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Summary 

This End-to-End ECV Uncertainty Budget (E3UB) document describes the analyses that 

were made to identify and estimate the major sources of error that arise in each step of the 

Fire Disturbance ECV’s final product retrieval process. 

 

 Affiliation/Function Name Date 

Prepared UAH 

Joshua Lizundia-Loiola 

Gonzalo Otón 

Miguel Ángel Belenguer Plomer 

Mihai A. Tanase 

30/04/2020 

Reviewed  UAH – Project Manager M. Lucrecia Pettinari 30/04/2020 

Authorized UAH - Science Leader Emilio Chuvieco 30/04/2020 

Accepted ESA - Technical Officer Clément Albergel 05/05/2020 

This document is not signed. It is provided as an electronic copy.  

 

 

Document Status Sheet 

Issue Date Details 

1.0 30/03/2020 First Version of the document 

1.1 30/04/2020 Addressing comments of Fire_cci+_D2.2_E3UB_v1.0_RID.doc 

   

 

Document Change Record 

Issue Date Request Location Details 

1.1 30/04/2020 ESA Section 2 

Section 4 and sub-

sections 

 

Section 4.3 

Section 6 

Small changes in the text 

Sub-sections reorganized, with the ones 

corresponding to FireCCILT20 and 

FireCCIS1S2AF10 merged and expanded. 

Text expanded. 

Additional references added. 

     

 

  



 

Fire_cci 
End to End ECV Uncertainty Budget 

Ref.: Fire_cci_D2.2_E3UB_v1.1 

Issue 1.1 Date 30/04/2020 

Page 4 
 

Table of Contents 

1 Executive Summary .................................................................................................. 5 

2 Introduction and objectives...................................................................................... 5 

3 Uncertainty characterisation through pre-processing steps ................................. 8 

3.1 General overview .................................................................................................. 8 

3.2 Terra-MODIS Level 2G ........................................................................................ 9 

3.3 Sentinel 3-Synergy Level 2 ................................................................................. 11 

3.4 NOAA-AVHRR LTDR Level 2G ...................................................................... 13 

3.5 Sentinel 2-MSI Level 2 ....................................................................................... 14 

3.6 Sentinel 1-SAR ................................................................................................... 15 

3.7 Ancillary data ...................................................................................................... 16 

3.7.1 Terra and Aqua MODIS active fires............................................................ 16 

3.7.2 NOAA-20 and SUOMI-NPP VIIRS active fires ......................................... 16 

3.7.3 Land Cover CCI .......................................................................................... 17 

4 Uncertainty characterisation through BA algorithms ......................................... 17 

4.1 FireCCI51 ........................................................................................................... 17 

4.2 FireCCISFD20 .................................................................................................... 18 

4.3 FireCCIS310 ....................................................................................................... 18 

4.4 FireCCILT20 and FireCCIS1S2AF10 ................................................................ 20 

5 Uncertainty characterisation at grid scale ............................................................ 21 

6 References ................................................................................................................ 23 

Annex 1 Acronyms and abbreviations ........................................................................... 28 

 

List of Tables 

Table 1. Central wavelength (nm) of each band of the MSI aboard Sentinel-2 A and B. . 14 

Table 2. Example of the matrix that can be obtained from an algorithm that uses two 

variables (X and T) and n neighbour pixels to classify the pixel i as 

burned(B)/unburned(UB). ......................................................................................... 19 

 

List of Figures 

Figure 1. Uncertainty of an area of the tile h30v10 (Australia) for June 2008. The values 

represent the probability of each pixel being burned. Source: Lizundia-Loiola et al. 

2018. .......................................................................................................................... 18 

Figure 2. The Poisson binomial PDF (green line) derived from a simulated set of 

independent samples (300, 100 with probabilities between 0.7 and 0.9, 100 with 

probabilities between 0.2-0.3 and 100 with probabilities between 0-0.1). A Gaussian 

approximation (red line) derived from calculating the mean (~110) and standard 

deviation (~39) is also shown. Skewness was ~0.01. Source: Lewis et al. 2018. ..... 23 

  



 

Fire_cci 
End to End ECV Uncertainty Budget 

Ref.: Fire_cci_D2.2_E3UB_v1.1 

Issue 1.1 Date 30/04/2020 

Page 5 
 

1 Executive Summary 

The End-to-End ECV Uncertainty Budget (E3UB) document aims to identify and estimate 

the major sources of error that arise in each step of the ECV’s final product retrieval 

process. In general terms, each step is related to a processing level. Those levels are 

typically known as Level-0, Level-1, Level-2, Level-3 (gridded data) and Level 4, although 

this naming convention has not been officially adopted by every space agency yet. This 

document tries to determine and estimate the distribution (uncertainty) that is followed by 

the errors that are caused by different effects throughout those levels, and provides a frame 

for their propagation. To do that, input sensors that were used by the different algorithms 

developed within the project for the burned area retrieval (Sentinel-1 SAR, Sentinel-2 MSI, 

Sentinel-3 Synergy, NOAA AVHRR, and Terra MODIS), and their corresponding 

ancillary data (Land Cover CCI, Active Fires, etc.) were properly characterised.  

2 Introduction and objectives 

Error characterisation and validation are critical phases to generate any Essential Climate 

Variable (ECV), and therefore both have an important role in the European Space Agency’s 

(ESA) Climate Change Initiative (CCI) programme since its inception. While the validation 

gives information about the global quality of the product, the error characterisation tries to 

find out which factors are affecting those results and how they are distributed. This implies 

characterising every source of error and determining how they are propagated through the 

whole retrieval process, i.e. from the input data to the product estimates through the 

functions used to derive the estimates. The Guide to the Expression of Uncertainty in 

Measurement (GUM) that is maintained by the Joint Committee for Guides in Metrology 

(JCGM) describe this process as the “general law of error propagation” (GUM 2008).  

It is important to separate two different stages in uncertainty characterisation that are 

clearly discernible in any Earth Observation (EO) data application. The first one 

encompassed the uncertainties of all processing levels that were applied prior to the usage 

of the EO data by the algorithm developer. In the case of burned area (BA) estimation, this 

refers to all the processes applied from raw data to generate the Level 1 (radiances) and 

Level 2 (reflectance) products. These processes occur before applying the BA algorithms, 

and therefore should be a responsibility of those in charge of the pre-processing algorithms. 

The second stage of uncertainty characterization deals with those factors related to the BA 

algorithm, which could be considered as the actual responsibility of the BA algorithm 

developers. They include all processes and transformations required to classify pixels as 

burned or not, as well as derived products (burned area estimates, for instance), which are 

offered to a higher level user. In the case of Fire_cci BA, this stage refers to the 

uncertainties associated to BA algorithms or any process used to produce the final pixel 

and grid products (see definition of both products in the Product Specification Document 

(PSD) of Fire_cci Phase 2 (Chuvieco et al., 2017) and its update in the Algorithm 

Development Plan (ADP) document (Pettinari et al., 2019)).  

The definition of the previous two phases implies that the error characterisation of the first 

one needs to be based on existing literature, since it concerns several data providers of 

different processing levels (ground segments, space agencies, etc.) as well as different 

hardware and software (Mittaz et al., 2019). However, it is within the scope of the Fire_cci 

project to develop a proper uncertainty propagation framework for the second stage. 

Uncertainty characterisation has been increasingly demanded for the last decades by 

different strata of the EO data user community and, hence, several attempts were done to 

provide an uninterrupted chain of error propagation at every processing level. For example, 
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in the case of the Moderate Resolution Imaging Spectroradiometer (MODIS) Level 1B 

product, the MODIS uncertainty index was developed by NASA to provide an estimation 

of the uncertainties related to that level (https://mcst.gsfc.nasa.gov/sites/default/ 

files/file_attachments/M1054E_PUG_2017_0901_V6.2.2_Terra_V6.2.1_Aqua.pdf). For 

Sentinel data, Gorroño et al. (2017) designed a tool named Sentinel-2 Radiometric 

Uncertainty Tool (S2-RUT) that aims to estimate the radiometric uncertainty associated 

with each pixel in the Top-of-Atmosphere (TOA) reflectance factor images provided by 

ESA. In terms of ECV variables, the Sea Surface Temperature (SST) data producers within 

the CCI programme are making important progress in the uncertainty characterisation of 

the whole retrieval process by propagating the errors associated to Level 1 data of AVHRR 

to the final SST product (Merchant et al., 2017; Mittaz et al., 2019). Besides, different 

approaches (prognostic and diagnostic) for the characterisation of uncertainty in aerosol 

retrievals were recently reviewed by Sayer et al. (2019). 

The antecedents on uncertainty quantification for BA products are limited. Giglio et al. 

(2010), for example, developed the BA uncertainty quantification used on the BA Global 

Fire Emissions Database version 3 (GFED3) and later on the version 4 (GFED4) products. 

The GFED products provide monthly aggregate BA extents at 0.25-0.5° spatial resolution 

based on the MCD64 BA product, which gives the date of detection at 0.5 km spatial 

resolution derived from MODIS imagery coupled with active fire observations of the same 

sensor (Giglio et al., 2009; Giglio et al., 2018a). The uncertainty of GFED products is 

expressed as a standard error of the BA extent estimated in the grid cell, and it is modelled 

with a linear regression of the burned patch residuals versus the actual extend of burned 

patches. In their study, the authors computed the per-patch residuals using reference data 

produced manually from Landsat imagery, at sample sites located in Siberia, Africa and 

North America.  

Within the Fire_cci project three main analyses should be cited as precursors of the current 

document. Padilla and Chuvieco (2014) studied different general approaches that are used 

in error characterisation, although not all of them were found to be suitable for BA. They 

stated that the analytical based approach described in GUM 2008 could not be used in the 

Fire_cci project given the dependence of the products on complex spatiotemporal functions 

and decision trees. This is applicable to current Fire_cci algorithms since they detect BA 

using machine learning or spatiotemporal thresholding approaches, for which error 

propagation is considered unfeasible (Merchant et al., 2017). Similarly, the use of Monte 

Carlo simulations (Crosetto et al., 2001; Crosetto and Tarantola, 2001; GUM-101, 2008) 

to characterise the BA uncertainty was rejected by the authors. They considered that the 

input error simulations are frequently very complex, as they must emulate the 

autocorrelations between errors, which may vary in time and space. Furthermore, they 

stated that the Monte Carlo approach needs very large computational resources and the 

knowledge of the probabilistic distributions of the input data errors, which are not available 

in the Fire_cci data. Therefore, the authors used an inductive approach based on validation 

data and regression analysis, which was commonly used in land cover maps to analyse the 

probability of misclassification (Burnicki, 2011; Smith et al., 2003; van Oort et al., 2011).  

The problem with this approach is that it was designed to provide a probability of burn only 

for the burned pixels and not, as it is required by definition and explicitly by the end-users, 

for both burned and the unburned classes, since every observed pixel has an associated 

uncertainty. A natural concern that also arises from these approaches is the quality of the 

sampling provided by such validation datasets, since even the larger and more systematic 

validation efforts may still provide only a limited sampling of the true uncertainties 

(Brennan et al., 2019). 

about:blank
about:blank
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Lewis et al., (2018) performed an assessment of the uncertainty estimates generated by 

several BA algorithms within the Fire_cci project, starting from the assumption that a per 

pixel estimate giving the probability that a pixel should be labelled ‘burned’ was provided. 

The actual aim of that assessment was to give some advice to algorithm developers about 

how to improve their uncertainty estimations, and also to show some examples on how the 

uncertainty was propagated through different processes such as BRDF or ratio of burn 

indices. Again, those propagation methods were more in line with the “general law of error 

propagation” described in GUM 2008, which, as was previously stated, it is not feasible to 

apply in the algorithms that have been and are being developed within the project. 

Conversely, the same document presented an approach to aggregate the uncertainty 

estimates from the pixel product to the climate modeller’s 0.25-degree grid scale, which 

was acknowledged as valid for the current project (Section 5). 

Finally, Brennan et al. (2019) estimated theoretical uncertainties for three widely used 

global satellite-derived BA products using a multiplicative triple collocation (TC) error 

model that was first described by Stoffelen (1998). This approach considers three 

observational records X1, X2, and X3 of a variable with an unknown but true value T. The 

TC error model specifies that each observational record may be related to the truth via a 

linear measurement equation. The system can be solved based on three initial assumptions, 

i.e. each product has zero mean residual errors and the errors are uncorrelated with each 

other and with T. However, a requirement to apply this approach is that the three 

observation datasets explicitly cover the same temporal and spatial domain. Therefore, the 

three products were aggregated from the original pixel resolution products to a common 

sinusoidal grid with a spatial resolution of 1º at the Equator in 16-days periods, which may 

imply new sources of uncertainty. Obviously, this approach cannot be used in the Fire_cci 

project since it needs three different BA products to obtain what is called the ‘true’ value. 

Taking all this into account, three main objectives or steps were established for the current 

deliverable: 

1. Provide a detailed overview of what is available in the literature about error 

sources, uncertainty characterisation and propagation in the pre-processing 

phase: those processes required to obtain the input data for each BA algorithm 

developed within the Fire_cci project. In that sense, we will follow the 

guidelines of Mittaz et al. (2019), which show how to apply the principles of 

metrology to deal with those issues in EO. 

2. Design an uncertainty characterisation and propagation framework for the BA 

algorithms. In the case of threshold-based algorithms the idea, whenever 

possible, is to use validation data along with Monte Carlo simulations based on 

the knowledge of the error’s correlation and distribution obtained in the 

previous step 1. For those algorithms that use machine learning approaches a 

simple way of characterizing uncertainty is to use the classification probability, 

which describes the likelihood that a pixel belongs to the burned class.  

3. Provide an aggregation methodology to propagate the uncertainty from the pixel 

to the grid product. To do that, the approach proposed by Lewis et al. (2018) 

will be used. 

As a result, and similarly to the previous Fire_cci projects, an important practical output of 

the error characterisation called uncertainty layer will be generated for the pixel and grid 

product. For the pixel product, the uncertainty will be expressed in probabilistic terms, as 

the probability that a pixel is really burned. This layer was named confidence level in the 
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previous version of the Fire_cci products (Chuvieco et al., 2017). For the grid product, 

uncertainty will be expressed as a standard error of the total burned area for each grid cell, 

as requested by the Climate Research Group (CRG) (Chuvieco et al., 2017). 

3 Uncertainty characterisation through pre-processing steps 

3.1 General overview 

In a laboratory the uncertainty is characterised by the statistical evaluation of repeated 

measurements. In EO this is not possible due to the variation in sensor state, viewing 

geometry, and natural geophysical variability. Besides, the atmosphere modifies the TOA 

radiance observable from space by processes of scattering, absorption, and emission. The 

impact of the atmosphere in the radiance depends on the vertical profile of radiatively-

active gases, aerosols and clouds. Surface changes caused by variations in moisture, 

temperature, or vegetation phenology, among other factors. These variations also affect 

reflected radiance and may confuse the detection of actual cover changes, such as those 

caused by fire disturbances. 

To understand the uncertainty propagation throughout the process of measurement and 

posterior transformations of the obtained data a key term is the level of processing of an 

EO product. Processing levels reflect both distinct computational stages in handling data 

streams downlinked from satellites and the different institutional arrangements for creating 

products at different levels (Mittaz et al., 2019). Although it is not yet standardized among 

agencies and communities that provide those products, typically five levels can be 

differentiated: 

 Level 0 (L0): This level includes the raw telemetry that is downlinked by a ground 

receiving station, which comprises a mix of scientific observations together with 

engineering data. Transforming L0 data to scientifically useful products is complex. 

One of the main sources of uncertainty is the digitisation carried out to transform the 

analogic signal into digital. The raw sensor data is binary (10 to 16 bits), but such 

digitisation is coarse compared to laboratory metrology. That binary representation of 

the raw sensor values places a fundamental lower limit on the uncertainty present in 

the calibrated radiances. For example, 10-bit digitisation corresponds to 0.1% 

resolution of the range (Mittaz et al., 2019). In addition to this source, L0 processing 

involves estimating the satellite orbit and the origin of the measured radiances 

projected onto Earth’s surface (known as geo-locating). In this case the uncertainty 

increases depending on the quality of the orbit information, i.e. if it is Near Real Time 

(NRT) or Non-Time-Critical (NTC) improved geo-location. 

 Level 1 (L1): It includes calibration parameters to map the counts into radiance and 

the derived calibrated radiances. Auxiliary data locate the radiances in time, latitude, 

and longitude and provide information related to satellite and solar zenith and azimuth 

angles. At this level the main sources of error are the calibration parameters (gain and 

offset) that are part of the measurement function. In this case, this function allows the 

previously mentioned mapping of counts into radiance. Changes in those parameters 

are to be expected as the sensor’s space environment changes and the sensor degrades. 

This means that the uncertainties associated with measured radiances will evolve. 

Typically, after 3-10 years a sensor will fail or will be decommissioned. In the case of 

multi-decadal datasets, the sensors are supposed to have identical spectral response but 

they have significant differences in their Spectral Response Function (SRF). 

 Level 2 (L2): This level normally involves the inverse estimation from radiances of 

one or more geophysical variables. The retrieval algorithms used in EO for that 
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purpose are highly varied. As in previous levels no uncertainty information is included 

at this level. Users of L2 often interrogate pixel level quality indicators for indications, 

but quality indicators change from one product to another. In that sense in ESA CCI 

they reached a consensus with regards to best practice for geophysical products 

(Merchant et al., 2017). 

 Level 3 (L3): They are gridded products, made by aggregating L2 values in space 

and/or time on a regular space-time grid. Therefore, it implies averaging the L2 

(sometimes weighted). Assuming the sampling or the aggregation is independent from 

the variability, the resulting sampling error has an expectation of zero. But the error 

distribution has a width that is not negligible compared to the uncertainty of the value. 

 Level 4 (L4): It typically includes complete gridded gap-free in space and time 

information, which in many cases involves interpolation, and hence, a specific error 

propagation. 

Officially, none of the previous levels have an uncertainty characterisation included and no 

complete traceable analysis and propagation of uncertainty from L0 to L4 exists (Mittaz et 

al., 2019). This means that algorithm developers have no chance to include as input the 

error characterisation of previous levels and, therefore, to generate a proper error 

characterisation of their own processes. The following sub-sections try to characterise from 

existing literature the different error sources of those previous levels to somehow show the 

diversity and nature of the errors that should be taken into account. 

3.2 Terra-MODIS Level 2G 

Three products are used as main inputs for the FireCCI51 algorithm (Lizundia-Loiola et 

al., 2020) related to the Terra satellite’s MODIS sensor: the MOD09GQ product, which 

provides an estimate of Red and Near-Infrared (NIR) surface reflectance at 250 m spatial 

resolution, the MOD09GA product, which provides, along with the rest of the reflectance 

and emissive bands, the state QA flags used by the algorithm at 1000 m spatial resolution, 

and the MCD14ML active fire product. This latter product includes also Aqua satellite data 

and will be covered in the ancillary data section (Section 3.7), as it is only used for guiding 

the training phase. 

Four MODIS processing levels are differentiated based on the MOD09 user guide 

(Vermote et al., 2015). L0 data is raw satellite data that feeds L1 data that has been 

radiometrically calibrated, but not otherwise altered. L2 data is L1 data that has been 

atmospherically corrected to yield a surface reflectance product. L3 data is L2 data that has 

been gridded into a map projection, and usually has also been temporally composited or 

averaged. L4 data are products that have been put through additional processing. All data 

up to and including L2 are in an ungridded orbital swath format, with each swath typically 

cut into small segments, or granules, to facilitate processing. Data at L3 and up are geo-

located into a specific map projection, with the geo-located products typically in a set of 

non-overlapping tiles. The L2G-lite format, consisting of gridded L2 data, was developed 

as a means of separating geo-locating from compositing and averaging.  

Several scientific teams are responsible for the quality of the MODIS products. The 

MODIS Land Quality-Assessment team, for example, evaluates and documents the 

scientific quality of the MODLAND products with respect to their intended performance. 

The MODIS Characterization and Support Team (MCST) is responsible for developing 

and maintaining the MODIS calibration product (L1B algorithm), which is a precursor to 

every geophysical science product. In this last case, there has been an attempt to 

characterise the uncertainty that affects the L1B creation process through the inclusion of 
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uncertainty data on a pixel-by-pixel basis. The reflective solar bands uncertainty algorithm 

is based on characterization of the Earth View (EV) scene reflectance (Xiong et al., 2013). 

To compute it, the uncertainty of the Solar Diffuser/Solar Diffuser Stability Monitor 

calibration, the lunar calibration, EV response trending, the temperature correction and the 

scene dependent instrument noise are taken into account.  

In the following step the L1B is corrected for the effects of atmospheric gases and aerosols 

to obtain the L2 product (MOD09). Thus, an estimate of the surface spectral reflectance 

for each band as it would be measured at top of canopy if there were no atmospheric 

scattering or absorption is obtained. Band quality control information for the correction is 

also generated (e.g., flags denoting if ancillary data is unavailable, if L1B data is faulty, 

etc.). However, this layer does not represent actual uncertainty propagation data, but a 

general band quality of the Atmospheric Correction (AC). 

Finally, daily MOD09 L2 data is aggregated in standard MODIS sinusoidal tiles 

(MOD09GA and MOD09GQ L2G-lite). The number of daily observations at each pixel is 

determined not only by the number of orbits at that location (one at the equator and up to 

15 at the poles), but also by the spread of observational coverage of off-nadir pixels. After 

identifying all the observational values for each location, the most suitable reflectance 

value is selected for each pixel based on observational coverage and view angle, and 

whether the observation is flagged as cloudy, clear, containing high aerosol or low aerosol, 

or cloud shadow.  

The L2G-lite products, which are the inputs for FireCCI51, include a layer of the band 

quality that cannot be considered a proper uncertainty layer. Although the original 

uncertainty of the L1B product is somehow taken into account when setting the quality of 

a pixel, it provides qualitative information instead of a quantitative description of how 

errors are propagated and distributed. No information is officially provided in the products 

regarding the error propagation through the AC, projection of the data or how the ranking 

that is used to select the best observation affects uncertainty.  

In that sense, Vermote et al (2008) made an estimation of the sensitivity of surface 

reflectance to uncertainties in input key atmospheric parameters using a theoretical error 

budget. Such a budget was created based on the simulation of a number of atmospheric and 

geometrical scenarios (Vermote and Saleous, 2006). In that study, uncertainties from the 

instrument calibration (±2%), atmospheric pressure (±10 mb), water vapour content (±0.2 

g/cm2), ozone content (±0.02 cm∙atm), retrieved Atmospheric Optical Thickness (AOT) 

values (resulted from the aerosol inversion), and selection of the aerosol model (urban 

polluted, smoke low absorption, smoke high absorption, or urban clean) were considered. 

They found that the overall accuracy of surface reflectance varies in dependence of the 

band and AOT. Under clear atmospheric conditions they stated that it does not exceed 

0.006 in reflectance unit. The MODIS product theoretical uncertainty bars were set to 

0.005+0.05ρ for the surface reflectance under favourable conditions (no high aerosol). To 

check the quality of the MOD09 they analysed a year of Terra data (2003) collected over 

150 AERONET sites. The results showed that the average percentage of observations that 

lay within the theoretical uncertainty for bands 1 (645 nm), 2 (870nm), 3 (470 nm), 4 (550 

nm), 5 (1240 nm), 6 (1650 nm), and 7 (2130 nm) was equal to 88.66%, 94.34%, 50.52%, 

79.34%, 96.50%, 97.87%, and 98.62%, respectively. The band 2 NIR, which is used by the 

FireCCI51, showed one of the highest proportions of “good” observations. 

Regarding the state information that is used from the MOD09GA, although it is unclear the 

origin of all bit values included on it, it seems that the main source is the MOD35 developed 

by the MODIS Cloud Mask Team (Ackerman et al., 2010). This product, which is based 
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on L1B radiance data, assumes that its inputs are calibrated and quality controlled and no 

propagation of its uncertainties is made. In the process of identifying pixels, several 

thresholds are used and hence, as one approaches the threshold limits, the certainty or 

confidence in the labelling becomes more and more uncertain. For that reason, a confidence 

layer is provided that tries to be an alternative to uncertainty considering it as a function of 

how close the observation is to the thresholds. 

3.3 Sentinel 3-Synergy Level 2 

This product is the input for the FireCCIS310 algorithm, which will be available for the 

years 2019 and 2020. One unique product is used as main input related to the Sentinel-3 

(S3) satellite’s OLCI and SLSTR sensors: the SY_2_SYN product, which provides an 

estimate of Visible, NIR and Short Wave Infrared (SWIR) surface reflectance at 300 m 

resolution, along with the rest of the information, e.g. quality flags or geometry.  

Several processing levels, similar to those established by MODIS, can be differentiated 

based on the S3 OLCI, S3 SLSTR and S3 Synergy (SYN) Product User Guides (PUG, 

https://sentinel.esa.int/web/sentinel/user-guides, last accessed February 2020). L0 data is 

raw satellite data that includes time sorted and annotated data from Instrument Source 

Packet (ISP). These data, the orbit scenario file and several auxiliary data files feed the L1 

EO processing chain. The derived product is called L1B and provides radiometrically 

calibrated, geo-referenced and annotated radiances. These first two levels are common but 

independent for both OLCI and SLSTR sensors and, hence, two L1B products are obtained, 

respectively. In the following step, these two products are used to feed and generate the 

internal SYN L1 product (SY_1_MISR). This process aims to project all OLCI and SLSTR 

bands on the same SYN reference grid (i.e. the OLCI acquisition grid), using the inter-

instrumental misregistration estimated for both sensors’ bands. Finally, in L2 that internal 

information is atmospherically corrected to generate surface directional reflectances stored 

in the SY_2_SYN product. As in the case of MODIS, all data up to and including L2 are 

in an ungridded orbital swath format, with each swath typically cut into small segments, or 

granules, to facilitate processing. However, in the case of SYN there is not any processing 

level equivalent to the L2G-lite of MODIS. Therefore, SYN L2 information is aggregated 

into daily non-overlapping tiles of 10x10 degrees by Brockmann Consult (BC) for internal 

use. 

The quality of the S3 products is responsibility of the full Ground Segment and mainly of 

the Payload Data Ground Segment (PDGS). It operationally generates the user products 

and distributes L0 raw products, processed L1 products and derived L2 products. However, 

there is no official uncertainty propagation process integrated through the different levels.   

In the case of the OLCI L1B products only quality flag information (saturated radiances, 

dubious locations, where cosmetic was applied, bright pixels, sun glint risk, etc.) is 

provided within the product (ACRI-ST IPF Team, 2017), along with some information 

related to the observation environment, such as the geometry tie points and meteorological 

tie points. It is supposed that an error estimate band of the radiance is included, but no such 

layer was found in the downloaded data from the open hub (https://scihub.copernicus.eu/ 

dhus/#/home, last accessed March 2020). A similar approach is followed for SLSTR, 

although in this case the previous information is extended due to the availability of SWIR 

and Thermal Infrared bands (ACRI-ST IPF Team, 2018). Each SLSTR band is provided 

along with a quality data layer that contain estimates of the random signal noise per scan 

line derived from the on-board calibration sources (the VISCAL and the blackbodies), and 

about:blank
about:blank#/home
about:blank#/home
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correlated radiometric uncertainties as a function of scene radiance or/and brightness 

temperature (BT) derived from the pre-launch calibration. 

Although there is no proper uncertainty propagation information within the official 

products, some attempts to assess the per pixel uncertainty of both sensors L1B products 

have been found in the literature.  

On the one hand, Hunt and Nieke (2016) developed a software tool to determine the per 

pixel uncertainty of the OLCI L1B images. It was developed following the approach 

outlined in GUM (2008) and was created with the goal of integrating it in the S3 Toolbox 

(now called Sentinels Application Platform, SNAP) software package as a plugin. 

Similarly to Mittaz et al. 2019, they first describe the OLCI measurement model of the L1B 

radiances to characterise the contributors of the overall uncertainty model. Then, they 

defined an uncertainty model as a function of the total signal (noise), radiometric 

calibration (diffuser BRDF estimated at 0.3%, diffuser alignment estimated at 0.31%, 

diffuser aging, calibration diffuser stray light estimated at 0.08%, calibration camera stray 

light estimated at 0.2% and calibration speckle estimate at typically 0.1%), non-linearity 

(CCD and ADC non-linearity), dark signal (offset compensation and dark stability error), 

smear (smear gain contributions) and stray light contribution. Hunt and Nieke (2016) 

showed uncertainties around 0.76% for a specific preliminary example for a region in 

Northern Sahara. 

On the other hand, Etxaluze and Smith (2019) have recently developed a tool called 

MapnoiS3 to allow users of SLSTR L1B data to derive per pixel uncertainty estimates for 

both radiance and thermal channels using the information contained in the L1B product 

and additional auxiliary data files (ADF). Using the random signal noise and correlated 

radiometric uncertainties included in the quality layers they are able to generate a new 

NetCDF file where the scene radiance/BT uncertainty, noise equivalent radiance/BT and, 

in the case of BT, the partial derivative of the radiance as a function of temperature are 

included. The contributors to the total uncertainty slightly differ from radiance to BT. In 

the first case, the total radiometric noise is considered to be composed of the noise related 

to the light intensity level (shot noise) and the electronic noise (dark current, amplifier 

noise, reset noise, digitisation). However, Etxaluze and Smith (2019) stated that at the high-

level quantisation of SLSTR the digitisation, amplifier and reset noise are insignificant. In 

the latter case, the radiometric noise is considered to be composed of the noise equivalent 

differential temperature per scan line. 

In the following processing steps, regarding the SYN product, two consecutive products 

are generated: the L1C and the L2. The former is only for internal use and it is not 

resampled to a specific surface grid or projection but includes all the necessary 

misregistration information so that any user-defined projection or gridding can be 

performed at a higher level (S3 Team, 2011). There is not any mention to the uncertainty 

in the whole L1C Algorithm Theoretical Basis Document (ATBD). The latter contains 

atmospherically corrected surface directional reflectance referenced at OLCI geometry that 

is generated based on the L1C product. However, in this case there is a dedicated section 

to the retrieval error estimate of the L2 product (North and Heckel, 2010). Two main 

contributors are analysed there: the error in Aerosol Optical Depth (AOD) and the surface 

reflectance error as a function of the previous error, sensor noise and estimated error in the 

radiative transfer model. This last error is computed for each spectral band and included as 

a separate layer along with the reflectance layer. It is offered in the same relative units of 

reflectance (%). Since the ATBD was published previous to the development of the above 

mentioned L1B uncertainty tools, there is not any mention to them. The lack of official 
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error distribution characterisation at previous levels along with the lack of information of 

that process questioned the reliability of those layers. However, we consider the inclusion 

of a per pixel uncertainty layer a great improvement and its use will be studied.  

In the last step, the SY_2_SYN L2 product is aggregated temporally into daily images and 

spatially into 10x10 degree tiles. The scientific content of the product is not in any case 

altered, but the best observation is selected when more than one valid observation is 

available for the same pixel. Similarly to what is done with the MODIS L2G lite product, 

the best observation is considered when OLCI zenith angle (OZA) is minimum. The values 

of all the layers of the selected image are kept in the final aggregated daily product 

including the uncertainty associated to that pixel.   

3.4 NOAA-AVHRR LTDR Level 2G 

FireCCILT10 (Otón et al., 2019) uses the AVH09 Surface Reflectance Product (Version 

5) that is provided by the Land Long Term Data Record (LTDR, Pedelty et al., 2007) 

project. It is based on the Global Area Coverage (GAC, 4x4 km) data with a final spatial 

resolution of 0.05º degree (≈5 km). AVH09 covers four decades (1981–present) and it 

includes up to two sensors (AVHRR2 and 3) on board seven different NOAA satellites (7, 

9, 11, 14, 16, 18, 19). It provides Red and NIR Surface Reflectance, and TOA BT, all of 

them used by the FireCCILT10 algorithm.  

First, L0 data is converted on AVHRR L1B (Robel et al., 2014), which contains the main 

geophysical parameter reflectivity (for channels 1, 2 and 3a) and calibrated radiances (for 

channels 3, 4 and 5) (EUMESAT, 2011). At this point, the uncertainty is affected by several 

features, such as the Platinum Resistance Thermometer (PRT) noise and bias, earthshine, 

Temperature gradient, PRT representation, detector noise, digitisation, amplifier, SRF, 

time mismatch, space mismatch, azimuthal asymmetry, solar contamination, pre-flight 

characterisation, degradation and instrument temperature dependence. Some of these 

sources directly affect thermal gradients across the internal calibration target and the 

estimation of calibration parameters. Regarding the solar reflective bands, the calibration 

is different for the visible and the infrared (IR) channels (EUMESAT, 2011). Although 

Red and NIR bands are calibrated prior to launch (Robel et al., 2014), the calibration is 

applied to the data afterward with linear decay because there is not effective on-board 

calibration (Holben et al., 1990). The uncertainty in the calibration is estimated to be of the 

order of 5% (Robel et al., 2014). In the case of the emissive bands, BT is calibrated in flight 

with an uncertainty estimated at ±0.1 K (Trischenko et al., 2002). In both cases several 

problems were observed due to the combination of different sensors and satellites. In 

general, AVHRR3 was seemed to have better radiometer consistency than AVHRR2 

(Trischenko et al., 2002). Besides, it was observed that the calibration of the different 

satellites generated a range of variability in the measurements that, in the case of BT, could 

be more than 0.5 K (Trischenko et al., 2002; Mittaz et al., 2019). A quality decrease and a 

systematic degradation of the radiometric sensitivity as a function of time and launch 

processes was observed as well. This degradation was quantified in ≈1-3% per year by 

Uprety et al. (2011) in the case of the solar reflective bands and below 1% in the case of 

BT. These generates a reduction in radiometric resolution over time and, in the case of BT, 

expands the upper limit of the measured BT. In any case, a proper characterisation of the 

uncertainty generated by all those sources cannot be done since there is not access to the 

pre-launch measurements and to the original manufacturer’s data propagation (Mittaz et 

al., 2019). 
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In the following step, L1B is transformed in GAC, reducing in real time the spatial 

resolution of the acquired image (EUMESAT, 2011). Four out of every five samples along 

the scan line are used to compute one average value, and the data from only every third 

scan line are processed. As a result, the spatial resolution of GAC data near the subpoint is 

1.1 km by 4.4 km with a 2.2 km gap between pixels across the scan line (Robel et al., 2014; 

EUMESAT, 2011). Bulgin et al. (2016) estimated the uncertainty of this averaging process 

on about 0.04 K. 

Finally, GAC is processed to obtain AVH09 L2G product, after applying some 

improvements. These improvements include: radiometric in-flight vicarious calibration for 

the visible and near infrared channels, inverse navigation to relate an Earth location to each 

sensor IFOV, atmospheric corrections for Rayleigh scattering, ozone, and water vapour, 

aerosol correction, and BRDF corrections used in MODIS processing (El Saleous et al., 

2000; Pedelty et al., 2007). Calibration is a critical issue for applications using multiple 

sensors, including multi-decadal data analysis (Mittaz et al., 2019), and AVH09 has 

demonstrated 1% calibration accuracy for the visible/NIR bands (Pedelty et al., 2007). 

However, an uncertainty characterisation and propagation through the above mentioned 

processing levels is still needed. 

3.5 Sentinel 2-MSI Level 2 

The Sentinel-2 (S2) MSI L2 processing chain generates, using as input the TOA L1C 

orthoimagery, Bottom-Of-Atmosphere (BOA) corrected reflectance orthoimages. 

Additionally, an AOT map, a Water Vapour (WV) map and a Scene Classification Map 

(SCM) together with Quality Indicators (QI) for cloud and snow probabilities are 

generated. S2 bands at 10, 20 and 60 m spatial resolution are required for L2 processing. 

Spectral bands 2, 3, 4, 8 (Table 1) as well as a True Colour Image (TCI) and AOT and WV 

maps are provided at 10 m. Spectral bands 2-7, 8A, 11, and 12, and resampled TCI, AOT 

and WV are provided at 20 m. Band B8 is omitted as B8A provides more precise spectral 

information. All components of the 20 m product are resampled to 60 m as well. The cirrus 

band 10 is omitted, as it does not contain surface information. 

 

Table 1. Central wavelength (nm) of each band of the MSI aboard Sentinel-2 A and B. 

Satellite B02 B03 B04 B05 B06 B07 B8A B11 B12 

S2A   492.4   559.8   664.6   704.1   740.5   782.8   864.7   1613.7   2202.4 

S2B   492.1   559.0   665.0   703.8   739.1   779.7   864.0   1610.4   2185.7 

 

The Sen2Cor (Main-Knorn et al., 2017) processor is a combination of state-of-the-art 

techniques for performing atmospheric as well as topographic corrections which have been 

tailored to the S2 environment together with a scene classification module. The scene 

classification algorithm allows detection of clouds, snow and cloud shadows and generates 

a map which contains three different classes for clouds (including cirrus) together with six 

additional classes: shadows, cloud shadows, vegetated, not vegetated, water and snow. 

Such a classification is an important information source for uncertainty as it may be used 

to mask out the pixels covered by clouds and its shadows and then not classify them. 

However, such a classification also has intrinsic uncertainty related which should be 

considered. The Shuttle Radar Topography Mission Digital Elevation Model (SRTM 

DEM) is also used when pre-processing the S2 data. The SRTM DEM has vertical errors 

between 4-6 m (Goncalves and Fernandes 2005). Such errors may increase the uncertainty 

when mapping BA, especially over steep slopes.  
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Finally, BA mapping uses datasets acquired by different satellites (S2 A and B), which may 

generate geolocation errors. Thus, it is expected that any geolocation error may be 

significant at fire borders. 

3.6 Sentinel 1-SAR  

Sentinel-1 (S1) is a two-satellite constellation (A - since April 2014, B - since April 2016) 

to provide C-Band SAR data continuity following the end of ERS-2 and Envisat missions. 

The satellites carry a C-band SAR sensor, which offers medium and high-resolution 

imaging in all weather conditions making it useful for land monitoring. The radar 

instrument may acquire data in four modes, with the Interferometric Wide (IW) swath (250 

km width) being the default operation mode over land. The IW mode images three sub-

swathes using the Terrain Observation with Progressive Scans SAR (TOPSAR) to provide 

high quality, homogeneous images. The advantages of S1 sensor over other C-band SAR 

missions, besides the free data access policy, are three-fold, i) high temporal frequency (6 

days exact repeat cycle with two satellites), ii) high spatial resolution (5 m in azimuth and 

20 m in range) and, iii) dual-polarization (VV and VH). One should notice that nominal 

temporal frequency is not yet achieved over areas outside Europe and North America and 

that areas with frequent seismic activity (e.g., the Andes) are imaged in single polarization 

mode (VV) for increased spatial resolution. S1 products are released in two L1 formats, 

Ground Range Detected (GRD) and Single Look Complex (SLC). GRD products are 

projected, intensity images, radiometrically and terrain corrected. SLC data are designed 

for interferometric applications, containing both phase and intensity information. The most 

commonly available SLC and GRD data are acquired in IW mode. L1 GRD data multi-

looked and projected to ground range using an Earth ellipsoid model (typical product size 

is 1GB for dual-pol IW mode) is considered to map BA.  

Speckle appears as a granular interference that inherently exists in coherent image systems 

as the SARs. The presence of speckle makes SAR imagery very different from optical 

datasets. As the scatterers are not identical for each cell, the signal fluctuates due to its high 

sensitivity to small variations in scatterers’ relative location and properties. Differences in 

the magnitude of the signal intensity between two dates may appear due to fire unrelated 

changes (e.g. changes in relative position of the scattering elements within a resolution cell 

due to wind) which influences uncertainty. To meet the accuracy requirements of most 

SAR-based applications, a large equivalent number of looks (ENL) is often used, with 

values around 100 being typically advised (Quegan et al., 2001). ENL describes the degree 

of averaging applied to the SAR measurements during data formation and post-processing 

(Anfinsen et al., 2009). The usual approach to reduce speckle is filtering in the spatial 

domain. When multiple intensity images of a scene are available (repeat passes), an 

attractive way to increase the ENL is by linearly combining the images (multi-temporal 

filtering). Previous experiments, carried out within Fire_cci Phase 2 Option 3, showed 

small differences (~4) in ENL between S1 products processed with increasing multi-look 

factors, i.e., spatial spacing of 20, 30, and 50m. At the same time, Sentinel-1 products 

showed a significantly larger ENL when combining spatial (multi-looking) and temporal 

filtering. Spatial aggregation to 40 m (2x10 looks) followed by multi-temporal filtering 

provided ENL values around 80. Moreover, the SAR instruments aboard of S1-A and B 

satellites have a radiometric error of 0.38 and 0.36 dB, respectively (Schwerdt et al., 2017). 

We expect that data uncertainty will have low relevance in the results according to previous 

studies (Belenguer-Plomer et al., 2018). 

Apart from intrinsic sensor-related uncertainty (e.g. absolute calibration) environmental 

conditions at SAR image acquisition may influence BA detection and mapping. Changes 
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in soil moisture may increase BA detection and mapping uncertainty as it may entirely 

mask out fire-induced variations of the backscatter coefficient or result in fire unrelated 

backscatter changes (Belenguer-Plomer et al., 2019). However, such effects cannot be 

measured with precision since current global soil moisture products have a much coarser 

spatial resolution than S1 data. Topography also introduces uncertainty when using SAR-

based datasets as the SAR backscatter coefficient is modulated by terrain slope thus 

conditioning the accuracy of BA detection (Kalogirou et al., 2014; Kurum, 2015). 

3.7 Ancillary data 

Two main ancillary data are used by the different algorithms that are being developed 

within the Fire_cci project: thermal anomalies and land cover information. Both products 

are high level products (L3 and L4, respectively), which means that they are based on the 

above mentioned processing levels that do not include proper uncertainty characterisation. 

3.7.1 Terra and Aqua MODIS active fires 

The first source of thermal anomalies that is used by some of the algorithms developed 

within the project is the MODIS MCD14ML collection 6 product.  

In the case of MODIS, the most basic fire products in which active fires and other thermal 

anomalies (such as volcanoes) are identified are the MOD14 product based on Terra 

satellite’s MODIS and MYD14 based on Aqua satellite’s MODIS (Giglio et al., 2018b). 

These L2 products are defined in the MODIS orbit geometry covering an area of 

approximately 2340 × 2030 km in the along-scan and along-track directions, respectively. 

Regarding the uncertainty characterisation of the active fires, a detection confidence level 

is provided, which intended to help users gauge the quality of individual fire pixels. This 

confidence estimates ranges between 0% and 100% and is used to assign one of the three 

fire classes (low-confidence fire, nominal-confidence fire, or high-confidence fire) to all 

fire pixels (Gilgio et al., 2018b). The confidence of each detected fire pixel is calculated as 

the geometric mean of up to five sub-confidence parameters that are defined in terms of 

the temperature, the number of adjacent water pixels, the number of adjacent cloud pixels 

and two standardised variables (Giglio et al., 2016). All the parameters used for the 

detection are related to the algorithm used to detect thermal anomalies and the uncertainties 

of the previous processing levels are not taken into account. Besides, no confidence level 

information is provided for those pixels that were non-detected as fire or filtered in the 

processing. Thus, this confidence level can only be used as an approximation of the product 

uncertainty.  

The level 3 MCD14ML product is generated based on MOD14 and MYD14. This monthly 

fire location product contains the geographic location, date, and some additional 

information for each fire pixel detected by the Terra and Aqua MODIS sensors on a 

monthly basis. The product is distributed as a plain ASCII (text) file with fixed-width fields 

delimited with spaces. One of its attributes is the previously mentioned confidence level.  

3.7.2 NOAA-20 and SUOMI-NPP VIIRS active fires 

Information related to the VIIRS products is significantly lower than for the MODIS ones. 

VIIRS products are supposed to continue with the MODIS time series so most of the 

algorithms are being adapted to the new sensor. Therefore, the conclusions reached for 

MODIS active fires in the previous section (Section 3.7.1) can be considered as the best 

scenario for VIIRS active fire uncertainty characterisation. 
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Currently there are two satellites providing active fire products based on VIIRS: the Suomi-

NPP and the NOAA-20 (JPSS-1). Recently, the Fire Information for Resource 

Management System, FIRMS (https://firms.modaps.eosdis.nasa.gov/, last accessed March 

2020) has included an option to download separately NRT active fires from Suomi-NPP 

and JPSS-1, although it is supposed that in both cases the algorithm described in Schroeder 

et al. (2014) is applied. At NTC level, a first collection of two L3 products called 

VNP14ML (750m) and VNP14IMGML (375 m) are currently being produced, although it 

seems that only Suomi-NPP detections are included. In those products the % confidence 

level has been replaced by confidence classes (low, nominal, and high).  

3.7.3 Land Cover CCI 

In the previous Fire_cci phases the source of the Land Cover information was the ESA CCI 

Land Cover (LC) project. That project produced annual LC maps since 1992 until 2015. 

More recently, this dataset has been extended within the Copernicus Climate Change 

Service (C3S) to the years 2016-2019 allowing users to have global and annual updated 

LC information at 300 m resolution. The algorithms used in both cases are equal so the 

consistency of the dataset is ensured (ESA, 2017a). Regarding uncertainty characterisation, 

there is not such information included in the dataset, although hard work has been done to 

determine the quality (validation) of the product (ESA, 2017b). 

4 Uncertainty characterisation through BA algorithms 

Taking into account the current situation of the uncertainty characterisation in the products 

that are used as input in the Fire_cci project algorithms, a proper characterisation and 

propagation of the input uncertainties through the algorithms is not feasible. Not only 

because the different algorithm structures prevent a mathematical propagation through 

themselves, but also because of the inexistence of such input data. However, an effort is 

being carried out to analyse how the uncertainty approximations described in the previous 

section (Section 3) can be used to somehow assess the impact of the algorithms in the final 

results. 

4.1 FireCCI51 

Regarding this product there are not any changes expected since the current project will 

extent the existing time series from 2001-2017 to 2001-2019. Logistic regression analysis 

was used following a k-Fold validation (k = 10) to estimate BA probability as a surrogate 

of uncertainty characterization of the BA algorithm. The model was trained from 10 

calibration sites, which encompass a wide range of different vegetation and fire patterns, 

using data from 2008. Four input variables were included in the logistic models: monthly 

NIR composite (NIR), monthly relative NIR drop (RelΔNIR), distance to the nearest BA 

seed (distance), and number of valid observations in the first 10 post-fire days (obs) 

(Lizundia-Loiola et al., 2018). The final coefficients derived from the logistic regression 

analysis were: 

𝑝𝐵 =
1

1 + 𝑒𝑐
 

Where pB is the BA probability and 𝑐 =  −(3.533 − 0.01175 ∗ 𝑜𝑏𝑠 − 0.001996 ∗
𝑁𝐼𝑅 + 0.01417 ∗ 𝑅𝑒𝑙∆𝑁𝐼𝑅 − 0.0009282 ∗ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒). An example of an area of 

Northern Australia is shown in Figure 1. 

about:blank
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Figure 1. Uncertainty of an area of the tile h30v10 (Australia) for June 2008. The values represent 

the probability of each pixel being burned. Source: Lizundia-Loiola et al. 2018. 

4.2 FireCCISFD20 

The FireCCISFD20 product will be derived from the MSI sensor aboard two different 

satellites: Sentinel-2A and Sentinel-2B. Due to a spatial shift between S2A and S2B data, 

errors were observed to increase when using data from both satellites at the same time. For 

this reason, the algorithm will generate two independent BA products, each based on 

images from one satellite, which will be merged in a final step. Each intermediate BA 

product detects initial burned areas between two dates based on fixed thresholds and 

proximity to active fires. Then, statistics for MIRBI and NBR2 spectral indices are 

extracted from these initial BA, which are used to assign the final probability of burn of 

the whole image, from 0 to 100%. In this way a probability image is obtained for the image 

from every single date (Roteta et al., 2019). 

Both BA products corresponding to S2A and S2B satellites are fused in the final 

FireCCISFD20 product. In a temporal series of {t0,A , t1,B , t2,A , t3,B , …, tn} where every 

element corresponds to a date (with A and B standing for S2A and S2B dates), burned pixels 

in any S2A date (ti,A) are assigned a 0% probability if they were not detected as burned in 

the last day of observation before ti,A (ti-1,B) or in the first day of observation after ti,A (ti+1,B) 

in the S2B product. In this way many commissions due to unmasked clouds and cloud 

shadows are reduced. Finally, the monthly product is created assigning to each pixel the 

date when the highest probability was observed; pixels for which no probability higher than 

50% was observed are considered unburned and assigned a 0% probability in the monthly 

product. 

4.3 FireCCIS310 

This product refers to the BA derived from S3 SYN data. Due to the pre-processing 

problems of SYN data, we plan to produce two years of BA products (2019 and 2020). 

This implies that the expected validation dataset (2017-2019) will be restricted to a single 

year. We will use these data to generate the uncertainty characterization of the 

FireCCIS310 product. We will consider BA algorithm inputs and output over all validation 

areas to estimate the performance of the algorithm over a large variety of inputs. To reduce 

the dimensionality of that highly redundant data set and to drastically reduce the 

computational effort to compute uncertainties, a look up table (LUT) of representative 

spatiotemporal signal patterns can be derived from that data set. A reasonable number of 

distinct spatiotemporal patterns will be taken into account from the validation data set. 
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Given the representativeness of validation data, those should be sufficient to describe the 

full range of typical spatiotemporal patterns in the data. 

For example, if the classification burned/unburned at a given pixel is characterized by its 

post-NIR value (X) and some statistics that quantifies the drop of NIR from a pre-time 

window to a post-time window (T), the spatiotemporal pattern is a vector (X, T, X1, T1,..., 

Xn, Tn) where X and T describe the pixel that we want to classify and the rest of the pairs 

(X1, T1,..., Xn, Tn) describe its spatial neighbours. In this case, n is the number of spatial 

neighbour pixels that are taken into account by the algorithm to determine if a pixel is 

burned or not. In that way, after running the algorithm for all the validation sites we can 

obtain similar information to what is shown in Table 2. 

Table 2. Example of the matrix that can be obtained from an algorithm that uses two variables (X 

and T) and n neighbour pixels to classify the pixel i as burned(B)/unburned(UB). 

 Spatiotemporal pattern Classification 

 Xi Ti Xi1 Ti1 … Xin Tin Validation Algorithm 

Pixel 1 X1 T1 X11 T11 … X1n T1n B or UB B or UB 

Pixel 2 X2 T2 X21 T21 … X2n T2n B or UB B or UB 

Pixel 3 X3 T3 X31 T31 … X3n T3n B or UB B or UB 

Pixel 4 X4 T4 X41 T41 … X4n T4n B or UB B or UB 

… … … … … … … … … … 

Pixel m Xm Tm Xm1 Tm1 … Xmn Tmn B or UB B or UB 

 

Those pixel-level spatiotemporal patterns can be grouped to create representative 

spatiotemporal patterns (P) based on a cluster analysis. Thus, instead of having m pixels, 

we can group them in S general spatiotemporal patterns (P1, P2, …, PS). Given that set of 

"representative patterns", the algorithm uncertainty can be estimated directly by comparing 

the algorithm's output with validation data. Using the BA algorithm outputs and the 

reference, one can estimate from all N cases that belong to the spatiotemporal pattern P, 

the 4 conditional probabilities. Uncertainty would be some function of those conditional 

probabilities that has to be defined. 

The result will be a collection of representative patterns (P1, P2,...), and associated 

"probabilities of burn detection" (pb1, pb2,...) that will be saved in a LUT. To compute an 

uncertainty layer for the whole burned area product, each pixel has to be associated to its 

own representative pattern or to the closest representative pattern and labelled with the 

corresponding probability of burn.  

Furthermore, the "black box" approach will allow propagating uncertainties using Monte 

Carlo methods, providing a sound alternative to tracing uncertainty through the algorithm. 

Given uncertainties in L1 products, Monte Carlo simulations can be performed to quantify 

the distribution D of those variables (X and T in the example above) that classify a pixel 

as burned/unburned. For S3, the error layer that is provided along with the reflectance in 

SYN (Section 3.3) will be used as a proxy of the input uncertainty. To limit computational 

requirements, this only needs to be done for combinations of those variables that occur in 

representative patterns. More specifically, for each representative pattern, the burn area 

algorithm is run over perturbed versions of that pattern, and outputs are compared with the 

LUT derived from validation data. This will allow quantifying the stability of the algorithm 

and its sensitivity to noise in L1 products. Fast Monte Carlo techniques for uncertainty 

propagation have been proposed, for instance, in Rochman et al. (2014), to overcome the 

drawback related to computational cost of this method. 
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The proposed method was developed by Professor Manuel Campagnolo (personal 

communication) of  the University of Lisbon, who was involved in the previous Phases of 

the project. At the time of writing of this document we do not have any results to show due 

to the lack of availability of validation data for the year 2019. However, in the following 

version of the E3UB document results will be included. Besides, the idea is to analyse those 

probability of burn detections (pb) to build recommendations for the users about how to 

use this layer, e.g. specific thresholds to apply. 

4.4 FireCCILT20 and FireCCIS1S2AF10 

Both the FireCCILT20 and FireCCIS1S2AF10 products will be based on a model of deep 

learning, more specifically on a Convolutional Neural Network (CNN). Therefore, the 

same uncertainty characterisation and propagation framework can be developed in both 

cases, although they use different input datasets. Regarding the main input of the algorithm, 

AVH09 reflectance (Section 3.4) is used by FireCCILT20 while FireCCIS1S2AF10 make 

use of MSI and SAR data (Section 3.5 and 3.6, respectively). Land cover CCI (Section 

3.7.3) is used by the two algorithms. Active fire information provided by MODIS (Section 

3.7.1) and VIIRS (Section 3.7.2) is also used by the FireCCIS1S2AF10. Such remote 

sensing datasets are generally affected by noise and disturbances. Hence, instead of ‘real’ 

measurements (v), what is actually fed to the model is a noisy version (z) of such 

measurements (Loquercio et al., 2020).  

The last layer of all CNN-based models is a Softmax layer (Krizhevsky et al., 2012), which 

is a logistic regression that normalizes an input value (z) into probability values that ranges 

from 0 to 1: 

𝑃(𝐳𝑖) =
𝑒𝑧𝑖

Σ𝑗=1
𝑛 𝑒𝑧𝑗

 

where z is the output of a fully-connected neural network of the class i (i.e. burned or 

unburned), e is the Euler's number and n is the number of classes (i.e. 2). 

Softmax provides a discrete probability distribution over the burned and unburned classes. 

This probability value is based on the features extracted in the previous hidden layers of 

the model, which are affected by convolutional processes that consider the intrinsic 

uncertainty sources (z). Due to the fact that only two classes (i.e., burned and unburned) 

were involved in the process, the probability of a given pixel to belong to the burned class 

(b) is inversely proportional to belong to the unburned one (u): 

1 = 𝑃𝑏 + 𝑃𝑢 

Hence, such probability distribution may be used as a proxy to estimate the uncertainty. 

When low intrinsic errors of data are considered, the final probability of a pixel to belong 

to a given class is lower in comparison to when a high degree of interferences of errors 

exist (Rottmann & Schubert, 2019; Pascual et al., 2018). The Softmax layer may be 

considered, therefore, to characterise the uncertainty when mapping BA. 

Other authors, however, pointed out that in CNN models the representation of the 

uncertainty could be poor (Jain et al., 2018). Since machine learning approaches are 

considered like “black boxes”, there is no way to mathematically propagate the input 

uncertainty through the algorithm. Instead, to somehow improve this representativeness of 

uncertainty in the final probability, an approach that could be followed is to include the 

uncertainty layers of each predictive variable in the model. Ideally speaking, the 

uncertainty of all input variables should be provided in a pixel-based uncertainty layer. 
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When this is not the case, a preliminary uncertainty layer could be created based on the 

literature (Section 3.4). The aim of those “invented” uncertainties would not be to 

characterise the actual input uncertainty, but to create a layer that will serve to develop the 

propagation framework.  

To illustrate the mentioned approach FireCCILT20 can be used as an example. In the case 

of this algorithm 12 predictive variables are included in the model to get the final burned 

probability. These variables represent the five previous monthly synthetic indices and the 

six posterior to the month for which burned area is going to be detected (Otón et al., 2019). 

To obtain the synthetic index first monthly composites of each AVH09 channel based on 

the maximum temperature are created. After that, two more steps are performed. First, 

monthly vegetation indices are computed based on the monthly composites and, second, 

the most significant variables are summed, after normalising each of them. In the first step, 

an uncertainty layer can be created in parallel directly transferring the pixel level 

uncertainty from the day selected by the composite. In the following two steps, uncertainty 

can be estimated through error propagation. Lewis et al. (2018) showed, using the example 

of NDVI vegetation index, how uncertainty could be estimated when ratio-difference 

transformations are applied. In the case of sums and subtractions, if it is assumed that errors 

are uncorrelated, the variance of the result is simply equal to the sum of the variances. For 

the ratio transformation, since it is not possible to directly apply linear propagation, it is 

common to approximate this by linear terms using a Taylor expansion instead. 

Mathematical expressions can be found in Lewis et al. (2018). The result of all this process 

would be an uncertainty layer per each monthly synthetic index that could be used as 

predictive variables, making a total of 24.  

The problem with this approach is that it cannot be applied if an actual and proper 

uncertainty characterisation of the input datasets is not available. In the case of the 

FireCCIS310 (Section 4.3), for example, the uncertainty characterisation is independent to 

the BA detection and, therefore, a proxy uncertainty can be used to develop the propagation 

framework. However, when the uncertainty is included as predictive variable the results 

can be artificially altered. Therefore, the only option is to consider that the probability of 

burn given by the CNN correctly characterises the uncertainty, although no input 

uncertainty was included in the model. 

5 Uncertainty characterisation at grid scale 

The uncertainty aggregation at 0.25º grid product will be carried out following the approach 

developed within the previous phase by University College London that is described in 

Section 4 of Lewis et al., (2018). It can be easily applied also in the current project since it 

uses the probability of burn generated by the previously mentioned algorithms as input to 

propagate the uncertainty. This is a number between 0 (absolute certainty that the pixel did 

not burn in the temporal interval considered) to 1 (absolute certainty that the pixel did burn 

in the temporal interval considered). 

From the point of view of the ESA Fire_cci pixel-level product, there are two layers which 

are relevant: the date of first detection, and the confidence level. Generally speaking, the 

burned area inside a Climate Model Grid (CMG) cell can be determined as the sum of 

pixels where the first date of detection is between 0 and 366 (both inclusive), multiplied by 

the area of the pixel. This is intuitive and in line with previous estimates. However, if the 

confidence layer is interpreted as a probability of burn, pb, (and in consequence, a 

probability of not being burned of 1 - pb), then this information would need to be scaled up 

to the CMG, as a form of standard error. There are two common definitions relating to 
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standard error (Weisstein, 2017): (i) the square root of the estimated error variance 

(standard deviation); (ii) the standard error of a sample of size n is the sample standard 

deviation divided by √𝑛. There is a need to consider then which would be appropriate in 

this context. 

The sample variance 𝜎2 of a sample set of size n is given by: 

𝜎2 =
1

𝑛
∑(𝑦𝑖 − 𝑦̅)2

𝑛

𝑖=1

 

where 𝑦𝑖 is sample i and 𝑦̅ is the sample mean, given by 

𝑦̅ =
1

𝑛
∑ 𝑦𝑖

𝑛

𝑖=1

 

The sample terms 𝑦̅ and 𝜎2 are random variables, and the expected value of the variance 

𝜎̂2 is given by 

𝜎̂2 =
𝑛

𝑛 − 1
𝜎2 

Often, 𝜎2 is the biased sample variance and 𝜎̂2 is the unbiased sample variance. Going back 

to the definitions of standard error, it can be said that the first definition 𝜎̂1 (square root of 

the estimated error variance) is thus 

𝜎̂1 =
𝑛

𝑛 − 1
𝜎 

where 𝜎 is the sample standard deviation. Using the second definition (sample standard 

deviation divided by √𝑛) we have that 

𝜎̂2 =
1

√𝑛
𝜎 

The first definition is more consistent with many uses of standard error in the physical 

sciences, where it takes the role of an unbiased estimate of the standard deviation of a 

distribution. If the distribution is assumed normal and 𝑦 is continuous (or effectively 

continuous if n is large), then the estimate of the mean (𝑦̅) and standard deviation (𝜎1) fully 

define the Probability Distribution Function (PDF) for BA. 

The second definition is more directly related to the uncertainty of the mean and is used in 

the definition of probable error. The standard error of the mean is given by 𝜎2. So, with 

more samples (greater 𝑛) we can better estimate the mean of the distribution. 

In the light of this, we will use 

𝜎̂ =
1

√𝑛 − 1
∑(𝑦𝑖 − 𝑦̅)2

𝑛

𝑖=1

 

which is a unbiased estimate of the likely variability in burned area. 

Assuming that each pixel has an independent probability of burn 𝑝𝑏, which can be different 

for every pixel, then the sum of these independent probabilities is given by a Poisson 

Binomial distribution. This distribution is only defined over positive integer numbers, and 

has first and second order statistics given by 
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𝑁𝑏
̅̅̅̅ = ∑ 𝑝𝑏,𝑖

𝑁𝑝

𝑖=1

 

𝜎𝑏
2 = ∑ 𝑝𝑏,𝑖(1 − 𝑝𝑏,𝑖)

𝑁𝑝

𝑖=1

 

In Figure 2, the full PDF derived from a set of samples each characterised by a different 𝑝𝑏 
is shown. We calculate the PDF as a Poisson binomial, and also calculate the mean and 

variance using the equations above, and plot the normal approximation to the PDF. For a 

large number of samples, the skewness of the PDF is very low, and the PDF is acceptably 

approximated by a Gaussian distribution. This is of importance, as it means that one can 

parametrize the full PDF of BA using only the mean and the “standard error” (defined as 

the standard deviation in the discussion above), and in accordance to the product 

specification. 

 
 

Figure 2. The Poisson binomial PDF (green line) derived from a simulated set of independent samples 

(300, 100 with probabilities between 0.7 and 0.9, 100 with probabilities between 0.2-0.3 and 100 with 

probabilities between 0-0.1). A Gaussian approximation (red line) derived from calculating the mean 

(~110) and standard deviation (~39) is also shown. Skewness was ~0.01. Source: Lewis et al. 2018. 
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Annex 1 Acronyms and abbreviations 

AC Atmospheric Correction 

ADC Analog-to-Digital Converter 

ADF Auxiliary Data Files 

ADP Algorithm Development Plan 

AERONET Aerosol Robotic Network 

AOD Aerosol Optical Depth 

AOT Atmospheric Optical Thickness 

ASCII American Standard Code for Information Interchange 

ATBD Algorithm Theoretical Basis Document 

AVH09 
AVHRR Surface Reflectance Product of Land Long Term Data 

Record project 

AVHRR Advanced Very High Resolution Radiometer 

BA Burned area 

BC Brockmann Consult GmbH 

BOA Bottom-of-Atmosphere 

BRDF Bidirectional reflectance distribution function 

BT Brightness Temperature 

C3S Copernicus Climate Change Service 

CCD Charge-Coupled Device 

CCI Climate Change Initiative 

CMG Climate Model Grid 

CNN Convolutional Neural Networks 

CRG Climate Research Group 

dB decibel 

E3UB End-to-End ECV Uncertainty Budget 

ECV Essential Climate Variable 

ENL Equivalent Number of Looks 

Envisat Environmental Satellite 

EO Earth Observation 

ERS European Remote Sensing satellite 

ESA European Space Agency 

EUMESAT 
European Organisation for the Exploitation of Meteorological 

Satellites 

EV Earth View 

FireCCI51 Fire_cci MODIS version 5.1 

FireCCILT10 Fire_cci AVHRR-LTDR version 1.0 

FireCCILT20 Fire_cci AVHRR-LTDR version 2.0 

FireCCIS1S2AF

10 
Fire_cci Sentinel-1 & Sentinel-2 test sites in AFrica version 1.0 

FireCCIS310 Fire_cci Sentinel-3 version 1.0 

FireCCISFD20 Fire_cci Small Fire Database version 2.0 

FIRMS Fire Information for Resource Management System 

GAC Global Area Coverage 

GFED Global Fire Emissions Database 
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GRD Ground Range Detected 

GUM Guide to the Expression of Uncertainty in Measurement 

IFOV Instantaneous Field of View 

IR Infrared 

ISP Instrument Source Packet 

IW Interpherometric Wide 

JCGM Joint Committee for Guides in Metrology 

JPSS Joint Polar Satellite System 

K Kelvin 

L0 Level 0 

L1 Level 1 

L2 Level 2 

L3 Level 3 

L4 Level 4 

LC Land Cover 

LTDR Long Term Data Record 

LUT Look-Up-table 

MapnoiS3 Sentinel-3 Noise Mapping python tool 

MCD14ML MODIS Global Monthly Fire Location Product 

MCD64 
MODIS Collection 5 and 6 Burned Area product using the Giglio et 

al. (2009) and Giglio et al. (2018a) algorithm, respectively 

MCST MODIS Characterization and Support Team 

MIRBI Mid-Infrared Burn Index 

MOD09 MODIS Terra Surface Reflectance 5-minute L2 Swath 

MOD09GA 
MODIS Terra Surface Reflectance Daily L2G Global 500 m and 1 

km 

MOD09GQ MODIS Terra Surface Reflectance Daily L2G Global 250 m 

MOD14/MYD14 MODIS Terra/Aqua active fire and other thermal anomalies product 

MOD35 MODIS Cloud Mask product 

MODIS Moderate Resolution Imaging Spectroradiometer 

MODLAND MODIS Land Team 

MSI MultiSpectral Instrument 

NASA National Aeronautics and Space Administration 

NBR2 Normalized Burn Ratio 2 

NetCDF Network Common Data Form 

NIR Near-InfraRed 

NOAA National Oceanic and Atmosphere Administration 

NPP National Polar-orbiting Partnership 

NRT Near Real Time 

NTC Non-Time Critical 

OLCI Ocean and Land Colour Instrument 

OZA OLCI Zenith Angle 

PDF Probability Distribution Function 

PDGS Payload Data Ground Segment 

PRT Platinum Resistance Thermometer 



 

Fire_cci 
End to End ECV Uncertainty Budget 

Ref.: Fire_cci_D2.2_E3UB_v1.1 

Issue 1.1 Date 30/04/2020 

Page 30 
 

PSD product Specification Document 

PUG Product user Guide 

QA Quality Assurance 

QI Quality Indicators 

S1 Sentinel-1 

S2 Sentinel-2 

S2-RUT Sentinel-2 radiometric uncertainty Tool 

S3 Sentinel-3 

SAR Synthetic Aperture Radar 

SCM Scene Classification Map 

Sen2Cor Sentinel 2 Level 2A product generation and formatting processor 

SLC Single Look Complex 

SLSTR Sea and land Surface Temperature Radiometer 

SNAP Sentinels Application Platform 

SRF Spectral Response Function 

SRTM DEM Shuttle Radar Topography Mission Digital Elevation Model 

SST Sea Surface Temperature 

Suomi-NPP Suomi National Polar-orbiting Partnership satellite 

SWIR Short-Wave InfraRed 

SY_1_MISR Internal Synergy Level 1 product 

SY_2_SYN Synergy Surface Directional Reflectance product 

SYN Synergy 

TC Triple Collocation 

TCI True Color Image 

TOA Top-of-Atmosphere 

TOPSAR Terrain Observation with Progressive Scans SAR 

VIIRS Visible Infrared Imaging Radiometer Suite 

VISCAL Visible Calibration unit 

VNP14ML VIIRS Global Monthly Fire Location Product at 750 m 

VNPIMG14ML VIIRS Global Monthly Fire Location Product at 375 m 

WV Water Vapour 
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