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1. Background and objectives 

Burned area generated at global scale from remote sensing has emerged in the early 

2000’s with the MODIS sensor providing a continuous and fruitful information on its 

local, interannual and seasonal variations. Major applications were the global 

understanding of climate and human constraints on fire hazard, benchmarking of fire 

modules embedded in dynamic global vegetation models (DGVMs Hantson et al. 2016), 

biosphere atmosphere interactions, or fire/vegetation interactions. After the initial 

development of the MODIS burned Area dataset at 0.5° resolution (Roy et al. 2005, 

2008), increasing refinements on fire detections, the inclusion of small fires hardly 

captured at coarse resolution (Giglio et al. 2010), the combination of fire signal as fire 

radiative power during fire event in addition to the post-fire surface reflectance, allowed 

for better characterization of the burned area. At the same time, the increasing use of these 

data in the scientific community, identified detection failures or data formatting issues 

making them hard to use for certain purposes, while the increasing computing facilities 

allowed for finer spatial and temporal resolution, and longer term simulations. The remote 

sensing scientific community then had to account for these requested user needs to deliver 

the most suitable dataset for the research question addressed. Since recently, the 

development of new sensors, better performances and increasing knowledge in signal 

analysis for burned area detection, could lead to a larger panel of available datasets.  

The FireCCI project started in 2010 and aimed at providing original burned area datasets 

at the global scale based on an initial user requirement to fulfil targeted user requests not 

fully met in the existing panel of burned area products. Developments within this project 

lead to the early delivery of FireCCI41 from the MERIS sensor at 300m resolution for 

the period 2005-2011 (Chuvieco et al. 2016), followed by FireCCI50 (Chuvieco et al. 

2018) and the current FireCCI51 (Lizundia-Loiola et al. 2020a) based on the MODIS 

sensors at raw spatial resolution of 250m over the period 2001-2020, fulfilling one of the 

user requests to get better information on small fires at finer resolution. In addition, the 

FireCCILT11 (Oton et al. 2021) based on the AVHRR sensor allowed for the long term 

burned area reconstruction since 1982 at coarse resolution (5km) prolonging backward 

our current understanding of burned area trends, and fulfilling the second major user 

request identified in URD1.0. Finally, the FireCCISFD20 (Chuvieco et al. 2022) provides 

a continental scale burned area dataset for Africa at 10m resolution from the Sentinel 2 

sensor for the year 2019, and providing a keystone information on small fire 

identification.     

All these datasets now differ in their resolution, their temporal coverage, their detection 

accuracy, and the miscellaneous information associated to these data as the quality 

assessment, vegetation affected, burn date, or fire intensity. In turn, end-users now face 

both the benefits of getting an access to various and complementary information, but also 

the penalty of multiplying analysis across datasets, or arbitrarily choosing one dataset 

over the other. In order to provide a user-based guideline to new and useful developments 

of burned area within the FireCCI project, we investigated how the scientific community 

of end-users have been aware and actually used the newly delivered BA datasets within 

the FireCCI project, in order to identify potential caveats to be fixed and propose new 

developments for the next generation of BA datasets using previous and forthcoming 

sensors.  

To reach this goal, we combined a bibliographical review of scientific papers citing the 

FireCCI BA products listed above, and interviewed one of the major user group of end-
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user in the fire modelling community (FIREMIP) (Rabin et al. 2016) for a direct feedback 

on their methodological issues and concerns.  

2. FireCCI51: a global burned area dataset 2001-2021 at pixel (250m) 

and grid (0.25°) resolution. 

We screened the 119 publications citing Chuvieco et al. (2018) referring to the FireCCI50 

delivery and the subsequent FireCCI51 (Lizundia et al. 2020a) within WOS (until 

October 30th 2022) and published in referenced journals. 22 citations were linked to at 

least one partner of the project, leaving 97 publications from independent end-users. We 

could classify these 119 citations into few main targets : i) 23 publications cited 

FireCCI51 as a reference dataset within the scientific community for information (in 

introduction, discussion) but did not actually use it, ii) 11 publications actually used 

FireCCI51 for global or regional Land/atmosphere carbon budget assessment, iii)  36 

publications refer to the methodological advances developed in FireCCI51 for further use 

in local developments or new sensors, iv) 23 publications aimed at assessing the quality 

of FireCCI51 in comparison to reference data or other global burned are products, v) 7 

publications assess the local or global fire weather relationships, vi) 3 publications 

identified global or local fire regimes, vii) 5 publications investigated fire impact and viii) 

11 publications used FireCCI51 for DGVMs benchmarking. We detail below the lessons 

learned from how the authors cite FireCCI51. 

2.1. FireCCI51 acknowledged as an international reference dataset 

With 23 references to FireCCI51 in the scientific literature, FireCCI51 was widely cited 

in bibliographical reviews of keystone burned area datasets in various of research as 

methodological developments (Chuvieco et al. 2019), fire impacts on ecosystems (Jones 

et al. 2022, Konko et al. 2021, Lindersson et al. 2020, Chuvieco et al. 2020, Mayr et al. 

2019, Li et al. 2022a, Xiao et al. 2022) or human societies (Bilbao et al. 2019). In these 

reviews, FireCCI51 was cited aside MCD64A1 (Giglio et al. 2010) derived from the 

MODIS sensors at 500m resolution covering the 2001-present period (The MCD64A1 

(collections 5 and 6) algorithms integrate the 1 km MODIS AF product (MOD14A1 

and/or MYD14A1), MODIS reflectance data, and land cover product to detect area 

burned (Giglio et al 2009, 2018a,b), and GFED4s  (Van der Werf et al. 2017, Randerson 

et al. 2012) combining MCD64A1 and fire hotspots MCD14ML at 0.5° resolution but 

covering the 1997-present period using ATSR and TRMM and providing an indirect 

estimating small fires, a major advantage mostly acknowledged by end users. FireCCI51 

was also acknowledged as a reference dataset (Pereira et al. 2022), when other alternative 

dataset were used as hotspots VIIRS or MCD14ML  (Kong et al. 2022, Reddy and Sarika 

2022), or local fine resolution data as Landsat or Sentinel (Sivrikaya and Kucuk 2022, 

Rovithakis et al. 2022, Ganem et al. 2022, Wei et al. 2021, Shirashi et al. 2021, Sibley et 

al. 2019), acknowledging the efforts on finer resolution (Miranda et al. 2022) provided 

by FireCCI51, but still insufficient for local studies (Abdikan et al. 2022).  

An unexpected interest in FireCCI51, was the original validation step on fire patches and 

fire size distribution derived from pixel-level aggregation (further published as the FRY 

database by Laurent et al. 2019) cited by Mahood et al. (2022), Humber et al. (2022) and 

Balch et al. (2020) and implemented for MCD64A1 burned area data. This overview 

highlights the visibility of FireCCI51 in the scientific community within its recent 

delivery time and compared to the longer lasting MCD64A1 and GFED4s.   
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2.2. FireCCI51 still ongoing quality assessment 

Since its delivery in 2019, FireCCI51 has been evaluated a regional or global scale with 

equivalent other burned area products. In the Mediterranean basin Katagis and Gitas 

(2022) concluded on better small fires detection but overall no major improvement 

compared to MCD64A1, Galizia et al. (2021a) concluded on better patch identification 

from pixel level MCD64A1, while Turco et al. (2019) found better correlation with 

national burned area statistics with FireCCI51, still warning on filtering out non forest 

areas and keeping statistics at coarse resolution. At national level in countries with small 

fires, Achour et al. (2021) and Majdalani et al. (2022) warned still the missing small fires 

but increasing confidence in FireCCI51 compared to MCD64A1, a significant benefit of 

the finer resolution in FireCCI51. 

For the boreal forest, Moreno Ruiz et al. (2019) in Alaska, and Chen et al. (2021) warned 

of the 50% missed burned area in MCD64A1 and 40% in FireCCI51, with a lower 

commission error in FireCCI51. This observation, lead to new methodological 

developments for better accuracy in these ecosystems and provided in the local ABBA 

database (Chen et al. 2021), a method that could be tested and implemented in the 

forthcoming global burned area products and a BA database that could be used for future 

continental accuracy assessment. 

For the tropics, acknowledged as being a critical region for burned area identification 

from remote sensing due to a high cloud cover, Jiao et al. (2022) identified poor but still 

better BA identification from FireCCI51 compared to MCD64A1, while Vetrita et al. 

(2021), Valencia et al. (2020), and Rodrigues et al. (2019), Campagnolo et al. (2021) or 

Correa et al. (2022) blamed the poor FireCCI51 accuracy in cloudy conditions. Moreno 

et al (2021) pointed out the highest discrepancies between MCD64A1 and FireCCI41 in 

the tropical forests, making this ecosystem a future target of improvement. 

A major weakness of FireCCI51, but overall a common weakness on other BA products 

as MCD64A1, was the poor BA identification in croplands, as in wheat fields of Ukraine 

(Hall et al. 2021), where omission errors reached 80% and commission 75% due to high 

confusion with changes in reflectances due to harvest.  

Beside burned area, Pinto et al. (2020) provided an evaluation of burn dates from VIIRS 

sensor compared to MCD64A1 and FireCCI51 and pointed out the higher uncertainty in 

the latter one, with major consequences on fire spread rate identifications, a keystone 

process in fire model benchmarking. They pave the route for combining near real time 

hotspots into future burned area products for a better assessment of the burn date within 

fire patches at the pixel-level.  

Overall, FireCCI51 is now widely considered as a reference dataset for global burned area 

accuracy assessment and inter-comparisons with newly delivered products (Ramo et al. 

2021, Boschetti et al. 2019, Moreno Ruiz et al. 2020, Oton et al. 2021, Stroppiana et al. 

2022, Franquesa et al. 2020, 2022a,b, Gajardo et al. 2021, Belanguer Plomer et al. 2021), 

or training finer resolution semi-automated burned area detection tools at local scale 

(Dixon et al. 2022). These comparisons, despite being necessary for end user information, 

can bring confusion with an additional concern on the diverging temporal trends between 

FireCCI51 and other BA products (Worden et al. 2020).  
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2.3. FireCCI51 for carbon Land/atmosphere interactions 

One of the main goal of generating burned area and other essential climate variables at 

the global for the ESA climate change initiative, is the refinement of the land/atmosphere 

interactions. The reference database regarding this topic is the GFED4s data, using a 

combined burned area from MCD64A1 and hostpots to be used in the biogeochemical 

model CASA (Van der Werf et al. 2017, Randerson et al. 2012) and in turn covering the 

1997-present period, outcompeting FireCCI51 regarding the temporal coverage. 

However, an increasing number of recent studies mention FireCC51 as a potential 

alternative burned area data source (Silva et al. 2020, Bastos et al. 2022, Yin et al. 2020). 

Some authors specifically mention the weaknesses in FireCCI51 as in the Boreal region, 

where Romanov et al. (2022) provided, for Boreal Asia, a fire-driven carbon budget using 

Land Cover CCI, but intentionally preferred to use MCD64A1 with a better reliability in 

taking into account active fires and under cloudy conditions as stated in Humber et al 

(2019).   

Nevertheless, FireCCI51 was recently actually used for carbon budget emissions from 

terrestrial burning, due to its finer resolution as in India (Karthik et al. 2022), or as an 

alternative data source to provide uncertainty in carbon emissions. It was mostly used in 

addition to the reference GFED4s burned area, or MCD64A1 (Wu et al. 2022, di Giuseppe 

et al. 2021, Chen et al. 2020), or the recently delivered fine resolution Landsat-based 

global BA product (Pessoa et al. 2021). The recent global carbon budget from Bastos et 

al. (2020) illustrates how the various databases now available at global scale are 

considered as an uncertainty information itself, actually more considered than the intrinsic 

uncertainty information delivered in FireCCI51 (Brennan et al. 2019). This observation 

points out the interest of end-users for uncertainty in the carbon budget application, but 

they might better understand their own uncertainty based on multiple datasets BA 

variations (as illustrated in Hantson et al. 2016), than the uncertainty provided (potentially 

not enough explained, discussed and assessed in the literature?). Efforts should be 

devoted by BA providers in better illustrating the impact of the intrinsic uncertainty layer, 

and a multisource merged product with inter-product variability might be of interest at 

this stage of increasing burned area datasets availability.  

2.4. FireCCI51 as reference methodological innovation in new product 

developments 

Our extended bibliographical review of FireCCI51 citations revealed a huge amount of 

studies referring to FireCCI51 for its methodological innovation and potential 

transposition for new sensors. Mostly, recent studies refer for FireCCI51 methodology 

for Sentinel 2-based burned area development  at finer 10m resolution since 2018 (Farhadi 

et al. 2022, Roteta et al. 2019, 2021a,b,  Zanetti et al. 2021,  Zhang et al. 2021,  Pinto et 

al. 2021, Pacheco et al. 2021, Knopp et al. 2020, Tanase et al. 2020, Filipponi 2019), 

Landsat based burned area a 30m extending back to 1984 (Zhang et al. 2020, Hawbaker 

et al. 2020, Bar et al. 2020, Wozniak and Aleksandrowicz 2019, Long et al. 2019, 

Daldegan et al. 2019), AVHRR based burned area at coarse resolution back to 1982 (Oton 

et al. 2019, 2021a), Synergy (Lizundia-Loiola et al. 2022, FIRECCIS310), VIIRS 

(Fernandez Manso et al. 2020) or MODIS improvement itself (Lizundia Loiola et al. 

2020a, 2021, Campagnolo et al. 2019, De Bem et al. 2020, Belenguer-Plomer et al. 

2019a,b,2021). Humber et al. (2019) also cited FireCCI51 for the relevance of fire patch 

identification from the pixel-level information, further developed for the MCD64A1 BA 

data. We can identify from these ongoing developments the user needs for finer resolution 
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(10m with Sentinel2 to 30m from Landsat), a longer period (back to 1982 with either 

Landsat at fine resolution or AVHRR at coarser resolution), or with better performances 

with new sensors (VIIRS). 

This citation report on BA detection methods also points out FireCCI51 weaknesses and 

ongoing improvements on grasslands fires by using geostationary meteorological 

satellites (Chen et al. 2022b), and cropland burnings from Landsat (Liu et al. 2021) or 

Sentinel 2 (Van Dijk et al. 2021), previously pointed out in FireCCI51 intercomparisons 

papers as a major weakness. Ongoing developments also illustrate a keystone information 

missing in FireCCI51 and requested by the scientific community regarding the burn 

severity as reviewed in Kurbanov et al. (2022) and recently developed in the global 

MOSEV database (Alonso-Gonzalez et al. 2021). This request should be considered in 

the forthcoming developments of global BA products as an additional layer.   

Finally, FireCCI51, as the other global burned area datasets, would benefit from a near 

real time delivery of information (Yuan et al. 2020), as already for hotspots from the 

FIRMS interface (https://firms.modaps.eosdis.nasa.gov/active_fire/), or EFFIS 

automated processing chain for Europe (https://effis.jrc.ec.europa.eu/), providing to the 

media or scientific community emergency data on extreme events.  

2.5. FireCCI51 in burned area hazard and impact analysis and modelling 

Beside the carbon land/atmosphere interactions assessment for which it was intially built, 

FireCCI51 burned area data have been widely used in fire hazard and impact analysis, 

and modelling, making this scientific community a group of end-users with specific 

requirements. 

Global burned area data are widely used for large scale atmospheric impact fire hazard or 

continental scale extreme event analysis. FireCCI51 provides gridded monthly burned 

area or pixel-level daily information suitable for both analyses. FireCCI51 has recently 

been used aside the other global BA data GFED4s for the influence of Sea Surface 

Temperatures (SST) on the forthcoming fire hazard (Meng and Gong 2022) as well as 

atmospheric teleconnections in arctic boreal fires (Zhao et al. 2022) at coarse resolution 

(Tang et a. 2021). FireCCI51 provided an additional dataset for uncertainty assessment 

to the studies, with the sufficient and easy to access and manipulate coarse resolution 

dataset as provided by GFED4s. At finer temporal scale, the daily burned date of the 

pixel-level information was used to infer daily fire weather leading to large fires (Ermitao 

et al. 2022, Dong et al. 2021, Wang et al 2021, Silva et al. 2019) including heat waves 

and drought. Authors used the burn date as the actual burning day when this information 

actually refers to the date when a change in the surface reflectance was observed after the 

fire occurred, potentially affected by missing images or clouds. Uncertainty related to this 

information is covered in the FireCCI51 description paper (Lizundia-Loiola et al. 2021), 

but potentially hardly considered as it’s not delivered as an uncertainty layer per se. 

Thermal anomalies from fire hostpots MCD14ML or VIIRS (available since 2012) 

actually provide better accuracy in the burn date, a keystone information that should be 

improved or better characterized as an uncertainty layer in future developments. This 

information would help preventing potential fake signals in the fire weather analysis when 

these weather conditions can change fast from one day to the other.       

Fire regime, describing the seasonal and interannual variation of burned area in a given 

region mostly rely on global burned area for global assessment. They actually mostly rely 

on MCD64A1 until now, with few examples actually using FireCCI51, potentially a 

neglected scientific community in the communication and dissemination strategy. Bar et 

https://firms.modaps.eosdis.nasa.gov/active_fire/
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al. (2021) used both FireCCI51 and MCD64A1 for fire regime characterization in 

Himalaya, and Lizundia Loiola et al. (2020b) use FireCCI51 for the extreme 2019 fire 

season in Amazonia, and Bowman et al. (2020) covered the 2019-2020 extreme fire 

season in Australia based on FireCCI51 data. Lourenco et al. (2023) combined FireCCI51 

and the small fire database FireCCISFD11 to detect peatland fires in Angola. The use of 

FireCC51 in the tropics seems to be still problematic for end users. As previously pointed 

out for carbon budget and accuracy assessments, MCD64A1 is usually preferred due to 

the SWIR band with a daily revisit when cloud persistence limits imagery quality. Efforts 

should be devoted to increase the accuracy in this region. Some few environmental studies 

using FireCCI51 additionally focused on assessing the post-fire recovery in tropical 

forests (De Keersmaecker et al. 2022, Machida et al. 2021) and boreal forests (Cazzolla 

Gatti et al. 2021, Guo et al. 2021) where FireCCI51 was although previously criticized. 

A global assessment of fire impact on soil moisture (Sungmin et al. 2020) benefited from 

the CCI project combining both datasets  

The fire modelling community, using climate-driven dynamic global vegetation models 

(DGVMs) to simulate land/atmosphere interactions and the terrestrial carbon budget 

including fires impacts, has been an active user group in the last years, particularly 

through the Fire Model Intercomparison Project (FIREMIP, Rabin et al. 2016). They use 

global burned area for model benchmarking along the last century and the recent decades. 

Early stages of the project relied on GFED4s (van der Werf et al. 2017, Randerson et al. 

2012), accounting for small fires, covering the longest period since 1997, and providing 

a coarse resolution (0.5° and 0.25°) sufficient for the coarse resolution of the models. 

Since the delivery of FireCCI50 in 2018 and FireCCI51 in 2020, most publications arising 

from this group make the effort of using both GFED4s and FireCCI51 (Harrison et al. 

2021, Seiler et al. 2021, Wu et al. 2021, Hantson et al. 2020, Lasslop et al. 2019, 2020, 

Forkel et al. 2019a,b,c, Teckentrup et al. 2019, De Paula et al. 2019). For this community, 

the GFED4s remains the dataset covering the longest period and assumed to better 

consider small fires. With its finer 250m resolution FireCCI51 was intended to cover the 

gap of MCD64A1 initially fulfilled by implementing fire hotspots into the GFED4s 

database. FireCCI51 did not convince yet the added value of the small fires detected at 

250m resolution in this community, so an enhanced evaluation of this specific small fire 

part of the FireCCI51 dataset should be further provided in the forthcoming products. 

2.6. The fire patch database FRY derived from FireCCI50 

As soon as FireCCI50 was delivered, a side product of a fire patch database FRY (Laurent 

et al. 2018) derived from the pixel-level burn date was produced, by aggregating 

neighbouring pixels within a time lag lower than a given cut-off threshold into a similar 

fire patch. This database contains the location of fire patches globally, their 

morphological features, dating, and vegetation type affected, based on both FireCCI50 

and MCD64A1, making FireCCI the first global database to provide an easy accessible 

information on fire patches globally. With 48 citations in WOS since 2018, this side 

product contributed to the dissemination of the FireCCI data. This initiative actually 

inspired subsequent studies using new pixel-aggregation methods and data formats, 

including easy to use shapefile polygons: the updated FRY1.2 (Laurent et al. 2019 

including fire radiative power from MCD14ML) and Global Fire Atlas (Andela et al. 

2019), GlobFirm (Artes et al. 2020) or FIRED (Balch et al. 2020a,b, Mahood et al. 2022), 

these latter ones only using MCD64A1. To date, FRY remains the only fire patch database 

using FireCCI data. Fire patch quality assessments were performed regarding their 

boundary (Humber et al. 2019), their reliability a function of fire size (Campagnolo et al. 
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2021, Jiao et al. 2022) and compared to referenced events in Europe (Galizia et al. 2021a, 

Katagis and Gitas 2021) and US (Moreno et al. 2020, Chuvieco et al. 2018) or inter-

compared (Moreno et al. 2021). This database was rapidly used from the fire modelling 

community (Forkel et al. 2019c, Lasslop et al. 2019, Teckentrup et al. 2019) and 

referenced as added value to the fire science community (Chuvieco et al. 2019, 2020, 

Mignan et al. 2022, Da silva et al. 2019, Tacaks et al. 2021, Zhao et al. 2021, Sharma et 

al. 2022, Haas et al. 2022, Castro et al. 2022, Humber et al. 2022, Li et al. 2022b). This 

database was used for fire event analysis (rather than total burned area) in south America 

(Rodrigues et al. 2019, Silva et al. 2021, Santos et al. 2021, Fidelis et al. 2019), the 

Mediterranean basin (Curt et al. 2021, Genet et al. 2021, Galizia et al. 2021b), the boreal 

forest (Tomshin et al. 2021) or globally (Garcia et al. 2022, Pausas 2022, Millington et 

al. 2022). The pixel aggregation method has been further used with other sensors as 

VIIRS (Li et al. 2020, Santos et al. 2020, Pinto et al. 2021) or other (Lizundia Loiola et 

al. 2020, 2022). Improvements in the fire patch databases mostly came from pixel 

aggregation methods (particularly for multi ignitions merging into one single fire patch), 

fire rate of spread from fire duration (from maximum and minimum burn date within the 

patch), and fire intensity by merging burned area data with Fire radiative power from 

MCD14ML and VIIRS (Laurent et al. 2019, Jones et al. 2022). Ongoing perspectives and 

developments try and improve the fire dating potentially biased by image quality due to 

cloud cover (Pinto et al. 2020), and internal fire spreading (Huot et al. 2022, Humber et 

al. 2022, Chen et al. 2022a). The location of fire ignition based on the minimum fire date 

within the patch is also a keystone information to provide as in the Fire Atlas. This 

information highly depends on the quality of the burn date identification, and combining 

hostpots and pixel burned could refine this information. Forthcoming databases on fire 

patches will have to face these challenges with hopefully improved pixel-level fire dating 

and fire intensity, as well as new challenges in pixel aggregation for fine resolution 

datasets at 10m resolution from Sentinel 2, where a single fire event can be actually 

fragmented into smaller ones if a spatial buffer is not considered, as for example when a 

fire crossed a fire break as road or a small river over 1 or 2 pixels.    

3. FireCCILT11 long term burned area from AVHRR 

Among the user requirements stated in URDv1.0, a specific request on the longest as 

possible period was mentioned. As a response to this request, the FireCCILT11 was 

delivered by Oton et al. (2019,2021) to fulfil this scientific gap, when global burned area 

data hardly go back to 2001 (FireCCI51, MCD64A1) or 1997 (GFED4s). This recently 

delivered database was quickly integrated to the reference global Burned area datasets 

(Kurbanov et al. 2022, Chuvieco et al. 2020), with 21 citations in WOS. Mostly the 

innovative methodological developments were cited (De Luca et al. 2022, Abdi et al. 

2022, Abdikan et al. 2022, Glushkov et al. 2022, Bas et al. 2021, Saatchi et al. 2021, De 

Luca et al. 2021, Peng et al. 2021, Seydi et al. 2021, Wozniak & Aleksandrovicz 2019, 

Stroppiana et al. 2022, Xu et al. 2022, Gaveau et al. 2022, Oton et al. 2021) for similar 

AVHRR development and Sentinel 2 applications. Keystone long-term fire trends could 

be captured (Oton et al. 2022) with their climate drivers (Descals et al. 2022), with 

subsequent fire effects on ecosystems and biogeochemical cycles as the land/Atmosphere 

carbon budget (Van Marle et al. 2022), grazing/fire interactions (Hao et al. 2021), long 

term post fire recovery in Boreal Forests (de Andres et al 2021) or deforestation in 

Amazonia (Xu et al. 2020). However, the quality and coarse resolution of this dataset can 

be misleading on many purposes when used as any other Burned area data at 250m/500m 

resolution. Giglio et al. (2022) identified caveats in the dataset, and Xu et al. (2020)’s 
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conclusion on deforestation were controversial. The delivery of this dataset is significant 

step forward in understanding the long term changes in the global fire regimes but should 

be used carefully, and would need further quality assessment.  

4. End-user survey: the FIREMIP modelling group 

Based on our bibliographical review, we identified the FIREMIP (fire modelling 

intercomparison project, Rabin et al. 2016) group as an active end-user actually regularly 

using various global burned area data including FireCCI data.  During the October 2022 

annual FIREMIP meeting, FireCCI burned are datasets (FireCCI51, FireCCILT11 and 

FireCCISFD20) were presented as well as forthcoming objectives. We investigated how 

this community welcomed the new data and their requests for future developments. Their 

answers confirmed our bibliographical analysis that GFED4s represents a keystone 

information for their analysis due the time period covered (since 1997, compared to 2001 

or even 2003 for FireCCI51) and the consideration of small fires. The lack of targeted 

accuracy assessment on small fires in FireCCI51 make the end-user suspicious on how 

this additional burned area is truly related to actual small fires or an additional artificial 

and hardly reliable noise. In absence of demonstration of better reliability of FireCCI51 

over GFED4s for small fires, the benefit of the longer period provided by GFED4s is the 

most valuable for their study. However, they actually inserted FireCCI51 as reference 

dataset in their model benchmarking as we observed in our bibliographical, and they 

acknowledge the benefit of the uncertainty layer. Based on these numerous datasets 

available, a feeling of confusion is actually mentioned on how to analyse these datasets 

separately and merge them to get an inter-product uncertainty value. They are impressed 

by the recent results coming from the newly delivered FireCCISFD20 in Africa, revisiting 

their model calibration, and definitely have consideration and trust in this database. They 

remain unfortunately unable to use it in the present form as it covers only one year in 

2019. Any suggestion or dataset to readjust the historical burned area from FireCCI51 to 

this updated version, would be more than welcome. On the contrary, after provisional 

local analysis of FireCCILT11, they remain suspicious on the reliability of this database 

to be used for their model benchmarking in the present form.  

The current formats and resolutions (0.25°) are enough regarding the coarse resolution of 

their models. Until now, the fire patch database is seldom used, as their models are hardly 

ready to be evaluated at the patch level. However, they encourage the continuing of this 

development, bringing insights in the fire size distribution, rate of spreads and fire 

durations, as well as fire intensity (median within the patch) at the global level that might 

of interest for some models. 

5. Synthesis and recommendations 

We aimed here at synthesizing the user feedbacks from the FireCCI efforts in providing 

new burned area datasets to the scientific community. We investigated how the data have 

been used across various applications, and how they have been evaluated in their local 

accuracy. This fruitful investigation was complemented by a user survey from the 

modelling community FIREMIP, an active end user group. Regarding the low usage of 

FireCCI data in the environmental impacts and fire hazard, we should devote more time 

in disseminating to this community. 

From our analysis, we propose the following recommendations: 

 Pixel-level information at 250m (FireCCI51) and 20m (FireCCISFD20) have 

been highly used and cited as a main recent achievement, revisiting ecosystem 
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functioning and atmospheric impacts associated to fires. Spatial and temporal 

extension of FireCCISFD20 to the global level, and near real-time updates of 

FireCCI51 will increase further studies and key findings on fire impacts.   

 At the grid level (0.25°), a main goal, if reachable, would be to propose a corrected 

(even extrapolated with associated uncertainty) BA information accounting for 

the quality of the FireCCISFD20 for 2019 applied to the long-term coverage of 

FireCCILT11 or FireCCI51, so that the now acknowledged significant 

underestimation of coarse resolution BA dataset would be adjusted over the whole 

2001-present period. 

 A better demonstration of the significant improvement in small fire detection from 

FireCCI51 compared to GFED4s would better convince the users on the benefits 

of this dataset. At the grid level (0.25°), extending back to 1997 with a similar 

approach as GFED4s would also be a significant added value. 

 Improvements of the FireCCI51 and forthcoming burned area products in cloudy 

areas as the tropics or the boreal forest based on local methodological 

developments would greatly enhance its use for these regions. 

 Information on fire severity is one of the new keystone variable requested by 

users, and initiated in the MOSEV database that should be implemented in the 

forthcoming global burned area datasets. 

 Uncertainty in the burn date was assessed but users would benefit from it being 

inserted as an additional uncertainty layer at the pixel level. Improvements would 

be welcome for daily fire weather identification, fire spread, and pixel aggregation 

into patches.  

 A merged product at the pixel-level and grid-level combining the main existing 

current BA datasets (MCD64A1, GFED4s, FireCCI51) including the inter-

product uncertainty would benefit the end-user community,  now facing a large 

panel of information from which they have to choose or perform multiple impact 

studies.    

 Fire patch identification from pixel-level information is a significant side dataset 

that should be continued and updated with better information on the dating, 

duration, shapefiles and rate of spread, and ignition point, in an easy to use format 

(yearly shapefile and attribute table), as well as synthetic information on fire size 

distribution, mean fire size, intensity, duration/rate of spread at 0.25° or 0.5°.   
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Annex 1: Acronyms and abbreviations 

AVHRR  Advanced Very High Resolution Radiometer 

BA Burned Area 

CASA Carnegie-Ames-Stanford-Approach 

CCI  Climate Change Initiative 

DGVMs  Dynamic Global Vegetation Models 

EFFIS European Forest Fire Information System 

ESA  European Space Agency 

EU European Union 

FireMIP Fire Model Intercomparison Project 

FIRMS Fire Information for Resource Management System 

FRP Fire Radiative Power 

GFA Global Fire Atlas 

GFED  Global Fire Emissions Database 

HS Hotspot 

LTDR Land Long Term Data Record 

m Metres  

MIPs Model Intercomparison Projects 

MODIS  Moderate Resolution Imaging Spectroradiometer 

NASA National Aeronautics and Space Administration 

NOAA  National Oceanic and Atmospheric Administration 

TRMM  Tropical Rainfall Measuring Mission 

URD  User Requirements Document 

VIIRS Visible Infrared Imaging Radiometer Suite 

WoS Web of Science 
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