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We are witnessing land changes and 
increasingly frequent natural disasters, 

e.g. deforestation, heatwaves, 
severe floods and droughts.

HSAT

Trillium Tech

ESA

Monitoring using Earth Observation
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Satellite Earth Observation

Optical Synthetic 
Aperture Radar

Intensity Phase
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Benefits & Complexities of SAR Data

Light & Weather Independence Solid Object Penetration Sensitivity to Spatial Changes
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Benefits & Complexities of SAR Data

Light & Weather Independence Solid Object Penetration Sensitivity to Spatial Changes
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SAR Pre-processing:

- Orbit Corrections
- Radiometric Calibration
- Speckle Filtering
- Terrain Correction
- …

SAR Products:

- Polarimetry (VV/VH/HV/HH)
- Coherence
- Interferograms
- …
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Self-Supervised Learning (Without Labels)
SAR Inputs

Coherence

Interferogram

Encoder Decoder

Pretext Tasks

Example Task 1: Predict Missing Pixels

Example Task 2: Match Encodings

Shared information?
Same location?

Amplitude
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Self-Supervised Learning Architectures

Sentinel-1 GRD
Amplitude

VV, VH, VV/VH
Seasonal Means 

12 Channels

SAR Inputs
Masked Autoencoder (MAE)

Encoder Decoder

He et al., arxiv: 2111.06377

Why?

・ Robustness to noise/       
missing data
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Self-Supervised Learning Architectures

Sentinel-1 GRD
Amplitude

VV, VH, VV/VH
Seasonal Means 

12 Channels

SAR Inputs
Masked Autoencoder (MAE)

Encoder Decoder

Self-Distillation with No Labels (DINO)

T(        )

T(        )
EMA

Attention Maps

He et al., arxiv: 2111.06377

Caron et al., arxiv:2104.14294

Why?

・ Robustness to noise/       
missing data

・Multiscale Invariance
・Emergent Segmentation

Teacher   Network

Student   Network
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Sentinel-1 GRD
Amplitude

VV, VH, VV/VH
Seasonal Means 

12 Channels

SAR Inputs
Downstream Fine-tuning (With Labels)

Pre-trained 
Encoder

New
Decoder
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Vegetation Land Cover

Fire

Downstream Tasks

Biomass
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Benchmarking Datasets

Europe Continental US China

South America South-East Asia Middle East

・25+ TB of co-aligned data tiles
・Soon available on spaceml.org

Vegetation Land Cover

Fire

Amplitude

Coherence

Interferogram Optical Built Area

Biomass
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Improved Vegetation Prediction with Pre-Training

4.75Mean 
Vegetation %

MAE

Europe

Continental US

China

Pre-training:

Fine-tuning:
Europe

(200k tiles)
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Improved Vegetation Prediction with Pre-Training

Mean 
Vegetation %

MAE

Europe

Continental US

China

Pre-training:

Fine-tuning:
South America

0.82 (84k tiles)
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1% 

Vegetation Prediction
(after training on 2000 tiles)

Ground Truth
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Improved Land Cover Classification with Pre-Training

MAE

Europe

Continental US

China

Pre-training:

Fine-tuning:

14

8.62

South America

(84k tiles)
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Improved Land Cover Classification with Pre-Training

MAE

Europe

Continental US

China

Pre-training:

Fine-tuning:

15

South America

SAR Input Ground Truth Prediction
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Emergent Segmentation in DINO Attention Maps
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Example 
SAR Input Vision Transformer Attention Maps
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Emergent Segmentation in DINO Attention Maps
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Example 
SAR Input Vision Transformer Attention Maps High Res. 

Land Cover
Med. Res. 

Land CoverSentinel 2 Vegetation Biomass Built Area
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Summary & Conclusions
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• Tested SOTA unsupervised models (MAE/DINO)

• Clear benefits of pre-training without labels

• Good performance even with small fine-tuning datasets

• Attention maps hold value for diverse tasks

Any EO Data

Foundation Model

Vegetation Land Cover

FireBiomass

Built Area

Any Downstream Task

…
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Conus

China

South 
America

Europe

TRAIN

VAL

TEST
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Overview of DINO Architecture
21


