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SYMBOLS AND ACRONYMS 

AGB Above ground biomass density (in general) 

ΔAGB Above ground biomass change (in general) 

AGBmap Aboveground biomass density according to the map 

AGBplot In situ aboveground biomass density 

AGBref AGBplot, corrected for inventory date and if footprint < 1 ha corrected for forest fraction 

AGB* True above ground biomass density 

ALS Aerial Laser Scanning 

BGB Below ground biomass 

CCI Climate Change Initiative 

CCI-Biomass Climate Change Initiative – Biomass 

CEOS Committee on Earth Observation Satellites 

CI Confidence Interval 

CoFor Congo basin Forests AGB dataset (Ploton et al., 2020) 

ECV Essential Climate Variables 

ESA European Space Agency 

FAO Food and Agriculture Organisation 

FRA Forest Resources Assessment 

IPCC Intergovernmental Panel on Climate Change 

LiDAR LIght Detection And Ranging 

LPV Land Product Validation  

MAAP Muliti-mission Algorithm Analysis Platform 

MSE Mean Squared Error 

NEON National Ecological Observatory Network, USA 

NFI National Forest Inventory 

PI Prediction Interval 

PVP 

RMSD 

Product Validation Plan 

Root Mean Squared Difference 

SAR 

SD 

Synthetic Aperture Radar 

Standard Deviation 

SLB Sustainable Landscape Brazil 

TERN Terrestrial Ecosystem Research Network, Australia 

Var Variance 

𝛾!"#(ℎ) Variogram model of AGB with a spatial support matching the smallest plot size used our 

analyses 

𝛾$(ℎ) Variogram model of the residuals between AGBmap and AGBref, with a spatial support matching 

the map pixels. 
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1. Introduction 
This Product Validation Plan (PVP) aims to provide a common framework for assessing and reporting 
the accuracy of the European Space Agency’s (ESA) Climate Change Initiative (CCI) Biomass products, 
namely the various global above ground biomass (AGB) maps as well as the corresponding uncertainty 
layers, and to assess user appreciation of these products. Elaboration of the plan and the forthcoming 
validation itself run in parallel with ongoing Committee on Earth Observation Satellites (CEOS) cal/val 
development, which provides opportunities for co-creation of the CEOS cal/val procedure. We further 
build on results of the GlobBiomass project (Avitabile et al. 2015, Rozendaal et al. 2017) and the CCI-
Biomass Phase 1 project and the related validation efforts. In fact, the annual map validation uses the 
same framework as in Phase 1. In addition, there is a focus on exploring options towards validation of 
AGB change obtained through comparison of the global AGB maps between time-separated periods 
(years to decades) and exploring options for direct and independent biomass change accuracy analysis.  
The framework consists of five main activities that jointly lead to the achievement of the validation 
objectives, as shown in Figure 1. 

 
Figure 1. Validation objectives (left) and derived validation activities (right). 

Like its predecessors from CCI-Biomass Phase 1 (de Bruin et al. 2019a, de Bruin et al. 2020a), this Product 
Validation Plan is developed in line with the new CEOS Land Product Validation (LPV) protocol for 
biomass for space calibration and validation. The new CEOS protocol contains a dedicated section about 
using existing in situ data as a reference for the validation of larger area AGB maps, assuming they are 
properly screened, processed and harmonized, to allow for comparison with large area AGB map 
predictions. It is recognized that different users, such as national inventory experts, global climate 
modelers, local project implementers, etc., all have specific needs when it comes to biomass estimation 
and uncertainty assessment with respect to spatial resolution, geographic extent, timing, thematic 
content and definitions, and type and standards of uncertainty reporting. The CCI Biomass project and 
its climate users are also interested in spatially explicit assessments of map precision and map bias in 
addition to the more standard accuracy analysis undertaken for AGB map validation exercises. This 
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requires an effort to include a large number of in situ data sources covering all major geographical 
regions and forest types (top box on the right of Figure 1). The main data sources of forest biomass 
information include National Forest Inventories (NFIs), research forest plot networks and operational 
monitoring stations established for forestry, ecology or environmental purposes, including those using 
local Light Detection and Ranging (LIDAR) observations from which AGB and ideally associated estimates 
of uncertainty have been estimated.. 
The second box from the top at the right-hand side of Figure 1 indicates that a common set of data 
harmonization and analysis methods and tools is developed and used. To support wider use, these are 
provided in the form of an R-package that allows the climate change community (both within and 
outside the project) to assess maps of AGB based on their own reference data, without the need to 
upload those data to an external database. 
The centre box at the right-hand side of Figure 1 refers to in situ data selection from the database, based 
on a set of pre-defined quality criteria. The box further denotes data harmonization to adjust for any 
partial forest cover within map pixels and allowable (< 10 years) temporal mismatches between the map 
reference year and the in situ AGB inventory date. 
Map-plot comparison (fourth box from the top in Figure 1) concerns statistical assessment of differences 
between map and in situ estimates of AGB over reference AGB ranges. The assessments are performed 
at the map pixel level, as well as spatially aggregated over larger pixel blocks. They are also differentiated 
over ecoregions, realms1 and slope and aspect classes which have been found to affect AGB retrieval 
from satellite data (e.g., Réjou-Méchain et al. 2019). The aims of the map-plot comparisons are to assess 
whether the biomass map satisfies design specifications (relative error of less than 20% where AGB 
exceeds 50 Mg/ha) and to provide map producers with information on how and where to improve their 
products. It is important to realize that the reference data are also estimates and therefore affected by 
errors that should be taken into account when using them in the map-plot comparisons (Réjou-Méchain 
et al. 2017, Réjou-Méchain et al. 2019). This is indicated by the short upward arrow in the bottom-right 
of Figure 1. 
These essential steps for validation of AGB maps also relate to the potential assessment of AGB changes. 
With this PVP, we provide the first steps and concepts towards an AGB change validation framework. 
This is in response to the proliferation of different approaches being developed to estimate AGB change 
over larger areas including from AGB between different time-separated maps at different spatial 
resolutions.  We explain that there are different reference data sources and to what extent they are 
available and suitable for any future AGB change validation exercises.  
During the CCI Biomass User Workshops and later communications, the climate, carbon cycle and 
REDD+ communities expressed the need for unbiased biomass estimates accompanied by spatially 
explicit uncertainty information at spatial resolutions ranging from the 1 ha resolution of CCI Biomass 
up to 0.5 or even 1-degree cells (for climate modelling) or countries (for REDD+) (Quegan and Ciais 2018 
and CCI-Biomass phase 2 User Requirements Document). Hence, CCI Biomass product validation should 
explicitly address estimation of systematic deviations and random differences between reference and 
map biomass and uncertainty assessment at different spatial aggregation levels. This is indicated by the 
box at the bottom-right of Figure 1. 
Details of the approaches are provided in later chapters of this validation plan. 
  

 
1 Biogeographic realms are large spatial regions within which ecosystems share a broadly similar biological evolutionary history. 
Eight terrestrial biogeographic realms are typically recognized, corresponding roughly to continents. See Dinerstein, et al. 
(2017). 
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2. Concepts 

Definitions 

Accuracy is only occasionally used in this document to qualitatively refer to both random and systematic 
error. This use of the term is in line with the ISO 5725 definition of accuracy. 
Bias expresses the degree to which the expected value of an estimator differs from the true value of 
the quantitative parameter being estimated.  
Error. For a continuous variable such as AGB, error is defined as the difference between our 
representation of reality (e.g., a mapped AGB value) and reality (e.g., a true AGB value). We can only 
know error at some locations, if at all, because we rely on scarce reference values (e.g., from plots) 
which themselves are estimates of reality. Therefore, we will often refer to differences or residuals 
between mapped AGB values and reference AGB.  
Precision denotes the dispersion of random errors; it is expressed by measures of statistical variability 
such as variance and standard deviation. 
Stability. According to the World Meteorological Organization (2011), stability is the extent to which the 
error of a product remains constant over a longer period of time. 
Systematic deviation of biomass refers to a systematic difference between predicted biomass (on the 
map) and reference biomass obtained from plot data. Only if plot data (which themselves are estimates) 
are unbiased, systematic deviation would equal bias. We assume the plot data to be unbiased. 
Uncertainty is a quantitative description of error: we are aware that our representation differs from 
reality, but we are only able to model the distribution of error (expressed by a probability distribution) 
or, in many cases, just some statistic, such as standard deviation of the error, rather than the error itself. 
This is a common situation, because if we knew error, we would simply correct for it and reduce the 
error to zero. 

Statistics 

Table 1 lists the statistics used in this PVP, as well as their definitions, where E is the expected value, Z 
denotes a random variable, 𝜇 is the mean of Z, Y is a vector of n reference values, 𝑌#  is a vector of n 
predicted values (i.e., CCI-Biomass predictions), and h denotes a distance between two locations x.  
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Table 1. Statistics used in this PVP. 

Acron. Name Description Definition 

Var Variance Measure of spread of a random 
variable (Z) 

𝑉𝑎𝑟(𝑍) = E[(𝑍 − 𝜇)%] 

SD Standard deviation Measure of spread of a random 
variable; square root of the 
variance 

𝑆𝐷(𝑍) = 	2𝑉𝑎𝑟(𝑍) 

di Observed 
difference 

Difference between a predicted 
value, 𝑦4&and a reference value, 
𝑦&, where i refers to a particular 
instance, e.g., a location. 

𝑑& = 𝑦4& −	𝑦& 

MD Mean difference Average difference between 
reference values and predicted 
values 

𝑀𝐷 =
1
𝑛9 𝑑&

'

&()
 

MSD Mean squared 
difference 

Average squared difference 
between reference values and 
predicted values 

𝑀𝑆𝐷 =
1
𝑛9 𝑑&%

'

&()
 

RMSD Root mean 
squared difference 

Square root of MSD 𝑅𝑀𝑆𝐷 =	√𝑀𝑆𝐷 

CI Confidence 
interval 

Measure of uncertainty 
associated with a sample 
population estimate (e.g., 𝜇); 
intervals covering individual 
observations commonly referred 
to as prediction intervals (see 
below). 

Estimated range of values likely to include 
an unknown population property.  

PI Prediction interval Measure of uncertainty 
associated with the prediction of 
single observations 

Estimated range in which a new 
observation falls, with a certain 
probability, given an existing model 

𝛾(ℎ) (Semi)variogram Function describing the degree 
of spatial dependence of a 
spatial random field, where 𝑥 is 
a spatial position and ℎ is a 
distance lag 

𝛾(ℎ) = 	
1
2𝑉𝑎𝑟[𝑍

(𝑥) − 𝑍(𝑥 + ℎ)] 

𝜎!,#  Spatial covariance Element of the spatial 
covariance matrix, Σ, where i 
and j (1… n) refer to pixels 
within a spatial unit 

𝜎!,# = E[𝑍(𝑥) − E(𝑍(𝑥)] ∙ 	E[𝑍(𝑥 + ℎ)
− E(𝑍(𝑥 + ℎ)],	 
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3. Database compilation for biomass stocks 

Sources of reference data 

Building upon the GlobBiomass reference database (Rozendaal et al. 2017), an extensive dataset of 
forest in situ data across the world has been acquired for the purpose of the validation (see Appendix 
1, Figure 2). Plots included in the database undergo a series of quality checks (see below). In situ forest 
data were not used for calibrating the CCI Biomass AGB map to guarantee full independence from the 
production process and because the project’s AGB map processing chain does not rely on such a 
calibration procedure.  
The following in situ data selection criteria are used for CCI Biomass product validation. In situ data 
need: 

• A proper citable reference source and metadata to assess the procedures and quality of biomass 
(AGB but also below ground biomass (BGB) when collected) estimation. 

• Precise coordinates (4-6 decimals for coordinates in decimal degrees).  

• A census date within ten years from the reference year of the AGB map to avoid temporal 
inconsistency with the assessed maps. 

• Measurements of all trees of diameter ≥ 10 cm (or less) included in the estimates.  

• Sites that were not deforested between the year of the inventory and the reference year of the CCI 
Biomass AGB map (i.e., 2010 and 2017-2020). The latter assessment is based on the 2021 forest 
loss layer of the Hansen dataset (Hansen et al., 2013). 

• LIDAR-derived AGB or other indirect AGB data should be accompanied by estimates of the standard 
deviation of AGB error. 

Note that the current data agreements will have to be renewed and new agreements established. 

Sampling design 

We rely on AGB in situ data that are not specifically produced for validation purposes but that are rather 
collected within the context of NFIs and other efforts at local to regional scale. This has several 
consequences, which are summarised as follows: 

• The populations of the CCI Biomass products and those of the inventories differ. CCI Biomass 
concerns forest AGB over the entire globe (including areas without forest), whereas forest 
inventories typically only concern forested areas within countries or regions. Moreover, large 
portions of the world including Southeast Asia, large parts of Africa, the dry tropics and Siberia 
have very little or no in situ data (see Figure 2). 

• The sampling frames are different: CCI Biomass concerns mean forest AGB density discretised in 
~100m × 100 m pixels (including non-forested areas) while the inventories employ non-uniformly 
sized and typically small plots (on average 0.15 ha for the AGB plot data referred to in Appendix 1) 
within forested areas. 

• Regionally, the AGB plot locations may have been chosen by probability sampling but large areas 
of the world are not included in the AGB plot sample (see first bullet). That is because in these 
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areas, there are no forest inventories or because institutions or authorities are unwilling to share 
inventory data. 

• The wide variety of sampling designs included in the AGB in situ dataset produces a complex 
amalgamated sample. 

Given the above, our approach is to consider the AGB in situ data with its mix of plot sizes or footprints 
and local sampling designs as an opportunistic sample (also referred to as an ad hoc sample by other 
authors). Such sampling invalidates conventional statistical inference methods unless particular 
assumptions are made (see section 0).  
Additionally, a model-based approach is adopted here, with the model parameters estimated from the 
in situ data along with other data sources (see section 0). The absence of in situ data across large 
portions of the world forces us to apply model parameters (trend models of systematic deviation and 
correlograms) estimated for ecological zones or continents in areas where they cannot be verified but 
which are assumed to have similar characteristics. 

Tiers of plot data and other in situ data 

The contributions of AGB measurement error and within-pixel sampling error (see section 0) are known 
to be largest for small plots including those associated with NFIs, while detailed measurements of all 
trees within large plots are deemed to deliver highest quality AGB data (Réjou-Méchain et al. 2014, 
Réjou-Méchain et al. 2019).  
A straightforward approach for taking into account expected differences in the accuracy of plot data is 
to adopt a tiered approach comprising (Tier 1) small plots (≤ 0.6 ha) including NFI data, (Tier 2) larger 
plots with sizes in the range 0.9-3 ha, and (Tier 3) high-quality large super-plots (≥ 6 ha; such as from 
Labrière et al. (2018)).  
In addition to the above tiered plot data, we use LiDAR-based AGB data at 100 m resolution from the 
Sustainable Landscape Brazil project (SLB), the National Ecological Observatory Network, USA (NEON) 
and the Terrestrial Ecosystem Research Network, Australia (TERN) processed by Labrière and Chave 
(2020a, b, c). Yet another data source concerns 1-km pixel forest management inventory data 
originating from the Congo basin Forests AGB (CoFor) dataset (Ploton et al., 2020). Concerning the latter 
dataset, only pixels having at least five in situ forest management inventoried plots are proposed to be 
used. 

These tiered plot data, the LiDAR and the CoFor data are analysed separately in the descriptive plot-
pixel comparisons (section 0). 
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Figure 2. Geographical locations of plots and footprints (CoFor and LiDAR) of the reference datasets 
collected up to January 2021. 
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Data harmonization 

For AGB product validation, the response design encompasses all steps leading to the assessment of 
differences between map and plot AGB (cf. Olofsson et al. 2014). The plots used in our comparison may 
have been surveyed at a different time than the map being assessed, they typically differ in spatial 
support (i.e., the area covered by individual plots) from the AGB map (AGBmap) pixels and they measure 
different spatial entities (average biomass over a pixel area versus forest biomass within a forest plot of 
known dimensions). Therefore, data harmonization is needed prior to the analysis of differences, as 
outlined below. 
Differences between the inventory date of AGB plots and the reference year of the AGB map are 
harmonized using updated Intergovernmental Panel on Climate Change (IPCC) growth rates (IPCC 2019, 
Requena Suarez et al. 2019) following the approach described in Version 1 of the PVP (de Bruin et al. 
2019a). For plots in tropical and subtropical ecological zones, age category dependent growth rates are 
available (IPCC 2019, Requena Suarez et al. 2019). In those cases, plot AGB values in the range 0-99 
Mg/ha, 100-152 Mg/ha and above 153 Mg/ha are assumed to represent young secondary forest, old 
secondary forest (Van Breugel et al. 2007), and old growth stands (Brown et al. 1989, Clark and Clark 
2000, Mello et al. 2016) respectively. Given the absence of data on plot forest age, mature forests with 
low biomass cannot be distinguished from young stands, which has potential implications for the applied 
growth rates. For temperate oceanic forests in Europe, boreal coniferous forests and tundra woodlands, 
no differentiation of growth rates as a function of age is used. The temporal adjustments by growth 
rates are applied up to a difference of ten years between the inventory date and the map reference 
year. Plots having a larger temporal difference are discarded in the analyses (see Section 0). The growth 
rate table in IPCC (2019) also reports different types of uncertainty estimates, such as confidence 
intervals (CI). The latter are translated into variances assuming a normal distribution.  
Recall that the AGB plot data and the map have distinct sampling populations (see Section 0) in terms 
of both different spatial support and the inclusion of non-forested areas within map pixels. 
Harmonization of these differences is attempted by multiplying the temporally adjusted plot AGB by 
forest fraction. This forest fraction is computed by putting a 10% threshold on a tree cover product 
(Hansen et al. 2013) corresponding to the CCI Biomass map reference year. This is undertaken both at 
the pixel level and over larger aggregated blocks. In the rare case of more than one AGB plot occurring 
within a pixel, the average of the adjusted AGB per plot is used. The correction for forest fraction is 
applied only to plots with an area below 1 ha. 
The data harmonization procedure is pictured in Figure 3. The reference AGB obtained (either at pixel 
level or over aggregated pixel blocks) is referred to as AGBref. 
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Figure 3. Overview of data harmonization steps.  
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4. Database compilation for biomass changes 

4.1 Sources of reference data 

Reference data of changes in AGB (ΔAGB) in the past decade are required for the assessment of 
differences between the AGB maps derived from the CCI maps. While we already noted limited coverage 
in reference data for AGB stocks, the availability of ΔAGB reference measurements is even more limited. 
What we present here is a first attempt to collect and compile a dataset that could be useful for a 
comparison with ΔAGB estimates. The aim here is to explore availability and usefulness and compile the 
data for a first order comparison with AGB map-based change estimates. The current focus is on the 
period 2010-2020, as earlier data availability is more limited and, currently, no dedicated CCI Biomass 
AGB change products have been generated (only annual biomass maps). 
 
The first set of reference data concerns re-measured NFI plot data acquired from Belgium, the 
Netherlands, Philippines and Sweden, where the time 1 (T1) and time 2 (T2), representing the times of 
measurement, are at least five years apart. For the NFIs, plot-level AGB has been estimated by the data 
providers but without uncertainty estimates.  
 
The second set of reference data comprises AGB maps derived locally in forests with re-measured plot 
inventories and two corresponding airborne LiDAR campaigns that took place between 2010 and 2019. 
These include maps from Brazil (Longo et al., 2016) and the USA (Johnson et al., 2010) where AGB 
mapping involved calibration of LiDAR height and plot AGB using power-law models. Also available are 
LiDAR-based maps from research projects in Bulgaria, Czech Republic, Ecuador, Spain and Poland, 
derived using regression models that relate height and AGB. The LiDAR maps resampled to 100 m were 
used. Some of these maps have associated standard deviation (SD) layers (Appendix 2).  
 
The third set of reference data is country-level estimates of ΔAGB obtained from the Food and 
Agriculture Organisation (FAO) Forest Resources Assessment (FRA).  These were derived by differencing 
the reported AGB Mg/ha from 2018 and 2010, where 2018 is computed as the average of 2015 and 
2020 AGB Mg/ha estimates. The country’s capability to conduct NFIs and derive FRA variables using 
remote sensing data was categorized on a scale of 1 to 5 (1=very poor; 5=very good).  

4.2   Data processing and harmonization 

The quality filtering criteria of ΔAGB reference data are as follows: 
1. Multi-date NFI plots can be filtered using tree cover loss datasets Hansen et al. (2013) to retain 

only plots without forest area changes after the latest measurement and before the 2020 map 
epoch. Plots more than 10 years apart from the map epoch can also be discarded; 

2. LiDAR pixels can be discarded if there are AGB values in one epoch but not in another; 
3. FRA data can be limited to countries with re-measured NFI or with “very good” NFI reporting 

capacity since 2010. 
 

Following this, the number of reference data retained after quality filtering compared to the original 
data was reported and mapped over eco-zones defined by Whittaker (1975). The coverage per eco-
zone and country determined the suitability of reference data for global map assessments. For each 
reference dataset, histograms of the AGB distribution in two epochs are shown in Figure 5. The 
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histograms of NFI and LiDAR selected data to derive the ΔAGB density and to assess the ΔAGB 
distribution at every aggregation level as described in Section 5.3.3 were also produced.  

4.3   Characteristics of reference data  

The characteristics of the reference data compiled are shown in Figure 4. The number of discarded data 
is largest for those associated with the FRA (90 %) since most countries do not have repeated NFIs. More 
than half (56 %) of the NFI plots were excluded either because they were outdated or the sites had been 
deforested after the second measurement and before 2020. Almost no LiDAR pixels (<1%) were filtered 
out as reference since the repeated LiDAR surveys all took place in the past decade and almost all pixels 
were associated with data collected during the 2010-2021 period. The reference data were mostly 
found in the temperate and tropics but these are still under-represented, as were all other eco-zones. 
The selected FRA data, though small in size, is relevant to all ecozones. Despite its smaller size, the NFI 
dataset had broader eco-zone coverage than the LiDAR dataset. That was because NFIs are surveyed 
over entire countries while LiDAR campaigns are typically confined to certain forested zones or regions. 
The current reference data do not include NFIs and LiDAR data from Africa or Australia. The ΔAGB 
distributions of LiDAR and NFI data at different aggregation levels (Section 5.4) are shown in Figure 5. 
The highest density of data is observed for small ΔAGB but there are also several reference data 
indicating large AGB gains and losses. 
 

 

Figure 4. Coverage of the reference data per major ecological zone (a) and the map of the selected 
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reference data (b). The reference data are already quality-filtered. 

 

 

Figure 5. Distributions according to NFI and LiDAR data for the five aggregation levels. 
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5. Map-plot comparisons 

Assumptions 

After adjustments for temporal discrepancies and partial forest fraction and having at least ten in situ 
sites within a reference biomass range, we assumed mean AGBref computed from the reference data in 
Tiers 1 and 2 to be unbiased. For tier 3 data (Section 0), we relaxed the requirement of 10 plots per 
biomass range because these data were recorded over large footprints (≥ 6 ha) and the measurements 
followed a strict protocol. 
When reporting mean differences (i.e.,AGBmap - AGBref) and root mean squared difference (RMSD) over 
different spatial strata (see Section 0), we assumed that comparisons of map data and in situ data within 
these were representative of those strata. For the descriptive analyses (Section 0), we further assumed 
that map-plot comparisons are mutually independent but in the proposed geostatistical approaches 
(chapter 6), this assumption was relaxed. 

Descriptive analyses 

For tabulation, 50 Mg/ha wide AGBref bins were used up to 400 Mg/ha, while AGBref values above 400 
Mg/ha were grouped in a single bin ( i.e., 0-50, 50-100 … 350-400 and > 400 Mg/ha). For each bin, the 
tables list at least the mean AGBref, mean AGBmap, mean AGBmap - AGBref (MD), and the RMSD between 
AGBref and AGBmap.  
For plotting, 25 Mg/ha wide bins were used up to 350 Mg/ha along with a single bin for all higher AGBref 
values. The plots have AGBref on the x-axis and AGBmap on the y-axis. Mean (AGBref, AGBmap) pairs are 
shown using a point symbol while the interquartile ranges of AGBmap per bin are depicted by whiskers. 
An example is shown in Figure 6. 
 

 

Figure 6. Example of a AGBmap - AGBref comparison plot taken from de Bruin et al. (2020b). 

A straightforward way of analysing AGBmap - AGBref differences was anticipated in Section 0. To account 
for the expected differences in the accuracy of plots in different size categories, plots in different tiers 
can be analysed separately. Under the above unbiasedness assumption (Section 0), mean differences 
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between harmonized in situ data and map values aggregated over bins covering ranges of reference 
AGB values were interpreted as map bias, per tier. However, note that binning of in situ data that are 
affected by random errors may falsely suggest map bias. This has been demonstrated for the within-
pixel sampling error in the latest Product Validation and Intercomparison Report (PVIR) (de Bruin et al., 
2020b, Figures 17 and 18). To empirically verify the assumption of unbiased in situ data, the analyses 
were conducted for each of the tier’s other data sources and the consistency of results was assessed 
whenever data volume allowed. 
An alternative to the tiered approach is to weight AGBmap - AGBref differences within bins using inverse 
variance weighting based on the sum of the in situ measurement error variance, the variance of the 
error introduced at the data harmonization steps (section 4.2.1), and the plot-pixel sampling error. 
These error variances are explained in Section 0. Such an approach is only possible if sufficient data are 
available for assessing spatial correlation structures of the latter error component for the smallest 
footprint size. 
When weighted (AGBref, AGBmap) pairs are computed, weighted quantiles and RMSD were used for 
tabulation and plotting. 

Stratification and spatial aggregation for stocks 

5.1.1. Comparisons at 0.1° cell resolution  

Depending on how data are used, biomass map users such as climate modellers and REDD+ 
communities may be interested in uncertainties over larger support units, such as square pixel blocks 
(Quegan and Ciais 2018). Aggregation of biomass predictions and measurements over larger spatial 
units often results in a partial cancelling out of random prediction errors and measurement errors. Note 
that this does not hold for systematic error or bias. Therefore, aggregation is expected to improve the 
precision of map and harmonized plot data if both map and multi-plot data are averaged over larger 
spatial units.  
To assess the CCI Biomass map at a resolution commonly used by climate modellers, AGBmap - AGBref 
comparisons were also made over multi-pixel blocks at 0.1° cell resolution. In this case, correction for 
partial forest fraction (see above) was undertaken at the level of the coarse resolution cells. Mean AGBref 
at 0.1° cell resolution was computed by multiplying forest fraction at the 0.1° cell level with the mean 
temporally adjusted AGB plots in that cell (see Figure 3).  
Three options were considered for calculating the latter mean temporally adjusted AGB at the 0.1° cell 
level. 

• Using unweighted means for each of the tiers and other data sources (LiDAR/CoFoR) separately (cf. 
section 0). 

• Inverse variance weighting of in situ data based on the sum of the AGB measurement error variance, 
the variance of the error introduced at the data harmonization steps (Section 0), and the within-
pixel sampling error. This option still assumes mutual independence of plot data but explicitly 
accounts for differences in the quality of plot data. 

• Relaxing the mutual independence of in situ data. Another option is to compute block averages 
through a block kriging approach (Goovaerts 1999, Malone et al. 2013).  

Our aim is to compare the above options but the latter two are only feasible if sufficient data are 
available for assessing spatial correlation structures (variograms 𝛾!"#(ℎ)) of AGB for the smallest plot 
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size used in the analyses. The resulting AGB reference values were then compared with the average 
AGBmap over the corresponding 0.1° cells.  
 

5.1.2. Ecoregions 

AGBmap – AGBref comparisons at 0.1° cell resolution (see above) were also stratified according to 
ecoregions derived from the global ecoregion map of Dinerstein et al. (2017; 
https://ecoregions2017.appspot.com/). Once downloaded, the original vector maps were rasterized to 
0.1° resolution and the raster cells were assigned to the category covering the largest portion of the cell 
area. 
 

Spatial aggregation for AGB change 

Similarly to assessing AGB stocks, grid cells for ΔAGB assessments were used if they met the minimum 
number of reference data requirements (Araza et al., 2022). Hence grid cells with very few reference 
data were excluded from the analysis. Selected data inside grid cells were assumed to capture the 
composition of forest structure at the selected grid cell resolution. The AGB averages per epoch from 
NFI plots and LiDAR pixels at grid cells were estimated as weighted means where reference data with 
high uncertainty received smaller weights in the averaging. The weights were inversely proportional to 
the variance of an NFI plot or a LiDAR pixel (Araza et al., 2022). The AGB averages of all grid cells were 
harmonized, particularly those that included non-forest areas to minimize the discrepancy in forest 
areas between the reference data and maps (i.e., map pixels include both forest and non-forest). This 
spatial aggregation was proposed to be undertaken iteratively at different aggregation levels in the 
context of different map users requiring products from fine to coarse resolutions (Table 2). 

Table 2. Details of the ΔAGB map-reference data comparisons and the selection of grid cells. 

Assessment spatial scale NFI grid cell selection 

criteria 

LiDAR grid cell selection 

criteria 

100x100 m2 (100 m) all All 

500x500 m2 (500 m) all All 

1x1 km2 (1 km) >1 plots All 

10x10 km2 (10 km) >4 plots >14 pixels 

25x25 km2 (25 km) >9 plots >19 pixels 
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6. Spatial uncertainty modelling for biomass  

Definition of the error model 

Even though the in situ AGB data were assumed unbiased, they are not error-free and therefore 
comparisons between AGB maps and AGB in situ data should be accompanied by an uncertainty 
analysis. The first step in such analysis is definition of the error model. We propose an additive model 
expressing the difference between a map prediction AGBmap and reference AGBref at pixel x (denoted as 
D(x)) as a random variable composed of five zero mean random error components and a map bias 
component (Equation 1): 

𝐷(𝑥) = 𝑀(𝑥) − 5𝑃𝑙𝑡(𝑥) + 𝑃𝑜𝑠(𝑥) + 	𝐻(𝑥)< + 𝑆(𝑥) + 	𝑏(𝑥)    (1) 

where 𝑀(𝑥) the map biomass error at location x, 𝑃𝑙𝑡(𝑥) is the plot measurement error (Réjou-Méchain 
et al. 2017), 𝑃𝑜𝑠(𝑥) is a positional error component, 𝐻(𝑥) is the error introduced at the data 
harmonization steps (Section 0), 𝑆(𝑥) is a within-pixel sampling error component, and 𝑏(𝑥)) is the map 
bias (i.e., the difference AGBmap(x) – AGB*(x), where the latter term is the true biomass density for pixel 
x. The within-pixel sampling error, 𝑆(𝑥), arises because the AGB plot size is usually small compared to 
the ~1 ha AGB map pixel (see Appendix 1). It is defined as AGB*(x) – AGB*

plot(x), where the latter term is 
the true biomass at the spatial support of in situ data within the pixel. A pixel footprint covered by a 
homogeneous forest biomass population has sub-pixel biomass variation, and the plot samples only part 
of that. Pixel footprints partly covered with forest undergo a harmonization procedure as explained in 
Section 0. Note that 𝑆(𝑥), 𝑃𝑙𝑡(𝑥), 𝑃𝑜𝑠(𝑥), 𝑆(𝑥) and 𝐻(𝑥) are random variables whose values are 
unknown but can be described by probability distributions (Heuvelink, 2005). 
All random error terms at the right-hand side of Equation (1) (i.e., all terms except 𝑏(𝑥)) are assumed 
to be zero mean and mutually uncorrelated. If the plot is small relative to the pixel size, 𝑃𝑜𝑠(𝑥) is not 
relevant unless the plot is at the edge of the pixel; all that matters is that it is located within the pixel. 
Earlier analyses using a conservative distance decay function for sampling map-plot residuals revealed 
that indeed 𝑃𝑜𝑠(𝑥) is small compared to the other error components. Omitting 𝑃𝑜𝑠(𝑥), the variance 
of the difference between a map prediction AGBmap and reference AGBref at pixel x equals the sum of 
the remaining error variances (Equation 2): 

𝑉𝑎𝑟(𝐷(𝑥)) = 𝑉𝑎𝑟(𝑀(𝑥)) + 𝑉𝑎𝑟(𝑃𝑙𝑡(𝑥)) + 𝑉𝑎𝑟(𝑆(𝑥)) + 𝑉𝑎𝑟(𝐻(𝑥))  (2) 

In our geostatistical modelling, we consider the spatial correlation of 𝑀(𝑥), because errors in the AGB 
maps can be spatially correlated and we need to account for this in our model-based inference. We take 
into account this spatial correlation for purposes of assessing the joint AGB uncertainty when 
aggregating map data to larger support units, such as pixel blocks, countries or other regions of interest. 
The spatial correlation of 𝑀(𝑥) is modelled using (biome-specific) variograms, 𝛾$(ℎ), where h refers to 
a distance lag. 
We aim to model the bias 𝑏(𝑥) as a function of AGBmap and other spatially exhaustive covariates, as 
described in Section 6.1.4.  
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Identification of the error model 

6.1.1. Overview 

Table 2 provides an overview of the approaches for estimating the parameters of the uncertainty model 
described above. First results confirm an inverse relationship between 𝑉𝑎𝑟(𝑃𝑙𝑡(𝑥)) and plot size, while 
𝑏(𝑥) is often positive when the predicted AGB value is small (i.e., low AGBmap values tend to exceed 
AGBref) and negative when they are large (i.e., high AGBmap values in the map tend to be less than AGBref).  

Table 3. Estimation methods for the parameters of the uncertainty model. 

Component Estimation approach 

b(x) Modelled as a function of AGBmap and spatially exhaustive covariates such as biome 
(Dinerstein et al. 2017), topographic variables and proxies for anthropogenic activity, using 
a random forest model (Breiman 2001) trained on observed differences, di, between AGBmap 
and AGBref data. 

𝑉𝑎𝑟(𝑀(𝑥)) Square of the SD of the (zero mean) prediction error accompanying the CCI Biomass maps, 
as described in Quegan et al., (2017) and Santoro and Cartus (2019). 

𝑉𝑎𝑟(𝑃𝑙𝑡(𝑥)) For a subset of plots having individual tree measurements, (Réjou-Méchain et al. 2017) 
biomass R-package is used. For other plots lacking such data, 𝑉𝑎𝑟B𝑃𝑙𝑡(𝑥)C is predicted by a 
random forest model trained on the subset having individual tree measurements, using 
AGBmap, plot size and biomes as explanatory variables. 

𝑉𝑎𝑟(𝑆(𝑥)) Var(AGBpixel – AGBplot) = Var(AGBpixel) + Var(AGBplot) + 2∙σ AGBpixel, AGBplot, where 
σ AGBpixel, AGBplot is the covariance of AGBpixel and AGBplot. All terms on the right-hand side 
ofthis eqation are obtained from variograms of small, contiguously clustered sites within 
relevant Biomes, using change of support geostatistics (Goovaerts 1999, Malone et al. 
2013). If nearby sites have different inventory dates, temporal adjustment to a common date 
is required, as described in section 0. 

𝑉𝑎𝑟(𝐻(𝑥)) Variance of mathematical operations applied to random variables in the harmonization 
steps.  

𝛾$%&(ℎ) Variogram model fitted to experimental semivariances of AGB with a spatial support of the 
smallest plot size used. Used data are small-plot AGBplot data, LiDAR -derived AGB or 
AGBplot from larger plots, followed by deconvolution using a nugget-sill ratio borrowed 
from LiDAR data. Following Christensen (2011), the mean of 𝑉𝑎𝑟B𝑃𝑙𝑡(𝑥)C is subtracted 
from the nugget. 

𝛾'(ℎ) Variogram model fitted to experimental semivariances of residuals between AGBmap and 
AGBref after subtracting the bias b(x). This variogram has a spatial support of map pixels. 
To correct for the other eror sources, the mean variances 
𝑉𝑎𝑟B𝑃𝑙𝑡(𝑥)C, 𝑉𝑎𝑟B𝑆(𝑥)C	and	𝑉𝑎𝑟(𝐻(𝑥)) are subtracted from the nugget, following 
Christensen (2011). Scaling of the residuals may be needed to transform M(x) to 
homoscedacity (see section 6.1.3). 

6.1.2. Variograms of AGB from small plots  

As shown in Table 3, prediction of 𝑉𝑎𝑟B𝑆(𝑥)C requires variograms of AGB from small, contiguously 
clustered sites located within relevant biomes (𝛾$(ℎ)). At the stage of writing, we have access to limited 
data from research plots and clustered NFI plots as well as LiDAR-derived AGB data from small footprints 
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acquired over two forest sites in Remningstorp, Sweden, and Lope, Gabon ( i.e., boreal and a tropical 
forest sites respectively). The former ALS datasets were acquired in the framework of the airborne ESA 
BIOSAR (Ulander et al., 2011). We still lack data for several biomes and expect these will be gathered in 
cooperation with WP1. Otherwise, we will apply variograms over broader geographical regions for 
which they are deemed appropriate. 
Subplots from research plots are often larger (0.25ha) than the smallest plots of our dataset (a few plots 
are only 0.01ha). Variograms at the smallest support size will be obtained by variogram deconvolution 
(Goovaerts 2008) with a fixed nugget/sill ratio obtained from fine resolution AGB data, such as LiDAR-
derived AGB. Following Christensen (2011), the mean variance of the plot measurement error is 
subtracted from the nugget variance. 

6.1.3. Variograms of map error at the spatial support of map pixels  

Spatial aggregation of uncertainty over larger support units (see section 6.1.7) requires variograms of 
𝑀(∙) at pixel support (𝛾$(ℎ)). The uncertainty layer of the CCI Biomass maps and the other uncertainties 
considered in Section 0 acknowledge that we expect Var(D(x)) to vary over space (i.e., it is 
heteroscedastic). In other words, we recognize that at some locations, larger deviations between 
AGBmap and AGBref are more likely to occur than at other locations. Again, the (Christensen 2011) 
approach for heterogeneous measurement error variances will be used for estimating the variogram of 
the unobserved 𝑀(∙) at pixel support, using estimated values for each error component as listed in Table 
3. If necessary, observed realizations of D(x) – b(x) are scaled by C𝑉𝑎𝑟(𝑀(𝑥)) aiming to achieve 
homoscedasticity. 

Model-based prediction 

6.1.4. Bias trend prediction 

Different forest types, climatic gradients, topography and AGB itself have been found to affect bias in 
AGB predictions (Chave et al. 2004, Rodríguez-Veiga et al. 2019, Santoro et al. 2015). We try to model 
this bias as a function of AGBmap and its textural properties as well as other spatially exhaustive 
covariates such as biome (Dinerstein et al. 2017), topographic variables (elevation, slope), canopy height 
and a proxy for anthropogenic activity (population density) using a random forest model (Breiman 
2001). The approach is documented in more detail in Araza et al. (2022). 
The predictive power of the covariates is evaluated using variable importance measures while sensitivity 
of the modelled trends to the inputs is assessed using partial dependence plots (Greenwell 2017). If 
fitting the bias trend model is successful, the random forest model is used in predictive mode to predict 
a global bias layer b(x). The statistical significance of predicted bias is assessed using the prediction 
standard errors obtained with Wager’s et al. (2014) infinitesimal jack-knife approach.  

6.1.5. Error budgeting 

The error model presented in Section 0 allows comparison of 𝑉𝑎𝑟(𝐷(𝑥)) observed over AGBref bins with 
the sum of the error variances at the right-hand side of Equation (2). In de Bruin et al. (2019b, 2020b), 
a similar partial comparison was used to assess whether the error layer provided with the CCI Biomass 
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map is consistent with considered error variances. This comparison can only be completed if the error 
model has been fully identified (Section 0). 

6.1.6. Block kriging for map-plot comparison at supra pixel support 

Section 5.1.1 referred to a third option for computing the mean temporally adjusted AGBref at the spatial 
support of 0.1° cells by block kriging. This is achieved by computing block averages of AGB from within-
block and nearby temporally adjusted plot AGB using the small plot variograms introduced in Section 
6.1.2 and block kriging that accounts for different error variances of the plot data (Malone et al. 2013). 
The procedure also computes the variance of the prediction error. Correcting for forest fraction (section 
0), AGBref at 0.1° cell level is obtained, which is compared with the average AGBmap over the 0.1° cell. It 
is repeated here that this procedure is only possible if variograms of AGB at the spatial support of the 
smallest plots are available for the different forest types. 

6.1.7. Spatial aggregation of random error 

Spatially uncorrelated zero-mean errors tend to cancel out when aggregating over larger spatial units, 
but this effect is less pronounced when errors are spatially correlated. We model the latter effect using 
the variograms introduced in section 6.1.3. From the variograms and the distance matrix for all pixel 
pairs, xi, xj contained in a support unit, a covariance matrix, Σ, is computed with elements 𝜎!,#. The 
variance of the map error over the support unit is then predicted by summing the elements of Σ and 
division by n2 (Equation 3): 

𝑉𝑎𝑟(𝑎𝑔𝑔𝑟) = 	 (
)!
∑ ∑ 𝜎!,#)

#*(
)
!*(        (3) 

 

  



 

Ref CCI Biomass Product Validation Plan v4 

 

Issue Page Date 
1.1 27 7-Febr-2023 

 

© Aberystwyth University and GAMMA Remote Sensing, 2018 
This document is the property of the CCI-Biomass partnership, no part of it shall be reproduced or transmitted without the 

express prior written authorization of Aberystwyth University and Gamma Remote Sensing AG. 

7. Map inter-comparison 

Stability of AGBmap – AGBref among CCI Biomass products 

According to the World Meteorological Organization (2011), stability is the extent to which the error of 
a product remains constant over time. To exploratively assess the local stability of the plot-map 
differences (di) over the multiple AGB epochs (i.e., 2010 and 2017 - 2020) produced within the CCI 
Biomass project, we suggest to produce scatterplots of di for each combination of map reference years, 
as exemplified in 7. 

The map producer may want to know where the largest instabilities in the residuals occur. Such 
information can be provided by plotting the locations of chosen tails of the distribution of differences 
in di for different combinations of reference years (e.g., the 5% of sites with the most negative 
differences and the sites of the 5% largest positive differences). Alternatively, sites where the instability 
exceeds a particular threshold (e.g., 10%, as proposed by the World Meteorological Organization2) can 
be of interest. 

  

 

 

Figure 7. Example of AGB residuals between harmonized Tier1-3 plot data and mapped AGB at 0.1° 
cell level for each combination of map reference years. The red dashed line is the 1:1 line. 

 

 
2 https://gcos.wmo.int/en/essential-climate-variables/biomass/ecv-requirements  
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Comparison of CCI Biomass maps with other AGB products 

This task consists of the comparison of the CCI Biomass maps with other AGB products covering a given 
geographic extent, as well as comparison of map bias based on AGB reference data. The comparison 
aims to complement the product validation with the following information: evaluation of consistency 
between different products; identification of areas with larger disagreements and assessment of 
whether these areas need further study; assessment of strengths and weaknesses of different datasets 
based on the analysis of the data and methods used to produce the maps; and increased awareness and 
acceptance of CCI Biomass products within the international community. 
The map inter-comparison involves the following steps. Firstly, datasets to be compared (i.e., regional 
or global maps) are identified and acquired. Secondly, the datasets are harmonized with CCI Biomass 
maps in terms of spatial and temporal support (see section 0) as well as thematic content (e.g., biomass 
unit). Thirdly, the following comparison metrics are computed at pixel level and at aggregated grid 
resolution (e.g., 0.1°):  

1. Comparison statistics, global and over continents and ecological zones:  
• Mean (absolute) difference 
• Histogram of differences 
• Root Mean Square Difference 
• Linear correlation 

2. Comparison maps:  
• Difference maps 
• Relative difference maps, using the CCI Biomass maps as reference 

3. Comparison plots of mapped data:  
• Scatterplots or whisker plots such as exemplified in Figure 8. 
• Histograms and cumulative distributions 

4. Comparison plots of mapped data against harmonized AGB plot data, such as exemplified in 
Figure 8. 

The map comparison could be expanded to biomass change datasets using a similar framework. 
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Figure 8. Example comparison of different global biomass maps against harmonized plot data. 

The level of agreement among other ΔAGB maps can be spatially assessed (e.g., compared with the 
three other products currently available). First, the ΔAGB can be classified into “loss”, “gain” and “no 
change”. Here, we assume that where the ΔAGB is from 7 to -7 Mg ha-1, there is “no change”.  This is 
based on a conservative SD of the 9-year growth rate defined in Table 14 of the IPCC 2019 for global 
analysis (Buendia et al., 2019). The threshold avoids erroneous labelling of small ΔAGB values, which 
can be very uncertain (Santoro et al., 2021). The ΔAGB pixels can then be classified as follows: (1) all 
products agree on “loss”; (2) all products agree on “gain”; (3) all products agree on “no change”; (4) two 
products agree on “loss”, otherwise two agree on no “loss” and disagree with each other; (5) two 
products agree on “gain”, the other two on no “gain” and disagree with each other; (6) two products 
agree on “no change”, the other two on “no change” and they disagree with each other; (7) three 
products disagree. 
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8. Expert assessment 
The Expert Assessment is an essential quality control and feedback mechanism, aimed at assessing the 
users’ acceptance of CCI Biomass products, evaluating their quality and limitations from the users’ 
perspective, and obtaining recommendations for improvements. The output of the user assessment 
consists of an Expert Survey report. 
The user assessment is performed using standard questionnaires, which are produced for each CCI 
Biomass product and will be sent to users within and without the project consortium. The 
questionnaires aim to assess: 

• User satisfaction. 
• Product usability. 
• Delivery system (timing, delivery method, naming, format, etc.). 
• Product quality and limitations related to spatial and temporal resolution. 
• Applicability of the products for climate modelling. 
• Need of capacity building (optional). 
• Future data and product requirements. 

To support users in assessing the CCI Biomass products using their own data, an R-workflow is being 
implemented in tools intended for distinct user groups:  This consists of: 
(1) An online interactive tool for occasional users, which provides easy access to the analysis methods 

described in this validation plan. 
(2) An offline toolbox for technical users who want to integrate the analysis methods in their own 

workflow (i.e., third parties who conduct independent validation). Error! Reference source not 
found. shows a screenshot of a prototype of the online interactive tool; the local version can be 
found at: https://github.com/arnanaraza/PlotToMap_Local. The local version has been tested by 
users from the University of Leicester, Forest Research in the UK and the World Resources Institute. 
The main functionalities of the R workflow include pre-processing of different forest inventory 
configurations (e.g., plot shapes), estimation of measurement error for plot data with and without 
tree-level measurement and visualization of plot-to-map comparisons.  

 
The tool Plot2Map can also be accessed using the Multi-mission Algorithm Platform (MAAP) (Albinet et 
al., 2019). Through the MAAP, global map users can use their own (country) data to validate global maps 
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while retaining the privacy of their reference data such as NFIs. See Figure 8 for sample MAAP 
implementations. 
 

 
Figure 9. Wales and Japan country cases of validating the CCI map through the MAAP. 
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APPENDIX 1. Plot data used for validating CCI Biomass products. 

ID Tier Average 
year 

Average 
size (ha)  Count Biome URL 

Paper/ 
source 

Data access 

AFR_L 3 2011 25.00  1 Tropical rainforest https://dspace.stir.ac.uk/retrieve/74d3b352-fa46-418f-ba95-728bb33f4cfc/08417912.pdf 

(Labrière et al., 
2018) open 

EU_FOS 3 2014 16.25  1 Tropical rainforest https://www.-ture.com/articles/s41597-019-0196-
1?fbclid=IwAR08vLoOm4xEQo4EUdLtoKsnP6nsNIY5CYnfcoqGcS5Z0_UcyaNIr-jcdDg  

(Schepaschenko et 
al., 2019) open 

SAM_L 3 2010 7.65  20 Tropical rainforest https://dspace.stir.ac.uk/retrieve/74d3b352-fa46-418f-ba95-728bb33f4cfc/08417912.pdf 

(Labrière et al., 
2018) open 

AUS1 3 2009 25.00  1 Tropical dry forest http://data.auscover.org.au/xwiki/bin/view/Product+pages/Biomass+Plot+Library  (Paul et al., 2016) source-WUR 
agreement 

SAM_RF 3 2008 5.3 10 Tropical rainforest http://www.rainfor.org/en/project/about-rainfor Lopez-Gonzales 
et al., 2011 

Open 

AFR_FOS 2 2013 1.00  44 Tropical rainforest https://www.-ture.com/articles/s41597-019-0196-
1?fbclid=IwAR08vLoOm4xEQo4EUdLtoKsnP6nsNIY5CYnfcoqGcS5Z0_UcyaNIr-jcdDg  

(Schepaschenko et 
al., 2019) open 

AFR_L 2 2016 1.00  56 Tropical rainforest https://dspace.stir.ac.uk/retrieve/74d3b352-fa46-418f-ba95-728bb33f4cfc/08417912.pdf 

(Labrière et al., 
2018) open 

AUS_FOS 2 2008 1.00  2 Tropical dry forest https://www.-ture.com/articles/s41597-019-0196-
1?fbclid=IwAR08vLoOm4xEQo4EUdLtoKsnP6nsNIY5CYnfcoqGcS5Z0_UcyaNIr-jcdDg  

(Schepaschenko et 
al., 2019) open 

CAM_FOS 2 2012 1.01  18 Tropical rainforest https://www.-ture.com/articles/s41597-019-0196-
1?fbclid=IwAR08vLoOm4xEQo4EUdLtoKsnP6nsNIY5CYnfcoqGcS5Z0_UcyaNIr-jcdDg  

(Schepaschenko et 
al., 2019) open 

EU_FOS 2 2010 2.23  2 Boreal coniferous 
forest 

https://www.-ture.com/articles/s41597-019-0196-
1?fbclid=IwAR08vLoOm4xEQo4EUdLtoKsnP6nsNIY5CYnfcoqGcS5Z0_UcyaNIr-jcdDg  

(Schepaschenko et 
al., 2019) open 

SAM_FOS 2 2011 1.00  23 Tropical rainforest https://www.-ture.com/articles/s41597-019-0196-
1?fbclid=IwAR08vLoOm4xEQo4EUdLtoKsnP6nsNIY5CYnfcoqGcS5Z0_UcyaNIr-jcdDg  

(Schepaschenko et 
al., 2019) open 

SAM_L 2 2013 1.04  28 Tropical rainforest https://dspace.stir.ac.uk/retrieve/74d3b352-fa46-418f-ba95-728bb33f4cfc/08417912.pdf 

(Labrière et al., 
2018) open 

SAM_BAJ 2 2017 1 3 Tropical rainforest https://ieeexplore.ieee.org/abstract/document/8518871 
Pacheco-
Pasccagaza et 
al., 2020 

source-WUR 
agreement 

SAM_RF 2 2008 1 374 Tropical rainforest http://www.rainfor.org/en/project/about-rainfor Lopez-Gonzales 
et al., 2011 Open 
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UK_FOS 2 2015 1.20  1 Tropical rainforest https://www.-ture.com/articles/s41597-019-0196-
1?fbclid=IwAR08vLoOm4xEQo4EUdLtoKsnP6nsNIY5CYnfcoqGcS5Z0_UcyaNIr-jcdDg  

(Schepaschenko et 
al., 2019) open 

AFR10 2 2007 1.00  7 Tropical rainforest https://iopscience.iop.org/article/10.1088/1748-9326/6/4/049001/meta  

(Mitchard et al., 
2011) 

source-WUR 
agreement 

AFR13 2 2008 1.00  2 Tropical rainforest https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2009GL040692  

(Mitchard et al., 
2009) 

source-WUR 
agreement 

AFR14 2 2009 1.63  4 Tropical rainforest https://www.sciencedirect.com/science/article/abs/pii/S014362281400109X  

(Ryan, Berry, & 
Joshi, 2014) 

source-WUR 
agreement 

AFR6 2 2009 1.00  12 Tropical rainforest https://cbmjour-l.biomedcentral.com/articles/10.1186/1750-0680-9-2 

(Willcock et al., 
2014) 

source-WUR 
agreement 

AFR7 2 2012 1.00  19 Tropical rainforest https://royalsocietypublishing.org/doi/full/10.1098/rstb.2012.0295  (Lewis et al., 2013) source-WUR 
agreement 

ASI3 2 2007 1.00  92 Tropical rainforest https://www.sciencedirect.com/science/article/abs/pii/S0378112711004361  (Morel et al., 2011) source-WUR 
agreement 

AUS1 2 2012 1.01  63 Subtropical steppe http://data.auscover.org.au/xwiki/bin/view/Product+pages/Biomass+Plot+Library  (Paul et al., 2016) source-WUR 
agreement 

SAM2 2 2012 1.00  40 Tropical rainforest http://geoinfo.cnpm.embrapa.br/geonetwork/srv/ eng/main.home  

 source-WUR 
agreement 

SAM_FOS 1 2011 0.25  142 Tropical rainforest https://www.-ture.com/articles/s41597-019-0196-
1?fbclid=IwAR08vLoOm4xEQo4EUdLtoKsnP6nsNIY5CYnfcoqGcS5Z0_UcyaNIr-jcdDg  

(Schepaschenko et 
al., 2019) open 

AFR15 1 2013 0.25  136 Tropical rainforest https://besjour-ls.onlinelibrary.wiley.com/doi/full/10.1111/1365-
2745.12548%4010.1111/%28ISSN%291365-2745.FORESTRY 

(Vieilledent et al., 
2016) 

source-WUR 
agreement 

AFR1 1 2008 0.50  1152 Tropical rainforest https://agritrop.cirad.fr/572060/1/document_572060.pdf  

(Hirsh, Jourget, 
Feintrenie, Bayol, 
& Ebaá Atyi, 2013) 

source-WUR 
agreement 

AFR10 1 2007 0.50  11 Tropical rainforest https://iopscience.iop.org/article/10.1088/1748-9326/6/4/049001/meta  

(Mitchard et al., 
2011) 

source-WUR 
agreement 

AFR12 1 2008 0.16  108 Tropical rainforest https://www.sciencedirect.com/science/article/abs/pii/S0034425711003609  

(Avitabile, Baccini, 
Friedl, & 
Schmullius, 2012) 

source-WUR 
agreement 

AFR13 1 2008 0.50  23 Tropical rainforest https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2009GL040692  

(Mitchard et al., 
2009) 

source-WUR 
agreement 

AFR14 1 2009 0.51  70 Tropical dry forest https://www.sciencedirect.com/science/article/abs/pii/S014362281400109X  (Ryan et al., 2014) source-WUR 
agreement 

AFR4 1 2012 0.13  110 Tropical mountain 
system http://www.geo-informatie.nl/workshops/scw2/papers/deVries.pdf 

(DeVries, 
Avitabile, Kooistra, 
& Herold, 2012) 

source-WUR 
agreement 
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AFR5 1 2012 0.08  71 Tropical rainforest https://pure.mpg.de/pubman/faces/ViewItemOverviewPage.jsp?itemId=item_2281402  

(Vaglio Laurin et 
al., 2016) 

source-WUR 
agreement 

AFR6 1 2009 0.33  12 Tropical dry forest https://cbmjour-l.biomedcentral.com/articles/10.1186/1750-0680-9-2 

(Willcock et al., 
2014) 

source-WUR 
agreement 

AFR8 1 2008 0.13  105 Tropical moist forest https://www.sciencedirect.com/science/article/abs/pii/S0034425712001058  

(Carreiras, 
Vasconcelos, & 
Lucas, 2012) 

source-WUR 
agreement 

AFR9 1 2016 0.13  9642 Tropical dry forest 
https://www.mdpi.com/2072-4292/5/4/1524 
https://fndsmoz.maps.arcgis.com/apps/MapSeries/index.html?appid=6602939f39ad4626a10f87bf6253af1e
  

(Carreiras et al., 
2012) 

open, source-
WUR agreement 

AFR_KEN 1 2011 0.09 362 

Tropical and 
subtropical 
grasslands, savannas 
and shrublands 

  source-WUR 
agreement 

ASI1 1 2008  0.05  2903 
Tropical mountain 
system and 
rainforest 

https://www.tandfonline.com/doi/full/10.1080/17583004.2016.1254009  

(Avitabile et al., 
2016) 

source-WUR 
agreement 

ASI10 1 2008 0.10  1268 Subtropical 
mountain system https://www.sciencedirect.com/science/article/abs/pii/S0034425719303608  Zhang et al. 2019 source-WUR 

agreement 

ASI2 1 2011 0.11  119 Tropical dry forest http://www.leafasia.org/sites/default/files/public/resources/WWF-REDD-pres-July-2013-v3.pdf 

WWF and OBf, 
2013 

source-WUR 
agreement 

ASI4 1 2010 0.02  70 Tropical dry forest http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.972.708&rep=rep1&type=pdf  Wijaya et al., 2015 source-WUR 
agreement 

ASI9 1 2012 0.13  74 Tropical rainforest http://leutra.geogr.uni-je-.de/vgtbRBIS/metadata/start.php 

Avitabile et al., 
2014 

source-WUR 
agreement 

ASI_FOS 1 2014 0.25 2 Tropical rainforest https://www.-ture.com/articles/s41597-019-0196-
1?fbclid=IwAR08vLoOm4xEQo4EUdLtoKsnP6nsNIY5CYnfcoqGcS5Z0_UcyaNIr-jcdDg  

(Schepaschenko et 
al., 2019) open 

AUS1 1 2011 0.12  5611 Tropical dry forest http://data.auscover.org.au/xwiki/bin/view/Product+pages/Biomass+Plot+Library  Paul et al. 2016 source-WUR 
agreement 

EU1 1 2011 0.01  16819 
Temperate broadleaf 
and mixed forests 
and Boreal forests 

https://www.slu.se/en/collaborative-centres-and-projects/swedish--tio-l-forest-inventory/  Sweden NFI source-WUR 
agreement 

EU2 1 2007 0.20  7177 Mediterranean 
forests 

http://www.magrama.gob.es/es/desarrollo-rural/temas/politica-forestal/inventario-cartografia/inventario-
forestal--cio-l/ 

Spain NFI source-WUR 
agreement 

EU3 1 2013 0.06  3021 Temperate oceanic 
forest https://library.wur.nl/WebQuery/wurpubs/454875  Netherlands NFI source-WUR 

agreement 
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EU4 1 2007 0.06  5967 

Temperate broadleaf 
and mixed forests 
and Mediterranean 
forests 

https://www.agriculturejour-ls.cz/publicFiles/01003.pdf 

Cienciela et al. 
2008 

source-WUR 
agreement 

EU_FOS 1 2015 0.28 514 Boreal forests https://www.-ture.com/articles/s41597-019-0196-
1?fbclid=IwAR08vLoOm4xEQo4EUdLtoKsnP6nsNIY5CYnfcoqGcS5Z0_UcyaNIr-jcdDg  

(Schepaschenko et 
al., 2019) 

open, source-
WUR agreement 

NAM1 1 2010 0.04  586 Boreal coniferous 
forest https://www.p-s.org/content/112/18/5738.short (Liang et al., 2015) source-WUR 

agreement 

NAM2 1 2004 0.04 75 Temperate mountain 
system https://www.nature.com/articles/nature07276 (Luyssaert et al., 

2008) 
source-WUR 
agreement 

NAM3 1 2010 0.03  588 Temperate 
continental forest 

  source-WUR 
agreement 

NAM4 1 2010 0.04  2794 Temperate mountain 
system 

 Alaska NFI source-WUR 
agreement 

SAM2 1 2013 0.23  241 Tropical rainforest https://www.paisagenslidar.cnptia.embrapa.br/webgis/  Embrapa, undated source-WUR 
agreement 

SAM3 1 2011 0.13  111 Tropical rainforest  CIFOR, undated source-WUR 
agreement 

SAM4 1 2014   0.15  7 Tropical rainforest  CIFOR, undated source-WUR 
agreement 

SAM5 1 2014   0.60  23 Tropical rainforest  CIFOR, undated source-WUR 
agreement 

SAM_BAJ 1 2017 0.25 363 Tropical rainforest https://ieeexplore.ieee.org/abstract/document/8518871 
(Pacheco-
Pasccagaza et 
al., 2020) 

source-WUR 
agreement 

SAM_RF 1 2008 1 125 Tropical rainforest http://www.rainfor.org/en/project/about-rainfor (Lopez-Gonzales 
et al., 2011) open 

SAM_TAP
A 1 2009 0.5 138 Tropical rainforest 

https://www.tandfonline.com/doi/full/10.1080/07038992.2014.913477?casa_token=EZxeZoe
gekkAAAAA%3AZHCN98XtpZRrsS9KoGTBhPy1_yzhAkkLZHfck3fomwSnvSaO7YDiuP
V_hne6Mj1Wdn-7ME_sPChP 

(Bispo et al., 
2014) 

source-WUR 
agreement 

AFR_COF 0 2009 100 35029 Tropical moist 
forest,  https://www.nature.com/articles/s41597-020-0561-0 (Ploton et al., 2020) open 

LIDAR 0 2014 1 744397 Tropical rainforest  SLB, TERN, 
NEON open 
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ASI_IR 1 2019 0.16 223 

Temperate broadleaf 
and mixed forests 
and Mediterranean 
forests 

https://afrjournal.org/index.php/afr/article/view/2390 (Moradi et al., 
2021) 

source_WUR 
agreement 

EU_WLS 1 2016 0.5 1711 Temperate oceanic 
forest https://www.forestresearch.gov.uk/ Wales NFI MAAP 

ASI_JAP1 1 2018 1 94 Subtropical 
mountain system JAXA / Ministry of Environment Japan (only 0.1 plot-map aggregates are provided) Japan research 

plots MAAP 

ASI_JAP2 2 2018 0.1 13000 Subtropical 
mountain system JAXA / Japan Forestry Agency (only 0.1 plot-map aggregates are provided) Japan NFI MAAP 

LVIS 1 2016 1 10000+ Tropical rainforest https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1775 Armston et al., 
2020 MAAP 

 

APPENDIX 2. Reference data potentially useful used for validating and comparing Biomass change products. 

Country 
Data 
type 

Dominant 
forest type 

Measurement 
(n) n 

Inventory 
year 

Original size 
(ha) 

AGB change 
(Mg/ha) 

SD 
estimate Eco-region Reference 

Netherlands NFI Plantation 3 1562 2007-2016 0.04 11.8 no 
Temperate broadleaf and mixed 
forests Schelhaas et al., 2018 

Belgium NFI Plantation 3 668 2003-2009 0.1 -2.8 no 
Temperate broadleaf and mixed 
forests Schelhaas et al., 2018 

Sweden NFI Plantation 3 12887 2008-2013 0.03 4.9 no 
Temperate broadleaf and Boreal 
forests Schelhaas et al., 2018 

Philippines NFI Natural 2 587 2003-2014 0.5 2.8 yes Tropical rainforest Araza et al., 2021 

Poland LiDAR Plantation 2 770 2005- 2019 1 6.5 no 
Temperate broadleaf and mixed 
forests and Boreal forests Laurin et al., 2020 

Czech 
Republic LiDAR Plantation 2 75 2014-2020 0.05 2 yes Temperate conifer forests Brovkina et al., 2017 

Spain LiDAR Plantation 2 54058 2010-2016 0.1 0.86 yes Mediterranean forests 
Mariano et al., under 
preparation 

Bulgaria LiDAR Plantation 2 1946 2006-2016 0.1 0.12 yes Temperate conifer forests 
Dmitrov et al., under 
preparation 
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Costa Rica LiDAR Natural 2 9342 2010-2018 0.1 -0.6 no Tropical rainforest Cushman et al. 2021 

Brazil LiDAR Natural 2 28607 2011-2018 0.1 -17.8 no Tropical rainforest Longo et al., 2016 

USA LiDAR Natural 2 110939 2013-2019 0.1 1.76 no 
Temperate broadleaf and Boreal 
forests Johnson et al., 2010 

Alaska LiDAR Natural 2 48552 2013-2019 0.1 1.76 yes Boreal forest Johnson et al., 2010 
 


