

ESA Climate Change Initiative – Fire_cci D5.3 User workshop Report

Project Name	ECV Fire Disturbance: Fire_cci
Contract Nº	4000126706/19/I-NB
Issue Date	16/11/2023
Version	1.1
Author	Florent Mouillot
Document Ref.	Fire_cci_D5.3_UWR_v1.1
Document type	Public

To be cited as: Mouillot, F. (2023) ESA CCI ECV Fire Disturbance: D5.3 User Workshop Report, version 1.1. Available at: <u>https://climate.esa.int/en/projects/fire/key-documents/</u>

		 .	Ref. Fire_cci_D5.3_UV		3_UWR_v1.1
fire		Fire_cci Issu User Workshop Report		1.1 Date	16/11/2023
cci	0			Page	2
Project Partners					
Prime Contractor/					
Scientific Lead & Pre	oject	UAH – University of Alcala (Sp	oain)		
Management					
		UAH – University of Alcala (St	nin)		
		UPM – Universidad Politécnica		id (Spain)	
Earth Observation Te	eam	CNR-IREA - National Research		· • ·	tute for
		Electromagnetic Sensing of the Environment (Italy)			
System Engineering		BC – Brockmann Consult (Germany)			
System Engineering		Be Brockinkin consult (Cerr	iiuiiy)		
		CNRS - Laboratory for Sciences of Climate and Environment			
Climate Modelling G	iroup	(France) VU – Vrije Universiteit Amsterdam (Netherlands)			
		vo – vije oliversiteit Alistei		nerranus)	
		Contraction of the second			
🚰 Universidad					
de Alca		POLITÉCNICA C Natio	onal Res	earch Cound	il of Italy
		onre			
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			F	
	ROCKMANI		15	UNIVERSITY	
CON	ISULT GM	вп	755	AMSTERDAM	

Distribution

Affiliation	Name	Address	Copies
ESA	Clément Albergel (ESA)	clement.albergel@esa.int	electronic copy
Project	Emilio Chuvieco (UAH)	emilio.chuvieco@uah.es	electronic copy
Team	M. Lucrecia Pettinari (UAH)	mlucrecia.pettinari@uah.es	
	Amin Khaïroun (UAH)	amin.khairoun@uah.es	
	Erika Solano (UAH)	erika.solano@uah.es	
	Consuelo Gonzalo (UPM)	consuelo.gonzalo@upm.es	
	Ángel Mario García Pedrero (UPM)	angelmario.garcia@upm.es	
	Dionisio Rodríguez Esparragón (UPM)	dionisio.rodriguez@ulpgc.es	
	Daniela Stroppiana (CNR)	stroppiana.d@irea.cnr.it	
	Matteo Sali (CNR)	sali.m@irea.cnr.it	
	Thomas Storm (BC)	thomas.storm@brockmann-consult.de	
	Florent Mouillot (CNRS)	florent.mouillot@ird.fr	
	Philippe Ciais (CNRS)	philippe.ciais@lsce.ipsl.fr	
	Guido van der Werf (VU)	g.r.vander.werf@vu.nl	

Summary

This document is the Report of the User Workshop that was organised as part of the European Geosciences Union (EGU) General Assembly 2023. This document summarizes the results of the survey done during the workshop, and presents some recommendations for future burned area product developments.

	Affiliation/Function	Name	Date
Prepared	CNRS	Florent Mouillot	15/11/2023
Reviewed	UAH – Project Manager UAH - Science Leader	M. Lucrecia Pettinari Emilio Chuvieco	16/11/2023
Authorized	UAH - Science Leader	Emilio Chuvieco	16/11/2023
Accepted	ESA - Technical Officer	Clément Albergel	17/11/2023

This document is not signed. It is provided as an electronic copy.

Document Status Sheet

Issue	Date	Details
1.0	30/10/2023	First Document Issue
1.1	16/11/2023	Addressing comments from ESA's Technical Officer

Document Change Record

Issue	Date	Request	Location	Details
1.1	16/11/2023	ESA	Section 3 Section 5	Text in second paragraph rephrased. Text updated.

Table of Contents

1. Aims and objectives	4
2. EGU 2023 FireCCI workshop programme	4
3. Workshop attendees' profiles and experience with BA datasets	8
4. Results of the survey on BA user's experience and future needs	12
4.1. User requirement on resolution and data format	12
4.2. Users' experience feedback on Burned Area products	13
4.3. End user perception of newly delivered fine resolution and long-term FireCCI	
datasets	14
4.4. Future needs	15
5. Synthesis and recommendations	16
6. Bibliography	17
Annex 1: Acronyms and abbreviations	18

1. Aims and objectives

Global information on burned area (BA) has now been investigated for more than 20 years. Initially delivered from the MODIS sensor in 2005 (Roy et al. 2005) on a monthly basis and at coarse 500m resolution, this information tremendously improved along the years, including smaller fires (Randerson et al. 2012) and finer resolution (Chuvieco et al. 2018), or fire intensity (Schroeder et al. 2014) or severity (Alonso Gonzalez et al. 2020). Based on this improving knowledge on burned area delivered at global scale, key results on fire emissions (van der Werf et al. 2017) and fire drivers could be identified (Haas et al. 2020) and implemented in fire hazard models embedded in Dynamic global vegetation models (Hantson et al. 2016, Rabin et al. 2017).

In the early stages of the BA developments, the Earth Observation community was devoted to technical issues related to producing accurate information on burned area and other Climate or Biodiversity essential variables. Once the major information, i. e. burned area, could be delivered, end-users increasingly raised issues and future needs (Mouillot et al. 2014) for climate assessment or other applications. Among other, the coarse resolution missing small fires, the high omission and commission errors in some areas, the low temporal accuracy, and the too short term fire history reconstruction appeared as the main weaknesses preventing accurate and timely fire emissions and climate/atmospheric impacts.

These end-user needs, first assembled from a bibliographical review and a user requirement questionnaire (Mouillot et al. 2014), paved the way to the FireCCI objectives since its early stages and lead to the delivery of the FireCCI51 finer resolution burned area (Chuvieco et al. 2018), the long term reconstruction from AVHRR sensor (Otón et al. 2019, 2021), and the Small Fire Dataset for Africa at high resolution (Chuvieco et al. 2022).

After more than 10 years of FireCCI activities, and the delivery of these updated burned area datasets, the pixel-based derived fire patch database FRY (Laurent et al. 2018), and keystone results on climate/atmospheric impacts (Ramo et al. 2021), FireCCI launched a new end-user survey during the splinter meeting workshop at the EGU 2023 General Assembly. This document presents the workshop programme, attendees' profiles, results of the survey and main conclusions.

2. EGU 2023 FireCCI workshop programme

The European Geophysical Union (EGU) conference aims at assembling the scientific community in earth sciences, covering many fields of research on earth, planetary and space science (https://www.egu23.eu/). Held in Vienna (Austria) from April 23rd to 28th 2023, EGU23 welcomed 15,453 onsite attendees from 107 countries, offering a fantastic opportunity to meet and advertise the earth/atmosphere interaction community about new earth observation data on global burned area, but also get their feedbacks on their perceptions of the data, how they use them, on what purposes, and request feedback on their future needs in terms of improvements.

Three oral presentations on the current updates of the FireCCI burned area data and application were given, with an audience composed of earth observation developers and end-users (Table 1), on April 24th and April 25th, allowing for an extending advertisement before the Workshop held on April 26th.

Table 1: Oral presentations related to FireCCI at EGU2023.

EGU23-9575 | Orals | BG1.2

FRYv2.0 : a global fire patch morphology database from FireCCI51 and MCD64A1

Florent Mouillot, Wentao Chen, Manuel Campagnolo, and Philippe Ciais Mon, 24 Apr, 11:05–11:15 Room C

EGU23-8151 | Orals | <u>NH7.1</u>

Assessment of fire contribution to forest loss in sub-Saharan Africa using mediumresolution BA

Amin Khairoun, Florent Mouillot, Wentao Chen, Philippe Ciais, and Emilio ChuviecoTue, 25 Apr, 11:47–11:57Room 1.31/32

EGU23-1317 | Orals | <u>NH7.1</u>

Global and continental burned area detection from remote sensing: the FireCCI products

M. Lucrecia Pettinari, Joshua Lizundia-Loiola, Amin Khairoun, Ekhi Roteta, Thomas Storm, Martin Boettcher, Olaf Danne, Carsten Brockmann, and Emilio Chuvieco Tue, 25 Apr, 08:33–08:43 Room 1.31/32

Beside the direct advertisement at EGU2023, a flyer about the workshop was sent to the attendees of the sessions BG1.2 (Fire in the Earth system: understanding effects across spatiotemporal scales) and NH7.1 (Spatial and temporal patterns of wildfires: models, theory, and reality) one week before.

The ESA FireCCI workshop on Burned Area products was organized on April 26th (16:15-18:15 CEST) during the SPM8 splinter Meeting negotiated with EGU2023 organizers. 4 presentations were given to synthesize FireCCI data and their benefits for the climate science community (Table 2).

 Table 2: FireCCI presentations during the workshop

- User requirements for global burned area data: literature review. Florent Mouillot (IRD, France)

- **BA dataset from the ESA FireCCI project**. M. Lucrecia Pettinari (University of Alcala, Spain)

- **FRYv2.0: a global fire patch morphology database: new developments**. Florent Mouillot (IRD, France)

- Emission estimates and top-down constraints from FireCCI BA products. Dave Van Wees (VU, Netherlands)

Interactive discussions took place between each presentation to perceive end-user interests, technical, quality or format limitations in using the data, and their future needs. To operate this discussion in real time, and make it interactive and dynamic, we prepared an online questionnaire, which attendees could fill on their smartphone in real time.

We used the Wooclap © application (<u>www.wooclap.com</u>) to prepare our questionnaire allowing multiple choice answers or open answers, and to be able to offer a real-time

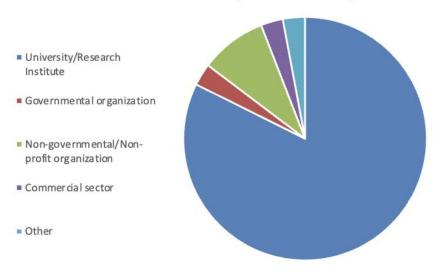
	Fire_cci User Workshop Report	Ref.	Fire_	cci_D5.	3_UWR_v1.1
Tire		Issue	1.1	Date	16/11/2023
cci				Page	6

calculations and graphic representation of answers, thus enhancing and capturing the attention of attendees, often reluctant in answering anonymous online questionnaires sent by emails.

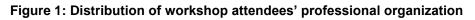
14 questions were prepared to get user's profiles and their views and expectation on burned area products (Table 3).

Table 3: Interactive Questionnaire of the FireCCI Workshop

O1. Discos in directs with at him d of institution soon halons to:
Q1: Please indicate what kind of institution you belong to:
University/Research Institute
Governmental organization
Non-governmental/Non-profit organization
Commercial sector
Other
Q2: Please indicate the country in which you are working (Open)
Q3: For what general application(s) do you require burned area information?
Atmospheric chemistry (-climate) modelling
Biogeochemical modelling
Dynamic vegetation modelling
Land cover / Land use change modelling
Statistical modelling of fire patterns and fire drivers
Forest and fire management planning (e.g., fire prevention, early response, post-
fire measures)
Environmental law
Others Q4: What satellite-derived burned area products have you used in the past?
FireCCI51
FireCCI - Small Fire Database Africa (11/20)
MODIS MCD64
MODIS MCD45
GFED4
GFED4s
GABAM
Other
So far, none
C3S BA
FireCCILT11
FireCCIS310
CGL BA
Q5: Do you trust the BA delivered by global remote sensing?
100% confident
Looks good enough
Don't fully trust but still using it; nothing else available
I actually never checked. I'm just using it and taking it for granted
I prefer not to use it


fire_cci Issue Issue Issue What is your preferred file format for BA products? NetCDF-CF HDF Geo TIFF TXT (ASCII files) Shapefile Other	1.1	Date Page	3_UWR_v1.1 16/11/2023 7				
What is your preferred file format for BA products? NetCDF-CF HDF Geo TIFF TXT (ASCII files) Shapefile		Page	7				
NetCDF-CF HDF Geo TIFF TXT (ASCII files) Shapefile							
NetCDF-CF HDF Geo TIFF TXT (ASCII files) Shapefile							
HDF Geo TIFF TXT (ASCII files) Shapefile							
Geo TIFF TXT (ASCII files) Shapefile							
TXT (ASCII files) Shapefile							
Shapefile			Geo TIFF				
-		TXT (ASCII files)					
Other		Shapefile					
Other							
What spatial resolution is useful for you?							
< 5 m							
15 - 30 m							
250 - 500 m							
1 km							
0.01 degrees							
0.05 degrees							
0.25 degrees							
1 degree							
Other							
How important are these BA product's characteristics related	ed to	your cl	noice in				
g it?		-					
Longest time period covered							
Near real time release							
Accuracy in total BA							
Accuracy of burned pixel location							
Accuracy in burn date							
The most used in the scientific literature of your scientific field							
Q9: What are your most important complains in current data?							
Data format (NetCDF, TIFF,)							
Data accessibility (FTP, download issues,)							
Data size (too heavy for my connection or computing facilities)							
Inaccuracy							
Too coarse resolution							
Too short period covered							
Q10: How do you consider BA uncertainties in your studies?							
Never using							
Just looking, never using							
Always checking rarely using							
Fully consider							
1: How many BA products have you tried?							
None							
Mostly 1, just checking others but not convinced on benefits							
2, to be scientifically sound							
2, to please the reviewers							
More for different topics							
More for considering uncertainties on the same topic							

	E Fire_cci User Workshop Report	Ref.	Fire_	cci_D5.	3_UWR_v1.1
Tire		Issue	1.1	Date	16/11/2023
cci				Page	8


Q12: What is your opinion on the recent fine resolution 20m BA data for Africa (Sentinel-2, FireCCISF11/20)?
Amazing to get this, it opens new research topics and new potential results
Nice but too short period so I wouldn't use it
Confusing, I lost trust in other coarse resolution products
Trying to adjust other product to these new values
Q13: What is your opinion on the long-term BA data (AVHRR FireCCILT11)?
Have not checked it
Checked and did not use it
Good enough for my research
Used after clean up/filtering
Found it very useful to get this long-term data
Q14: What would be your favourite next accomplishment(s) in global BA products?
Improve spatial resolution
Improve temporal resolution
Improve the real-time delivery of data
Merging coarse resolution sensors
Merging backwards all data in a longest period possible, even with high uncertainty
Adjust coarse resolution BA to new results obtained at fine resolution
Provide updates in previous versions with reduced uncertainties
Improve acknowledged weaknesses as peat/surface fire or cropland fires

3. Workshop attendees' profiles and experience with BA datasets

37 attendees participated in the workshop. Among them, 28 came from a research institute or university (87.5%) (Figure 1), while other attendees were coming from governmental agencies, non-governmental agencies or commercial sector.

User's professional organisation

			Ref.	Fire_	cci_D5.	3_UWR_v1.1
	TIre	fire Fire_cci cci User Workshop Report	Issue	1.1	Date	16/11/2023
	cci				Page	9

Regarding the nationalities of attendees (who could only participate on-site), 32 were based in European countries, with only 3 attendees from Asia, and 2 from the Americas, illustrating the potential bias of the study due to the European location of the conference (Figure 2). This is also in line with the general attendance to the EGU2023, where more than 70% of the on-site participants were from Europe (see the statistics of the participants' nationalities at <u>https://www.egu.eu/meetings/general-assembly/meetings/participants-2023/</u>). UK, Netherlands and Germany represented half of the attendees to the workshop, followed by Spain, Greece and Switzerland.

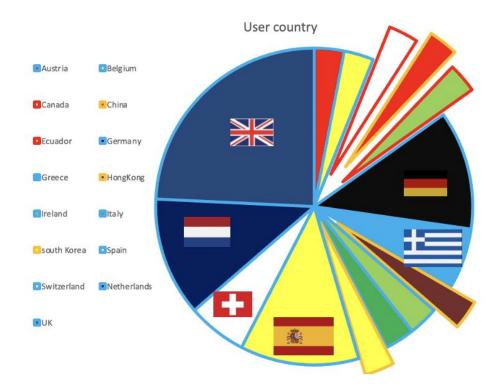


Figure 2: Distribution of workshop attendees according to their nationality.

The "field of research" analysis of the workshop attendees illustrated that only 1/3 were interested in fire/climate modelling, the scientific community which was initially the most targeted by the ESA Climate Change Initiative (CCI) (Figure 3). This result is actually in agreement with Mouillot et al. (2014), who could identify the various scientific community using global burned area data, outside the climate modelling community. Biogeography of fire, analysis of fire drivers (Fire regime analysis) and Forestry scientists accounted also each for 1/3 of the attendees.

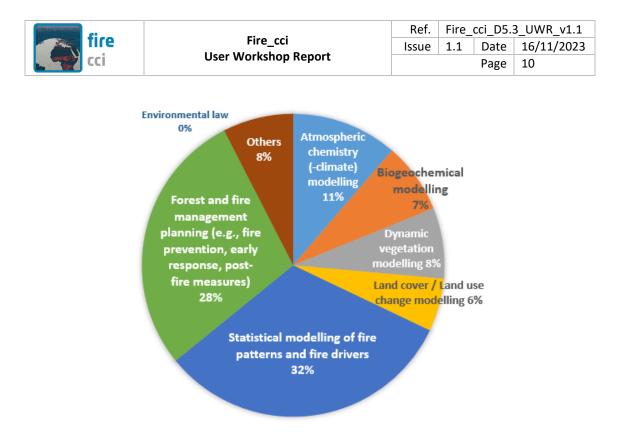
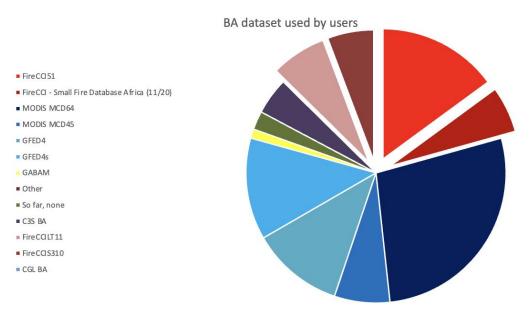
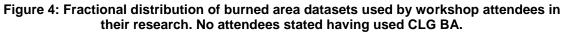




Figure 3: Distribution of workshop attendees according to their field of research

Whatever their background, most attendees (except one) had experience in at least one burned area product in their field of research (Figure 4). Our survey revealed that the most used dataset were the long lasting (available since 2005) MODIS MCD64A1 (1/3) and followed by the MODIS-derived GFED4 and GFED4s (25%). FireCCI data (FireCCI51, FireCCISFD11/20, FireCCILT11), despite being released later after 2018, accounted for 1/3 of the used datasets. This result illustrates how FireCCI data are now part of the acknowledged reliable burned area dataset to rely on within the panel of available products, not necessarily competing or over performing MCD64A1, but as part of the technical and processing uncertainties in estimating burned area.

		Ref.	Fire_cci_D5.3_UWR_v1.1		
fire	Fire_cci	Issue	1.1	Date	16/11/2023
cci	User Workshop Report		Page	11	

Figure 5 actually illustrates that current end-users rely on multiple burned area data sources depending on the research objectives (50%), but also at least two burned area products to be scientifically sound and account for uncertainties. 25% of attendees still use only one single burned area information in their studies, not convinced or informed about the differences between each fire products.

User's reliance on multiple BA datasets

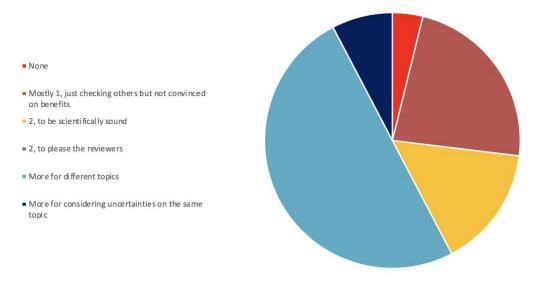
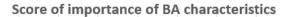



Figure 5: Fractional distribution of workshop attendees' decision strategy in using a single or multiple burned area datasets in their research.

The main reason for the end-users to select one given datasets (Figure 6) is the accuracy of total burned area, with a score of 4.3 (over a maximum of 5), followed by the accuracy in BA pixel location and the period covered (both with score 3.7). The accuracy on burned date had a lower score of 3.2, while the characteristics less important to the attendees, with a score of 2.8, where the near real time release of the product (some datasets being released in near real time as thermal anomalies MCD14ML, with a few months delay as MCD64A1 or more than a year as FireCCI51), and the product most used in the scientific literature (showing that attendees are willing to test and use new BA products).

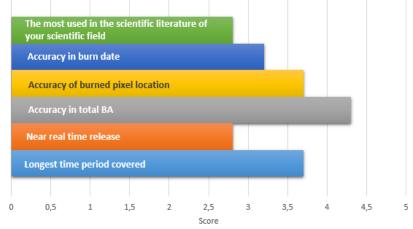


Figure 6: Score of workshop attendees' main reasons to select a given BA dataset for their research.

		Ref. Fire_cci_D5.3_UWR_v1.			
TIre	Fire_cci	Issue	1.1	Date	16/11/2023
CCI	User Workshop Report			Page	12

4. Results of the survey on BA user's experience and future needs

4.1. User requirement on resolution and data format

Among user requirements from Mouillot et al. (2014), finer resolution appeared as a keystone target to achieve. Indeed, ten years after this early survey, more than 1/3 of the workshop attendees still request very fine resolution burned area <30m (Figure 7). This goal was actually reached by the FireCCISFD11/20 database for Africa in 2016 and 2019, but the dataset remains to cover almost one continental and for two years, although expected to be applied at global scale in the future. Coarse resolution (250m-1km) was still considered as a convenient resolution for 1/3 of the attendees, as well as gridded information (0.05° -1° resolution) mostly because global dynamic vegetation models or fire emission models are yet hardly applicable at finer resolution (Rabin et al. 2017, Hantson et al. 2016). These user requirements are covered by the different data formats delivered by the FireCCI project, offering both gridded and pixel-level information, and thus covering most of the user needs.

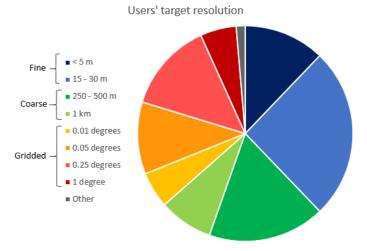
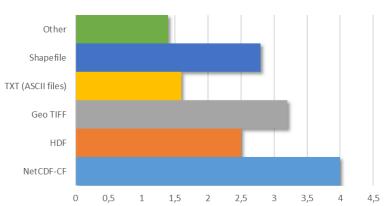



Figure 7: Fractional distribution of workshop attendees needs referred to the spatial resolution of burned area datasets

Data format's preference was mostly the widely used NetCDF and GeoTIFF formats, currently delivered by the FireCCI project, thus fitting the users' preferences (Figure 8).

Users' rating on data format

Figure 8: Rating (0: not used, 5: favourite) of burned area data formats

4.2. Users' experience feedback on Burned Area products

In order to get potential difficulties, data caveats or bad experiences raised by end-users, we questioned the attendees on their perception of the quality of BA products currently available.

As a first information, we asked how confident they feel in the BA estimates delivered by the global datasets. None was actually 100% confident in the BA estimates, but 1/3 considered the data to look good enough relative to their scientific goals. Almost 50% of attendees, however, had a relative low trust in the data, but relied on them as the only source of data they could use given the current technological advances. This large proportion of scientists are actually the main contributors to future needs and requirements that the Earth Observation scientific community is trying to reach with the increasing development of new sensors and technologies. We could criticise that 20% of the end-users take the burned area data for granted, without relying on the warnings and uncertainty assessments of the datasets delivered in the Product Specification Document (PSD).

Users' perception of BA dataset's quality

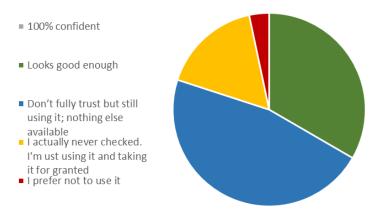


Figure 9: Workshop attendees' perception of the burned are data quality

A specific question on the uncertainty layer, provided by FireCCI51 gridded and pixellevel information (as described in the PSD), actually revealed that end-users don't even look, just browse, but hardly consider this additional layer (Figure 10). Brennan et al. (2019) fully covered this issue over multiple BA products, but has received little attention yet.

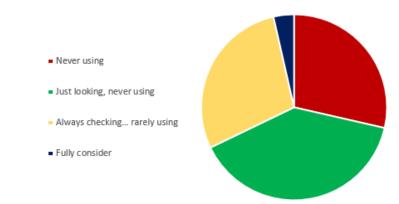


Figure 10: Workshop attendees' use of the uncertainty layer provided in burned area datasets.

		Ref.	Fire_cci_D5.3_UWR_v1.1		
fire		Issue	1.1	Date	16/11/2023
cci	User Workshop Report	Page 14	14		

As a synthesis (Figure 11), the main critics and complains of the end-users on the current BA developments still cover some data format or downloading technical aspects, maybe mostly for the scientific community of forestry and biogeography of fire regimes, less used to GeoTIFF or NetCDF formats, or hardly trained to manipulate huge and multilayered datasets. Beside these technical complains, the still high rates of commission/omission errors and in turn inaccuracy in the total burned area, a too coarse resolution information for local studies, and a too short period of time (2000-present) remain equally mentioned by the users, a critic similarly pointed out for the early BA datasets (Mouillot et al. 2014).

Users' dominant critic/complain

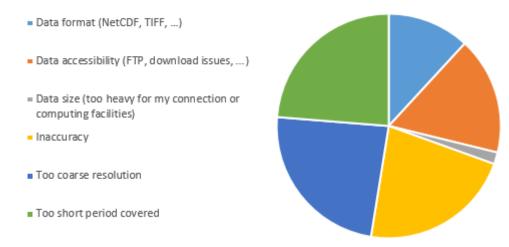


Figure 11: Workshop attendees' main critics in the current burned area datasets

4.3. End user perception of newly delivered fine resolution and long-term FireCCI datasets

To fulfil the initial user requirements on finer resolution and longer-term BA information, FireCCI developed respectively the FireCCISFD11 (for the year 2016) and FireCCISFD20 (for the year 2019) for sub-Saharan Africa at 20m spatial resolution, and the global FireCCILTDR11 at global scale since 1982 but at approx. 5 km resolution. We investigated how the end-users perceived these new developments.

Regarding the fine resolution FireCCISFD11/20 (Figure 12), more than 50% of the attendees valued the benefits of this dataset as a significant scientific step forward for their research. As it covers only the years 2016 and 2019 and only for Africa, this main weakness prevented some attendees to actually use it (as they needed long time series or fully global data). However, they were still enthusiastic of this BA update for Africa, and tried to adjust the observed discrepancy with coarse resolution data, pointing out here future needs and targeted developments for the Earth Observation community.

Users' perception of FireCCI11/20 for Africa

Figure 12: Workshop attendees' perception of the newly delivered FireCCISFD11/20 small fire datasets for Africa

Regarding the long-term BA dataset FireCCILT11, based on data from the AVHRR sensor, it seems it was hardly considered yet in the scientific community (at least between the workshop attendees), as 75% of the attendees had not even checked the dataset (Figure 13). For those who were aware of the dataset, they ended up not using it (too much discrepancy with the coarse resolution datasets), or used it after filtering or readjusting the data. No users were fully satisfied by this information, despite it fulfils a major user requirement (Giglio et al. 2020), but still faces technical issues (Giglio et al. 2022).

User's perception of FireCCILT11
Have not checked it
Checked and did not use it
Good enough for my research
Used after clean up/filtering
Found it very useful to get this long-term data

Figure 13: Workshop attendees' perception of the newly delivered long term (1982-2018) burned area dataset FireCCILT11

4.4. Future needs

We finally used the opportunity of the workshop, after a full presentation of the recent developments and their benefits and improvements, and a summary of how they were aligned with user requirements assembled in Mouillot et al. (2014), to collect an updated list of user needs.

		Ref.	Fire_cci_D5.3_UWR_v1.1			
Tire	Fire_cci	Issue	1.1	Date	16/11/2023	
cci	User Workshop Report			Page	16	

An improved spatial and temporal resolution remain a keystone target for 1/3 of end users, along with an increase in burned area accuracy (Figure 14). The survey also pointed out specific needs for targeted ecosystems where the current BA products are acknowledged to be poorly efficient, such as croplands, peatlands and surface fires.

Overall, with the increasing number of BA sources, compared to the unique MCD64A1 available in the early 2000's, it appeared that a merging of the different sources of BA information into one single data would be beneficial to the community. As an ultimate goal, combining coarse resolution datasets (MCD64A1, FireCCI51), and adjusted to the finest resolution or longest-term datasets could fulfil, all in one, the user's current needs.

Users' expectations on new developments

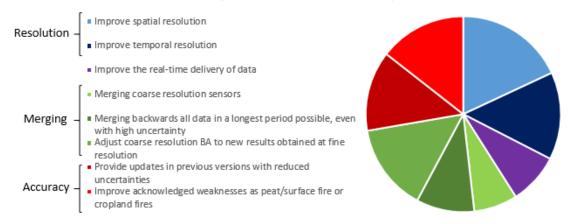


Figure 14: Workshop attendees' future needs following the new developments exposed during the workshop

5. Synthesis and recommendations

This user workshop held at EGU allowed an interactive discussion between burned area data providers and end-users, both clarifying in real time misunderstandings on burned area specificities from data providers to end users, and getting feedbacks from end users for their research needs and how current dataset could be improved to fully cover their scientific goals. We could identify the various end-user communities, way beyond the initially targeted climate modelling community and thus providing contrasting needs. Overall, the developments of new datasets from the FireCCI project benefited the scientific community by revisiting the total global burned area and increasing the spatial resolution of the products based on the MODIS sensor. Current testing of future improvements on finer spatial resolution with the Sentinel sensor appeared a major achievement, while the long term burned area FireCCILT11 received little attention and major doubts on its reliability.

From this survey we could point out that a merged product, with a widely documented and illustrated uncertainty information (which seems to be yet misunderstood and neglected), could fulfil many of the current user needs. Efforts on this line are being made by the FireCCI consortium with the current development of a merged dataset based on medium resolution BA products (MODIS MCD64, FireCCI51 and FireCCILT11).

Still, further efforts are needed to realise the full potential of the high resolution EO datasets, such as Sentinel-2. The existing FireCCISFD11 and FireCCISFD20 are a good and promising starting point, but global time series of burned area datasets at this resolution would allow for new capabilities in BA analysis and modelling.

6. Bibliography

- Alonso-González E, Fernández-García V. (2021). MOSEV: a global burn severity database from MODIS (2000–2020). Earth System Science Data.13(5):1925-38.
- Brennan, J, Gomez-Dans, JL, Disney, M, Lewis, P. (2019). Theoretical uncertainties for global satellite-derived burned area estimates. Biogeosciences. 16(16): 3147-3164. DOI10.5194/bg-16-3147-2019
- Chuvieco E., Lizundia-Loiola J., Pettinari M. L., Ramo R., Padilla M., Tansey K., <u>Mouillot F.</u>, Laurent P., Storm T., Heil A., Plummer S. (2018). Generation and analysis of a new global burned area product based on MODIS 250 m reflectance bands and thermal anomalies. Earth System Science Data, 10 (4), p. 2015-2031. https://doi.org/10.5194/essd-10-2015-2018
- Chuvieco E, Roteta E, Sali M, Stroppiana D, Boettcher M, Kirches G, Storm T, Khairoun A, Pettinari ML, Franquesa M, Albergel C. (2022). Building a small fire database for Sub-Saharan Africa from Sentinel-2 high-resolution images. Sci Total Environ. 1; 845:157139. doi: 10.1016/j.scitotenv.2022.157139.
- Giglio, L. and Roy, D. P. (2020). On the outstanding need for a long-term, multi-decadal, validated and quality assessed record of global burned area: Caution in the use of Advanced Very High Resolution Radiometer data, Science of Remote Sensing, 2, 100007, https://doi.org/10.1016/j.srs.2020.100007.
- Giglio, L., & Roy, D. P. (2022). Assessment of satellite orbit-drift artifacts in the longterm AVHRR FireCCILT11 global burned area data set. Science of Remote Sensing, 5, 100044.
- Haas, O., Prentice, I. C., & Harrison, S. P. (2022). Global environmental controls on wildfire burnt area, size, and intensity. Environmental Research Letters, 17(6), 065004.
- Hantson S. Arneth A., Harrison S., Kelley D.I., Prentince I.C., Rabin S.S., Archibald S., Mouillot F., Arnold S.R., Artao P., Bachelet D., Ciais P., Forrest M., Firedlingstein P., Hickler T., Kaplan J.O., Kloster S., Knorr W., Lasslop G., Li F., Mangeon S., Melton S., Meyn A., Sitch S., Spessa A., van der Werf G., Voulgarakis A., Yue C. (2016). The status and challenge of global fire modelling. Biogeosciences 13(11):3359-3375.
- Laurent P., Mouillot F., Yue C., Ciais P., Moreno M.V., Nogueira J.M.P. (2018). FRY: a global database of fire patch functional traits derived space-borne burned area products. Scientific data 5:180132.
- Mouillot F., Schultz M.G., Yue C., Cadule P., Tansey K., Ciais P., Chuvieco E. (2014). Ten years of global burned area products from spaceborne remote sensing: a review. Analysis of user needs and recommendations for future developments. *International Journal of Applied Earth Observation and Geoinformation*, 26, p. 64-79. ISSN 0303-2434.
- Otón, G, Ramo, R, Lizundia-Loiola, J, Chuvieco, E. (2019). Global Detection of Long-Term (1982-2017) Burned Area with AVHRR-LTDR Data. Remote Sensing. 11(18):2079. DOI10.3390/rs11182079
- Otón G, Lizundia-Loiola J, Pettinari ML, Chuvieco E. (2021). Development of a consistent global long-term burned area product (1982–2018) based on AVHRR-LTDR data. International Journal of Applied Earth Observation and Geoinformation 103(10):102473 https://doi.org/10.1016/j.jag.2021.102473
- Rabin, S. S., Melton, J. R., Lasslop, G., Bachelet, D., Forrest, M., Hantson, S., Kaplan, J. O., Li, F., Mangeon, S., Ward, D. S., Yue, C., Arora, V. K., Hickler, T., Kloster, S., Knorr, W., Nieradzik, L., Spessa, A., Folberth, G. A., Sheehan, T., Voulgarakis, A.,

	Fire_cci	Ref.	Fire_cci_D5.3_UWR_v1.1		
Tire		Issue	1.1	Date	16/11/2023
cci	User Workshop Report	Page 18	18		

Kelley, D. I., Prentice, I. C., Sitch, S., Harrison, S., and Arneth, A. (2017): The Fire Modeling Intercomparison Project (FireMIP), phase 1: experimental and analytical protocols with detailed model descriptions, Geosci. Model Dev., 10, 1175–1197, https://doi.org/10.5194/gmd-10-1175-2017.

- Ramo, R Roteta, E Bistinas, I van Wees, D Bastarrika, A Chuvieco, E van der Werf, GR. (2021). African burned area and fire carbon emissions are strongly impacted by small fires undetected by coarse resolution satellite data. Proceedings of the National Academy of Sciences 118(9):e2011160118.
- Randerson, J. T., Chen, Y., van der Werf, G. R., Rogers, B. M., Morton, D. C. (2012). Global burned area and biomass burning emissions from small fires, J. Geophys. Res., 117, G04012, doi:10.1029/2012JG002128.
- Roy, D. P., Jin, Y., Lewis, P. E., and Justice, C. O. (2005). Prototyping a global algorithm for systematic fire-affected area mapping using MODIS time series data, Remote Sens. Environ., 97, 137–162.
- Schroeder W., Oliva P., Giglio L., Csiszar I. (2014). The new VIIRS 375m active fire detection data product: algorithm description and initial assessment. Remote sensing of environment 143(4): 85-96.
- van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chen, Y., Rogers, B. M., Mu, M., van Marle, M. J. E., Morton, D. C., Collatz, G. J., Yokelson, R. J., and Kasibhatla, P. S. (2017). Global fire emissions estimates during 1997–2016, Earth Syst. Sci. Data, 9, 697–720, https://doi.org/10.5194/essd-9-697-2017.

AVHRR	Advanced Very High Resolution Radiometer
BA	Burned Area
CCI	Climate Change Initiative
EGU	European Geosciences Union
ESA	European Space Agency
FRY	Fire Patches Dataset
GFED	Global Fire Emissions Database
LTDR	Land Long Term Data Record
MODIS	Moderate Resolution Imaging Spectroradiometer
PSD	Product Specifications Document

Annex 1: Acronyms and abbreviations