

SESSION 6: Evolving Requirements I - GCOS Discussion On Implementation Of Evolving Requirements

CRYOSPHERE BREAKOUT

Big Room

Seed questions

- 1. What are the **major challenges** posed by the evolution in your respective domain in the GCOS updated implementation plan by comparison to 2016 in terms of
 - Additional variables per ECV
 - Threshold, breakthrough and goal
 - Uncertainty characterization
- 2. How could you address these challenges in future projects and/or CLIMATE-SPACE?
- 3. How could you contribute to the six implementation themes (page 20-70)?

Our mission: Please summarise your views in 1-3 slides for the feedback in the plenary session

"additional variables per ECV" (aka ECV Products)

Sea Ice Snow Glaciers Ice Sheets and Ice Shelves	Sea Ice Concentration	Sea Ice Concentration
	Sea Ice Thickness	Sea Ice Thickness
	Sea Ice Drift	Sea Ice Drift
	Sea Ice Extent/Edge	Sea Ice Age
		Sea Ice Surface Temperature (IST)
		Sea ice Surface Albedo
		Snow Depth on Sea Ice
Snow	Area Covered by Snow	Area Covered by Snow
	Snow Depth	Snow Depth
	Snow-Water Equivalent	Snow-Water Equivalent
Glaciers	Glacier Area	Glacier Area
	Glacier Elevation Change	Glacier Elevation Change
	Glacier Mass Change	Glacier Mass Change
	Surface Elevation Change	Surface Elevation Change
	Ice Velocity	Ice Velocity
	Ice Mass Change	Ice Volume Change
	Grounding Line Location and Thickness	Grounding Line Location and Thickness
Permafrost	Thermal State of Permafrost	Permafrost Temperature (PT)
	Active Layer Thickness	Active Layer Thickness (ALT)
		Rock Glacier Velocity (RGV)

4 new ECV Products

same ECV Products

same ECV Products

Ice "Mass" -> "Volume" Change

1 new, 1 rename (?)

"additional variables per ECV" (aka ECV Products)

- Some of the recommendations from Cryosphere CCI teams did not make it to GCOS IP-22 (not in time?). The CCI teams will liaise with the panels to see what can still be done. Some variables are possible (and interesting) but not ECV Products.
- Experience from Sea Ice ECV are that this interaction was welcomed by GCOS panel, but take time and need to start long advance.
- Sea Ice has more ECV products now. More work to be done. But a gap-analysis will have to include other (European) services to find out where CCI contribution would be most cost-effective.
- All the cryosphere ECVs have several (4 to 7) ECV products to cover, involving different EO techniques (radiometry, altimetry, gravitometry, SARs, etc...). The R&D efforts should scale accordingly.

"six implementation themes (page 20-70)"

A: ENSURING	A1. Ensure necessary levels of long-term funding support for in situ networks, from observations to data	
SUSTAINABILITY	delivery	
	A2. Address gaps in satellite observations likely to occur in the near future	
	A3. Prepare follow-on plans for critical satellite missions	
B: FILLING DATA GAPS	B1. Development of reference networks (in situ and satellite Fiducial Reference Measurement (FRM) programs)	■
	B2. Development and implementation of the Global Basic Observing Network (GBON)	
	B3. New Earth observing satellite missions to fill gaps in the observing systems	
	B4. Expand surface and in situ monitoring of trace gas composition and aerosol properties	
	B5. Implementing global hydrological networks	
	B6. Expand and build a fully integrated global ocean observing system	
	B7. Augmenting ship-based hydrography and fixed-point observations with biological and biogeochemical parameters	
	B8. Coordinate observations and data product development for ocean CO ₂ and N ₂ O	
	B9. Improve estimates of latent and sensible heat fluxes and wind stress	
	B10. Identify gaps in the climate observing system to monitor the global energy, water and carbon cycles	
C: IMPROVING	C1. Develop monitoring standards, guidance and best practices for each ECV	
DATA QUALITY,	C2. General improvements to satellite data processing methods	
AVAILABILITY AND	C3. General improvements to in situ data products for all ECVs	
UTILITY,	C4. New and improved reanalysis products	
INCLUDING REPROCESSING	C5. ECV-specific satellite data processing method improvements	
D: MANAGING	D1. Define governance and requirements for Global Climate Data Centres	
DATA	D2. Ensure Global Data Centres exist for all in situ observations of ECVs	
	D3. Improving discovery and access to data and metadata in Global Data Centres	
	D4. Create a facility to access co-located in situ cal/val observations and satellite data for quality assurance of satellite products	4
	D5. Undertake additional in situ data rescue activities	
E: ENGAGING WITH	E1. Foster regional engagement in GCOS	
COUNTRIES	E2. Promote national engagement in GCOS	
5551111125	E3. Enhance support to national climate observations	
F: OTHER	F1. Responding to user needs for higher resolution, real time data	4
EMERGING NEEDS	F2. Improved ECV satellite observations in polar regions	
	F3. Improve monitoring of coastal and Exclusive Economic Zones	
	F4. Improve climate monitoring of urban areas	
	F5. Develop an Integrated Operational Global GHG Monitoring System	th October 2022
	13. Develop an integrated Operational Global Grid Piolitoring System	

"six implementation themes (page 20-70)"

- B1 and D4: "In-situ reference data". We (EO community) can also benefit from these in-situ
 reference datasets, and collocated with satellites. The CCI RRDPs were a start. If someone builds a
 full collocated dataset, CCI teams should contribute User Requirements.
- B3: "new satellite missions". Some relevant for Cryosphere. We support but no difference in the short term.
- F1: "High-resolution and near-real-time data". These can be shorter (1-2 decades and still have value). Action triggered by the concept of Climatic-Impact-Driver (CID) from IPCC AR6 WG1 (SPM), linked to adaptation and extremes. <u>Should ESA CO look at these CIDs</u>, and see if specific gaps and actions should be triggered in CLIMATE-SPACE?
- F2: "Improved CDRs in polar regions". We note the requirement for "all-surface" temperature (land ice, ocean, sea ice) and "all-surface" albedo (land-ice and sea-ice). The two new Sea Ice ECV products help. There should be room for all domains to contribute in a future integrated CDR-series (SST and SIST share the sea-ice MIZ).

Questions still to be answered

- 1. What are the **major challenges** posed by the evolution in your respective domain in the GCOS updated implementation plan by comparison to 2016 in terms of
 - Additional variables per ECV
 - Threshold, breakthrough and goal
 - Uncertainty characterization
- 2. How could you address these challenges in future projects and/or CLIMATE-SPACE?

 CCI teams can conduct their gap-analysis over the next few months (including X-ECV) and communicate them to ESA in view of CLIMATE-SPACE.
- 3. How could you contribute to the six implementation themes (page 20-70)?