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1. INTRODUCTION 

1.1 Purpose and Scope 
This is the Algorithm Theoretical Basis Document (ATBD) for the ESA Sea Surface Temperature 
(SST) Climate Change Initiative (CCI) project. This version covers the algorithms used to 
generate the version 3 Climate Data Record (CDR) from input satellite radiances to output 
single-sensor SST and merged multi-sensor SST products. 

1.2 Executive summary 
This document summarises the algorithms and auxiliary data used in the production of the 
Level 2, Level 3 and Level 4 Sea Surface Temperature CDR products. The version 3 SST-CCI CDR 
provides a baseline record from 1980 through end-2021. 
 
The version 3 SST CDR is produced using data from multiple satellite sensor systems. Input 
sensors are the Along Track Scanning Radiometer (ATSR), the Advanced Very-High Resolution 
Radiometer (AVHRR), the Sea and Land Surface Temperature Radiometer (SLSTR), and 
Advanced Microwave Scanning Radiometers (AMSR) instruments. Input satellite brightness 
temperatures (BTs) from infrared sensors are first cloud screened using the physically-based 
Bayesian method based on Merchant et al. (2005) and SSTs are retrieved using an Optimal 
Estimation (AVHRR; Merchant et al. 2008) or coefficient (ATSR, SLSTR; Embury and Merchant 
2012) technique. Microwave sensors are processed using the two-step multiple linear 
regression from Alerskans et al. (2020). As the satellite SSTs are a measure of the temperature 
of the skin (infrared sensor) or sub-skin (microwave sensor) of the water at the time it was 
observed an adjustment to a daily mean temperature at 20cm depth is calculated (allowing 
comparison with the historical in situ record). Quality level and retrieval uncertainty estimates 
are calculated, and the SSTs are remapped to a regular latitude-longitude grid. These are then 
used to produce global daily products. This ATBD describes the algorithms used to generate 
the SST products, including the (1) identification of clear-sky pixels for valid retrieval, (2) the 
SST retrieval procedure itself, (3) estimating the daily average SST from the instantaneous skin 
observation, (4) assigning a pixel quality level, (5) remapping the data to a regular global grid, 
and (6) infilling to remove data gaps. 

1.3 Changes from version 2.1 
Compared to the previous v2.1 CDR the major changes are: 

• Longer time series: 1980 to 2021 (previous CDR was Sept 1981 to 2016) 

• Updated radiative transfer model: now using RTTOV 12.3 with “lblrtm_v12.8-
aer_v_3.6” coefficients released in October 2020. This version supports variable CO2 
and the CAMS aerosol species used for tropospheric aerosol allowing correction for 
desert-dust aerosol. 

• Improved prior information: Use of CAMS reanalysis and climatology for tropospheric 
dust aerosol. Use of ERA5 for processing of recent sensors (MetOp AVHRR and SLSTR). 
All sensors processed using previous CDRv2.1 as the prior SST. 
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• New bias aware optimal estimation retrieval for single-view AVHRR sensors reduces 
systematic biases. 

• Addition of early AVHRR/1 data in 1980s, and improved AVHRR processing to reduce 
data gaps in 1980s. 

• Addition of dual-view SLSTR data from 2016 onwards. 

• Use of full-resolution MetOp AVHRR data (previously used 'global area coverage' Level 
1 data). 

• Inclusion of L2P passive microwave AMSR data. 

• Early Level 4 data (pre-1997) are adjusted relative to HadSST4 to reduce impact of 
intermittent periods of anomalous satellite calibration. 

 

1.4 Acronyms 
 

Acronym Definition 

AMSR Advanced Microwave Scanning Radiometer 

ARC ATSR Reprocessing for Climate 

ASDI ATSR Saharan Dust Index 

ATBD Algorithm Theoretical Basis Document 

ATSR Along-Track Scanning Radiometer 

AVHRR Advanced Very-High Resolution Radiometer 

BT Brightness Temperature 

C3S Copernicus Climate Change Service 

CAMS Copernicus Atmosphere Monitoring Service 

CCI Climate Change Initiative 

CDR Climate Data Record 

CLASS Comprehensive Large Array-data Stewardship System 

DV Diurnal Variability 

ECMWF European Centre for Medium-Range Weather Forecasts 

EPS EUMETSAT Polar System 

ERA European Reanalysis 

ERS European Remote Sensing 

ESA European Space Agency 

FRAC Full Resolution Area Coverage 

GAC Global Area Coverage 

GDS GHRSST Data Specification 

GHRSST Group for High Resolution SST 

ICDR Interim Climate Data Record 

IR Infrared 

L2 Level-2 data product 

L2P Level-2 Pre-processed data product 

L3 Level-3 data product 

L3C Level-3 Collated data product 
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L3U Level-3 Uncollated data product 

L4 Level-4 data product 

LECT Local Equator Crossing Time 

NOAA National Oceanographic and Atmospheric Administration 

NWP Numerical Weather Prediction 

OE Optimal Estimation 

OSI SAF Ocean and Sea Ice Satellite Application Facility 

PDF Probability Density Function 

POES Polar Operational Environmental Satellites 

RDAC Regional Data Assembly Centre (GHRSST) 

RFI Radio Frequency Interference 

RTM Radiative Transfer Model 

S3-MPC Sentinel 3 Mission Performance Centre 

SAFE Standard Archive For Europe 

SLSTR Sea and Land Surface Temperature Radiometer 

SST Sea Surface Temperature 

TCWV Total Column Water Vapour 

TOA Top Of Atmosphere 

WS Wind Speed 
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2. SATELLITE INSTRUMENTS 

2.1 AVHRR 
The series of Advanced Very High Resolution Radiometers (AVHRRs) are a series of 
multipurpose visible and infrared (IR) imaging instruments carried onboard the National 
Oceanic and Atmospheric Administration (NOAA) Polar Operational Environmental Satellites 
(POES) and EUMETSAT Polar System (EPS) MetOp satellites. The first AVHRR instrument was 
carried onboard the TIROS-N satellite launched in October 1978, and the final AVHRR 
launched onboard MetOp-C in November 2018. 
 
The AVHRR is an across-track scanning radiometer using six spectral channels (early versions 
of the instrument had four or five channels), with a spatial resolution of approximately 1.1 
km at nadir. There are 2048 pixels in each scan for a swath width of about 2800 km. However, 
due to hardware limitations when the instruments were originally designed it was not 
possible to record a complete orbit of full resolution data for transmission to the ground 
station. Therefore, the onboard processor samples the real-time data to produce reduced 
resolution Global Area Coverage (GAC) data with a nominal resolution of ~4 km. This is 
achieved by averaging four pixels along the first scanline and then skipping a pixel before 
averaging the next four pixels. The next two scan lines are discarded before resuming the 
sampling on the fourth scanline. Each four-pixel average is then considered to be 
representative of a 15-pixel cell (5 pixels across track by 3 pixels along track) as shown in 
Figure 1. The more recent MetOp satellites do not have this limitation and record full orbit 
data at native resolution. Note that the NOAA distributes the full resolution MetOp data as 
Full Resolution Area Coverage (FRAC). 
 

 
Figure 1: Schematic of GAC pixels (blue) which are the average of four full resolution pixels 
(circles). White circles indicate full resolutions pixels which are not included in the 
averaging, so data is not available. 
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Satellite Sensor Overpass 
Time 

Operations 
start 

Operations 
end 

TIROS-N AVHRR/1  Nov 1978 Jan 1980 

NOAA-6 AVHRR/1 AM Jul 1979 Mar 1982 

NOAA-7 AVHRR/2 PM Sep 1981 Feb 1985 

NOAA-8 AVHRR/1 AM May 1983 Oct 1985 

NOAA-9 AVHRR/2 PM Feb 1985 Nov 1988 

NOAA-10 AVHRR/1 AM Nov 1986 Sep 1991 

NOAA-11 AVHRR/2 PM Nov 1988 Dec 1994 

NOAA-12 AVHRR/2 AM Sep 1991 Dec 1998 

NOAA-14 AVHRR/2 PM Jan 1995 Oct 2002 

NOAA-15 AVHRR/3 AM Oct 1998 Dec 2010 

NOAA-16 AVHRR/3 PM Jan 2001 Dec 2010 

NOAA-17 AVHRR/3 ~10:00 AM Jun 2002 Dec 2010 

NOAA-18 AVHRR/3 PM May 2005 Ongoing 

MetOp-A AVHRR/3 9:30 AM Oct 2006 Nov 2021 

NOAA-19 AVHRR/3 PM Feb 2009 Ongoing 

MetOp-B AVHRR/3 9:30 AM Jan 2013 Ongoing 

MetOp-C AVHRR/3 9:30 AM Nov 2018 Ongoing 

Table 1: List of platforms carrying AVHRR sensors. NOAA platforms are in drifting orbits with 
initial daytime overpass defined as afternoon or morning. MetOp platforms are in 
maintained orbits with fixed 9:30 AM equator crossing (while onboard fuel remains). 

 

Channel Central 
Wavelength 
(μm) 

AVHRR/1 AVHRR/2 AVHRR/3 

1 0.63 X X X 

2 0.87 X X X 

3A 1.61   X 

3B 3.74 X X X 

4 10.8 X X X 

5 12.0  X X 

Table 2: List of AVHRR channels by instrument type. AVHRR can only transmit one of 3A or 
3B – typically 3A is used during day and 3B at night; however, some NOAA satellites transmit 
3B at all times. 

2.2 ATSR 
The Along Track Scanning Radiometer (ATSR) instruments are well calibrated, dual-view 
radiometers intended to produce long-term, consistent SST observations. Three ATSR 
instruments have flown on board ESA’s two European Remote Sensing (ERS) satellites and 
Envisat satellite. All three satellites were in stable sun-synchronous orbits with near-constant 
Local Equator Crossing Times (LECTs) – the ERS-1 and ERS-2 platforms had a LECT of 10:30 and 
Envisat had a crossing time of 10:00 all of which were maintained within a few minutes. 
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The ATSR instruments had four key design features making them better suited to climate 
applications than the AVHRR instruments: 

• The instrument spectral response functions were accurately measured during pre-
flight calibration and characterisation. 

• The ATSRs are exceptionally well calibrated with two accurate onboard calibration 
targets at temperatures of ~260 K and 300 K which greatly reduces non-linearity errors 
for ocean observations (for comparison AVHRR instruments have a single on-board 
target at ~290 K and rely on a space view (2.7 K) to provide the second point. 

• The infrared detectors are actively cooled to ~82 K to reduce instrument noise and 
avoid temperature dependent effects on calibration. In addition, the instrument fore-
optics are cooled below ambient temperature to reduce self-emission issues, and the 
instrument is enclosed to prevent stray-light affecting the detectors. 

• The dual-view capability using a single telescope with a conical scanning pattern 
provides both a nadir-view and an inclined forward view (~55°). Having two views of 
the Earth’s surface allows the instrument to gather more information and more 
effectively separate surface and atmospheric effects; i.e. the SST retrieval can be made 
more robust to atmospheric conditions, including water vapour and stratospheric 
aerosol. 

 
The first ATSR carried onboard ERS-1 was a four-channel radiometer with channels are 1.6, 
3.7, 11, and 12 μm. However, the ATSR-1 instrument would only transmit one of the 1.6 or 
3.7 μm channels with the selection based on the 1.6 μm reflectance intended to separate day 
and night-conditions. There were two major issues affecting the ATSR-1 instrument: 

1. The 3.7 μm channel failed in May 1992, less than a year after the satellite was 
launched 

2. In order to preserve mission lifetime the temperature of the actively cooled detectors 
were allowed to rise, by-end of mission the detectors were operating at over 110 K. 

 
The second ATSR carried onboard the ERS-2 added three reflectance channels at 0.55, 0.67, 
and 0.87 μm mainly for vegetation monitoring. The channels had only limited availability over 
ocean due to telemetry bandwidth limitations; depending on instrument operating mode the 
visible channels may be transmitted for a reduced narrow swath, reduced 8-bit digitization, 
or interlaced (record every-other) pixels. The final, Advanced ATSR, instrument onboard 
Envisat was functionally the same as ATSR-2 but without the bandwidth limitations, so all 
seven channels are always available in full resolution. 
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Channel Central 
Wavelength 
(μm) 

ATSR1 ATSR2 AATSR 

1 0.55  X2 X 

2 0.67  X2 X 

3 0.87  X2 X 

4 1.6 X1 X X 

5 3.7 X1 X X 

6 10.8 X X X 

7 12.0 X X X 

Table 3: List of ATSR channels for each instrument. (1) ATSR1 would only transmit one of 
1.6 and 3.7 μm depending on the 1.6 μm intended to separate day and night conditions. 
However, after the failure of the 3.7 μm channel only 1.6 μm data is transmitted. (2) ATSR2 
visible channels have limited availability over ocean resulting in a reduced width swath 
and/or reduced 8-bit digitisation. 

 

2.3 SLSTR 
The Sea and Land Surface Temperature Radiometer (SLSTR) instrument is a well calibrated, 
dual-view radiometer intended to produce long-term, consistent SST observations. The 
design of the SLSTR instrument builds on the heritage of the earlier (A)ATSR instruments 
adding more spectral bands and a wider swath. The first SLSTR instrument is carried onboard 
the Sentinel-3A satellite launched in February 2016, with the second Sentinel-3B was 
launched in April 2018. 
 

Channel Central Wavelength 
(μm) 

Band width 
(μm) 

Spatial resolution 
(m) 

S1 0.555 0.02 500 

S2 0.659 0.02 500 

S3 0.865 0.02 500 

S4 1.375 0.15 500 

S5 1.61 0.06 500 

S6 2.25 0.05 500 

S7 3.74 0.38 1000 

S8 10.85 0.9 1000 

S9 12.0 1.0 1000 

Table 4: List of SLSTR channels 

 

2.4 AMSR 
Advanced Microwave Scanning Radiometers (AMSR) instruments have been used on three 
satellites: ADEOS II, EOS Aqua, and GCOM-W1. ADEOS II only operated for 10 months before 
suffering from solar panel failure so it not suitable for use in the CDR. The EOS-Aqua AMSR 
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(known as AMSR-E) was launched in May 2002 and operated for over nine years before failing 
in October 2011. The GCOM-W1 satellite launched in May 2012 carrying the AMSR2 
instrument. Both the AMSR-E and AMSR2 sensors are in early afternoon orbits (1:30 LECT). 
 
The AMSR is a passive microwave radiometer measuring both horizontal and vertical 
polarisations at six frequencies from 6.9 to 89 GHz to give 12 channels (AMSR2 measures an 
additional frequency at 7.3 GHz to give 14 channels). The spatial resolution depends on the 
frequency, with the footprint varying from approximately 5 km at 89 GHz to 50 km at 6.9 GHz 
as shown in Table 5. The measurements are sampled every 10 km (5 km for 89 GHz) during 
the instrument scan which means there is significant overlap between adjacent footprints at 
lower frequencies. The antenna scans in a conical pattern with a satellite zenith (or Earth 

incident) angle of 55 as shown in Figure 2. 
 

Channel 
(GHz) 

AMSR-E 
footprint (km) 

AMSR2 
footprint (km) 

6.93 43 x 75 35 x 62 

7.3 – 35 x 62 

10.65 29 x 51 24 x 42 

18.7 16 x 27 14 x 22 

23.8 18 x 32 15 x 26 

36.5 8 x 14 7 x 12 

89.0 4 x 6 3 x 5 

Table 5: Approximate spatial resolution (footprint or field of view size) of AMSR channels. 

 
 

 
Figure 2: AMSR scanning geometry. Satellite zenith angle of 55 results in an elliptical 
footprint aligned along the direction of view as the antenna rotates. 

 
Passive microwave SSTs are a lower resolution (approximately 50 km) and lower accuracy 
than infrared SST measurements. Furthermore, they are affected by Radio Frequency 
Interference (RFI) and cannot be used within ~100 km of land or sea-ice due to side-lobe 
contamination (Alerskans et al., 2020). However, they also have advantages: 

Rotation 

AMSR 
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• Microwave radiometers can retrieve SST through clouds, allowing SST to be measured 
in all conditions except rain. 

• Microwave retrievals of SST are not affected by aerosols and the vertical distribution 
of water vapour in the same way as infrared retrievals are. 
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3. AUXILIARY DATA 

3.1 NWP data 
Numerical Weather Prediction (NWP) data is used as input to the radiative transfer model 
(RTM) needed for both cloud detection and SST retrieval algorithms. It is also used by the 
diurnal variability (DV) model used to adjust the SST to standard time and depth. The required 
parameters for the various algorithms are shown in Table 6 below. 
 
The ERA5 reanalysis (Hersbach et al., 2020) is the main NWP input used for MetOp and SLSTR 
processing. While, the older ERA-Interim reanalysis (Dee et al., 2011) is used for the ATSR and 
NOAA AVHRR processing as the earlier ERA5 data were not available at the time the algorithm 
development occurred for these sensors. 
 

Parameter Type Algorithms 

Atmospheric temperature Analysis, profile RTM 

Atmospheric water vapour Analysis, profile RTM 

Surface pressure Analysis, surface RTM 

Mean sea level pressure Analysis, surface RTM 

10m wind U-component Analysis, surface RTM, DV, MW 

10m wind V-component Analysis, surface RTM, DV, MW 

2m air temperature Analysis, surface RTM 

2m dew point temperature Analysis, surface RTM 

Sea surface temperature1 Analysis, surface RTM, DV 

Skin temperature1 Analysis, surface RTM 

Total cloud cover Analysis, surface Bayes 

Total Column Water Vapour Analysis, surface Bayes, ARC, OE 

Sea ice fraction Analysis, surface DV 

Surface Sensible Heat Flux Forecast, surface DV 

Surface Latent Heat Flux Forecast, surface DV 

Surface Solar Radiation Forecast, surface DV 

Surface Thermal Radiation Forecast, surface DV 

East-West Surface Stress Forecast, surface DV 

North-South Surface Stress Forecast, surface DV 

Table 6: NWP inputs to algorithms: RTM – Radiative Transfer Model; Bayes – Bayesian Cloud 
Detection; OE – Optimal Estimation SST retrieval; ARC – Coefficient based SST retrieval; MW 
– Microwave SST retrieval; DV – Diurnal Variability model. Note: Both Bayes and OE 
algorithms use the output from the RTM. (1) Also see section 3.4. 

 

3.2 Tropospheric aerosol 
In addition to the NWP data described in previous section3.1, the RTM can also make use of 
aerosol data. These are taken from the Copernicus Atmosphere Monitoring Service (CAMS) 
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reanalysis (Inness et al., 2019) and the CAMS aerosol climatology (Bozzo et al., 2020) as the 
reanalysis is only available from 2003 onwards. 
 
The CAMS aerosol climatology provides monthly layer-integrated mass concentrations 
(kg/m2) for 11 aerosol components on 60 model levels and 3° × 3° horizontal resolution. The 
components are: Sea Salt bin1 (0.03-0.5 μm); Sea Salt bin2 (0.5-5.0 μm); Sea Salt bin3 (5.0-
20.0 μm); Mineral Dust bin1 (0.03-0.55 μm); Mineral Dust bin2 (0.55-0.9 μm); Mineral Dust 
bin3 (0.9-20.0 μm); Organic Matter (hydrophilic); Organic Matter (hydrophobic); Black Carbon 
(hydrophilic); Black Carbon (hydrophobic); (tropospheric) Sulfates. Mineral dust is the most 
significant component for SST retrieval as it can cause BT impacts of more than 1 K, while the 
other components typically cause impacts of ~0.1 K. 
 
The CAMS aerosol climatology used as the primary tropospheric aerosol input, with all aerosol 
component profiles passed to the RTM. When CAMS reanalysis data are available (i.e. 2003 
to 2021) the climatological mineral dust profiles are scaled to match the daily total column 
dust quantities from the reanalysis. 
 

3.3 Stratospheric aerosol 
There were three major volcanic eruptions during the CDR period: El Chichón (1982), Mount 
Pinatubo (1991), and Mount Hudson (1991); which resulted in elevated levels of stratospheric 
sulfate aerosol with impacts on the infra-red channels used for SST retrieval. Although the 
dual-view ATSR and SLSTR sensors are capable of an aerosol robust SST retrieval (e.g. Embury 
and Merchant, 2012), the single-view AVHRR sensor will be biased unless we include 
appropriate stratospheric aerosol loadings in the RTM calculations. An auxiliary dataset of 
stratospheric aerosol was derived from the High-Resolution Infrared Radiation Sounders 
(HIRS) for the ESA SST CCI CDR version 2 1. Dee, D. P. et al. The ERA-Interim reanalysis: 

configuration and performance of the data assimilation system. Q.J.R. Meteorol. Soc. 137, 553–

597 (2011). 

2. Hersbach, H. et al. The ERA5 global reanalysis. Quarterly Journal of the Royal 

Meteorological Society 146, 1999–2049 (2020). 

3. Merchant, C. J. et al. Satellite-based time-series of sea-surface temperature since 1981 

for climate applications. Sci Data 6, 223 (2019). 

4. Merchant, C. J. & Embury, O. Adjusting for Desert-Dust-Related Biases in a Climate 

Data Record of Sea Surface Temperature. Remote Sensing 12, 2554 (2020). 

5. Inness, A. et al. The CAMS reanalysis of atmospheric composition. Atmos. Chem. Phys. 

19, 3515–3556 (2019). 

6. Bozzo, A., Benedetti, A., Flemming, J., Kipling, Z. & Rémy, S. An aerosol climatology 

for global models based on the tropospheric aerosol scheme in the Integrated Forecasting 

System of ECMWF. Geosci. Model Dev. 13, 1007–1034 (2020). 

7. Matson, M. The 1982 El Chichón Volcano eruptions — A satellite perspective. Journal 

of Volcanology and Geothermal Research 23, 1–10 (1984). 

8. Lambert, A. et al. Measurements of the evolution of the Mt. Pinatubo aerosol cloud by 

ISAMS. Geophysical Research Letters 20, 1287–1290 (1993). 

9. Merchant, C. J., Harris, A. R., Murray, M. J. & Závody, A. M. Toward the elimination 

of bias in satellite retrievals of sea surface temperature: 1. Theory, modeling and interalgorithm 
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comparison. J. Geophys. Res. 104, 23565–23578 (1999). 

10. Baran, A. J. & Foot, J. S. New application of the operational sounder HIRS in 

determining a climatology of sulphuric acid aerosol from the Pinatubo eruption. J. Geophys. 

Res. 99, 25673–25679 (1994). 

11. OSI SAF. Global Sea Ice Concentration Climate Data Record v2.0 - Multimission. 

EUMETSAT SAF on Ocean and Sea Ice 9.6 MB (2017) doi:10.15770/EUM_SAF_OSI_0008. 

(Merchant et al., 2019) using a method based on Baran and Foot (1994). 
 

 
Figure 3: Stratospheric aerosol prior used for CDR processing. 

 

3.4 Prior SST estimate 
The prior surface temperature estimate is one of the primary inputs to the RTM. Although SST 
data is included with the ECMWF NWP (section 3.1), this is actually the prescribed input used 
as the lower boundary condition for the ECMWF analysis rather than a model output. The 
source of the SST data included with the NWP depends on the analysis version (ERA-interim 
or ERA5) and the time-period (ERA-interim used five different sources of SST over the years). 
In order to maximize consistency in the CDR processing we will instead use the previous 
version 2.1 of the SST CDR with the desert-dust correction from Merchant and Embury (2020) 
as the prior when available. However, as the v3.0 CDR targets a longer time-period than 
version 2.1 it is necessary to fall back to the SST provided with the NWP at the start and end 
of the processing as shown in Table 7. 
 

Time Period SST prior Notes 

Jul 1979 – Aug 1981 NWP (ERA-interim: HadISST) Monthly 1° 

Sept 1981 – Dec 2021 SST CDR v2.1 with dust correction Daily 0.05° 

Jan 2022 – onwards NWP (ERA-5: OSTIA) Daily 0.25° 

Table 7: Prior SST used for CDR processing 
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3.5 SST climatology 
A daily SST climatology is used in the Level 4 processing. This was calculated by averaging the 
ESA SST CCI version 2.1 analyses for the period (1982 – 2010). A dust correction was applied 
to limit the impact of dust aerosol on the climatology (Merchant and Embury, 2020). 
 

3.6 SST background error covariance estimates 
The background error covariances are specified in the Level 4 analysis system by two 
components. Associated with each of these are error standard deviations at each grid point 
and a length scale. One set of standard deviations and its scale are used to represent error 
correlations at mesoscales and the other at synoptic scales. The relative size of the two error 
standard deviations at a grid point controls the effective length scale of the combination of 
the two. These background error covariance estimates are specified seasonally and are 
described in Roberts-Jones et al. (2016). 
 

3.7 Sea ice concentration data 
Sea ice concentration data from the EUMETSAT Ocean and Sea Ice Satellite Application Facility 
(OSI SAF) are used by the L4 analysis system. Two datasets are used: OSI-450 (sea ice 
concentration CDR) to end of 2015, and OSI-430-b (sea ice concentration ICDR) from January 
2016 onwards. 
 
The details of each of the OSI SAF products are:  
 

Product OSI-450 

Title Global Sea Ice Concentration Climate Data Record 1979-2015 (v2.0, 2017) 
(SMMR/SSMI/SSMIS) 

DOI 10.15770/EUM_SAF_OSI_0008 

  

Product OSI-430-b 

Title Global Sea Ice Concentration Interim Climate Data Record release 2 

DOI 10.15770/EUM_SAF_OSI_NRT_2008 

  

3.8 HadSST4 
The Met Office Hadley Centre's sea surface temperature data set, HadSST.4.0.1.0 (Kennedy 
et al., 2019), is used to reduce the impacts of intermittent satellite calibration artefacts in the 
final Level 4 SST product during the 1980s and early 90s. HadSST4 is a monthly in-situ-based 

analysis on a 5 latitude-longitude grid. 

https://dx.doi.org/10.15770/EUM_SAF_OSI_0008
https://dx.doi.org/10.15770/EUM_SAF_OSI_NRT_2008
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4. ALGORITHMS 
The major processing steps and data flows from Level 1 to IR SST products are shown in Figure 
4, and Figure 5 for microwave products. Microwave sensors are not affected by clouds in the 
same way as IR so the cloud detection step is not required. Furthermore, Level 3 microwave 
products are not currently produced due to the resolution of the microwave data. Details of 
the algorithms for each step are in the following subsections. 
 
Satellite imagery is read from the input Level 1b, and auxiliary data (NWP etc.) is interpolated 
to the location of the satellite data to run the radiative transfer (4.1) and diurnal variability 
(4.4) steps. Output from the radiative transfer is used in the IR cloud detection (4.2) and SST 
retrieval (4.3.2), while microwave SST retrieval (4.3.3) uses the NWP and L1b directly. The 
retrieved SSTs are combined with the diurnal variability calculations and then quality levels 
are determined (4.5). This results in the final Level 2P data for microwave sensors which is 
then passed to the analysis scheme (4.9). For IR sensors and additional atmospheric 
correction smoothing step (4.6) is applied in the L2P data, and the unsmoothed data are 
remapped (4.7) to the Level 3 grid to produce Level 3U data which is collated (4.8) and passed 
to the analysis scheme (4.9) to produce Level 4 data. The Level 4 data are post-processed to 
reduce the impact of intermittent satellite calibration issues in the 1980s and early 90s (4.10). 
 

 
Figure 4: Overview of algorithm steps as applied to different processing levels for IR sensors. 
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Figure 5: Overview of algorithm steps as applied to microwave sensors. 

 

4.1 Radiative Transfer 
Both the Bayesian cloud detection (section 4.2) and optimal estimation retrieval (section 
4.3.2) depend on a radiative transfer or forward model to estimate the expected clear-sky BTs 
based on the available prior information (NWP, aerosol, and prior SST). The CDRv3 processing 
uses the RTTOV version 12.3 software (Saunders et al., 2018) using the 
“lblrtm_v12.8/aer_v_3.6” coefficients released in October 2020. This version supports 
variable CO2 and the CAMS aerosol species used for tropospheric aerosol (section 3.2). 
 
For the AVHRR instruments an additional forward model bias correction term is applied to 
ensure consistency between sensors. The bias correction parameters were estimated offline 
using the bias-aware optimal estimation method of Merchant et al. (2020b) applied to AVHRR 
as documented in Merchant et al. (2020a) and Appendix A. The MetOp AVHRR sensors were 
harmonized against ATSR/SLSTR, while the NOAA AVHRRs were harmonized against in situ 
observations (see Appendix A for details). 
 

4.2 Cloud Detection 
Cloud screening is a fundamental pre-processing step for SST retrieval. Traditionally, 
threshold-based techniques have been used to detect cloud but these often fail under difficult 
circumstances – for example, in the detection of thin cirrus or low-level fog. The Bayesian 
cloud detection algorithm presented here was developed originally for ATSR instruments 
(Merchant et al., 2005) and used in the generation of the ATSR Reprocessing for Climate (ARC) 
CDR (Merchant et al., 2012) and SST-CCI Phase-I CDR (Merchant et al., 2014). In the SST-CCI 
Phase-II CDR the Bayesian algorithm is also applied to AVHRR data (Bulgin et al., 2018). 
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The Bayesian classifier attempts to make optimum use of all available information to calculate 
the posteriori probability that a given pixel is clear-sky. Available information includes the 
satellite observations, prior information about the atmospheric and surface condition in the 
form of NWP analysis/forecast, and the respective errors in these variables. Applying Bayes’ 
theorem to the probability of clear-sky 𝑃(𝑐|𝒚, 𝒙𝑎) given both the satellite observations 𝒚, and 
the background state 𝒙𝑎 yields: 
 

𝑃(𝑐|𝒚, 𝒙𝑎) =
𝑃(𝒚|𝒙𝑎, 𝑐)𝑃(𝒙𝑎|𝑐)𝑃(𝑐)

𝑃(𝒚|𝒙𝑎)𝑃(𝒙𝑎)
 Eq. 1 

 
It is assumed that the background state is independent of the clear-sky probability at the 
satellite pixel scale so 𝑃(𝒙𝑎|𝑐) = 𝑃(𝒙𝑎). Next the probability of observations given the 
background state, 𝑃(𝒚|𝒙𝑎), can be expressed as the sum of the probabilities for each possible 
state. For a binary classifier the possible states are clear (𝑐) and not-clear (𝑐̅) giving: 
 

𝑃(𝑐|𝒚, 𝒙𝑎) =
𝑃(𝒚|𝒙𝑎, 𝑐)𝑃(𝑐)

𝑃(𝒚|𝒙𝑎, 𝑐)𝑃(𝑐) + 𝑃(𝒚|𝒙𝑎, 𝑐̅)𝑃(𝑐̅)
 Eq. 2 

 
In order to estimate the clear-sky probability we need to evaluate or estimate the 
probabilities on the right-hand side of the equation. The probability of the observation given 
the background state and assuming clear-sky, 𝑃(𝒚|𝒙𝑎, 𝑐), can be estimated using a forward 
model. In principle the probability of an observation for non-clear conditions, 𝑃(𝒚|𝒙𝑎, 𝑐̅), can 
also be calculated using a forward model but the distribution is much more complex than the 
clear-sky case, so a pre-generated lookup table (LUT) is used instead. The probability of clear-
sky, 𝑃(𝑐), and cloudy-sky, 𝑃(𝑐̅), can be taken from a climatology or from NWP cloud fraction. 

4.2.1 Clear-sky Spectral PDF 
Under clear-sky conditions the probability of observations can be calculated using a forward 
model, 𝐹(𝒙𝑎), and assuming Gaussian background and observation errors following Rodgers 
(1976): 
 

𝑃(𝒚|𝒙𝑎, 𝑐) =
exp (−0.5(𝒚 − 𝐹(𝒙𝑎))

𝑇
(𝐊𝐒𝑎𝐊𝑇 + 𝐒𝜀)

−1(𝒚 − 𝐹(𝒙𝑎)))

(2𝜋)
𝑛
2|𝐊𝐒𝑎𝐊𝑇 + 𝐒𝜀|

1
2

 Eq. 3 

 

4.2.2 Cloudy-sky Spectral PDF 
For cloudy-sky conditions the probability of observations, 𝑃(𝒚|𝒙𝑎, 𝑐̅), is taken from a pre-
generated lookup tables as described in ATBDv2. Details for the ATSR tables are given in 
ATBDv2 section 4.2.1.2, and AVHRR tables in section 4.3.2 and Bulgin et al. (2018). 
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4.3 SST Retrieval 
Three different SST retrieval algorithms are used: the ARC algorithm for dual-view sensors 
(ATSR, SLSTR), Optimal Estimation for single-view sensors (AVHRR), and statistical regression 
method for microwave sensors (AMSR). 
 

4.3.1 ARC SST retrieval (dual-view sensors) 
For dual-view instruments the SST retrieval is based on the techniques developed for the ARC 
CDR (Embury et al., 2012b; Embury and Merchant, 2012; Embury et al., 2012a). The ARC SST 
retrieval is a coefficient-based retrieval of the form: 
 

�̂� = 𝑎0 + 𝒂T𝒚 Eq. 4 
 
Where 𝑎0 is the offset coefficient and 𝒂T = [𝑎1, … , 𝑎𝑛] is a vector of 𝑛 weighting coefficients 
for the 𝑛 BTs in the observation vector 𝒚. 
 
The coefficients are pre-calculated using least-squares minimization techniques from 
accurate line-by-line radiative transfer simulations for a range of parameters: 

• Satellite zenith angle in the nadir view 

• Satellite zenith angle in the forward (or oblique) view 

• Prior TCWV 

• Instrument detector temperature (ATSR1 only) 

• Year 
 
The uncertainty due to radiometric noise (assumed uncorrelated between pixels) is given by: 
 

𝑢𝑢𝑛𝑐 = √𝒂TS𝑜𝒂 Eq. 5 

 
The uncertainty in the retrieval (assumed correlated on synoptic scales) is given by the fitting 
error when generating the coefficients. It is tabulated as a function of TCWV and interpolated 
to the pixel conditions along with the retrieval coefficients (Embury and Merchant, 2012; 
Bulgin et al., 2016a). 
 

4.3.2 Optimal Estimation (single-view sensors) 
For single-view instruments, the SST was retrieved using an optimal estimation (OE) scheme 
(Merchant et al., 2008; Rodgers, 2000): 
 

�̂� = 𝒙𝑎 + 𝐆(𝒚 − 𝐹(𝒙𝑎)) 

𝐆 = (𝐊T𝐒𝜀
−1𝐊 + 𝐒𝑎

−1)−1𝐊T𝐒𝜀
−1 

Eq. 6 

 

The retrieved state �̂� is the prior state plus an increment of 𝐆(𝒚 − 𝐹(𝒙𝑎)). The matrix 𝐊 

expresses how the observations change for departures from the prior state 𝑥𝑎, i.e., it is a 
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matrix where a given row contains the partial derivatives of the BT in a particular channel with 
respect to each element of the state vector in turn. The partial derivatives are the tangent 
linear outputs from the forward model 𝐅. 𝐒𝜀 is the error covariance of the differences 
between the model and observed BTs. These include the radiometric noise in the 
observations (𝐒𝑜) and estimated uncertainty of the forward model (𝐒𝑚). 𝐒𝑎 is the error 
covariance matrix for the prior state variables. 
 
The uncertainty due to radiometric noise (assumed uncorrelated between pixels) and due to 
uncertainty in the retrieval (assumed correlated on synoptic scales) is given by: 
 

𝑢𝑢𝑛𝑐 = √GS𝑜GT 

𝑢𝑐𝑜𝑟 = √GSmGT + (GK − I)Sa(GK − I)T  

Eq. 7 

 

4.3.3 Microwave SST retrieval 
The microwave SST retrieval algorithm is the two-step multiple linear regression (Alerskans 
et al., 2020) with retrieval of wind speed (WS) and then SST. Two stages are required as the 
relationship between retrieved parameters (WS, SST) and BT is less linear than the IR case. In 
the first stage a first-guess wind speed is estimated from the observed BTs with the equation: 
 

𝑊𝑆𝑎 = 𝑎0 + ∑(𝑎1𝑖𝑡𝑖 + 𝑎2𝑖𝑡𝑖
2) + 𝑎3(𝜃𝑠𝑎𝑡 − 55)

10

𝑖=1

 Eq. 8 

 
Where 𝑎0, 𝑎1𝑖, 𝑎2𝑖, and 𝑎3 are the global wind speed regression coefficients with index 𝑖 
representing the channel number (up to 10 as the 89.0 GHz is not used in the wind speed 
retrieval). The BTs are in the vector 𝒕 following 𝑡𝑖 = 𝐵𝑇𝑖 − 150 for all channels except the 
23.6 GHz channels where it is 𝑡𝑖 = ln(290 − 𝐵𝑇𝑖). Finally, 𝜃𝑠𝑎𝑡 is the satellite zenith (or 
incidence) angle. 
 
For the second stage of the wind speed retrieval, a localised regression is needed. This uses 
the same form as Eq. 8, except replacing the coefficients 𝑎 with a different set of regression 
coefficients which are tabulated as a function of the first guess wind speed. The retrieval is 
calculated using the two nearest bins to the first-guess, 𝑊𝑆𝑎, and then linearly interpolated. 
 
The retrieved wind speed is then used in the SST retrieval. With the first-guess SST given by: 
 

𝑆𝑆𝑇𝑐 = 𝑐0 + ∑(𝑐1𝑖𝑡𝑖 + 𝑐2𝑖𝑡𝑖
2) + 𝑐3(𝜃𝑠𝑎𝑡 − 55)

12

𝑖=1

+ 𝑐4𝑊𝑆

+ ∑(𝑐5𝑗 cos(𝑗𝜙𝑟𝑒𝑙) + 𝑐6𝑗 sin(𝑗𝜙𝑟𝑒𝑙))

2

𝑗=1

 

Eq. 9 
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Where the initial SST retrieval coefficients 𝑐 are tabulated as a function of latitude and orbit 
direction (ascending or descending), 𝑊𝑆 is the retrieved wind speed, and 𝜙𝑟𝑒𝑙 is the relative 
angle between the satellite azimuth angle and the wind direction (taken from the NWP). The 
second stage of the SST retrieval uses Eq. 9 again with the coefficients 𝑐 replaced with a new 
set of localised coefficients which are tabulated as a function of the retrieved wind speed and 
first-guess SST. The final retrieved SST is bilinearly interpolated between the closest bins. The 
binning and interpolation used for the four sets of coefficients is listed in Table 8. 
 

Coefficients Binning Interpolation 

First-guess WSa None (global) N/A 

Retrieved WSr WSa Linear 

First-guess SSTa Latitude, orbit None 

Retrieved SSTr SSTa, WSr Bi-linear 

Table 8: Coefficients used in passive microwave retrievals and binning interpolation used. 

 
The retrieval uncertainties are given by another regression equation: 
 

𝑢 = 𝑒0 + 𝑒1𝑆𝑆𝑇𝑟 + 𝑒2𝑆𝑆𝑇𝑟
2 + 𝑒3𝑊𝑆𝑟 + 𝑒4𝑊𝑆𝑟

2 + 𝑒5𝜃𝑠𝑎𝑡 + 𝑒6𝜃𝑠𝑎𝑡
2

+ ∑ (𝑒7𝑝 cos
𝜑𝑙𝑎𝑡

𝑝
+ 𝑒8𝑝 sin

𝜑𝑙𝑎𝑡

𝑝
)

4

𝑝=1

 
Eq. 10 

 
Where 𝜑𝑙𝑎𝑡 is the latitude and 𝑒𝑖 are a set of regression coefficients. There are two sets of 
regression coefficients: one for the random (uncorrelated) uncertainty to give 𝑢𝑢𝑛𝑐, and one 
for the locally correlated component to give 𝑢𝑐𝑜𝑟. 
 

4.4 Diurnal Variability adjustment 
The upper few millimetres of the ocean is referred to as the skin layer. This is cooler than the 
sub-skin layer immediately below due to latent and sensible heat exchanges with the 
atmosphere and surface emission of infrared radiation. The sub-skin layer exhibits a diurnal 
variation in temperature and depth, governed by absorption of solar radiation and wind 
driven mixing. The deeper mixed layer of the ocean lies below this and is largely unaffected 
by surface processes. The temperature of this layer is often referred to as the bulk sea surface 
temperature. 
 
Space-borne infrared instruments measure the temperature of the upper few microns of the 
sea surface (skin temperature), while microwave instruments are sensitive to the 
temperature of the upper few millimetres (sub-skin temperature), and in-situ data from 
buoys or ships are typically a measure of the bulk SST. Furthermore, when combining 
retrievals from a number of satellite instruments, making observations at different local times 
(see Figure 6) the diurnal cycle in SST can be aliased into the final product. Depth and time 
adjustment of the retrieved SST is necessary to meet user requirements for consistency 
between satellite and in situ records. A standardised depth of 0.2 m is used to match drifting 
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buoy measurement depth, and standardised time of 10:30 local (am or pm) as this is the 
approximate mean of the diurnal cycle (so SST at 10:30 or 22:30 can be used to approximate 
the daily average SST). 

 
Figure 6: Satellite equator crossing times. Solid lines indicate descending node crossings; 
lines with triangles indicate ascending node crossings; thin grey lines indicate data were not 
used in CDR v3. 

 
The DV code was originally developed by Horrocks et al. (2003) and uses the Fairall (1996) 
model to account for skin effects, ΔT𝑠𝑘𝑖𝑛, and the Kantha and Clayson (1994) warm-layer 
model to calculate the depth adjustment, ΔTdepth, and diurnal warming throughout the day, 

ΔTtime. All three adjustments are dependent on NWP inputs, 𝒙𝑎, listed in Table 6. The time 
and depth adjusted SST is thus given by: 
 

𝑆𝑆𝑇0.2𝑚(𝑡𝑠𝑡𝑑) = 𝑆𝑆𝑇(𝑡) + ΔT𝑠𝑘𝑖𝑛(𝒙𝑎) + ΔTdepth(𝒙𝑎) + ΔTtime(𝒙𝑎, 𝑡, 𝑡𝑠𝑡𝑑) Eq. 11 

 
 
The additional uncertainty due to the adjustment is: 
 

𝑢𝑎𝑑𝑗 = √𝑐(𝑡 − 𝑡𝑠𝑡𝑑) Eq. 12 

 
 
Where constant 𝑐 has values listed in Table 9 
 

𝒕 𝒕𝒔𝒕𝒅 𝒄 
04:30 to 10:30 10:30 0.0042 

10:30 to 16:30 10:30 0.0054 

16:30 to 22:30 22:30 0.0030 

22:30 to 04:30 22:30 0.0020 

Table 9: DV model uncertainty coefficient c. 

 
Further details can be found in ATBDv2 sections 7 and 8. 
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4.5 Determining Quality Level 

4.5.1 Infrared sensors 
Quality level is treated as a concept that is distinct from uncertainty: a highly uncertain SST 
can have the highest quality level if all the conditions for giving a valid SST and valid SST 
uncertainty are met: the quality level reflects the degree of confidence in the validity of the 
uncertainty estimate, not the data uncertainty. 
 
The quality level assigned to a pixel will be the lowest level (row of table) which matches any 
of the conditions shown in the table below. The assignments are compatible with GHRSST 
conventions (GHRSST Science Team, 2012): i.e., a particular level is given if none of the 
conditions higher up any column of the table are met. 
 

Level Meaning P(clear) Sensitivity χ2 Other 

0 No data <0   No data; land pixel 

1 Bad data <0.5 <0.0 >3 SST < 271.15; ice detected; NWP 
missing 

2 Worst quality <0.8 <0.10 >2 Limb (θsat > 60) 

3 Low quality <0.9 <0.20 >1 Twilight (87.5 < θsol < 92.5) 

4 Acceptable 
quality 

   ATSR: Aerosol detected: abs(ASDI) > 0.2 
AVHRR: solar contamination detected 

5 Best quality     

Table 10: Quality level definitions for infrared sensors 

For instance, any pixel where P(clear) is unavailable (value is less than zero), required input 
BTs are unavailable, or which is over land will be assigned quality level of 0. Next, any pixels 
which have P(clear) < 0.5, calculated SST sensitivity < 0.1 etc. will be assigned quality level of 
1 and so on. 
 
Note that: 

• Quality level 0 pixels should contain no other data (except land flag in l2p_flags) 

• Quality level 2-5 pixels should always contain valid data 

• Quality level 1 pixels may contain data in some variables but the data is not suitable 
for use (bad_data). For instance, the SST retrieval may have been attempted, but 
rejected as bad_data due to low sensitivity etc. Alternatively, if the retrieved SST is 
out of range (< 271.15 K) then the value will be missing in the output file. 

 

4.5.2 Microwave sensors 
For microwave SSTs the quality level (other than missing and bad data) is dependent on the 
estimated uncertainty using thresholds are shown in Table 11. The quality checks for 
removing bad data are fully documented in Alerskans et al. (2020) and briefly summaries 
below: 

• Rain is flagged if the vertical polarized 18 GHz BT is over 240 K. 

• RFI is flagged around know sources of RFI (e.g. Ascension Island). 
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• RFI is also detected by applying secondary SST retrievals which are less accurate, but 
also less sensitive to RFI as they exclude either the 6.9 or 10 GHz channels. When the 
SST estimates are significantly different they are flagged as RFI (Alerskans et al., 2020). 

• Retrievals within 200 km of sea-ice, or 100 km of land are set to quality level 2. 
 

Level Meaning Uncertainty Other 

0 No data  No data; land pixel 

1 Bad data  SST < 271.15; SST > 308.15; Rain; RFI 

2 Worst quality u  1.0 Proximity to sea ice; proximity to land 

3 Low quality 0.5 < u < 1.0  

4 Acceptable 
quality 

0.35 < u < 0.5  

5 Best quality u  0.35  

Table 11: Quality level definitions for microwave sensors 

 

4.6 Atmospheric Correction Smoothing 
The SST retrieval algorithms (section 4.3) used for CDR/ICDR production are optimised to 
produce a climate-quality SST – i.e. minimum systematic errors, maximum sensitivity to true 
SST changes and minimum sensitivity to prior SST (i.e. independence from in situ). Meeting 
these requirements can mean the retrieval has a high sensitivity to radiometric noise resulting 
in larger uncorrelated uncertainties. For the gridded L3 products uncorrelated errors will be 
reduced by the averaging process and become negligible over large spatial / temporal scales. 
However, they can remain significant for full resolution SST products. 
 
Noise in the full resolution SST products can be reduced by noting that the water vapour in 
the atmosphere varies smoothing on few-km scales. Over these distances the “atmospheric 
correction” or difference between the SST and top-of-atmosphere BT can be assumed to be 
constant. For a multi-channel instrument we write a generalised definition of the multi-
channel atmospheric correction as: 
 

𝛿 = 𝑥 − 𝒃T𝒚 Eq. 13 
 
 
Where the elements of the weighting vector, 𝒃, satisfy 𝑏𝑖 ≥ 0 for all 𝑖 and sum to one. This 
allows us to smooth the atmospheric correction but not the SST itself, exploiting the longer 
scales of atmospheric variability in order to reduce SST noise. 
 
Atmospheric correction smoothing is applied using a box of 5x5 pixels centred on the target 
pixel. In order to ensure that process is not contaminated by cloudy or otherwise low quality 
pixels the smoothing will only utilize pixels with a quality level equal or greater than the centre 
pixel. 
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4.6.1 ARC SST (dual-view sensors) 
For coefficient-based retrievals used for dual-view sensors we can write the best estimate of 
the atmospheric correction parameter as: 
 

𝛿 = 〈𝒙〉 − 𝒃T〈𝒚〉 = 𝑎0 − (𝒂 − 𝒃)T〈𝒚〉 Eq. 14 
 
 
Where the elements of the vector, 𝒃, are weighted by the radiometric noise in each channel 
as: 

𝑏𝑖 =
𝜎𝑖

−2

∑ 𝜎𝑖
−2

𝑖

 Eq. 15 

 

4.6.2 Optimal Estimation (single-view sensors) 
For the OE based retrieval we do not need a separate smoothing pass as we can extend the 
state and observations vectors to directly include the surrounding pixel averages (Merchant 
et al., 2013). For example, the two-channel retrieval becomes: 
 

𝒙𝑇 = [SST SST̅̅ ̅̅ ̅ �̅�] 

𝒚T = [𝑦11 𝑦12 𝑦11̅̅ ̅̅ 𝑦12̅̅ ̅̅ ] 

𝐾 =

[
 
 
 
 
 
𝜕𝑦11

𝜕SST

𝜕𝑦12

𝜕SST
0 0

0 0
𝜕𝑦11̅̅ ̅̅

𝜕𝑆𝑆𝑇̅̅ ̅̅ ̅

𝜕𝑦12̅̅ ̅̅

𝜕𝑆𝑆𝑇̅̅ ̅̅ ̅
𝜕𝑦11

𝜕�̅�

𝜕𝑦12

𝜕�̅�

𝜕𝑦11̅̅ ̅̅

𝜕�̅�

𝜕𝑦12̅̅ ̅̅

𝜕�̅� ]
 
 
 
 
 

 

Eq. 16 

 

4.7 Remapping (L3U) 
The remapping from Level 2 to Level 3 is applied to IR products where the pixel size is similar 
or smaller than the Level 3 cell size. The lower resolution microwave products are not 
remapped to Level 3. The remapping follows the GHRRST best practices (GHRSST Science 
Team, 2012): 

• Identify L2 pixels contributing to each L3 cell 

• Select highest quality level pixel(s) in the L3 cell 

• Calculate the average SST and propagate uncertainties 
 
Figure 7 shows a simple example for a 3x3 grid. The highlighted points (solid fill) are found to 
lie in the central cell and will be considered when calculating the cell value. In this case the 
central cell contains a mix of QL1 and QL2 pixels – so only the QL2 pixels will be used to 
calculate the final cell value. 
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Figure 7: Illustration of remapping from Level 2 to Level 3. Symbols indicate the locations of 
the L2 data in the Level 3 grid. All highlighted (solid fill) pixels fall within the central cell and 
will be considered when calculating the value for the central cell. 

 
Propagation of the uncorrelated and correlated uncertainty components is given by: 
 

𝑢𝑢𝑛𝑐 = √
1

𝑛2
∑𝑢𝑢𝑛𝑐𝑖

2

𝑛

𝑖=1

 

𝑢𝑐𝑜𝑟 =
1

𝑛
∑𝑢𝑐𝑜𝑟𝑖

𝑛

𝑖=1

 

Eq. 17 

 

i.e. the uncorrelated component is reduced by the familiar 1 √𝑛⁄  while the correlated 
components are a simple average of the input values. 
 
If the grid cell contains pixels which were not included in the averaging (e.g. due to the 
presence of cloud etc.), then there is an additional uncertainty due to sampling given by a 
cubic fit for six bands of SST variability (Bulgin et al., 2016b; SST CCI, 2019): 
 

𝑢𝑠𝑎𝑚𝑝 = 𝑎𝑓3 + 𝑏𝑓2 + 𝑐𝑓 + 𝑑 Eq. 18 

 
Where f is the fraction of pixels used in the cell and coefficients are given in Table 12 

SST 
variability 

a b c d 

0.0-0.1 K -0.153 0.322 -0.269 0.10 

0.1-0.2 K -0.154 0.342 -0.352 0.16 

0.2-0.3 K -0.216 0.417 -0.428 0.23 

0.3-0.4 K -0.248 0.449 -0.481 0.28 

0.4-0.5 K -0.231 0.319 -0.369 0.28 

0.5-0.6 K -0.453 0.673 -0.551 0.33 
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Table 12: Coefficients for sampling uncertainty calculation 

4.8 Daily collation (L3C) 
The polar orbiting satellites used for CDRv3 (see section 0) typically complete 14-15 orbits 
each day resulting in the same number of L2P or L3U products. While L3U files are on a global 
grid, they are very sparse as the sensor will only observe a small fraction of the Earth’s surface 
in each orbit (see Figure 8). For ease of use the SST outputs are collated to produce two files 
for each 24-hour period – one corresponding to day-time observations and one containing 
night-time data. 
 

 
Figure 8: Example plot of AVHRR L3 data. Left – L3U from a single orbit. Right – L3C from 24-
hour period. 

 
Following the GHRSST conventions (GHRSST Science Team, 2012), when collating 
observations from overlapping orbits in the same day the L3C will contain the highest quality 
observation available in the 24-hour period. The selection of best observation is done as 
follows: 

• Choose input cells with the highest quality_level 

• If multiple observations have the same quality_level, then select the one with the 
lowest estimated uncertainty (variable sst_depth_total_uncertainty is used) 

 

4.9 SST Analysis Scheme (L4) 
The SST analyses are produced by minimising a cost function (e.g. Fiedler et al., 2019): 
 

𝐽(𝛿𝒙) =
1

2
𝒙T𝑩−1𝛿𝒙 +

1

2
(𝒅 − 𝑯𝛿𝒙)T𝑹−1(𝒅 − 𝑯𝛿𝒙) Eq. 19 

 
In this equation, 𝒙 denotes the ocean state vector (which contains either the SST or sea ice 
values in the L4 processing) and 𝛿𝒙 is the departures from the background field. 𝑩 and 𝑹 are 
the background and observation error covariance matrices respectively, 𝒅 is a vector of 
differences between observation values and 𝒙, and 𝑯 is the linearised observation operator 
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which interpolates an analysis grid vector to the observation locations. The cost 𝐽(𝛿𝒙) is 
minimised using the NEMOVAR variational data assimilation scheme (Mogensen et al., 2009). 
 
The background field is generated by taking the anomalies between the previous day’s 
analysis and its climatology, reducing them in size by 7.4% and then adding them to the 
current day’s climatology. By doing this, the background will relax to climatology in the 
absence of observations. 
 
Further details can be found in Good et al. (2020) 
 

4.9.1 Uncertainty propagation and estimation 
The optimal interpolation equation for the error variance of an analysis (assuming the optimal 
set of weights has been found) is (Bouttier and P. Courtier, 2002): 
 

𝑨 = (𝑰 − 𝑲𝑯) Eq. 20 
 
Where I is the identity matrix and K is: 
 

𝑲 = 𝑩𝑯T(𝑯𝑩𝑯T + 𝑹)−1 Eq. 21 
 
This propagates the uncertainty in both the background and the observations through to the 
analysis error covariance matrix 𝑨. Note that although the observation error covariance 
matrix does not appear explicitly in the equation, it is represented in the expression for 𝑲.  
 
It is not possible to evaluate this equation directly using NEMOVAR. Instead an analysis quality 
method is adopted. It uses an analysis where all observations are set to one and the 
background field to zero. For each analysis grid point, this provides the sum of the 𝑲 matrix 
i.e. the sum of the weights that were applied to the observation minus background 
differences in the SST analysis. This is then used in an expression for the analysis error 
variance (Donlon et al., 2012) 
 

휀𝑖
𝑎 = √𝐵𝑖[𝛼 + 𝛽(1 − 휀𝑖

𝑜)] Eq. 22 

 
In this equation the error standard deviation 휀𝑖

𝑎 in the analysis at point 𝑖 is given by the square 
root of the background error variance 𝐵𝑖 at that point multiplied by one minus the result of 
the special analysis 휀𝑖

𝑜 (which is the sum of the 𝑲  matrix for that grid point). The 
correspondence between this theoretical equation, and the optimal interpolation equation 
for analysis error variance used for more practical implementation, is straightforward to see. 
Two additional parameters (𝛼 and 𝛽) are used in the equation to tune the range of 
uncertainties that are produced. These are set to 0.5 and 4 respectively. 
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4.9.2 Sea ice concentration interpolation and infilling 
The input sea ice concentration data are provided every two days in the early part of the 
record. In addition, some fields contained artefacts and weren’t used. A linear model was 
used to interpolate temporal data gaps in the sea ice fields in those earlier records. A full 
detailed description of the procedure, and results of its application, can be found in section 8 
of the ESA SST CCI ATBD CDRv1. 
 
The input ice concentration data do not extend as close to land as the land/sea mask used for 
the L4 analysis. This results in low ice concentrations near the coast. In CDR3, to prevent this 
being an issue the near-coast ice concentrations are removed and infilled using a nearest 
neighbour approach from the regions covered by the input data. More details can be found 
in Good et al. (2020). 
 

4.10 Calibration-Spike Adjustment 
Comparing the global mean Level 4 SST against HadSST4 (Kennedy et al., 2019) shows 
artefacts of 0.1-0.2 K in monthly average during the 1980s and early 1990s (see Figure 9). This 
is an improvement on the version 2.1 CDR which had monthly artefacts up to 0.6 K (Merchant 
and Embury, 2020). These “spikes” are due to intermittent problems in the calibration of the 
early AVHRR sensors and are especially noticeable in the early record which relies on fewer 
input sensors (see Figure 6). 
 

 
Figure 9: Timeseries of global-mean difference of raw CCI Analysis minus HadSST4. Thin blue 
line: daily average. Thick orange line: monthly average. 

 
The calibration-spikes are reduced using the method of Merchant and Embury (2020) which 
calculates an adjustment for the earlier data to match the distribution of differences to the 
later period. For the data after 1997 the CCI minus HadSST4 differences are distributed near-
normally as 𝒩(−0.02, 0.048), while the earlier data is more affected by outliers with mean 
of +0.006 K and standard deviation 0.083 K. An adjustment for the earlier data is estimated 
by matching the quantiles of the two distributions, resulting in the nearly linear function 
shown in Figure 10. This is applied to the early-period data, with a linear tapering of the 
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adjustment from start August 1996 to zero adjustment from end Jan 1997 onwards. Figure 11 
shows the timeseries of daily CCI minus HadSST4 differences before and after adjustment. 
 

 
Figure 10: Adjustment function for homogenisation of pre-1997 difference distribution 

 

 
Figure 11: Timeseries of daily global-mean difference of raw CCI Analysis minus HadSST4. 
Blue line: before adjustment. Orange line: including spike correction adjustment to early 
data. 
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APPENDIX A. BIAS-AWARE OPTIMAL ESTIMATION 

A.1 Sea surface temperature retrieval 
Optimal estimation (OE) is a widely used inverse method in geophysics and remote sensing 
(Rodgers, 2000). OE has been applied to retrieval of sea surface temperature from space-
based imagery (Kilic et al., 2018; Merchant et al., 2009, 2008) as well as for many problems in 
atmospheric sounding (Carboni et al., 2012; McGarragh et al., 2018; Poulsen et al., 2012; 
Thomas et al., 2009). The most common formulation for SST retrieval jointly estimates the 
radiometric skin temperature, 𝑥, and the total column water vapour (TCWV), 𝑤. This is a 

reduced state vector, 𝒛 = [𝑥, 𝑤]T, since the clear-sky brightness temperatures observed by 
the satellite, 𝒚, depend in general on a much longer list of state variables, 𝒙, including the 
vertical distribution of atmospheric temperature and humidity, the sea state and atmospheric 
aerosols. 
 
OE requires a physical model of the observations, which in this case means a radiative transfer 
model (RTM) that operates on the full state vector, 𝑭(𝒙𝑎). The subscript 𝑎 here indicates a 
priori, meaning that the RTM is run on the prior estimate of the surface temperature and 
atmospheric state before retrieval. The prior state generally is obtained from a numerical 
weather prediction forecast or analysis. The physical model is also differentiated with respect 
to the retrieved variables: 
 

𝑲 =
𝝏𝑭

𝝏𝒛
 Eq. 23 

 
The retrieved state, �̂�, corresponds to the prior state, 𝒛𝑎, modified by the difference between 
the satellite observations and the expected brightness temperatures as simulated by the RTM 
on the prior state. This difference is transformed from the observation space to the state 
space by a gain matrix that accounts for the sensitivity of the brightness temperatures to the 
state variables (Eq. 23) and the relative uncertainty of the observations and prior state: 
 

�̂� = 𝒛𝑎 + (𝑲T𝑺𝜖
−1𝑲 + 𝑺𝑎

−1)−1𝑲T𝑺𝜖
−1(𝒚 − 𝑭) Eq. 24 

 
Here, 𝑺𝜖 characterises the error distribution in the observations relative to the simulations as 
an error covariance matrix. The uncertainty in each brightness temperature is given by the 
square root of the diagonal values of this matrix, while the off-diagonals indicate the strength 
of covariance (and, thus, correlation) of those errors. Similarly, the error covariance matrix of 
the prior information is 𝑺𝑎, whose first diagonal term is the square of the uncertainty in the 
prior estimate of SST. If the error distributions of 𝒛𝑎 and 𝒚 − 𝑭 are zero-mean, the retrieved 
value will have zero mean expectation of error. If the error distributions are gaussian and 
correctly characterised by 𝑺𝜖 and 𝑺𝑎, the retrieved values will be an optimal solution and their 
uncertainty will be accurately characterised by the retrieval error covariance matrix 𝑺 =
(𝑲T𝑺𝜖

−1𝑲 + 𝑺𝑎
−1)−1, which may be calculated as part of the evaluation of Eq. 24. 
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To obtain optimal estimates, therefore, the prior must be unbiased, the satellite calibration 
and radiative transfer simulations need to be negligibly biased with respect to each other and 
good estimates of two error covariance matrices need to be available. To meet these 
conditions for a system of 𝑛𝑦 observations and 𝑛𝑧 retrieved variables, we need good 

estimates of the following: 𝑛𝑦 + 𝑛𝑧 bias correction parameters (more if there are systematic 

tendencies which are fitted rather than a single offset); 𝑛𝑦 + 𝑛𝑧 uncertainty estimates (which 

again may vary according to the circumstances of the retrieval); and 1
2
𝑛𝑦(𝑛𝑦 + 1) + 1

2
𝑛𝑧(𝑛𝑧 +

1) error correlation coefficients. For even the minimal system of retrieving SST and TCWV 
using three infrared brightness temperatures, this corresponds to 14 retrieval parameters if 
no parameter dependency is fitted. Some relevant information to constrain these parameters 
is generally available, such as error correlation being zero between independent sources of 
information, or estimates of instrument noise from sensor specifications or the onboard 
calibration system. Nonetheless, in past implementations, e.g. Merchant et al. (2009), 
simplifications such as diagonal error covariance matrices (Rodgers, 2000) have been used 
along with judgements about many parameters. This element of judgement has been strongly 
criticized (Koner and Harris, 2016; Koner et al., 2015) and alternative inverse methods have 
been proposed with fewer parameters. The alternative response, pursued here, is to exploit 
a means of systematically evaluating the retrieval parameters, to which we refer as “bias-
aware” optimal estimation. 
 

A.2 Bias parameter estimation 
Bias-aware optimal estimation (BAOE) combines the following elements: the insight in 
Rodgers (2000) that uncertain retrieval parameters can themselves be retrieved across a large 
number of retrieval instances; the idea that anchoring the system to some reference data that 
are taken to be unbiased can help disambiguate biases arising from different sources; and the 
use of expressions derived as diagnostics in data assimilation (Desroziers et al., 2005) as 
means of objectively estimating error covariances (Cordoba et al., 2017; Waller et al., 2016) 
after bias-correction. Merchant et al. (2020b) (hereafter M20) presented a BAOE approach 
with reference to in situ references, and in Merchant et al. (2020a) an approach for cross-
satellite harmonisation of sea surface temperature is demonstrated. In this work, in situ 
references are again used, but the derivation of the bias parameters is reformulated (relative 
to M20) to reduce complexity and the amount of radiative transfer modelling involved. 
 
Observational biases are generally present and mean that errors 𝒚 − 𝑭 do not have zero mean 
over a large ensemble of retrievals. The retrieved value is sensitive to the bias in this 
difference, irrespective of whether the source of bias is in the satellite calibration or in the 
forward model. We formulate the bias parameters, 𝜷, as corrections to be added to the 
forward model, but this choice does not imply that the forward model is the only or main 
source of systematic errors. 
 
The prior estimate of the state may also have non-zero mean error across many instances of 
retrieval. Previous results (M20) suggest that clear-sky areas of infrared imagery have lower 
TCWV than prior NWP humidity profiles; since these are all-sky profiles, this is physically 
plausible. Corrections for prior bias, 𝜸, are defined such that 𝒛𝑎 + 𝜸 will be unbiased. 
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The 𝜷 and 𝜸 parameters are included in the extended state (retrieved) vector, �̃�. To anchor 
the estimate of observational biases, reference data (see section A.4) are included as 
additional observations in the observation vector, �̃�. (This is the point of difference between 
the approach here and M20. In M20, the forward model was run using the reference data for 
the SST, rather than using the usual prior SST source for the retrieval as here. This is a 
simplification in procedure since simulations for the latter source are naturally available from 
the satellite data processing chain.) 
 
The error covariance matrices are initially specified using expert knowledge and any 
information available on error sources such as instrument noise. The bias-correction 
parameters will be best estimated if the error covariances matrices are well estimated. 
Conversely, the error covariance matrices need to characterise the uncertainties after bias 
corrections have been applied. The iterative update of the error covariance matrices is 
therefore necessary and is discussed in section A.3. 
 
Using the initial estimates of error covariance matrices, the extended optimal estimator is 
solved across a large sample of cases for which in situ reference data are available. These 
cases are hereafter referred to as ‘matches’ since matching of the satellite data and in situ 
data is required, as described in section A.4. The matches are randomised, to ensure 
independence of consecutive iterations with respect to geophysical parameters and errors in 
individual reference values. Updated bias parameters (and their uncertainties) are passed 
between iterations. The equation for the 𝑖th iteration thus uses the bias parameters retrieved 
in the 𝑖 − 1th retrieval. For the case where the reference data are measured values of SST, 𝑥𝑟 
having estimated uncertainty 𝑢𝑟 , and the bias in the prior TCWV, 𝛾, is to be estimated, the 
extended OE equation is: 
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�̃�𝑖 = �̃�𝑎 + (�̃�T�̃�𝜖
−1�̃� + �̃�−1)

−1
�̃�T�̃�𝜖

−1 (�̃� − (�̃�(�̃�𝑎) + 𝛾𝑖−1 𝜕�̃� 𝜕𝑤⁄ + �̃�𝑖−1)) 

�̃�𝑎 = [

𝑥𝑎

𝑤𝑎 + 𝛾𝑖−1
𝛾𝑖−1

𝜷𝑖−1

] 

�̃� = [
𝒚
𝑥𝑟

] 

�̃�(�̃�𝑎) = [
𝑭(𝒛𝑎)

𝑥𝑎
] 

�̃�𝑖−1 = [
𝜷𝑖−1

0
] 

�̃� = [𝜕𝑭 𝜕𝑥⁄
1

𝜕𝑭 𝜕𝑤⁄
0

𝜕𝑭 𝜕𝑤⁄
0

𝑰
𝟎
] 

�̃� =

[
 
 
 
 𝑺𝑎 + [

0 0
0 𝑢𝛾𝑖−1

2 ] 𝟎 𝟎

𝟎 𝑢𝛾𝑖−1

2 𝟎

𝟎 𝟎 𝑺𝛽𝑖−1]
 
 
 
 

 

�̃�𝜖 = [
𝑺𝜖 0

0 𝑢𝑟
2] 

�̃�𝑖 = [

�̂�𝑖

�̂�𝑖
𝛾𝑖

𝜷𝑖

] 

Eq. 25 

 
The form of this extended retrieval is identical to Eq. 24, and Eq. 25. is written explicitly to 
show how extension of the state and observation vectors leads to extended forward model, 
partial derivative and error covariance matrices. After the retrieval of the extended state 
vector for the 𝑖th match, the updated parameters are passed to the next randomly selected 
match, and the parameters are thus progressively updated. The principle is analogous to 
model parameter estimation using Kalman filtering (Kalman, 1960) but without any concept 
of continuity in time. Graphs of the evolution of the iterative 𝜷 and 𝛾 parameter estimates 
are inspected to ensure convergence, and 𝑂(105) iterations are required for a given pass. 
 
Eq. 25 is written as if 𝜷 and 𝛾 are constants for a given bias-corrected quantity. This would 
not be adequate representation of the systematic dependencies observed. For example, the 
correction of a given brightness temperature may need to depend on factors such as satellite 
zenith angle, slant path integrated water vapour and/or instrumental parameters, for 
example. Context-dependent corrections are estimated by deriving different parameter 
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values from only those matches falling within sub-ranges of auxiliary quantities and using 
these values to define a piecewise linear correction function. 
 
For example, the correction of the prior total column water vapour, 𝑤𝑎, has been derived as 
a function of its own uncorrected value. The range of 𝑤𝑎 in matched data typically ranges 
from close to zero (dry, high-latitude locations) to ~60 kg m-2 (regions of convergence in the 

tropics). This range is split into 𝑛𝛾 sub-ranges (hereafter, “bins”, index 𝑗 ∈ {1. . . 𝑛𝛾}). In a given 

iteration, 𝑖, of Eq. 25, the prior water vapour is interrogated to identify the value, 𝐽, of 𝑗 (i.e., 
in which bin 𝑤𝑎 lies). 𝛾 actually comprises 𝑛𝛾 parameter values, 𝛾𝑗, one for each bin, and the 

iteration 𝑖 updates 𝛾𝑗=𝐽, while the parameter values 𝛾𝑗≠𝐽 are not modified. The mean prior 

water vapour in each bin, �̅�𝑗 is also calculated. The full 𝛾 correction is defined as the piecewise 

linear interpolation with respect to 𝑤𝑎 between the (final iterated) values 𝛾(�̅�𝑗) = 𝛾𝑗. 

Extrapolation is not used, and for 𝑤𝑎 < �̅�1 the correction is fixed at 𝛾(𝑤𝑎) = 𝛾1, and similarly 
for 𝑤𝑎 > �̅�𝑛𝛾

 the correction is fixed at 𝛾(𝑤𝑎) = 𝛾𝑛𝛾
. 

 
Piecewise linear correction is also used for the adjustment of brightness temperature for each 
infrared channel in use. To obtain a correction that accounts for more than one dependency, 
cumulative piecewise linear corrections are calculated. If the 𝑛𝑞 auxiliary quantities for the 

brightness temperature corrections (e.g., satellite zenith angle, etc) are 𝑞𝑘: 𝑘 ∈ {1. . . 𝑛𝑞} and 

𝐿𝑐,𝑘(𝑞𝑘) is the piecewise linear function defined by interpolated between the derived 

parameter values 𝛽𝑐,𝑘(�̅�𝑘,𝑗), then the total brightness temperature correction is: 

 

𝛽𝑐 (𝑞1, … , 𝑞𝑛𝑞
) = ∑ 𝐿𝑐,𝑘

𝑛𝑞

𝑘=1

 Eq. 26 

 
for the given channel, 𝑐. The choice of auxiliary quantities could in principle differ between 
channels according to insights into any channel-specific problems, but in the present 
implementation the same auxiliary quantities are used for all infrared channels of a given 
sensor. 
 
To obtain 𝜷 values that add cumulatively (Eq. 26), they are derived sequentially. Correction 
parameters 𝛽𝑐,1(�̅�1,𝑗) with respect to auxiliary quantity 𝑞1 are obtained by iterative 

application of Eq. 25 with no other corrections applied. Then, applying the corresponding 
correction 𝐿𝑐,1(𝑞1) to 𝑭 for each iteration 𝑖, the iterative procedure is applied again for the 
auxiliary quantity 𝑞2, and so on. 
 

A.3 Covariance matrix estimation 
The estimation of the bias correction parameters described in the previous section is initially 
done using observation and prior error covariance matrices, 𝑺𝜖 and 𝑺𝑎, that are obtained by 
experience, expert judgement and information such as sensor noise estimates (from the 
literature or from the onboard calibration processes). It has been noted even in the earliest 
implementations of OE for SST retrieval (Merchant et al., 2008) that it would be preferable to 
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have more objective means of determination, and BAOE provides this by adapting expressions 
originally brought together in Desroziers et al. (2005). 
 
The observation error covariance (which accounts for uncertainty in satellite calibration, noise 
and radiative transfer simulation) is first re-estimated after the bias corrections for the 
brightness temperatures are applied. The first step is to undertake joint retrieval, �̂�, of the 
state using the extended observation vector (corrected brightness temperatures and the 
reference data) across the full set of matches. The statistics of the result are then used to 
update 𝑺𝜖 using: 
 

�̂̃�𝜖 = [
�̂�𝜖 𝑫

𝑫T �̂�𝑟
2
] =

1

2
〈𝒅𝑟

𝑜𝒅𝑎
𝑜T + 𝒅𝑎

𝑜𝒅𝑟
𝑜T〉 

𝒅𝑟
𝑜 = �̃� − �̃�(�̂�) − 〈�̃� − �̃�(�̂�)〉 

𝒅𝑎
𝑜 = �̃� − (�̃�(�̂�) − �̃��̂�(�̂� − 𝒛𝒂)) − 〈�̃� − (�̃�(�̂�) − �̃��̂�(�̂� − 𝒛𝒂))〉 

Eq. 27 

 
Eq. 27 is formulated explicitly to show use of de-meaned residuals and how to make the 

estimated matrix symmetric. �̂�𝜖 provides improved observation uncertainty information on 
its diagonal, and information about error correlations via the off-diagonal terms. Satellite 
noise is not expected to be correlated between channels, although there are exceptions, e.g. 
Holl et al. (2019). However, calibration and simulation errors may involve cross-channel 
correlations, which previously have been poorly known. This also provides an updated 
estimate, �̂�𝑟 for the reference data uncertainty, which is useful since it is not necessarily well 
quantified up front, particularly further back in time. 
 
Instrumental uncertainty expressed as noise in brightness temperatures are typically scene 
dependent, because of non-linearity of the radiance-temperature relationship (which is the 
channel-integrated Planck function). The component of “observation error” that comes from 
the radiative transfer simulation is expected to be variable: the approximations of fast 
radiative transfer simulations are more uncertain when the optical path length from surface 
to sensor increases. It is reasonable, therefore, to estimate 𝑺𝜖 as a piecewise linear function 
of a quantity that correlates somewhat with both brightness temperature and optical path 
length of a quantity that correlates usefully with brightness temperature and infrared optical 
path length. We use the slant-path integrated water vapour (hereafter “WV path”) for this 
purpose (i.e., 𝑤sec (𝜃), where 𝜃 is the satellite zenith angle). Eq. 27 is applied to subsets of 
the matches falling within bins of WV path to obtain the piecewise linear dependence. 
 
Having obtained an improved estimate of 𝑺𝜖 the next step is to update the prior error 
covariance, 𝑺𝑎. For this, a new set of SST retrievals is made, now incorporating the new 
estimates of the observation error covariance as well as the brightness temperature 
corrections. The differences of the retrieved and prior state are used to estimate 𝑺𝑎. 
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The diagonal of 𝑺𝑎 contains the squares of the uncertainty in prior SST and prior TCWV. The 
uncertainty in each depends on the source of prior information, is likely to increase for earlier 
times and may be geographically variable. The possibility of time-dependence is incorporated 
in our implementation only indirectly by estimating 𝑺𝑎 separately for different sensors. To 
capture to some degree the possibility of large-scale variations in these uncertainties, 𝑺𝜖 is 
estimated for bins of prior SST itself, which varies with latitude and correlates with TCWV. 
This is done by applying Eq. 28 to matches falling within sub-ranges of the SST distribution. 
 

�̂�𝑎 =
1

2
〈(𝑲T𝑲)−1𝑲𝐓 (𝒅𝑎

𝑟𝒅𝑎
𝑜T + 𝒅𝑎

𝑜𝒅𝑎
𝑟 T)𝑲(𝑲T𝑲)−1〉 

𝒅𝑎
𝑟 = 𝑲(�̂� − 𝒛𝒂) − 〈𝑲(�̂� − 𝒛𝒂)〉 

Eq. 28 

 
We also have strong expectations for 𝑺𝑎. The value of the prior SST uncertainty should, when 
combined in quadrature with the reference SST uncertainty, correspond closely to the 
standard deviation between the prior and the reference. In our implementation, we constrain 
this to be the case. The off-diagonals should be zero, since we do not expect error correlation 
between SST and TCWV, and in our implementation the implied correlation coefficients are 
inspected to verify they are small (they are generally <0.25 in magnitude) and then set to zero. 
In contrast, the TCWV uncertainty embodied in the estimate of 𝑺𝑎 is not otherwise well 
quantified and is used unmodified thereafter. 
 
Some practical measures to stabilize the calculation of Eq. 27 and Eq. 28 are implemented. In 

evaluating 〈𝒅𝑟
𝑜𝒅𝑎

𝑜T + 𝒅𝑎
𝑜𝒅𝑟

𝑜T〉, a trimmed mean is used to avoid undue influence of a small 
fraction of outliers. 𝑲T𝑲 is inverted in Eq. 28, and is occasionally (typically for <0.5% of 
matches) ill-conditioned. In our implementation, matches for which the condition number of 
𝑲T𝑲 exceeds 106 are excluded from the evaluation. 
 

A.4 Reference data 
To estimate the observational biases and error covariance matrices we need to select a 
reference SST dataset. For the MetOp AVHRR sensors we can use the SST observations from 
the dual-view ATSR and SLSTR sensors as described in Merchant et al. (2020a). Compared to 
the earlier work the multi-sensor matchup dataset (Block et al., 2018) has been regenerated 
for both MetOp-A and MetOp-B AVHRRs, adding SLSTR-B as a further reference sensor, and 
switching to ERA-5 (Hersbach et al., 2020) as the NWP source. The bridging datasets used for 
MetOp AVHRRs are listed in Table 13. 
 

AVHRR Reference Start End Matches / 
million 

MetOp-A AATSR 2007-06-01 2012-03-31 34.39 

 SLSTR-A 2019-02-01 2021-06-30 1.65 

 SLSTR-B 2020-01-01 2021-06-30 1.46 

MetOp-B SLSTR-A 2019-02-01 2021-06-30 2.30 

 SLSTR-B 2019-05-01 2021-06-30 3.08 
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Table 13: Inter-sensor bridging datasets used to harmonise MetOp AVHRR BAOE retrievals. 

 
Although the later NOAA AVHRRs do overlap with the ATSR sensors, the earlier NOAA AVHRRs 
can only be harmonised against in situ data. Furthermore, ERA5 NWP data were not available 
for the 1980s through early 2000s when the NOAA AVHRR matchup datasets were being 
generated. Therefore, in order to ensure consistency in the processing of NOAA AVHRRs all 
of the NOAA AVHRRs were harmonised against in situ reference using ERA-interim (Dee et al., 
2011) NWP. 
 

A.5 Other aspects of implementation 
As described in (Merchant et al., 2020a) the sequence of bias correction and updating 
covariance matrices is cycle through iteratively (two complete cycles followed by the final bias 
correction step). This is needed so that the bias corrections and covariance parameters have 
the opportunity to respond to each other during optimization. 
 
The process is coded semi-automatically. Expert intervention arises in terms of choosing the 
auxiliary quantities used for each sensor. This is based upon inspection of the patterns of 
residual biases seen in untuned OE results obtained before the BAOE process. 
 


	1. Introduction
	1.1 Purpose and Scope
	1.2 Executive summary
	1.3 Changes from version 2.1
	1.4 Acronyms

	2. Satellite Instruments
	2.1 AVHRR
	2.2 ATSR
	2.3 SLSTR
	2.4 AMSR

	3. Auxiliary Data
	3.1 NWP data
	3.2 Tropospheric aerosol
	3.3 Stratospheric aerosol
	3.4 Prior SST estimate
	3.5 SST climatology
	3.6 SST background error covariance estimates
	3.7 Sea ice concentration data
	3.8 HadSST4

	4. Algorithms
	4.1 Radiative Transfer
	4.2 Cloud Detection
	4.2.1 Clear-sky Spectral PDF
	4.2.2 Cloudy-sky Spectral PDF

	4.3 SST Retrieval
	4.3.1 ARC SST retrieval (dual-view sensors)
	4.3.2 Optimal Estimation (single-view sensors)
	4.3.3 Microwave SST retrieval

	4.4 Diurnal Variability adjustment
	4.5 Determining Quality Level
	4.5.1 Infrared sensors
	4.5.2 Microwave sensors

	4.6 Atmospheric Correction Smoothing
	4.6.1 ARC SST (dual-view sensors)
	4.6.2 Optimal Estimation (single-view sensors)

	4.7 Remapping (L3U)
	4.8 Daily collation (L3C)
	4.9 SST Analysis Scheme (L4)
	4.9.1 Uncertainty propagation and estimation
	4.9.2 Sea ice concentration interpolation and infilling

	4.10 Calibration-Spike Adjustment

	5. References
	Appendix A. Bias-Aware Optimal Estimation
	A.1 Sea surface temperature retrieval
	A.2 Bias parameter estimation
	A.3 Covariance matrix estimation
	A.4 Reference data
	A.5 Other aspects of implementation


		2023-06-12T15:36:53+0200
	Craig James Donlon




