means that the uncer<br>(~0.20/1.87*100.). | n of estimated erro<br>ncertainties were a<br>of climate change<br>Mahowald, et. al.,<br>syst-dynam.net/7/<br>deviation at global<br>the models ensemi<br>ertainties should be<br>tion for an annual<br>tainties should be s | r distribu<br>ssessed<br>on LAI u<br>211/201<br>scale usi<br>ble result<br>less tha<br>average | ution for th<br>through<br>ising vario<br>6/).<br>ng various<br>:s, we<br>n Delta_LA<br>LAI, that o | us<br>AI                 |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------|---------------|---------|-------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                        |               |         |             | ≥0.5; 0.1<br>(absolute<br>value) for<br>smaller<br>values                                               |                                                                                                                                                                                                                                                                                                                                                                                    | Stability                                                                                                                                                                                                                    | m² m²²<br>/<br>decade                                                                          | A factor of<br>uncertainti<br>es to<br>demonstrate<br>that the<br>'error' of                        |                          | <3%                                                                                                                                                                                                                 | The unit is rate of change of LAI over the available time period.<br>'The required stability is some fraction of the expected signal' (see<br>Ohring, et. al. 2005).<br>"It may represent a requirement on the extent to which the error<br>of the product remains constant over a long period, typically a                                                                     |
|                                        |               |         |             |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                              |                                                                                                | the product<br>remains<br>constant<br>over at<br>least a<br>decade                                  |                          |                                                                                                                                                                                                                     | <pre>decade or more. It can be defined by the mean of uncertainties over a month". In the case that we have data over 10 years (= one decade) N=10 and U=10% S=sqrt(sum(U^2))/N. Assuming U constant along the period It means S=SQRT(N*U^2)/N=SQRT(N)*U/N S=0.3*U = 0.31 * 10/100.0 = 3 % This number should be smaller than expected LAI trend. Ref: Jiang et al. 2017.</pre> |
|                                        |               |         |             |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                              |                                                                                                |                                                                                                     | В                        |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                 |
| l                                      |               |         |             |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                              |                                                                                                |                                                                                                     | т                        | <6%                                                                                                                                                                                                                 | Same as above but with threshold uncertainty.                                                                                                                                                                                                                                                                                                                                   |
| GCOS international Science Council     |               |         |             |                                                                                                         | Standards<br>and<br>References                                                                                                                                                                                                                                                                                                                                                     | index<br>https:                                                                                                                                                                                                              | (LAI): Met<br>//doi.org/                                                                       | hods,<br>10.102                                                                                     | products, v<br>9/2018RG0 | & Schaepman-Strub, G. (2019). An overview of global leaf area<br>alidation, and applications. Reviews of Geophysics. 57, 739– 799.<br>00608<br>, Beljaars A., Albergel C. (2015) Assimilation of surface albedo and |                                                                                                                                                                                                                                                                                                                                                                                 |

vegetation states from satellite observations and their impact on numerical weather prediction

# TOPC – What's next?

- TOPC panel membership's renewal
- TOPC new work plan, aligned with the GCOS-IP
- Joint Panels meeting next year (June 2023) to work on the GCOS-IP with an integrated approach
- Engage with Satellite community, as well as GTNs, to address the GCOS/TOPC work plan

#### Way forward

- Both space-based and in situ observations are needed: TOPC to liaise between the two
- GCOS encourages Space Agencies and related monitoring programs to implement the IP actions with our support, of course!
- ESA-CCI can play a key in the GCOS-IP implementation, so... let's work together\*!

#### \* CCI leaders and TOPC members:

Darren Ghent, Scientific leader, LST GCOS Jean-François Cretaux, Scientific Lead, Lakes

Martin Herold, Science Team, Biomass and Land Cover Michael Zemp (GCOS SC), Climate Research Group (CRG), Glaciers Wouter Dorigo, Scientific leader, Soil moisture

# TOPC – What's next?

#### ESA CCI Meeting, 26/10/2022

Some issue emerged today

Linking EVCs across ESA-CCI and GCOS:

- Working on (checking and improving) the ECVs requirements
- Gap analysis: new ECVs variables and/or products
- Cross ECVs approach: to respond to PA and to ensure consistency across ECVs products
- Foster information exchange between ECVs groups
- Improve ECVs visibility and impact



### ... so, let's work together!

# Thank you!

**ESA CCI Colocation meeting** 26-27 October 2022. ESA-ESRIN Frascati, Italy

abombelli@wmo.int





UN 🏵 environment

Supported by the European Union

