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1 Introduction 

1.1 Executive summary 

For the success of the project, key is a well-driven and structured selection of best performers among candidate 

algorithms for some blocks of the whole processing chain aimed at generating the HR LC products. With the end 

of the second year of activities, several comparative tests and performance analysis tasks have been carried out 

by the EOS team. The outcome of these comparative activities is presented and indications on best performing 

algorithms/techniques are provided in Sec. 4. In the period, the final version of the processing chain has been 

executed and we document its performance improvements for both static and historical LC and LCC products. 

1.2 Purpose and scope 

The Product Validation and Algorithm Selection Report (PVASR) provides detailed information about the 

comparative tasks performed for assessing best performing algorithms and techniques to be included in the 

classification blocks within the overall processing chain. 

The PVASR document is living, being updated at every project cycle (on annual basis) based on the output of the 

round-robins and internal benchmarking activities. In its current version, activities carried on in the second cycle 

are presented. Comparison and benchmarking activities have been devoted towards classification of optical and 

SAR imagery and decision fusion, giving emphasis especially on: 

1. Testing classifiers and evaluating their performance in terms of accuracy, computational efficiency and 

predisposition to model/code modification to meet requirements and implementation needs. 

2. Testing approaches for building reliable training datasets out of already existing products, being them 

sub-optimal in terms of spatial resolution (coarse to medium) and legend detail (incomplete if compared 

to HR LC products legend as detailed in ATBD). 

3. Evaluating sets of multitemporal features provided as input for the classifiers. 

4. Testing multisensory decision fusion methods against their accuracy and computational time.  

1.3 Applicable documents 

Ref. Title, Issue/Rev, Date, ID 

[AD1] CCI HR Technical Proposal, v1.1, 16/03/2018 

[AD2] CCI Extension (CCI+) Phase 1 – New ECVs – Statement of Work, v1.3, 22/08/2017, ESA-CCI-PRGM-EOPS-

SW-17-0032 

[AD3] Data Standards Requirements for CCI Data Producers, v2.0, 17/09/2018, CCI-PRGM-EOPS-TN-13-0009 

[AD4] CCI_HRLC_Ph1-D1.1_URD, latest version 

[AD5] CCI_HRLC_Ph1-D2.2_ATBD, latest version 

[AD6] CCI_HRLC_Ph1-D4.1_PVIR, latest version 

[AD7] CCI_HRLC_Ph1-D2.4_ADP, latest version 

 

1.4 Reference documents 

Ref. Title, Issue/Rev, Date, ID 

[RD1] The Global Climate Observing System: Implementation Needs, 01/10/2016, GCOS-200 

1.5 Acronyms and abbreviations 

ANN  Artificial Neural Network 

ATBD  Algorithm Theoretical Basis Document 

CC  Cross Correlation 
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CCI  Climate Change Initiative 

COBYLA  Constrained Optimization BY Linear Approximation 

ESA  European Space Agency 

FFT  Fast Fourier Transform 

GCOS  Global Climate Observing System 

GLC  Global Land Cover 

GLCNMO Global Land Cover by National Mapping Organizations 

GRD  Ground Range Detected 

GT  Ground Truth 

HR  High Resolution 

HPF  High Pass Filter 

ICM  Iterated Conditional Mode 

IWS  Interferometric Wide Swath 

ML  Maximum Likelihood 

LC  Land Cover 

LCCS  Land Cover Classification System 

LOGP  Logarithmic Opinion Pool 

LOP  Linear Opinion Pool 

LPF  Low Pass Filter 

MI  Mutual Information 

MMSE  Minimum Mean Square Error 

MRF  Markov Random Fields 

PDF  Probability Density Function 

RBF  Radial Basis Function 

RMSE  Root Mean Square Error 

RF  Random Forest 

S1  Sentinel 1 

S2  Sentinel 2 

SAR  Synthetic Aperture Radar 

SNAP  Sentinel’s Application Platform 

SFFS  Sequential Forward Floating Selection 

SoW  Statement of Work 

SVM  Support Vector Machine 

TS  Time Series 

URD  User Requirements Document 
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2 Selection procedure 

The overall procedure for the selection of best performing algorithms and methods is performed according to a 

three-step procedure. The algorithms presented in the Technical Proposal [AD1] and ATBD [AD5] are considered 

for the comparisons together with a set of proposed solutions for each task such as generating training samples 

and building multitemporal features. The evaluation-selection procedure is devised in such a way that the 

selected algorithms/techniques are the most suitable to satisfy project requirements. 

The three steps of the procedure are the following: 

• Step 1: Qualitative pre-screening of algorithms 

A pre-screening of the algorithms and methods from a State-of-the-art pool of competitors is carried out in 

order to identify the most relevant methodologies with respect to the project objectives. This preliminary 

analysis is driven by the selection criteria described in Section 2.1. In this first step, a high-level qualitative 

evaluation of these criteria is conducted in order to identify techniques that clearly cannot reach a 

satisfactory ranking on several categories of parameters. These techniques are discarded and not considered 

in the next steps. Algorithms and methods that passed the pre-screening are reported in the Technical 

Proposal [AD1] and more in detail in the ATBD [AD5]. In this report only the methods that passed the pre-

screening are considered explicitly. 

• Step 2: Quantitative evaluation of algorithms 

Algorithms that pass the pre-screening in step 1 are analyzed in greater detail with a quantitative 

evaluation. This analysis is based on different parameters, ranging from a scientific and technical analysis to 

possible impacts on the application and users. For each investigated item (algorithm, method, technique, 

etc.) details on the quantitative evaluation of the comparison activities can be found in a dedicated section 

of this document. 

• Step 3: Final decision 

According to the analysis carried out for each individual comparison task, a final decision is taken according 

to the best performer and its relevance with respect to project objectives. Final decision is reported. 

It is worth noting that the pre-processing algorithms are not included in the evaluation and ranking procedure 

because we expect to import in the project basic pre-processing chains already developed for both multispectral 

and SAR data. 

2.1 Criteria 

In this section the criteria adopted for evaluating the relevance of methods and algorithms with respect to project 

requirements are listed. Up to seven categories of parameters are considered divided in different issues. 

 

1. Scientific Background and Technical Soundness – The scientific validity of the algorithms and of the 

methodologies on which the algorithms are based is considered as an important parameter. The rationale is 

that selected algorithms should be based on a solid theoretical background that guarantees the accuracy of 

its results also at an operational level. The guidelines for rating are as follows: 

o The methodology is solid; 

o The methodology is technical convincing; 

o The methodology is at the state-of-the-art; 

o The methodology is published in high quality journals; 

o The methodology is included in several other scientific publications or project technical reports. 

 

2. Robustness and Generality – In order to obtain a reasonable estimation for the robustness and generality 

of the investigated algorithms, different parameters are considered, such as: 

o The method is suitable to be used with different kinds of images (e.g., Sentinel-2, Landsat, SAR, etc.); 
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o The method shows high performance on different images (Sentinel, Landsat, etc.) and over the three 

test areas as described in URD [AD4]; 

o There are software implementations or examples for the implementation available; 

o The algorithm can be used in combination with other methodologies. 

 

3. Novelty – An appropriate candidate algorithm should have been published or reported for the first time 

relatively recently in the literature. It is not required that algorithms are completely innovative; the novelty 

may consist in both combining well established methodologies or applying well-known techniques in a novel 

way. As a main guideline, a tested method should be already applied in literature to solve existing problems. 

 

4. Operational Requirements – The expected operational requirements (in terms of computational 

complexity, time effort, cost, etc.) for the final implementation of an algorithm/technique are evaluated. 

Although no actual constraints are fixed on the algorithm computational complexity, the most optimized 

implementations available in literature are preferred. Other crucial aspects are: 

o The algorithm is prone to architectural modifications; 

o The processing time scaling is likely to be linear with image size; 

o The hardware and disk-storage requirements are appropriate. 

Algorithm/method consistency with project requirements is also extremely relevant, following guidelines 

from GCOS [RD1] and SoW [AD2]: 

o Algorithms and methodologies must be effective for high resolution images (e.g., optical data at 10-30m). 

o Documented accuracy must be within the boundaries imposed by GCOS (see [RD1]) and as reported in 

SoW [AD2]. 

 

5. Accuracy – An algorithm is positively evaluated if able to provide a high absolute accuracy in all test areas, 

especially keeping into account the different climatological conditions and possibly different data availability 

conditions. Accordingly, the following guidelines are used for evaluating accuracy characteristics: 

o Accuracy/uncertainty to be in line with GCOS [RD1] requirements as reported in SoW [AD2]. 

o The algorithm matches the end-user (climatologist and other users from the community) requirements; 

o For unsupervised tasks the accuracy should not depend on the availability/quality of prior information. 

o For supervised tasks the accuracy should be robust to the availability/quality of prior information. 

 

6. Level of Automation – From an operational point of view, it is mandatory that an algorithm runs in a 

completely automatic way. Algorithms requiring any amount of manual work, strong interaction with the 

final users are negatively evaluated. 

 

7. Specific End-users Requirements – From an operational point of view, capability of an algorithm to satisfy 

and meet possible end-user requirements is another important parameter of evaluation. The main 

guidelines for driving this ranking are: 

o The algorithm is robust to the use in several climatological regions; 

o The algorithm can be reasonably included in an operational procedure. 

2.2 Evaluation 

The evaluation procedure of each comparative task aimed at deciding on a specific algorithm/technique is carried 

out by considering all criteria listed before. To each reported activity, a thorough discussion is given regarding 

how these criteria are weighted in the overall evaluation, which aspects are given strong emphasis and which 

ones are considered less relevant. The evaluation activity provides answers about best performing 

algorithms/techniques that are included in the processing chain of the current version of HR LC products. 
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3 Classification algorithms and procedures (year 1) 

Global climate change as well as the protection and management of natural sources have become central topics 

for many scientific initiatives in the Earth surface dynamics. Many works investigated the effectiveness of optical 

and radar data for both local and global scale thematic characterization for Land Cover (LC) analyses [1], [2]. The 

SAR application in remote sensing has been investigated in several studies and a substantial potential for LC 

monitoring has been proven [3], [4]. Synthetic Aperture Radar (SAR) data are utilized especially when weather 

conditions are not suitable for acquiring optical data, because their quality does not depend on weather 

conditions. Contrary to optical satellites, SAR makes it possible to continually collect data despite of light and 

weather conditions, providing "cloud-free" images because the cloud-penetrating capability of C-band signal [5]. 

On the other hand, multispectral optical images provide wide spectral information (ranging from visible to 

infrared wavelengths) from which detailed information of land properties can be retrieved. Moreover, the 

inclusion of optical time series provides detailed information about LC dynamic. Time series of multispectral 

images have proven capacity to characterize trends and environmental phenomena and are widely used for LC 

classification [6], [7]. Within this section a processing chain for the fully production of LC maps using High 

Resolution (HR) optical and SAR images is presented. 

3.1 Optical data processing 

 

Figure 1. Optical data processing chain for the prototype production of the HR LC map obtained by classifying the time 
series of Sentinel 2 data. 

Figure 1 depicts the optical data processing chain for the prototype production of the HR LC map obtained by 

classifying Sentinel 2 time series. The images are first pre-processed in order to perform the atmospheric 

correction and detect the clouds. Then, the best time series of images used to generate the HR static LC map is 

automatically detected. Due to the missed availability of training data, a training set production step is performed 

to extract the labeled data necessary to train the supervised classification system. Existing thematic product 

available on the considered study area are used to create database of weak training samples. The thematic 

products available are characterized by medium/coarse spatial resolution (e.g., 100m, 300m and 1 km), much 

coarser than the desired geometrical detail (10 m). The maps are analysed and processed in an unsupervised 

way to detect and extract the most reliable samples which are included in the weak training set. Moreover, few 

samples are added by photointerpretation to integrate the missing information on classes which require HR 

labelled pixels (e.g., building or roads). 

Finally, the classification of the time series of Sentinel 2 images is performed to produce the HR LC map for the 

considered study areas. 
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3.1.1 Satellite images  

The considered study areas are located into the following four thematic regions (according to tiling grid of 

Sentinel-2 products): 

• Amazonia area for 21KUQ Sentinel-2 tile; 

• Amazonia area for 21KXT Sentinel-2 tile; 

• Siberia area for 42WXS Sentinel 2 tile; 

• Africa area for 37PCP Sentinel-2 tile. 

2018 Sentinel-2 images downloaded through the Copernicus Open Access Hub 

(https://scihub.copernicus.eu/dhus/#/home) are used over the four CCI-HR LC areas for the year 2018. The 

complete list of images is given in Table 1. 

Table 1. List of Sentinel-2 data 

Area Satellite # Products Date list (2018y) 

Amazonia – 21KUQ S2 8 

2018-04-17;  2018-08-10; 

2018-05-12;  2018-08-30; 

2018-05-22;  2018-10-09; 

2018-07-16;  2018-12-08; 

Amazonia – 21KXT S2 9 

2018-02-23;  2018-06-23; 2018-09-11 

2018-04-29;  2018-07-18; 

2018-05-09;  2018-08-12; 

2018-05-29;  2018-08-27; 

Siberia – 42WXS S2 7 

2018-06-06;  2018-08-27; 

2018-07-06;  2018-09-01; 

2018-07-21;  2018-11-08 

2018-08-22; 

Africa – 37PCP S2 9 

2018-02-06;  2018-09-24;  2018-12-23 

2018-02-16;  2018-10-24; 

2018-03-03;  2018-11-13; 

2018-04-12;  2018-12-18; 

3.1.2 Method/algorithm/technique 

Within this Section, several methods are presented and compared as candidate approaches to be develop and 

implemented in the optical image processing chain according to Figure 2. 

3.1.2.1 Optical data pre-processing 

This step has the purpose of generating a time series of images able to characterize the HR LC classes. First, the 

atmospheric correction is performed by using the specific tools provided by ESA, the Sen2Cor processor for Level 

2A product generation in the Sentinel-2 toolbox [8]. The main goal is to exploit the high revisit time of Sentinel 2 

data to select almost cloud free images available on the considered study area. This condition allows for an 

accurate temporal characterization of the HR LC classes. By analysing the dense time series of images 

atmospherically corrected, the method automatically retrieves the images having low cloud coverage according 

to the available cloud and shadow masks. This is done by using the cloud masks generated by Sen2cor [8]. Small 

cloud gaps are filled according to [9]. 
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The peculiar multi-resolution property of Sentinel 2 images involves four spectral bands acquired at a spatial 

resolution of 10 m, six spectral bands acquired at a spatial resolution of 20 m and three spectral bands acquired 

at a spatial resolution of 60 m. Because the 60 m spectral bands are mainly dedicated to atmospheric corrections 

and cloud screening [10], only the 10 and 20 m bands are used to produce the HR LC maps. A nearest neighbour 

interpolation technique is used to match the spatial resolution of the 20 m bands to the 10 m ones for the entire 

tie series. The nearest neighbour interpolation technique has the drawback of generating smoothed images, thus 

losing in sharpness with respect to more sophisticated interpolation technique such as High Pass Filter (HPF). 

However, no new values are calculated by interpolation. This condition allows us to keep the original spectral 

information recorded by the sensor. Finally, we perform a spectral outlier detection and removal by discarding 

the pixels having values higher than the 0.999 quantile and lower than the 0.001 quantile of the spectral band. 

A radiometric normalization is eventually applied to the interpolated images so that each spectral band is 

rescaled between zero and one. 

3.1.2.2 Training set preparation  

Due to missing training data, existing thematic products available at global scale are considered to produce the 

training set. To extract samples able to represent the LC classes in the legend [AD4], three thematic products are 

considered: (1) the 2015 ESA CCI LC map available at 300m spatial resolution [11], (2) the 2015  Copernicus Global 

Land Cover (GLC) map produced at 100m spatial resolution [12], and (3) the Global Land Cover by National 

Mapping Organizations (GLCNMO) produced at 1 km spatial resolution [13]. 

First, we rescale the existing LC map at 10 m spatial resolution and then to convert the considered legend into 

the required one. To this end, we refer to the Land Cover Classification System (LCCS) [12], which is the standard 

common LC language for translating and comparing existing legends. Table 2 presents the translation of the 

considered thematic products into the HRLC legend. 

Table 2. Training Set Production: the translation of the considered coarse thematic products into the desired map legend 
is reported. Bare rocks, built-up areas and bare soil classes are inserted via photointerpretation. 

CCI-HRLC ESA CCI LC 2015  CGLC  GLCNMO Photo Interpretation 

 Evergreen, broadleaf  3, 9   

 Evergreen needleleaf  1,7   

 Deciduous broadleaf  4,10   

 Deciduous needle leaf  2,8   

 Shrubland  13   

 Permanent cropland  18,14   

 Annual summer cropland   12  

 Grassland 130    

 Lichens and mosses  16   

 Permanent water bodies  21   

 Permanent snow and ice  20   

 Beaches dunes and sands   17  

 Bare soils  16  x 

 Bare rock    x 

 Built-up areas    x 

A weak training set production is performed by selecting from the available thematic maps those samples having 

the highest probability of belonging to areas correctly associated to their label. Many difficulties arise when 

exploiting existing thematic maps generated with RS data characterized by properties different from Sentinel 2 

images. Due to the coarse spatial resolution, the label assigned to mixed pixel is propagated to the pure pixels of 

Sentinel 2 images. Moreover, the considered maps are outdated and thus, they are not completely reliable. To 

address all these issues, we perform an automatic and unsupervised analysis which extracts from the existing 

thematic maps a weak, but reliable training set. First, a random stratified sampling is performed by using the LC 
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classes as strata. Five training sets are generated via bootstrap statistical method (e.g., without replacement) 

and used to train an ensemble of statistically independent classifiers. This condition allows us to generate an 

intermediate thematic product obtained at 10 m spatial resolution by classifying the time series of Sentinel 2 

images. Only the areas where the ensemble of classifiers agree are kept. This condition allows us to increase the 

probability of selecting reliable samples to produce the final weak training database. Finally, few samples were 

added by photointerpretation for the classes that required a geometrical detail higher than the resolution of the 

considered thematic products (e.g., building, roads, small bare soil areas). 

Figure 2 shows a qualitative comparison over a portion of the study area located in tile 21KUQ (Amazonia) 

between: (a) the coarse thematic product obtained by merging the CGLC, ESA CCI 2015 and the GLCNMO after 

the legend conversion, (b) the intermediate product produced by the ensemble of five classifiers, (c) the weak 

training samples selected, and (d) a true colour composition of the Sentinel 2 image acquired on 17th April 2018. 

The qualitative example demonstrates the importance of generating the intermediate product at 10 m spatial 

resolution to sharply increase the probability of selecting samples correctly associated to their labels with respect 

to the ones that can be directly selected from the coarse thematic product. 

  
(a) (b) 

  
(c)  (d) 
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Figure 2. Visual comparison of the: (a) coarse thematic product generated by merging the CGLC, ESA CCI 2015 and the 

GLCNMO after the legend conversion, (b) intermediate HR LC product produced by the ensemble of 5 classifiers, (c) 

extracted weak training samples, and (d) true color composition of the Sentinel 2 image acquired on 17 April 2018. 

3.1.2.3 Classification 

Automatic classification is a crucial processing step to produce accurate LC maps. The selected classification 

algorithm must achieve the best trade-off between classification accuracy and computational burden due to the 

need of processing a huge amount of data.  

By analysing the recent literature, the team identified several successful core approaches to the classification. 

Some of them are now very consolidated, such as the Support Vector Machine (SVM) classifier [14] given the 

almost unanimous consensus obtained on its effectiveness to generate HR LC maps. SVM classifiers are based 

on kernel methods that have been extensively employed for the classification of RS data. In the considered 

implementation, we exploit SVM with Gaussian Radial Basis Function (RBF) kernels because of its capability of 
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dealing with noisy samples in a robust way and to produce sparse solutions. A feature selection step is performed 

to detect the feature subspace where the LC classes are more discriminable. In the considered implementation, 

a Sequential Forward Floating Selection (SFFS) method based on the Jeffreys-Matusita distance as separability 

criterion is used [15]. The optimal kernel parameters (i.e., the regularization parameter C and the spread of the 

kernel 𝛾) are selected by a 3-fold cross-validation The LC maps generated by the SVM classifier are compared 

with the ones obtained by using other classification algorithms widely employed to generate global LC maps: 

Random Forest (RF) [16] and Maximum Likelihood (ML) [17]. RF is a commonly used classifier for LC classification 

due to its capability of being robust to label noise, yielding high classification accuracy with a low computational 

complexity. In the considered implementation we follow the parameter setting suggested by [18]: namely the 

number of trees to build equal to 200; and the number of input features randomly selected by each node equal 

to the square root of total number of features (i.e., the total number of spectral bands of the time series of 

Sentinel 2 images). 

ML is one of the most common basic parametric classifiers based on statistical approach. ML is based on the 

statistical representation of the class distribution, thus achieving good accuracy for data with normal distribution 

and often poor quality for data with non-normal distribution. Although ML are easy to understand and interpret, 

they require a large training set with preferably only pure training samples. The last classifier used to generate 

HR LC maps is the Artificial Neural Network (ANN). Neural networks manage well with large feature space and 

generally obtain high classification accuracy. However, they require a large diversity of training set and are 

computationally expensive. Like other non-parametric methods, they are often a good choice for large LC 

applications where the data distribution is unknown. In the considered implementation, we exploit a simple 

feedforward neural network having one hidden layer characterized by ten neurons. The team is also evaluating 

the possibility of using sophisticated deep learning technique such as Long Short Term Memory classifier [19] to 

extensively exploit the spectral information provided by the long time series of Sentinel 2 images (see ADP v1.0). 

However, ground reference data ate mandatory for the proper training of deep learning architectures. 

The weak training sets automatically generated for the considered study areas are used to train all the above-

mentioned classification algorithms in order to compare their classification performances. Due to the missed 

availability of ground reference data, a qualitative analysis is carried out to determine the classifier able to 

provide the best classification results. 

3.1.3 Qualitative evaluation 

In the following examples of qualitative analysis performed in the different study areas are reported. Figure 3 

reports a comparison of classification results obtained in Amazonia (tile 21KUQ). The low geometrical resolution 

of the coarse thematic map (Figure 3b) is sharply improved in the HR classification maps. By comparing the LC 

classes in the ESRI HR optical images used to perform the qualitative evaluation results (Figure 3a), the best LC 

map is obtained by using the SVM (Figure 3f). It is the only classifier that correctly extracts the build-up areas. 

The worst result is obtained by the ML (Figure 3c), which misclassifies evergreen broadleaf as permanent 

cropland. 

Figure 4 presents examples of classification results obtained in Amazonia (tile 21KXT).  In this case, there is small 

correspondence between the coarse thematic product (Figure 4b) and the LC in the scene (Figure 4a). However, 

the classification results accurately retrieve the geometrical detail of the scene, thus recovering the river, lakes 

and road. All the classifiers correctly detect build up areas, river and lakes and obtain similar classification map. 

To identify the best classifier ground truth data are needed. 
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Figure 3. Visual comparison of the: (a) HR optical image used to evaluate the results obtained; (b) coarse thematic 
product generated by merging the CGLC, ESA CCI 2015 and the GLCNMO after the legend conversion, (c) LC map obtained 

by using ML, (d) LC map obtained by using ANN, (e ) LC map obtained by using RF, and (f) LC map obtained by using the 
SVM. The study area is in Amazonia (Tile 21KUQ). 
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Figure 4. Visual comparison of the: (a) Sentinel 2 image acquired on the 9th May 2018; (b) coarse thematic product 
generated by merging the CGLC, ESA CCI 2015 and the GLCNMO after the legend conversion, (c) LC map obtained by 

using ML, (d) LC map obtained by using ANN, (e ) LC map obtained by using RF, and (f) LC map obtained by using SVM. 
The study area is in Amazonia (Tile T1KXT). 

Figure 5 represents the classification products obtained by the considered classifiers in Africa (tile 37PCP). An 

evident correspondence between coarse thematic products and HR LC maps can be noticed. The classification 

map generated by the ML classifier is the only one where water and shrubland are confused (Figure 5c). One can 

notice that the build-up areas are accurately classified in all the HR maps. 
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Figure 5. Visual comparison of the: (a) Sentinel 2 optical image acquired on the 3rd March 2018; (b) coarse thematic 
product generated by merging the CGLC, ESA CCI 2015 and the GLCNMO after the legend conversion, (c) LC map obtained 
by using ML, (d) LC map obtained by using ANN, (e ) LC map obtained by using RF, and (f) LC map obtained by using SVM. 

The study area is located in Africa (Tile 37PCP). 

Figure 6 reports a comparison between the SVM classifier (Figure 6b and Figure 6e) and the African Prototype 

produced by ESA CCI (Figure 6c and Figure 6f) on two areas located in Africa (tile 37PCP). The African Prototype 

legend is converted into the HRLC one. From a qualitative analysis, one can notice that SVM correctly detects the 

build-up areas, the shrubland and the permanent cropland areas. As expected, the geometrical detail of the HRLC 

map is better than the one provided by the African Prototype. 
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Figure 6. Visual comparison of the: (a)(d) true color composition of Sentinel 2 image acquired on the 3 rd March 2018; 
(b)(e) LC maps obtained by using SVM, (c)(f) African prototype LC maps produced by ESA CCI converted to the HRLC map 

legend. The study area is located in Africa (Tile 37PCP). 

Figure 7 represents the classification products obtained in Siberia (tile 42WXS). Like the other tiles, there is a 

correspondence between the coarse thematic products and the classification results. However, the HR maps 

sharply improve the geometrical detail in the scene thus highlighting the presence of lynches and mosses. All the 

classifiers correctly detect build up areas and lakes. From the visual interpretation point of view, Siberia is the 

most challenging area as expected. This is because the area is mostly covered with permanent water, shrubland, 

lichens and mosses which are difficult to be evaluated without reference data. 
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Figure 7. Visual comparison of the: (a) Sentinel 2 optical image acquired on the 21st July 2018; (b) coarse thematic 
product generated by merging the CGLC, ESA CCI 2015 and the GLCNMO after the legend conversion, (c) LC map obtained 
by using ML, (d) LC map obtained by using ANN, (e ) the LC maps obtained by using RF, and (f) LC map obtained by using 

SVM. The study area is in Siberia (Tile 42WXS). 

3.1.4 Final decision 

According to the qualitative analysis the best LC maps are achieved by SVM and RF classifiers. However, SVM 

better distinguishes between build up areas and bare soil. This is due to the capability of SVM of performing well 

with small training dataset. Thus as training samples of build-up areas are added to the weak training set by 

photointerpretation. ML presents the poorest results, by making many classification mistakes. This is mainly due 

to the fact that the considered HR LC classes do not follow the normal distribution, thus leading to poor 

classification performances. Although these preliminary results are encouraging, ground reference data are 

needed to perform a quantitative evaluation and to achieve better classification results. 
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3.2 SAR data processing 

According to what is reported in the ATBD document [AD5], Figure 8 reports the general work flow for the kernel 

of the processing chain. 

 

 

Figure 8. Block diagram for SAR data of the land cover map production procedure. 

The reference data is split into a training subset. The image data is proper pre-processed in order to ensure 

spatial and temporal homogeneity and then image features for the classification are extracted. After that, 

classifier training and image classification are performed. 

3.2.1 Satellite images 

The Round Robin has been voted in analysing the following three thematic regions according to tiling grid of 

Sentinel-2 Level-1C products: 

• Amazon area for 21KUQ S-2 tile; 

• Amazon area for 21KXT S-2 tile; 

• Siberia area for 42WXS S-2 tile. 

Sentinel-1 is the only source of radar images used in Round Robin. Level-1 data processed into Ground Range 

Detected (GRD) products, acquired in Interferometric Wide Swath (IWS) and available through the Copernicus 

Open Access Hub (https://scihub.copernicus.eu/dhus/#/home) were used over the three Round Robin areas for 

the year 2018. The Level-1 GRD data contained the detected amplitude (phase information is lost) and are multi-

looked to reduce the impact of speckle at a cost of reducing spatial resolution. The products are projected to 

ground range using Earth ellipsoid model, generating images with approximately square resolution pixels and 

square pixel spacing. The complete list of images is given in Table 3. 

The growing availability of “free and open” satellite imagery at 10-30 m spatial resolution encourages the 

development of innovative and advanced methodologies in the context of the climate change initiative. 

3.2.2 Method/algorithm/technique 

Within this Section, several methods are presented and compared as candidate approaches to be develop and 

implemented in the SAR image processing chain in Figure 8. 

3.2.2.1 SAR data pre-processing 

The first step consists in a preprocessing task aiming to provide a time series devoted to the land cover map 

production. The Level-1 products of Sentinel-1 GRD data are properly calibrated and terrain corrected before 

any other processing. The preprocessing is accomplished by Sentinel’s Application Platform (SNAP) software 

provided by ESA 
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3.2.2.2 Training set preparation 

The training set extraction refers to procedure presented in section 8.2 of ATBD document [AD5]. Consistent and 

accurate training data that cover a large area is not available and reference data originate from existing databases 

have been used for classifier trained. Two data sources have been taken into account: 

▪ ESA CCI-LC 2015 300m [20]; 

▪ GLCNMO 1km [13]; 

These products were therefore combined in order to ensure a unique reference data set. Then, random sampling 

is applied for extracting a consistent set of training samples, as described in ATBD [AD5]. 

A set of classes of interest were defined, namely: evergreen broadleaf tree, evergreen needleleaf tree, deciduous 

broadleaf tree, deciduous needleleaf tree, shrubland, permanent cropland, annual summer cropland, grassland, 

lichens and mosses, permanent water bodies, permanent snow and ice, beaches, dunes and sands, bare soils, 

bare rock and built-up areas (Figure 9). 

In this document it is proved that the use of these combined data sources allows obtaining a classification maps 

that is largely independent from the random set of points used for training, hence effectively implementing an 

automatic supervised approach. 

 

Table 3. List of Sentinel-1 data 

Area Section Satellite Band # Products Date list (2018y) 

Amazonia – 21KUQ 

Upper S1B VH and VV 25 

03-10 03-22 04-03 04-15 04-27 

05-09 05-21 06-02 06-1406-26 

07-08 07-20 08-01 08-13 08-25 

09-06 09-18 09-30 10-12 10-24 

11-05 11-17 11-29 12-11 12-23 

Lower S1B VH and VV 25 

02-26 03-10 03-22 04-03 04-15 

04-27 05-09 05-21 06-02 06-14 

06-26 07-08 07-20 08-13 08-25 

09-06 09-18 09-30 10-12 10-24 

11-05 11-17 11-29 12-11 12-23 

Amazonia – 21KXT 

Upper S1B VH and VV 27 

01-16 03-05 03-17 03-29 04-10 

04-22 05-04 05-16 05-28 06-09 

06-21 07-03 07-15 07-27 08-08 

08-20 09-01 09-13 09-25 10-07 

10-19 10-31 11-12 11-24 12-06 

12-18 12-30 

Lower S1B VH and VV 26 

01-04 03-05 03-17 03-29 04-10 

04-22 05-04 05-16 05-28 06-09 

06-21 07-03 07-15 07-27 08-08 

08-20 09-01 09-13 09-25 10-07 

10-19 10-31 11-12 11-24 12-06 

12-18 

Siberia – 42WXS - S1B VH and VV 20 

01-08 03-09 03-21 04-14 05-08 

05-20 06-13 06-25 07-07 07-19 

07-31 08-12 08-24 09-05 09-17 

09-29 10-11 11-04 11-16 12-22 
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Figure 9. Land cover classes for Sentinel-1 data classification 

3.2.2.3 Speckle filtering 

For speckle reduction, two approaches have been compared. The first one is the Lee filter, one of the well-known 

filters for despeckling and enhancing SAR images. It uses the minimum mean square error (MMSE) filtering 

criterion as explained in [21]. The second approach is the multitemporal despeckling method developed by Zhao 

et al. in [22]. This filter is based on the calculation of a super-image exploiting the spatial and temporal 

information of a SAR time series. Both methods aim to enhance the quality of image by means an effective 

speckle reduction and spatial resolution preservation, but they have different impacts on classification 

performance. 

3.2.2.4 Feature extraction 

Feature extraction methods encompass characteristics and texture, structural and graph descriptors. To improve 

the ability of classifier to recognize and discriminate the different environment textures and morphological 

structures (e.g. urban areas, agricultural crops, forests, etc.), the amplitude of VH and VV channels and their 

combinations have been assumed [23]. The feature extraction could be carried out considering both single and 

double bands analysis. 

In single band case, for analyzing and exploring the spatial information contained in satellite images, a set of 

filters that operate especially in spatial domain have been assumed. The rationale for selecting these algorithms 

is especially due to their velocity of the execution and versatility. Although they might not be the most accurate 

one, the possibility to apply them quickly to the SAR images in a large stack in a reasonable amount of time is an 

invaluable asset for wide area processing. The implemented techniques are summarized in the following list: 

• Mean filter is one of the most widely used low-pass filters (LPF). It substitutes the pixel value with the 

average of all the values in the local neighborhood (filter kernel). 

• Median filter, a non-adaptive filter and replaces each pixel value with the median of the pixel values in 

the local neighborhood. 
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• Lee filter is an adaptive filter based on minimum mean-square error (MMSE) that converts the 

multiplicative model into an additive one, thereby reducing the problem of dealing with speckle to a 

known tractable case. 

• Minimum (maximum) filter is a non-linear filter that locates the darkest (brightest) point in an image. It 

is based on median filter since it is defined as his 0th (100th) percentile, i.e. by considering the minimum 

(maximum) of all pixels within a local region of an image. 

In dual polarimetry analysis case, polarimetric information of Sentinel-1 data were extracted using intensities of 

the VH and VV channels, and several composite images given by: 

• Ratio, VV/VH; 

• Sum, VV+VH; 

• Mean, (VV+VH)/2; 

• Difference, VV-VH. 

In this document, possible combinations of these feature sets (and subset of) are compared and discussed, in 

order to identify a (sub-)set of features for the proper detection of the classes of interest. 

3.2.2.5 Classification 

The global mapping systems using high resolution imagery could implement rule or advanced approaches based 

on the definition of the classes. For classifying satellite images, two supervised classifiers have been considered, 

the Random Forest (RF) and Support Vector Machine (SVM). They are superior to unsupervised methods and 

more robust [16]. Some erroneous reference data (e.g., slightly outdated ones) are acceptable in training [24]. 

The whole classification chain has been investigated on Sentinel-1 time-series data assuming different scenarios. 

Both RF and SVM classifier have been applied. The experiments presented in this documents are carried on two 

sites of continental Amazonian region, see Figure 10, which amounts to about 20.000 Km2. 

 

Figure 10. Study areas (highlighted in red) referring to 21KUQ and 21KXT Sentinel-2 granules. 

The RF was applied for classification performance evaluation in the following cases: 

• Single image, single band analysis (VH band); 

• Single image, double band analysis (VV and VH); 
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• Multitemporal analysis, on the basis of a Sentinel-1 time series. 

The choice of parameters for the RF classifier is not very sensitive for this kind of problem [25], and one-hundred 

trees have been used. 

In single band analysis, the VH channel of a single image has been considered, and the speckle noise was reduced 

applying multitemporal despeckling approach. The classification was carried on features aimed to identify 

textural and spatial information of the scene (described in Section 3.2.2.4). For double band analysis, also VV 

channel has been taken account. The features given by VV and VH combination (mean, ratio and difference) have 

been extracted and used in classification. 

  
(a) (b) 

   
(c) (d) (e) 

   
(f) (g) (h) 

Figure 11. 21KUQ Amazonian tile: the figure shows a comparison among the satellite image (a); ESA CCI LC 2015 
reference data (b), and classification maps using single image-single band (c), single image-double band (d), 

multitemporal sequence (e), multitemporal sequence with majority voting (f), seasonal multitemporal sequence with 
three images per season (g) and seasonal multitemporal sequence with five images per season (h). 

To carry out the multitemporal analysis, a time series of Sentinel-1 VH images has been assumed. All images have 

been divided according to annual seasons: winter, spring, summer and autumn. For each season, a multitemporal 

despeckling filter has been computed and subsequently applied. Hence, three filtered images have been 

randomly chosen for each season (with a total of twelve images) and applied in input to RF classifier. To try and 

improve the performances of classification, more spatial and textural information have been added, by means 

of a seasonal mean image. Two scenarios have been evaluated. In the first case the average of three images per 
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season has been selected, whereas five images have been considered in the second one. The spatial features 

(Lee, Min, Max, Max Min, Mean and Median) of each mean image were then extracted, leading to a total of 

twenty-eight features for classification. Still in the multitemporal analysis framework, also the majority voting 

algorithm has been evaluated as potential rule to be deployed in classification chain. This approach consists in 

applying the whole classification chain for each season, in order to have four classification maps. Hence the 

majority voting is carried out pixel-per-pixel over the maps for accomplishing a single final product. All 

classification results for 21KUQ and 21KXT Amazonian granules are reported in Figure 11 and Figure 12, 

respectively. 

For further comparison, SVM classifier was also applied to carry out a multitemporal analysis (based on mean 

image of five images per season). Results are reported in Figure 13 and Figure 14. 

  
(a) (b) 

   
(c) (d) (e) 

   
(f) (g) (h) 

Figure 12. 21KXT Amazonian tile: the figure shows a comparison among the satellite image (a); ESA CCI LC 2015 reference 

data (b), and classification maps using single image-single band (c), single image-double band (d), multitemporal 

sequence (e), multitemporal sequence with majority voting (f), seasonal multitemporal sequence with three images per 

season (g) and seasonal multitemporal sequence with five images per season (h). 
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(a) (b) 

  
(c) (d) 

Figure 13. Comparison of RF and SVM classification for the 21KUQ Amazonian tile: the satellite image (a), ESA CCI LC 2015 
reference data (b), RF map using a seasonal multitemporal sequence (five image per season) (c) and SVM map with the 

same input (d). 

  
(a) (b) 

  
(c) (d) 

Figure 14. Comparison of RF and SVM classification in 21KXT Amazonian tile: the satellite image (a), ESA CCI LC 2015 
reference data (b), RF map using a seasonal multitemporal sequence (five image per season) (c) and SVM map with the 

same input (d). 

The whole processing chain has also been investigated in terms of despeckling filters. In fact, two experimental 

environments have been considered and the classical Lee speckle filter has been assumed both for single- and 

multi-image analysis. In first case, speckle noise was reduced by Lee filtering applied on single S-1 image. In the 

other one, five images of each season have been separately processed with Lee filter and their average has been 
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calculated. Features have been properly extracted as described in previous analysis and RF classification has 

applied in both times. 

To inquire into the robustness and effective of classification with respect to reference data, several training set 

have been randomly extracted and used in the processing. Once applied multitemporal despeckling over the 

whole SAR dataset, a multitemporal analysis have been carried out by mean RF classification. Resulting maps are 

displayed in Figure 15 and Figure 16. 

The urban class (highlighted in red in reported classification maps) has been separately extracted with the 

developed UEXT algorithm (download is available at tlclab.unipv.it//downloads/1/20171207/UEXT-files.zip.), 

well described and validated by Lisini et al. [26]. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 15. Lee filter applied in RF classification for the 21KUQ Amazonian tile: the satellite image (a), ESA CCI LC 2015 
reference data (b), single image classification with multitemporal despeckling (c), single image classification with Lee 

despeckling (d), multitemporal classification with multitemporal filtering (e) and multitemporal classification with Lee 
filtering (d). 

3.2.3 Qualitative evaluation 

By looking at the maps reported above, the different performance levels of the considered approaches can be 

appreciated. By comparing classification results in Figure 8 with the satellite image (a) and referenced data (b), 

it can be seen that the severe classification noise is gradually mitigated with multi-image analysis. The single-

image case (Figure 11 (c)) shows poor performance in terms of class recognition, as well as attained in double 

band analysis (Figure 11(d)), since images appear very noisy with a lot of classes hard to be visually 

distinguishable. The multitemporal approach produces instead interesting results, with nice classification 

capabilities, confirming the state-of-the-art level of this methodology. In Figure 11 (h) several croplands and 

vegetative areas are very well extracted proving the capability of the approach to produce a more reliable map. 

Moving to the classification maps reported in Figure 12, a similar behaviour can be appreciated, up to the map 

in Figure 12 (h). 

In Figure 13 and Figure 14, a comparison between Random Forest and Support Vector Machine performances is 

reported for the 21KUQ and 21KXT tiles, respectively. In both cases, RF maps (Figure 13 (c) and Figure 14 (c)) 

show a greater capability in class recognition than SVM ones. The performance can be explained due to the 

nature of RF in being inherently multiclass whereas Support Vector Machines need workarounds to deal with 
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classification tasks involving multiple classes. Moreover, RF works well with a mixture of numerical and 

categorical features. In other words, with Random Forest one can use inhomogeneous data without any refined 

pre-processing.  

 
Training set baseline 

   
Training set #1 Training set #2 Training set #3 

   
Training set #4 Training set #5 Training set #6 

   
Training set #7 Training set #8 Training set #9 

Figure 16. Random Forest maps for to the 21KUQ Amazonian tile using randomly selected different training sets. 

Figure 15 can be used to visually assess the effectiveness of speckle reduction when using different filters, in this 

case the Lee and the multitemporal approaches. The Lee filter (Figure 15 (f)) performs a linear combination of 

the observed intensity and the local average intensity value within the fixed window (use of the local statistics). 

By applying the filter, a mild smoothing effect is achieved, and the noise reduction does not appear visually 
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strong. In comparison, the multitemporal filter, applied to a temporal series of Sentinel-1 images (Figure 15(e)), 

gives very good results: the noise is well reduced and image sharpness is remarkable. Multitemporal despeckling 

better preserves spatial structures in multitemporal SAR images while effectively removing speckle. 

Finally, the last test (Figure 16), aim at showing the robustness of the classification approach with respect to 

several randomly extracted training sets. According to the maps, although the maps are obtained using different 

training sets, they visually show similar performance. 

3.2.4 Final decision 

According to the previous subsections and the comparisons, in despeckling, the improvement given by 

multitemporal classification appears evident. The method delivers better performance than the Lee adaptive 

filter, in addition to the capability to be versatile and scalable by jointly processing multiple images, i.e. different 

imaging sequences. 

Moving to classification, RF is state-of-the-art in remote sensing image processing, and yields classification 

accuracies as high as SVM, but with a much lower computational complexity. It is also more stable with respect 

to the choice of parameters [25], and easily provides the probability of belonging to a class (necessary input to 

the data fusion step). This makes it an excellent candidate for operational processing chains. 

Having that said, it has to be underlined that this comparison has been performed only qualitatively, and a 

quantitative analysis should be provided for a better evaluation of the quality. 

3.3 Multi-sensor Optical and SAR Data Fusion 

3.3.1 Multisensor Geolocation Methods 

In the context of multi-sensor geolocation, different image registration methods and strategies have been 

designed and validated on the available dataset, following up on the methodological analysis conducted in the 

deliverables of the previous milestones. 

The multi-sensor geolocation process is composed of different elements (Figure 17), i.e.: (i) the geometric 

transformation used to warp the input image; (ii) the similarity measure used to compare the reference and 

input images during the registration process; and (iii) the optimization strategy used to minimize or maximize 

the similarity measure, depending on the semantic of the metric. 

 

Figure 17. General block diagram of the geolocation process 

According to the CCI proposal, we have developed and validated area-based image registration methods with a 

combination of different geometric transformations, similarity measures, and optimization strategies. 

3.3.1.1 Geometric Transformations 

With respect to the geometric transformations, we have considered: 

• Translation transformations 

[
𝑋
𝑌
1

] = [
1 0 −𝑇𝑥

0 1 −𝑇𝑦

0 0 1

] [
𝑥
𝑦
1

] 

• Rigid transformations 
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[
𝑋
𝑌
1

] = [
1 0 −𝑇𝑥

0 1 −𝑇𝑦

0 0 1

] [
cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0

0 0 1
] [

𝑥
𝑦
1

] 

• Rotation-Scale-Translation (RST) transformations 

[
𝑋
𝑌
1

] = [
1 0 −𝑇𝑥

0 1 −𝑇𝑦

0 0 1

] [
𝑠 0 0
0 𝑠 0
0 0 1

] [
cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0

0 0 1
] [

𝑥
𝑦
1

] 

Here, (𝑥, 𝑦) and (𝑋, 𝑌) indicate the axes of the coordinate frames in the reference and input images, respectively, 

𝑇𝑥  and 𝑇𝑦 are translation parameters, 𝜃 is a rotation angle, and 𝑠 is a scale parameter [27]. 

3.3.1.2 Similarity Measures 

With respect to the similarity measures, we have considered: 

• Cross-correlation 

CC(𝑥, 𝑦) = ∑ ∑ 𝐼𝑛(𝑚, 𝑛) 𝑅𝑒𝑓(𝑚 − 𝑥, 𝑛 − 𝑦)

𝑁−1

𝑛=0

𝑀−1

𝑚=0

 

• Mutual Information 

MI(𝑅𝑒𝑓, 𝐼𝑛) = ∑ ∑ 𝑝𝑅𝑒𝑓,𝐼𝑛(𝑟, 𝑖) log
𝑝𝑅𝑒𝑓,𝐼𝑛(𝑟, 𝑖)

𝑝𝑅𝑒𝑓(𝑟) 𝑝𝐼𝑛(𝑖)
𝑖𝑟

 

Here, 𝐼𝑛(⋅) and 𝑅𝑒𝑓(⋅) indicate the input and reference images (which are both assumed composed of 𝑀 × 𝑁 

pixels), respectively, 𝑝𝑅𝑒𝑓,𝐼𝑛is their joint probability density function (PDF), 𝑝𝑅𝑒𝑓  and 𝑝𝐼𝑛 are their marginal PDFs, 

CC(⋅) is their cross-correlation evaluated on a given pixel location, MI(⋅) is their mutual information [27], [28], 

[29]. 

It is worth noting that the cross correlation is computed through the fast Fourier transform (FFT) algorithm. Such 

process takes advantage of the relation between the convolution operation in the spatial or time domain and 

the product operation in the frequency domain: 

ℱ(𝑓 ∗ 𝑔) =  ℱ(𝑓) ∙ ℱ(𝑔)   →     𝑓 ∗ 𝑔 = ℱ−1(ℱ(𝑓) ∙ ℱ(𝑔)), 

where ℱ(⋅) denotes the Fourier transform operator and 𝑓 and 𝑔 are two signals defined in the spatial or time 

domain. It is straightforward to write the cross-correlation in terms of a convolution operator, which allows 

taking benefit from the computational efficiency of the FFT [30]. 

 

Figure 18. Flowchart of the cross-correlation computation between two images 

In order to compute the cross-correlation between two images it is necessary to: (i) compute the FFT of each 

image to pass from the spatial domain to the frequency domain; (ii) compute the complex conjugate of one of 

the two resulting signals in the frequency domain because of the mirroring operation performed during 

convolution and not during correlation; (iii) multiply the images in the frequency domain; and (iv) compute the 
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inverse FFT transform of the product to obtain the cross-correlation of the two images in the spatial domain. The 

flowchart of such computation is shown in Figure 18. 

3.3.1.3 Optimization Strategies 

With respect to the optimization strategies, we have considered: 

• Powell’s algorithm, for unconstrained minimization. It uses Powell's formulation of an approximate 
conjugate direction method. The objective function does not need to be differentiable, and no 
derivatives are required (differently from the standard conjugate gradient algorithm). The method 
minimizes the function using a bi-directional search along a set of search vectors [31]. Moreover, the bi-
directional line search is done by Golden-section search and Brent's method [32]. 

• Constrained optimization by linear approximation (COBYLA), for constrained minimization. It addresses 
constrained optimization by a linear approximation. It works by iteratively approximating the actual 
constrained optimization problem with linear programming problems. At each iteration, the resulting 
linear programming problem is solved to obtain a candidate for the optimal solution. The candidate 
solution is evaluated using the original objective and constraint functions, yielding a new data point in 
the optimization space. This information is used to improve the approximating linear programming 
problem used for the next iteration of the algorithm. When no improvement is possible, the step size is 
reduced, refining the search. When the step size becomes sufficiently small, the algorithm stops [33]. 

3.3.2 Quantitative evaluation 

Several experiments have been carried out with respect to multi-sensor geolocation. First, experiments with 

synthetic data generated from single-sensor measurements have been performed. Second, the aforementioned 

registration methods have been applied to multi-sensor S1-S2 data. The imagery associated with the first round 

robin were used for experiments 

In particular, the dataset used for the experiments is composed of two S1 SAR tiles and an S2 optical tile. The 

single-sensor synthetic datasets have been built by extracting an area from either an S1 or an S2 tile and by 

transforming it according to predefined transformations (translation, rigid, RST, etc.). This strategy allows to 

quantitatively determine the registration accuracy obtained by registering the resulting couples. 

The multi-sensor dataset has been built by extracting an area from the result of stacking the S1 and S2 tiles. This 

way, it is possible to test the registration methods in a fully real-world scenario, although analytical and 

quantitative results are not available of course, because the “true” ideal matching of the optical and SAR data is 

undefined. In this case, registration accuracy can be qualitatively appreciated using false color representations 

and checkerboard visualizations. 

Finally, the synthetic multi-sensor dataset has been built by registering the S1 and S2 tiles using accurate geo-

referencing information, extracting an area from the stacking of the two georeferenced tiles, and applying a well-

known transformation to one of the two. As for the first scenario, this strategy allows to quantitatively evaluate 

the accuracy of the proposed methods in a multi-sensor scenario as well. 

The experiments that have been carried out are the following: 

• Finding the optimal translation using cross-correlation as metric; 

• Finding the optimal translation using both cross-correlation and mutual information as metrics; 

• Finding the optimal rigid transformation using both cross-correlation and mutual information as 
metrics; 

• Finding the optimal RST transformation using mutual information as a metric. 

In the case of the synthetic dataset, where the ground truth (GT) transformation is known, the root mean square 

error (RMSE) between the real and the resulting transformation is used as a measure of registration accuracy. 

For details on the RMSE computation refer to [34] and [29]. Additionally, the computer used for the experiments 

is a Windows system equipped with a quad-core Intel i7 processor with a working frequency of 3.60GHz and 

24GB of RAM. 

Before analyzing the results in more detail, it is worth anticipating that the usage of cross-correlation as a 

similarity metric is effective and satisfactory only in the case of the single-sensor dataset. In the multi-sensor 
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cases, the different nature of the images prevented the usage of such a similarity metric, because of the overall 

low values achieved by the inter-sensor correlations. On the contrary, the mutual information measure resulted 

to be more robust in this case. 

Therefore, cross-correlation has been experimentally validated only in the cases of translation and rigid 

transformations. The results have been proved satisfactory only in the single-sensor scenarios, with poor 

performance in the multi-sensor cases. Hence, multi-sensor experiments with more challenging scenarios 

(higher-order transformations and multi-step registration) have been focused on the usage of the more 

promising mutual information similarity metric. 

Moreover, another interesting conclusion is the comparison of the two optimization methods used in the 

experiments. As it will be shown, Powell’s algorithm performs well in case of transformations where the input 

image and the reference image are not “very distant,” i.e., when the optimal solution is in the neighborhood of 

the starting point. Conversely, the COBYLA algorithm allows the user to choose the starting search radius. The 

tuning of such parameter allows the registration process to explore regions of the search space that a simple 

conjugate-gradient method would never reach. 

3.3.2.1 Finding the optimal translation using cross-correlation as metric 

This type of registration performed well only in synthetic cases where the translation transformation was 

manually applied. Experiments were carried out with respect to optical-optical, SAR-SAR, and optical-SAR 

matching. Note that from now on, the convention used to represent the parameters of the geometric 

transformation is the following: Transformation = [translation on the x axis, translation on the y axis, rotation 

(deg.), scale factor]. 

3.3.2.1.1 Synthetic Optical-to-optical matching 

Elapsed Time: 0.636 seconds 

True Transformation: [-76, 52, 0, 1] 

Resulting Transformation: [-76.0, 52.0, 0.0, 1.0] 

Registration RMSE: 0.0 pixels 

Figure 19 shows: (i) the reference optical image (left panel); (ii) the input optical image to be registered (central 

panel); and (iii) the resulting cross-correlation with the corresponding point of maximum (right panel). 

 

Figure 19. Synthetic optical-to-optical matching: reference optical image (left), input optical image to be registered 
(center), and cross-correlation (right). 

Figure 20 shows a false color composition of the images before and after registration. The composition uses the 

green and the magenta colors for the input and the reference images (left) and for the transformed input and 

reference images (right), respectively. 
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Figure 20. Synthetic optical-to-optical matching: false color composition of the images before (left) and after registration 
(right) based on translation and cross-correlation metric. 

3.3.2.1.2 Synthetic SAR-to-SAR matching 

Elapsed Time: 0.680 seconds 

True Transformation: [-76, 52, 0, 1] 

Resulting Transformation: [-76.0, 52.0, 0.0, 1.0] 

Registration RMSE: 0.0 pixels 

As in previous case, Figure 21 shows the reference SAR image, the input SAR image to be registered, and the 

resulting cross-correlation with its own point of maximum. 

 

Figure 21. Synthetic SAR-to-SAR matching: reference SAR image (left), input SAR image to be registered (center) and 
cross-correlation (right). 

Figure 22 shows a false color composition of the images before and after registration. The same composition as 

in the Optical-to-Optical case is used. 

In these simple cases of optical-to-optical and SAR-to-SAR registration with only a shift transformation, the cross-

correlation proves indeed a valid metric. 
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Figure 22. Synthetic SAR-to-SAR matching: false color composition of the images before (left) and after registration 
(right) based on translation and cross-correlation metric. 

3.3.2.1.3 Synthetic Optical-to-SAR matching 

Elapsed Time: 0.616 seconds 

True Transformation: [-76, 52, 0, 1] 

Resulting Transformation: [-0.0, 52.0, 0.0, 1.0] 

Registration RMSE: 76.0 pixels 

Figure 23 shows the reference optical image, the input SAR image to be registered, and the resulting cross-

correlation with its point of maximum. 

 

Figure 23. Synthetic Optical-to-SAR matching: reference optical image (left), input SAR image to be registered (center) 
and cross-correlation (right). 

In this case, Figure 24 shows a checkerboard representation of the images before and after registration. On the 

left, alternate rectangles show either the input or the reference images. On the right, alternate rectangles show 

either the transformed input or the reference images. A qualitative assessment of the registration accuracy can 

be achieved by looking at the borders between each rectangle and at the continuity of linear image features 

across those borders. 

Such a result points out the non-satisfactory performance of using cross-correlation as a measure of similarity in 

the multi-sensor case. 
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Figure 24. Synthetic Optical-to-SAR matching: checkerboard of the optical and SAR images before (left) and after 
registration (right) based on translation and cross-correlation. 

3.3.2.2 Finding the optimal translation using both cross-correlation and mutual information as 

metrics 

The difference with respect to the previous case is that, in these experiments, the optimal translation is found 

by maximizing either the cross-correlation or the mutual information. Again, experiments have been carried out 

with respect to both multi-sensor and single-sensor synthetic scenarios. For the sake of brevity, we report here 

the results obtained for the SAR-to-SAR and for the Optical-to-SAR registration using the COBYLA optimization 

method. The experiments with the optical-to-optical and with the Powell optimization methods showed 

comparable results. It is worth noting that COBYLA usually outperforms Powell’s method when the solution is far 

from initialization (for a complete analysis refer to the experiments with the RST transformation below). 

3.3.2.2.1 Synthetic SAR-to-SAR matching 

The results obtained by using cross-correlation or mutual information are similar in this synthetic case. What it 

is worth noting is the required time needed for convergence, which is longer in the mutual information case.  

Cross-correlation 

This experiment is like the one reported above, but here the cross-correlation is maximized using COBYLA and 

not by computing the whole cross-correlation function through the FFT. Figure 25 shows the result using the 

false-color composite defined for the previous single-sensor experiments. 

Elapsed Time: 21.172 seconds 

True Transformation: [-76, 52, 0, 1] 

Resulting Transformation: [-75.9, 51.9, 0.0, 1.0] 

Registration RMSE: 5.65 e-4 pixels 

Mutual Information 

Elapsed Time: 42.221 seconds 

True Transformation: [-76, 52, 0, 1] 

Resulting Transformation: [-76.0, 51.9, 0.0, 1.0] 

Registration RMSE: 5.33 e-4 pixels 

The false color composition in Figure 26 points out the accuracy of the registration result obtained. As 

anticipated, the accuracy when using either cross-correlation or mutual information is similar. The difference is 

the computation time, which is longer in the mutual information case, thus suggesting a preference for the cross-

correlation metric in the single-sensor case. 
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Figure 25. Synthetic SAR-to-SAR matching: false color composition of the images before (left) and after registration 
(right) based on translation, COBYLA, and cross-correlation metric. 

 

Figure 26. Synthetic SAR-to-SAR matching: false color composition of the images before (left) and after registration 
(right) based on translation, COBYLA, and mutual information metric. 

3.3.2.2.2 Synthetic Optical-to-SAR matching 

This experiment, in combination with the one considering cross-correlation through FFT in the optical-to-SAR 

matching case, highlights the importance of using mutual information as a similarity measure in the multi-sensor 

scenario [35], [36]. 

Mutual Information 

Elapsed Time: 7.59 seconds 

True Transformation: [-76, 52, 0, 1] 

Resulting Transformation: [-81.5, 49.6, 0.0, 1.0] 

Registration RMSE: 5.99 pixels 

The checkerboard representation of the images before and after registration shown in Figure 27 highlights that, 

even in the multi-sensor case, the mutual information is effective for determining the optimal translation. 
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Figure 27. Synthetic Optical-to-SAR matching: checkerboard of the images before (left) and after registration (right) 
based on translation, COBYLA, and mutual information metric. 

3.3.2.3 Finding the optimal Rigid transformation using both cross-correlation and mutual 

information as metrics 

As in the case above, in these experiments, the optimal transformation is found by maximizing either the cross-

correlation or the mutual information using COBYLA. The difference is in the geometric transformation, since 

here the model is considered as a rigid transformation (i.e., translation + rotation). 

For the sake of brevity, the experiments reported here consider: (i) using cross-correlation with synthetic single-

sensor data; (ii) using mutual information with real multi-sensor data. It is worth noting that, according to its 

poor results in the multi-sensor case, cross-correlation will not be considered for the further experiments in this 

document. Conversely, experiment (ii) shows the satisfactory accuracy achievable in the synthetic case through 

the mutual information, but also confirms that the rigid transformation is often a too restrictive model for the 

application to real S1-S2 data. 

3.3.2.3.1 Synthetic Optical-to-Optical Matching 

Cross-correlation 

Elapsed Time: 37.39 seconds 

True Transformation: [-45, 26, 1.1, 1] 

Resulting Transformation: [-44.39, 25.34, 1.14, 1.0] 

Registration RMSE: 1.48 pixels 

As expected, and as pointed by the following false color composition (Figure 28), an accurate registration was 

obtained in this case of rigid transformation of a single-sensor image pair. 
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Figure 28. Synthetic Optical-to-Optical matching: false color composition of the images before (left) and after registration 
(right) based on rigid transformation, COBYLA, and cross-correlation metric. 

3.3.2.3.2 Real Optical-to-SAR matching 

Mutual information 

Elapsed Time: 13.52 seconds 

Resulting Transformation: [66.44, -44.43, -0.75, 1.0] 

Figure 29 shows a checkerboard representation of the images before and after registration. Well-registered areas 

are highlighted in green, while areas that still suffer from unprecise registration are highlighted in red. 

 

Figure 29. Real Optical-to-SAR matching: checkerboard of the images before (left) and after registration (right) based on 
rigid transformation, COBYLA, and mutual information metric. 

As anticipated above, on one hand, the registration through the mutual information improved as compared to 

the initial georeferencing. A particularly effective alignment can be noted in the green circles. Nevertheless, the 

resulting rigid transformation is not globally accurate, as it can be noted by inspecting the crop fields in the lower 

left corner of the image, together with the other areas highlighted in red. 

3.3.2.4 Finding the optimal RST transformation using mutual information as a metric 

The following experiments consider the more general case of rotation-scale-translation transformations. The 

experiments reported in the following sections do not consider anymore the synthetic single-sensor cases to 

focus on the HRLC multi-sensor scenario.  
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Also in this case, the performance is evaluated both quantitatively, with synthetic data where the true 

transformation is known, and visually-qualitatively in the case of the real dataset. The following experiments are 

also aimed at testing the registration method on different areas of the available Amazonian tile. Three separate 

areas (1000x1000 pixels each) have been registered using the RST transformation and the COBYLA and Powell’s 

optimization strategies. 

As anticipated in the “Quantitative Evaluation” section, it is worth noting here that the Powell’s algorithm 

performs well in the cases where the solution of the registration process falls in a neighborhood of the starting 

point. Conversely, the COBYLA method, with the initial search radius parameter, allows to better explore the 

search space and usually grants better convergence properties. This is shown especially in Areas from 2 to 4 in 

the following experiments, where the solution is significantly far away from the initialization and Powell 

algorithm fails to converge. 

3.3.2.4.1 Synthetic Optical-to-SAR Matching 

Elapsed Time: 23.81 seconds 

True Transformation: [-45, 42, 2.1, 0.98] 

Resulting Transformation: [-35.26, 43.02, 1.82, 0.97] 

Registration RMSE: 5.16 pixels 

The checkerboard representation of the images before and after registration is shown in Figure 30. For all the 

experiments within the synthetic optical-to-SAR matching, the COBYLA optimization method has been used. 

 

Figure 30. Synthetic Optical-to-SAR matching: checkerboard of the images before (left) and after registration (right) 
based on RST transformation, COBYLA, and mutual information metric. 

 



 

Ref CCI_HRLC_Ph1-PVASR 

 
Issue Date Page 

3.rev.1 13/01/2023 38 

 

  
 

Figure 31. Synthetic Optical-to-SAR matching (scaling factor of 0.98): checkerboard of the images before (left) and after 
registration (right) based on RST transformation, COBYLA, and mutual information metric. 

This result is comparable in accuracy with the case of rigid transformation. Nevertheless, it is worth noting that 

for the registration process to converge to a qualitative satisfactory result, the scaling factor should not be too 

large (or small). An experimental example is reported here, where a scaling factor of 0.9 prevented the 

registration to succeed. During the experiments, all the other parameters were kept constant and the scaling 

factor was reduced from 0.98 to 0.90. With a scale factor reduced from 0.98 to 0.95 (Figure 31), the rigid 

transformation still converged to a satisfactory result. 

Scaling even further to 0.92 still granted acceptable results (Figure 32). 

 

Figure 32. Synthetic Optical-to-SAR matching (scaling factor of 0.92): checkerboard of the images before (left) and after 
registration (right) based on RST transformation, COBYLA, and mutual information metric. 

However, further tests failed to converge effectively. An example is reported in Figure 33, where the scaling 

factor was chosen equal to 0.9 and the other parameters were kept constant. 

 

Figure 33. Synthetic Optical-to-SAR matching (scaling factor of 0.90): checkerboard of the images before (left) and after 
registration (right) based on RST transformation, COBYLA, and mutual information metric. 

This analysis is important especially with respect to the COBYLA minimization method. Indeed, such technique 

allows defining constraints in the search space, thus preventing the scale parameter to assume excessive values. 

This consideration is also consistent with the project, as the available images are not expected to be 

characterized by a large-scale difference. Indeed, as the input S1 and S2 data are first georeferenced on pixel 

grids associated with the same nominal pixel spacing of 10 m, the possible scaling factor is indeed expected to 

take values in a narrow neighborhood of unity. 
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3.3.2.4.2 Real Optical-to-SAR Matching: Area 1 

Elapsed Time: 13.24 seconds 

Resulting Transformation: [76.40, -44.31, -0.17, 0.99] 

The checkerboard in Figure 34 points out that this result is comparable with the one obtained in the case of rigid 

transformation (i.e., only translation and rotation) in the application to the real multi-sensor dataset as well. The 

scale factor does not have great importance in the registration process of this dataset, as it is suggested by the 

convergence value of 0.99 and in accordance with the aforementioned comments on the expected behavior of 

this parameter. COBYLA is used for minimization both for Area 1 and for all the following experiments considering 

other areas. 

 

Figure 34. Real Optical-to-SAR matching – Area 1: checkerboard of the images before (left) and after registration (right). 

3.3.2.4.3 Real Optical-to-SAR Matching: Area 2 

Elapsed Time: 13.39 seconds 

Resulting Transformation: [77.52, -62.89, 0.16, 1.03] 

 

Figure 35. Real Optical-to-SAR matching – Area 2: checkerboard of the images before (left) and after registration (right). 

 

The same comments made for Area 1 hold with regard to Area 2 as well. In particular, the green ellipses in the 

checkerboard (see Figure 35) emphasize regions where accurate registration of linear image features is especially 

evident.  
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3.3.2.4.4 Real Optical-to-SAR Matching: Area 3 

In this area, the spatial difference between the reference and input images is large, especially in the translation 

along the x axis. COBYLA was able to reach an effective registration result, though, while Powell’s method failed 

to converge due to the large distance between the solution and the initialization point. The green and red ellipses 

superimposed to the following two sets of checkerboards emphasize this significant difference in performance. 

COBYLA 

Elapsed Time: 15.12 seconds 

Resulting Transformation: [222.11, -3.23, 0.48, 1.00] 

 

Figure 36 Real Optical-to-SAR matching – Area 3: checkerboard of the images before (left) and after registration (right) 
using COBYLA. 

POWELL 

Elapsed Time: 46.29 seconds 

Resulting Transformation: [28.07, 16.23, 0.06, 1.00] 

 

Figure 37 Real Optical-to-SAR matching – Area 3: checkerboard of the images before (left) and after registration (right) 
using Powell’s algorithm. 
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3.3.2.4.5 Real Optical-to-SAR Matching: Area 4 

As for Area 3, also Area 4 is characterized by a large spatial difference, which is even larger than the previous 

case. Nevertheless, COBYLA succeed to find a good transformation fitting the input and the reference images, 

and outperformed Powell’s method.  

Another experimental advantage of COBYLA is a lower time needed for convergence, most probably due in this 

case to the fact that Powell failed to find a good matching. However, the short convergence time suggests the 

possibility of tuning online the “initial search radius” parameter. Indeed, it should be possible to implement a 

new version of such registration procedure that integrates a grid search on that parameter. The resulting 

similarity metrics could be compared to decide which value of such parameter is able to grant the best 

registration result for the dataset at hand. 

COBYLA 

Elapsed Time: 13.33 seconds 

Resulting Transformation: [270.68, -55.25, 0.51, 1.02] 

 

Figure 38 Real Optical-to-SAR matching – Area 4: checkerboard of the images before (left) and after registration (right) 
using COBYLA. 

POWELL 

Elapsed Time: 38.93 seconds 

Resulting Transformation: [3.63, -1.58, 0.01, 1.00] 

 

Figure 39 Real Optical-to-SAR matching – Area 4: checkerboard of the images before (left) and after registration (right) 
using Powell’s algorithm. 
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3.3.3 Final decision 

The experimental analysis conducted with respect to multi-sensor geolocation and the Round Robin dataset 

pointed out a list of guidelines helpful to decide which registration strategy to pursue and to identify where to 

focus the future work on the topic. The following list enumerates such consideration and gives some insight in 

each of the points: 

• The choice of the similarity metric. Both cross-correlation and mutual information have been 

experimented with. The results pointed out that cross-correlation is valuable in the single-sensor case, 

while mutual information should be preferred in the multi-sensor scenarios. As a result, within the CCI+ 

HRLC product, mutual information should be prioritized. Different implementations and approximations 

of such metric will be considered (e.g., Parzen window estimation, Parzen window applied to a random 

selection of sample to reduce the computation time, etc.). Moreover, other metrics will be studied in 

the future Round Robin. 

• The choice of the geometric transformation. The experiments pointed out that, at least with respect to 

the available dataset, a simple translation transformation is not enough to find a good match between 

the input and reference images. However, rigid and RST transformations performed equally, as the 

available dataset was not affected by a consistent scale factor between the input couple. The last two 

transformations will therefore be considered in the future, with the exploration of additional higher-

order transformations (e.g., affine transformation) in the future Round Robin. 

• The choice of the optimization strategy. Both Powell’s method and COBYLA performed effectively when 

the spatial difference between the reference and input images is not large. Conversely, COBYLA 

outperformed Powell’s method in the other case, due to the possibility to control the starting search 

radius. Future work will focus more on this last minimization method, with details on the possibility of 

integrating a strategy for the optimization of the starting search radius in the registration process. Other 

more sophisticated minimization methods (e.g., global search methods like genetic algorithms and 

simulated annealing) will be considered within the next Round Robin. In this case, the focus will be in 

analyzing the time versus accuracy tradeoff. 

3.3.4 Decision Fusion Methods 

Decision fusion methodologies are used in the HRLC project in order to combine the posterior probabilities 

coming from the disjoint classification of SAR and optical images. Within the first year of CCI+ HRLC, different 

families of decision fusion methods have been implemented and experimentally compared, including consensus-

theoretic methods and fusion strategies based on Markovian modelling (i.e., Markov random fields), and 

combined with a class-specific matching rule. Experimental comparisons have been focused on the Amazon 

round robin area, thanks to the availability of both the optical-based and the SAR-based classification outputs on 

this area. 

Specifically, the posterior probabilities coming from the optical and SAR processing chains are quantized and 

coded into unsigned integers using 8 bits per class and per pixel. This choice is aimed at minimizing memory 

requirements without any expected loss in appreciable precision. As discussed in the deliverables of the previous 

milestones, the sets of classes that can be accurately discriminated by using optical and SAR data exclusively 

generally do not coincide. SAR data are expected to well discriminate especially built-up classes and water 

bodies. Accordingly, SAR and optical classification algorithms work on different sets of classes (see also the 

previous sections of the present document). Decision fusion methodologies are aimed at fusing posterior 

probabilities related to the common classes. Hence, a class-specific combination rule has been devised to take 

this into account. Specifically, with respect to the HRLC project, for what concerns the Amazon round robin areas, 

the posterior probabilities coming from optical-based classification relate to classes 1, 3, 5, 6, 7, 8, 10, 15 ( 

Figure 40).  
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Figure 40 Class legend for the classification experiments with optical, SAR, and multi-sensor data 

Therefore the optical set of classes is Ω𝑜 = {1,3, 5, 6, 7, 8, 10, 15} . SAR classification is performed on 7 classes: 

1, 3, 5, 6, 7, 8, 10 in the previous table. The SAR class set is therefore, in the Amazonian case, a strict subset of 

the optical one (Ω𝑠 = {1,3, 5, 6, 7, 8, 10} ⊂ Ω𝑜). For that reason, optical posterior probabilities are divided into 

two subsets:  

• Ω𝑠, including the 7 common classes (1,3, 5, 6, 7, 8, 10). 

• Ω̅𝑠 = Ω𝑜 − Ω𝑠, including class 15 only.  

The next sections focus on the consensus (non-contextual) and Markovian (contextual) approaches. The class-

specific combination is explained together with the former. 

3.3.4.1 Consensus Theory and class-specific combination 

Consensus theory [37],[38] involves general procedures with the goal of combining multiple probability 

distributions to summarize their estimates in a non-contextual manner. Under the assumption that both the SAR 

and the optical classifiers can be made into generating Bayesian outputs and that, accordingly, their predictions 

are endowed with a probabilistic characterization, i.e., pixelwise posteriors are available, the goal is to produce 

a single probability distribution that summarizes their estimates. The most common consensus theory methods 

are linear opinion pool (LOP) and logarithmic opinion pool (LOGP) [37],[38]. Both these methods were 

implemented and tested within the first year of CCI+ HRLC in combination with the aforementioned class-specific 

rule.  

Let 𝑥 = [𝑂, 𝑆] be the input data vector on a generic pixel, resulting from the stacking of optical (𝑂) and SAR (𝑆) 

individual feature vectors, and let 𝜔𝑗  be the 𝑗th information class (𝑗 = 1,2, … , 𝑀). The LOP functional can be 

expressed as: 

𝒞(𝜔𝑗|𝑥, Ω𝑠) = 𝛼 𝑃(𝜔𝑗|𝑂, Ω𝑠) + 𝛽 𝑃(𝜔𝑗|𝑆, Ω𝑠) 
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where 𝑃(𝜔𝑗|𝑂, Ω𝑠) is the optical posterior probability of 𝜔𝑗  conditioned to the common subset of classes Ω𝑠 and 

𝑃(𝜔𝑗|𝑆, Ω𝑠) is the SAR posterior probability conditioned to the same subset Ω𝑠. In the Amazon RR experiments, 

𝑃(𝜔𝑗|𝑆, Ω𝑠) = 𝑃(𝜔𝑗|𝑆) because Ω𝑠 includes all classes in the SAR legend, while (𝜔𝑗|𝑂, Ω𝑠) can be derived from 

the posteriors 𝑃(𝜔𝑗|𝑂) associated with the classes in Ω𝑜  through straightforward probability manipulations. 𝛼 

and 𝛽 are optical and SAR source-specific weights, respectively, and control the relative influence of the two 

sources. 

According to the same definitions, the logarithmic opinion pool (LOGP) functional can be defined as: 

ℒ(𝜔𝑗|𝑥, Ω𝑠) = 𝛼 log 𝑃(𝜔𝑗|𝑂, Ω𝑠) + 𝛽 log 𝑃(𝜔𝑗|𝑆, Ω𝑠)  

LOGP differs from the linear version in that it is usually unimodal and less dispersed. Zeros are considered vetoes: 

if any of the two sources assigns a zero posterior, then by definition ℒ(𝜔𝑗|𝑥, Ω𝑠) = 0. This dramatic behaviour is 

a drawback when the single-source predictions are very inaccurate and can be generated also by roundoff error. 

In order to prevent this, all posterior values are increased by the machine epsilon (the minimum number that 

can possibly be represented given a certain data type). 

𝒞(⋅) and ℒ(⋅) provide probabilistic fusion results associated with the classes in common between the two single-

sensor outputs, although they generally do not take values in the interval [0, 1]. Either can be mapped to proper 

posteriors by suitably transforming to a probabilistic output, which represents a fused posterior probability 

𝑃ℱ(𝜔𝑗|𝑥, Ω𝑠). In the case of LOP, 𝑃ℱ(𝜔𝑗|𝑥, Ω𝑠) is computed from 𝒞(𝜔𝑗|𝑥, Ω𝑠) by just re-normalizing so that the 

sum over all 𝜔𝑗 ∈ Ω𝑠  is unity. In the case of LOGP, the following softmax operator is appropriate to take into 

account the logarithmic relation between the ℒ(⋅) functional and the original probabilities: 

𝑃ℱ(𝜔𝑗|𝑥, Ω𝑠) =
exp ℒ(𝜔𝑗|𝑥, Ω𝑠)

∑ exp ℒ(𝜔𝑘|𝑥, Ω𝑠)𝜔𝑘∈Ω𝑠

 

This probabilistic fusion output 𝑃ℱ(⋅) covers the subset of classes in common across the two single-sensor 

classifications. To extend it to the whole set of classes, the posterior probability (unconditional with respect to 

Ω𝑠) can be defined according to the total probability theorem: 

𝑃ℱ(𝜔𝑗|𝑥) = 𝑃(𝜔𝑗|𝑥, Ω𝑠)𝑃(Ω𝑠|𝑥) + 𝑃(𝜔𝑗|𝑥, Ω𝑠)𝑃(Ω𝑠|𝑥) = 

= 𝑃ℱ(𝜔𝑗|𝑥, Ω𝑠)[1 − 𝑃(Ω𝑠|𝑂)] + 𝑃(𝜔𝑗|𝑂, Ω𝑠)𝑃(Ω𝑠|𝑂), 

where the quantities associated with Ω𝑠 are conditioned only on the optical observations 𝑂. 

It is worth noting that, while this class-specific rule is consistent with the peculiarities of the optical and SAR 

classification results on the Amazon round robin data set, this combination rule is applicable to all cases in which 

one of the two sources discriminates among a larger set of classes than the other source – as expected in the 

fusion of optical and SAR data.  

3.3.4.2 Markov Random Fields 

Markov random fields (MRFs) can include contextual information in the form of class interactions between 

neighbouring pixels. An MRF is determined by an energy function, composed of two main terms: one 

characterizing class likelihood at the pixel level (depending on per-class scores obtained by the optical and SAR 

classification methods), and another promoting label smoothness in a local neighbourhood. This means that the 

model encourages two neighbouring pixels to be labelled with the same class and that the fusion processing 

stage allows incorporating spatial-contextual information as well. 

Define the regular pixel lattice as 𝐼, and let 𝑦
𝑖
 be the class label of the 𝑖-th pixel (𝑦

𝑖
∈ Ω𝑜, 𝑖 ∈ 𝐼). The MRF consider 

𝑦
𝑖
 as a sample of the random field 𝑌 = {𝑦𝑖}𝑖∈𝐼 of class labels, which is discrete-valued. A neighbourhood system 

{𝜕𝑖}𝑖∈𝐼, which provides each 𝑖-th pixel with a set 𝜕𝑖 ⊂ 𝐼 of neighbouring pixels, is defined [39]. In this case, 𝜕𝑖 

was chosen to be made of the four pixels adjacent to the 𝑖-th pixel (four-connected). 
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Considering the frequently used family of the MRF models in which only up to pairwise clique potentials are non-

zero, the energy is written as: 

𝑈(𝑌|𝑋) = − ∑  log 𝑃ℱ(𝑦𝑖|𝑥𝑖)

𝑖∈𝐼

− 𝛾 ∑ 𝛿(𝑦𝑖 , 𝑦𝑗)
𝑖∈𝐼

𝑗∈𝜕𝑖

, 

where 𝑋 = {𝑥𝑖}𝑖∈𝐼 is the random field of all optical and SAR observations (𝑥𝑖 = [𝑂𝑖 , 𝑆𝑖] on each pixel 𝑖 ∈ 𝐼), 

𝑃ℱ(𝑦𝑖|𝑥𝑖) is the pixelwise fusion output described in the previous section, and the spatial energy contribution 

has been modelled using the Potts model [39]. 

In the application of MRF-based methods to decision fusion, special focus has been devoted to the minimization 

of the energy function 𝑈 with respect to the random field 𝑌 of the class labels. For that reason, the iterated 

conditional mode (ICM) algorithm has been applied, since it represents an efficient trade-off between accuracy 

and computational burden [40]. Moreover, a lot of effort was spent to make the implementation of ICM as fast 

as possible. This was achieved by making use of convolution-like operations only, which have a very fast 

implementation in the Python environment. That way it was possible to speed-up the computations, at a cost of 

a slight increase in memory occupation, and make MRF feasible to be applied to large scale dataset as the one 

of HRLC. 

3.3.5 Qualitative evaluation 

The aforementioned approaches to multi-sensor fusion were experimentally evaluated on the case study of the 

Amazonian S2 tile 21kuq and of the S1 images that spatially overlap with it. The area of spatial intersection 

between these S1 and S2 sources was obviously considered for the fusion experiments. Analogous results with 

other input data will be progressively generated as soon as the corresponding optical and SAR inputs become 

available. 

Figure 41 collects a detail of the classification maps obtained by the optical and SAR processing chains (the color 

legend is reported at the beginning of the current section). 

    

Figure 41 Details of the classification maps obtained from the classification of optical (left) and SAR data (right). 

As expected, the two results differ in spatial regularity (smoother in the optical-based case than in the SAR-based 

case, because of the influence of residual speckle), class legend (see above) and in the labels assigned by the 

classification of the two sources to several areas. While optical data are expected to be fundamental in 

discriminating the considered land cover classes, the following figure provides an example of a case in which 

residual impact of cloud cover may affect the optical-based map but obviously not the SAR-based map. 
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Figure 42 Details of the classification maps obtained from the classification of optical (top left) and SAR data (top right), 
indicating the impact of a residual cloud on the former. A true-color composite of the optical image is also shown 

(bottom). 

3.3.5.1 Results - Consensus Theory 

The results of applying linear opinion pool to the posterior probabilities associated with the aforementioned 

maps is shown in Figure 43. 

In particular, LOP was applied by giving slightly larger weight to the optical source than to the SAR source (𝛼 =

0.6 and 𝛽 = 0.4), consistently with the expected reliability of the corresponding land cover classification output. 

Indeed, linear opinion pool made minor changes as compared to the optical-based classification map. It is 

however the fastest method among those described above, requiring around 30 seconds on a 8200x8200 tile on 

a standard desktop machine (no GPU). In particular, it does not compensate for the impact of the 

aforementioned residual cloud on the classification map. Indeed, the stronger influence of the optical-based 

result than of the SAR-based result on the fusion map is consistent with both the expected contribution of each 

type of sensor to class discrimination and of the different behaviour of the corresponding posteriors. The 

posterior probabilities obtained from the optical source on a given pixel most often indicate the most probable 

class membership with higher confidence as compared to the posteriors obtained from the SAR source. 
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Accordingly, they more strongly affect the pixelwise decision fusion outcome. The results of logarithmic opinion 

pool are shown in  Figure 44. 

     
Figure 43 Details of the classification map obtained by LOP in the same areas as in  

Figure 41 (left) and Figure 42 (right; cloudy area on the right)  

 
Figure 44 Details of the classification map obtained by LOGP in the same areas as in  

Figure 41 (left) and Figure 42 (right; cloudy area on the right) 

In the case of the logarithmic opinion pool, while the overall classification output is still significantly influenced 

by the optical source, it is worth noting that the erroneously labelled residual cloud is mostly corrected thanks 

to the SAR source, thus confirming the relevance of fusing the two separate classification results. LOGP required 

around 50 seconds to run on the 8200x8200 tile. Hyper-parameter setting was addressed for LOGP analogously 

to the case of LOP. 

In both cases of LOP and LOGP, the spatial regularity of the output classification map was similar to that of the 

optical-based result. On one hand, this suggests that the two fusion strategies are not negatively affected by the 

impact of residual speckle on the SAR-based result. On the other hand, further smoothness is obviously not 

achieved by LOP or LOGP, because they are fully non-contextual approaches.  
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3.3.5.2 Results – Markov Random Fields 

While the previous methods make no use of contextual information, Markov random fields model this type of 

information explicitly. Here, consistently with the results discussed in the previous subsection, the adopted MRF 

used a unary energy term derived according to LOGP, while the contextual term depending on a 4-connected 

neighbourhood was given by the Potts model. A unary based on LOP is not presented for brevity as it could 

benefit less than LOGP from the fusion of the two sources, as argued in the previous subsection. The classification 

map obtained by applying ICM to this Markovian energy is shown in  Figure 45. 

 
Figure 45. Details of the classification map obtained by MRF-ICM in the same areas as in  

Figure 41 (left) and Figure 42 (right; cloudy area on the right). 

MRF required around 7 minutes to run on the 8200x8200 tile. It is possible to appreciate the spatial regularization 

achieved with MRF as compared to the previous classification map. On one hand, the comments made in the 

previous section with regard to LOGP and its relation to the optical-based and SAR-based individual outputs hold 

in this case as well. In particular, the impact of the residual cloud is significantly mitigated in the MRF result, too. 

On the other hand, the Markovian output is overall smoother than the aforementioned pixel-wise results. In 

particular, these maps were obtained by setting the spatial parameter 𝛾 to 0,8. Stronger spatial regularization 

can as well be achieved increasing the value of 𝛾. That way, a spatially even smoother result can be achieved, 

although at the cost of a minor degradation of small-scale spatial details. On one hand, this trade-off can be 

tuned by applying automatic hyper-parameter optimization methods that determine an optimal value for 𝛾 

through mean-square-error or Bayesian approaches [5], [6]. Moreover, alternate spatial models, including 

contrast sensitive conditional random fields, mitigate the possible degradation in small-scale details. On the 

other hand, the opportunity to explicitly tune the trade-off between spatial smoothness and detail provides 

further flexibility in the generation of an output HRLC product that meets the requirements of the climate 

community. 

3.3.6 Final decision 

Both LOP and LOGP are fast since they are one-shot non-iterative pixel-wise methods. However, data fusion 

performed that way does not benefit from contextual information, which can be crucial in order to remove noise 

and favour the spatial regularity of the output map. Between LOP and LOGP, the experiments suggest a stronger 

potential of the latter in taking benefit from both input sources.  

Markov Random fields can also capture local spatial information, thus providing more spatial regularization at a 

cost of a comparatively higher, yet still quite short, computational time. 
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Overall, LOGP and MRF-ICM are identified here as appropriate solutions for HRLC, in combination with the 

aforementioned class-specific combination strategy. In this framework, further development may regard the 

automatic optimization of the hyper-parameters of these methods (weights of the various information sources), 

the integration of edge-preserving / contrast-sensitive spatial terms in the Markovian approach, and the 

evaluation of the potential of alternate energy minimization algorithms based on graph theory. The last item is 

possibly promising from the viewpoint of classification accuracy, although at the cost of significantly longer 

computation time. This time-vs-accuracy trade-off will be addressed carefully. 

4 Classification algorithms and procedures (year 2) 

4.1 Optical data processing 

 

Figure 46. Optical data processing chain for the prototype production of the HR LC map obtained by classifying the time 
series of Sentinel 2 data. 

Figure 46 depicts the optical data processing chain for the prototype production of the HR LC maps obtained by 

classifying the time series of Sentinel 2 L2A data for the static map of 2019 and the time series of Landsat L2 data 

for the historical maps of 1990, 1995, 2000, 2005, 2010 and 2015. The images are first pre-processed in order to 

remove spectral outliers and to detect clouds and shadows. Then, monthly, seasonal and annual composites are 

generated according to the availability of cloud free images. Finally, the missing data (caused by cloud and 

shadow coverage) are restored. Due to the missed availability of training data, the team has defined the pixel-

based photo-interpretation activity to ensure the production of a representative and informative training set. To 

provide spatial information to the classifier the textural features (standard deviation and gradient) have been 

computed. Finally, we performed the classification by using SVM on the times series of the considered 

composites. The SVM results have been compared with state of the art deep based LSTM classifier. 

4.1.1 Satellite images  

The considered study areas are located into the following four thematic regions (according to tiling grid of 

Sentinel-2 products): 

• Amazonia area for 21KUQ Sentinel-2 tile; 

• Amazonia area for 21KXT Sentinel-2 tile; 

• Siberia area for 42WXS Sentinel 2 tile; 

• Africa area for 37PCP Sentinel-2 tile. 

2019 Sentinel-2 L2A images downloaded through the Copernicus Open Access Hub 

(https://scihub.copernicus.eu/dhus/#/home) are used over the four CCI-HR LC areas for the year 2019. The 

complete list of images is given in Table 4. 
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Table 4. List of Sentinel-2 data 

Area Satellite # Products Date list (2019y) 

Amazonia – 21KUQ S2 41 

2019-01-17;2019-01-22;2019-02-01 

2019-02-06;2019-02-11;2019-02-16 

2019-02-21;2019-03-03;2019-03-08 

2019-03-23;2019-03-28;2019-04-07 

2019-04-07;2019-04-12;2019-04-17 

2019-05-07;2019-05-17;2019-05-27 

2019-06-06;2019-06-26;2019-07-06 

2019-07-16;2019-07-21;2019-07-31 

2019-08-05;2019-08-15;2019-08-20 

2019-08-30;2019-09-14;2019-09-19 

2019-09-24;2019-09-29;2019-10-09 

2019-10-24;2019-10-29;2019-11-18 

2019-11-23;2019-11-28;2019-12-18 

2019-12-23;2019-12-28 

Amazonia – 21KXT S2 53 

2019-01-14;2019-02-03;2019-02-08 

2019-02-18;2019-02-23;2019-03-05 

2019-03-30;2019-03-30;2019-04-09 

2019-04-19;2019-04-24;2019-04-24 

2019-04-29;2019-05-09;2019-05-09 

2019-05-19;2019-05-29;2019-06-08 

2019-06-13;2019-06-13;2019-06-18 

2019-06-23;2019-06-23;2019-06-28 

2019-07-08;2019-07-08;2019-07-13 

2019-07-23;2019-07-28;2019-08-07 

2019-08-12;2019-08-12;2019-08-17 

2019-08-22;2019-08-22;2019-09-06 

2019-09-16;2019-09-16;2019-09-26 

2019-10-01;2019-10-11;2019-10-11 

2019-10-26;2019-10-31;2019-11-05 

2019-11-20;2019-11-20;2019-11-30 

2019-12-15;2019-12-20;2019-12-20 

2019-12-25;2019-12-30 

Siberia – 42WXS S2 11 

2019-06-23;2019-07-03 

2019-07-13;2019-07-15;2019-07-16 

2019-07-18;2019-07-23;2019-07-25 

2019-08-10;2019-08-15;2019-08-22 

Africa – 37PCP S2 56 2019-01-02;2019-01-12;2019-01-17; 
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2019-01-22;2019-01-27;2019-02-01; 

2019-02-06;2019-02-11;2019-02-16; 

2019-02-21;2019-02-26;2019-03-03; 

2019-03-08;2019-03-13;2019-03-18 

2019-03-23;2019-03-28;2019-04-02 

2019-04-07;2019-04-12;2019-04-17 

2019-04-27;2019-05-02;2019-05-07 

2019-05-12;2019-05-17;2019-05-27 

2019-06-11;2019-06-21;2019-06-26 

2019-07-06;2019-07-16;2019-08-15 

2019-08-20;2019-08-25;2019-08-30 

2019-09-04;2019-09-19;2019-09-24 

2019-09-29;2019-10-04;2019-10-09 

2019-10-14;2019-10-24;2019-10-29 

2019-11-03;2019-11-13;2019-11-18 

2019-11-23;2019-11-28;2019-12-03 

2019-12-08;2019-12-13;2019-12-18 

2019-12-23;2019-12-28 

4.1.2 Method/algorithm/technique 

Within this Section, several methods are presented and compared as candidate approaches to be develop and 

implemented in the optical image processing chain according to Figure 46. 

4.1.2.1 Optical data pre-processing 

This step has the purpose of generating a time series of composites able to characterize the HR LC classes. We 

consider all the Sentinel-2 L2A images with cloud coverage lower than 40%. First, cloud and shadow masks are 

detected by using the Sen2Cor provided by ESA [8], which provides cloud and shadow masks. According to the 

amount of cloud-free images available, the team decided to generate monthly composites for Amazonia and 

Africa and annual composite for Siberia. This condition allows us to mitigate cloud occlusions problem and 

minimize the processing resources. In the case of a small cloud or shadow gaps they were filled with linear 

temporal gap filling approach (see ATBD 3.0)  

The peculiar multi-resolution property of Sentinel 2 images involves four spectral bands acquired at a spatial 

resolution of 10 m, six spectral bands acquired at a spatial resolution of 20 m and three spectral bands acquired 

at a spatial resolution of 60 m. Because the 60 m spectral bands are mainly dedicated to atmospheric corrections 

and cloud screening [10], only the 10 and 20 m bands are used to produce the HR LC maps. A nearest neighbour 

interpolation technique is used to match the spatial resolution of the 20 m bands to the 10 m ones for the entire 

tie series. The nearest neighbour interpolation technique has the drawback of generating smoothed images, thus 

losing in sharpness with respect to more sophisticated interpolation technique such as High Pass Filter (HPF). 

However, no new values are calculated by interpolation. This condition allows us to keep the original spectral 

information recorded by the sensor. Finally, we perform a spectral outlier detection and removal by discarding 

the pixels having values higher than the 0.999 quantile and lower than the 0.001 quantile of the spectral band. 

A radiometric normalization is eventually applied to the interpolated images so that each spectral band is 

rescaled between zero and one. 
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4.1.2.2 Classification 

Automatic classification is a crucial processing step to produce accurate LC maps. The selected classification 

algorithm must achieve the best trade-off between classification accuracy and computational burden due to the 

need of processing a huge amount of data.  

By analysing the recent literature, the team identified two successful core approaches to the classification. By 

comparing the results obtained in the RR tiles, the Support Vector Machine (SVM) classifier [14] proved its 

effectiveness to generate HR LC maps. SVM classifiers are based on kernel methods that have been extensively 

employed for the classification of RS data. In the considered implementation, we exploit SVM with Gaussian 

Radial Basis Function (RBF) kernels because of its capability of dealing with noisy samples in a robust way and to 

produce sparse solutions. A feature selection step is performed to detect the feature subspace where the LC 

classes are more discriminable. In the considered implementation, a Sequential Forward Floating Selection (SFFS) 

method based on the Jeffreys-Matusita distance as separability criterion is used [15]. The optimal kernel 

parameters (i.e., the regularization parameter C and the spread of the kernel 𝛾) are selected by a 3-fold cross-

validation. The LC maps generated by the SVM classifier are compared with the state of the art deep based Long 

Short Term Memory architecture (LSTM) [19]. LSTM is a special type of RNN, which has been proposed to 

overcome the problem of the vanishing gradient on long  data  sequences. In particular, by using a forget gate’s 

vector, LSTM has a better control of the gradients values at each time step, thus avoiding the gradient vanishing 

in a long TS. LSTM is able to catch the temporal dependency of sequential data, since the network is using 

feedback loops connected to their past decisions. LSTM classifier is very promising for classification of dense time 

series of images. Moreover, it has proven to be able to handle the presence of clouds [16],[17], [18]. 

Nevertheless, as a typical deep based architecture LSTM needs a much bigger training set for its proper training. 

Thus, apart from photo-interpreted labelled samples, we have included additional samples generated by the 

weak training set analysis (see ATBD 3.0). Finally, since LSTM is performing well on long time-series, we have 

considered two LSTM models: first trained on the whole time-series of images (reported in the Table 4) and 

second trained on the time series of monthly composites.  Considering SVM, the photo-interpreted training sets 

generated for all the considered study areas were used to train the model. A qualitative analysis was carried out 

to determine the classifier able to provide the best classification results. 

4.1.3 Qualitative evaluation 

In the following examples of qualitative analysis performed in the different study areas are reported.  

Figure 47 reports a comparison of classification results obtained in Africa (tile 37PCP) in macro scale. It can be 

noticed that all three classifiers provide similar results. This is particularly evident for the two HRLC maps 

generated by the LSTM: on the whole time series (see Figure 47 b) and on the time series of monthly composites 

(see Figure 47 c). Although the SVM map (see Figure 47 d)  is quite similar to the LSTM maps, there can be noticed 

a significant difference in recognition of shrub cover evergreen class. Moreover, there is also a disagreement 

between seasonal vs permanent water. Overall, classifiers accurately retrieve the geometrical detail of the scene, 

thus recovering the river, lakes and cities. To identify the best classifier, we compared classifiers at the areas of 

disagreement. 
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Figure 47. Visual comparison of the: (a) HR optical image used to evaluate the results obtained; (b) LC map obtained by 
using LSTM on the time series, (c) LC map obtained by using LSTM on composites, (d) LC map obtained by using SVM. The 

study area is in Africa (Tile 37PCP). 
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Figure 48. Visual comparison of the: (a) HR optical image used to evaluate the results obtained; (b) LC map obtained by 
using LSTM on the time series, (c) LC map obtained by using LSTM on composites, (d) LC map obtained by using SVM. The 

study area is in Africa (Tile 37PCP). 

Figure 48 represents the classification products obtained in Africa (tile 37PCP). It can be clearly noticed that the 

SVM accurately detects shrub cover evergreen. Having a look to the both LSTM results, we can notice quite 

significant overestimation of that class. Moreover, SVM seems to also provide the best results for the cropland, 

while LSTM classifier with the monthly composites seems to provide better result than the one using full time-

series. 
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Figure 49. Visual comparison of the: (a) HR optical image used to evaluate the results obtained; (b) LC map obtained by 
using LSTM on the time series, (c) LC map obtained by using LSTM on composites, (d) LC map obtained by using SVM. The 

study area is in Africa (Tile 37PCP). 

Figure 49 reports the classification products obtained in Africa (tile 37PCP). It can be noticed that SVM is the only 

classifier that correctly recognizes the permanent water class. Moreover, one can also notice that LSTM with all 

the time-series obtains better results for cropland, when the LSTM with seasonal composites seems to confuse 

cropland with bare areas and urban.  
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Figure 50. Visual comparison of the: (a) HR optical image used to evaluate the results obtained; (b) LC map obtained by 
using LSTM on the time series, (c) LC map obtained by using LSTM on composites, (d) LC map obtained by using SVM. The 

study area is in Amazonia (Tile 21KXT). 

 

Figure 50 represents the classification products obtained in Amazonia (tile 21KXT). Similarly to the Africa HRLC 

map, SVM seems to provide the most accurate classification map. On the one hand in all three maps there seems 

to be overestimation of the bare class. However, classes characterized by peculiar geometrical details, such as 

roads, are very well mapped. Nevertheless, the bare areas overestimation is the least visible on the SVM map. 
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Figure 51. Visual comparison of the: (a) HR optical image used to evaluate the results obtained; (b) LC map obtained by 
using LSTM on the time series, (c) LC map obtained by using SVM. The study area is in Siberia (Tile 42WXS). 

 

Figure 51 represents the classification products obtained in Siberia (tile 42WXS). Since for Siberia, we are 

considering only one yearly composite, the comparison with LSTM can be carried out only with the LSTM trained 

on a full time series of images. Looking at the results, it seems that LSTM is providing better result for permanent 

water classification. However, it is significantly overestimating the lichens class. The SVM correctly classifies the 

build-up areas. Also, in the case of urban class SVM seems to provide better results, while LSTM is misinterpreting 

it as shrub.  
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4.1.4 Final decision 

According to the qualitative analysis, the best LC maps are achieved by SVM. LSTM trained with full time-series 

and with monthly composites provides poorer accuracy than SVM. This can be attributed to the too small size of 

the training set for a deep based architecture and the high heterogeneity of the considered landscape. On the 

other hand, it is well known that SVM is able to provide reasonable accuracy even if a small training dataset is 

available. It can be also concluded that there is not a big difference between results provided by LSTM trained 

with full time-series and with monthly composites. Overall, our conclusions are in line with the report provided 

by the validation team (see PVIR [AD6]). 

 

4.2 SAR data processing 

The main novelty introduced during the second year of activity is the use of a high-resolution training data set, 

much more performant than the one extracted from thematic products at a global scale. The method applied for 

the extraction of these new training points is based on a stratified approach and the photo-interpretation of very 

high-resolution imagery, as explained in the ATBD document [AD5]. Once several local sample sites are localized, 

the training points are firstly labelled via photo-interpretation following a hierarchical decision tree. The 

seasonality then will be confirmed by means of the analysis of the NDVI profile. The updated SAR processing 

chain for the production of static and dynamic HRLC products is represented in Figure 52. 

 

Figure 52. SAR processing chain for the production of static and dynamic HRLC products 

4.2.1 Satellite images 

The tests have been carried out on the four benchmark areas of the Round Robin, devoted to the analysis of the 

following three regional areas tiles refer to the tiling grid of Sentinel-2 Level-1C products: 

• Amazons: tiles 21KUQ S-2 and 21KXT S-2; 

• Siberia: tile 42WXS S-2; 

• Sahel: tile 37PCP S-2. 

High resolution (10m) Sentinel-1 IWS Level-1 GRD products have been processed over the four benchmark areas 

to test the static map production for 2019. The Level-1 GRD data contains the detected amplitude and are multi-

looked to reduce the impact of speckle at a cost of reducing spatial resolution. The products are projected to 

ground range using the Earth ellipsoid model, generating images with approximately square resolution pixels 

and square pixel spacing. Table 4 provides a list of S-1 images that have been used for the local experiments. 
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4.2.2 Method/algorithm/technique 

Within this Section, several methods are presented and compared as candidate approaches to be developed and 

implemented in the SAR image processing chain depicted in Figure 52. 

4.2.2.1 SAR data pre-processing 

The first step consists in a preprocessing task aiming to provide a time series devoted to the land cover map 

production. The production of static map of 2019 requires the Level-1 products of Sentinel-1 GRD data that first 

are properly calibrated and terrain corrected before any other processing. About the dynamic product with 30m 

spatial resolution, the data in 2015 are S1 data, while ERS and ENVISAT data will be considered for 2010, 2005, 

2000, 1995 and 1990. The typical processing sequence applied to any kind of SAR data entails multi-looking, 

speckle filtering, orthorectification, radiometric calibration, and terrain correction. Multi-looking averages over 

range and azimuth cells to improve radiometric resolution and produce near-square pixels. Adaptive filters use 

local statistics to filter the data and so reduce image speckle and, in some cases, preserve or enhance edges and 

other features. As with optical data, SAR data are orthorectified and radiometrically calibrated to produce 

suitable images for comparison. The best available DEM is used to correct for spatial distortions in the range 

(across-track) and azimuth (along-track) directions. The process converts the pixel data from slant to ground 

range geometry and in a defined cartographic (map coordinate) system. During radiometric calibration, standard 

radar equations are used to correct pixel data for systematic errors and brightness variations due to terrain. An 

additional terrain illumination correction step is applied to correct for geometric and radiometric distortions 

present in images collected over steep terrain. These distortions mask the useful backscatter related to land 

cover or geophysical features and need to be corrected for effective land cover mapping using SAR data. Finally, 

linearly-scaled data are converted into decibels (dB) and properly resampled to match the spatial resolution of 

30m. All the preprocessing task is easily accomplished with the Sentinel’s Application Platform (SNAP) software 

provided by ESA. 

4.2.2.2 Training set preparation 

The training set extraction is performed according to the hierarchical approach presented in section 8.2 of the 

ATBD document [AD5]. The main purpose is to achieve a consistent and accurate training data set thanks to the 

photointerpretation of very high resolution images. Figure 53 shows the updated list of land cover classes of the 

final HR legend. See in Figure 54 an example of training set extraction for four selected tiles. 

Table 5. List of Sentinel-1 data on the four benchmark areas 

Area Section Satellite Band # Products Date list (2019y) 

Amazon – 21KUQ 

Upper S1B VH 31 

01-04 01-16 01-28 02-09 02-21 

03-05 03-17 03-29 04-10 04-22 

05-04 05-16 05-28 06-09 06-21 

07-03 07-15 07-27 08-08 08-20 

09-01 09-13 09-25 10-07 10-19 

10-31 11-12 11-24 12-06 12-18 

12-30 

Lower S1B VH 31 

01-04 01-16 01-28 02-09 02-21 

03-05 03-17 03-29 04-10 04-22 

05-04 05-16 05-28 06-09 06-21 

07-03 07-15 07-27 08-08 08-20 

09-01 09-13 09-25 10-07 10-19 

10-31 11-12 11-24 12-06 12-18 

12-30 
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Amazon – 21KXT 

Upper S1B VH 20 

01-23 02-04 02-16 03-12 03-24 

04-05 04-17 04-29 08-15 08-27 

09-08 09-20 10-02 10-14 10-26 

11-07 11-19 12-01 12-13 12-25 

Lower S1B VH 20 

01-23 02-04 02-16 03-12 03-24 

04-05 04-17 04-29 08-15 08-27 

09-08 09-20 10-02 10-14 10-26 

11-07 11-19 12-01 12-13 12-25 

Siberia – 42WXS - S1B VH 20 

01-03 01-15 01-27 03-04 03-16 

03-28 04-21 05-03 05-15 06-08 

06-20 07-14 07-26 08-19 09-12 

09-24 10-18 11-11 12-05 12-17 

Sahel – 37PCP - S1B VH 16 

01-11 01-23 02-16 03-24 04-05 

05-11 06-04 06-16 07-10 07-22 

08-27 09-20 10-14 11-07 12-01 

12-25 

 

 

Figure 53. List of classes of the High Resolution Land Cover (HRLC) legend 
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Figure 54. Training data acquired via hierarchical decision tree for Amazon 21KXT (a), Amazon 21KUQ (b), Sahel 37PCP (C) 
and Siberia 42 WXS (d) tiles. 

Speckle filtering 

According to the tests performed during the first year, the multi temporal approach to speckle filtering [22] is 

much more recommended for speckle effective removal in a time series data set. This filter is based on the 

calculation of a super-image exploiting the spatial and temporal information of the whole SAR time series. The 

filter aims to enhance the quality of each image in the series by means of an effective speckle reduction and 

spatial resolution preservation. 

4.2.2.3 Feature extraction 

Feature extraction methods encompass characteristics and texture, structural and graph descriptors. To improve 

the ability of a classifier to recognize and discriminate the different environment textures and morphological 

structures (e.g. urban areas, agricultural crops, forests, etc.), the amplitude of VH channels have been considered 

[23]. 

To analyze and explore the spatial information contained in satellite images, a set of filters operating in the 

spatial domain have been considered. The rationale for selecting these algorithms is their execution velocity and 

versatility. Although they might not be the most accurate ones, the possibility to apply them quickly to SAR 

images in a large stack in a reasonable amount of time is an invaluable asset for wide area processing. The 

implemented techniques are summarized as follows: 

• Mean filter is one of the most widely used low-pass filters (LPF). It substitutes the pixel value with the 

average of all the values in the local neighborhood (filter kernel). 
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• Median filter, a non-adaptive filter that replaces each pixel value with the median of the pixel values in 

the local neighborhood. 

• Lee filter, an adaptive filter based on minimum mean-square error (MMSE) that converts the 

multiplicative model into an additive one, thereby reducing the problem of dealing with speckle to a 

known tractable case. 

• Minimum (maximum) filter, a non-linear filter that locates the darkest (brightest) point in an image. It 

is based on median filter since it is defined as his 0th (100th) percentile, i.e. by considering the minimum 

(maximum) of all pixels within a local region of an image. 

• Maxmin filter a non-linear filter that computes the difference between the maximum filtered version of 

the image and the minimum one 

4.2.2.4 Classification 

Two supervised classifiers have been considered, i.e., Random Forest (RF) and Support Vector Machine (SVM). 

They are superior and more robust than unsupervised methods [16]. Some erroneous reference data (e.g., 

slightly outdated ones) are acceptable in training [24]. 

The whole classification chain has been investigated on Sentinel-1 time-series data assuming different scenarios. 

The experiments presented in this section have been carried on the four Round Robin benchmark areas and 

visually photointerpreted reference data have been used. The RF and SVM were applied to evaluate their 

classification performance in multitemporal analysis of SAR data. The choice of parameters for the RF classifier 

is not very sensitive to this kind of problem [25], and one-hundred trees have been used. According to the results 

in Section 3.2, the multitemporal classification was the most performant analysis in terms of land cover 

recognition. In the multitemporal analysis framework, a time series of Sentinel-1 VH images has been considered. 

All images have been divided according to annual seasons: winter, spring, summer and autumn. For each season, 

a multitemporal despeckling filter has been applied and the super image provided as output. To test the 

performances of the classification chain, more spatial and textural information have been added. Spatial features 

(Lee, Min, Max, Max Min, Mean and Median) have been extracted on each seasonal super image, leading to a 

classification based on twenty-eight features in total. All classification results and the comparison between RF 

and SVM classifier are depicted in Figure 55 to Figure 58. 

Table 6. Training Set produced on MR products: the translation of the considered coarse thematic products into the 
desired map legend is reported. .(*) The built-up class has been extracted with the UEXT algorithm, described in Lisini et 

al. [26] 

CCI-HRLC (1st Level) ESA CCI LC 2018 GLCNMO 

 Tree cover evergreen broadleaf 50  

 Tree cover evergreen needleleaf 70, 71, 72  

 Tree cover deciduous broadleaf 60, 61, 62  

 Tree cover deciduous needleleaf 80, 81, 82  

 Shrub cover 120  

 Grasslands 130  

 Croplands  11, 12, 13 

 Lichens and Mosses 140  

 Bare areas 200, 201, 202  

 Built-up(*)   

 Open water 210  

 Permanent Snow and/or ice 220  
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The first classification experiments have been carried out and compared considering both photointerpreted 

training points and reference data from existing medium resolution GLCM, including the ESA CCI land cover map 

of 2018 with 300m resolution. About reference data based on GLCM, the products were selected as the best 

candidates considering: i) good spatial resolution, ii) detailed hierarchical legend that includes many classes in 

common with the CCI HRLC legend, and iii) relatively recent temporal coverage. The existing legends of GLCM 

have been compared and then translated into the desired HRLC legend. A weak training set has been produced 

by selecting from the available thematic maps those samples having the highest probability of belonging to areas 

correctly associated to their label. 

 

 

 

Figure 55. Comparison between RF and SVM classification for of the 21KUQ Amazonian tile: ESRI satellite image (a), SAR 
seasonal super image (b), SVM static map of 2019 generated by using the seasonal multitemporal sequence (c) and RF 

static map of 2019 generated by using the same input (d). 
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Figure 56. Comparison between RF and SVM classification for an AOI of 21KXT Amazonian tile: ESRI satellite image (a), 
SAR seasonal super image (b), SVM static map of 2019 generated by using the seasonal multitemporal sequence (c) and 

RF static map of 2019 generated by using the same input (d). 
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Figure 57. Comparison between RF and SVM classification for an AOI of the 37PCP Saharan tile: ESRI satellite image (a), 
SAR seasonal super image (b), SVM static map of 2019 generated by using the seasonal multitemporal sequence (c) and 

RF static map of 2019 generated by using the same input (d). 
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Figure 58. Comparison between RF and SVM classification for an AOI of the 42WXS Siberian tile: ESRI satellite image (a), 
SAR seasonal super image (b), SVM static map of 2019 generated by using the seasonal multitemporal sequence (c) and 

RF static map of 2019 generated by using the same input (d). 

4.2.3 Qualitative evaluation 

By looking at the maps reported above, the comparison between Random Forest and Support Vector Machine 

are reported, and the different performance levels of the two classifiers can be appreciated (see Figure 55 to 

Figure 58). The multitemporal approach produces interesting results, with nice classification capabilities, 

confirming the state-of-the-art level of this methodology. 

Moving to the static products reported in Figure 55(c) and Figure 55 (d), several croplands and vegetative areas 

are very well extracted, showing the capability of the approach to produce a reliable map. By a first visual 

assessment, both in Amazonia and Sahel, SAR maps seem to contain several thematic errors, especially a huge 

overestimation of the built-up class. Moreover, SAR SVM prototypes for Amazon 21KXT and Sahel, in Figure 56(c) 

and Figure 57(c) respectively, contain a strong contamination of the water class. About the Siberia area, taking 

into the account the SVM map reported in Figure 58(c), the recognition of the water class is not well performant 

and many outliers of bare soil class can be noticed. In all the scenarios, RFs (Figure 55(d), Figure 56(d), Figure 

57(d) and Figure 58(d)) show a greater capability in class recognition than SVMs. The performance can be 

explained due to the nature of RF in being inherently multiclass whereas Support Vector Machines need 

workarounds to deal with classification tasks involving multiple classes. Moreover, RF works well with a mixture 
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of numerical and categorical features. In other words, with Random Forest one can use inhomogeneous data 

without any refined pre-processing. 

 

 

Figure 59. Classification performance comparison for different reference data on an AOI of 21KUQ Amazonian tile: ESRI 
satellite image (a), SAR seasonal super image (b) ESA CCI LC MR map of 2018 (c), RF classification based on MR reference 

data (d) and RF classification based on photointerpreted reference data (e). 
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Figure 60. Classification performance comparison for different reference data on an AOI of 21KXT Amazonian tile: ESRI 
satellite image (a), SAR seasonal super image (b) ESA CCI LC MR map of 2018 (c), RF classification based on MR reference 

data (d) and RF classification based on photointerpreted reference data (e). 
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Figure 61. Classification performance comparison for different reference data on an AOI of 37PCP Saharan tile: ESRI 
satellite image (a), SAR seasonal super image (b) ESA CCI LC MR map of 2018 (c), RF classification based on MR reference 

data (d) and RF classification based on photointerpreted reference data (e). 
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Figure 62. Classification performance comparison for different reference data on an AOI of 42WXS Siberian tile: ESRI 
satellite image (a), SAR seasonal super image (b) ESA CCI LC MR map of 2018 (c), RF classification based on MR reference 

data (d) and RF classification based on photointerpreted reference data (e). 

Figure 59 to Figure 62 show a qualitative comparison over a portion of each study areas. We can appreciate that 

the classification based on the reliable training data hierarchically extracted solves many outliers present in the 

results, where a weak training set was applied. For the Siberia, as shown in Figure 62, the results are very 

encouraging, since the classified map based on the photointerpreted training points brings to a land cover 

performance that can be easily appreciated with a comparison with the ESA CCI medium resolution product, but. 

For a more detailed qualitative and quantitative assessment please refer to PVASR v1.0. 

4.2.4 Final decision 

According to the previous subsections and the visual assessment, the best LC maps are achieved by using RFs. RF 

is state-of-the-art in remote sensing image processing, and yields classification accuracies as high as SVM, but 

with a much lower computational complexity. It is also more stable with respect to the choice of parameters 

[25], and easily provides the probability of belonging to a class (necessary input to the data fusion step). This 

makes it an excellent candidate for operational processing chains. Reference data acquired by 

photointerpretation based on a hierarchical method have been extracted in each study area and better 

classification performance have been achieved in all test areas. 

Having that said, it has to be underlined that this comparison has been performed only qualitatively, and a 

quantitative analysis is provided in PVIR v1.0 for a better quality evaluation. 
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4.3 Multi-Sensor Optical-SAR Data Fusion 

4.3.1 Multisensor Geolocation Methods 

In the context of multi-sensor geolocation, different image registration methods and strategies have been 

designed and experimented on the available datasets, following up on the methodological analysis conducted in 

the deliverables of the previous milestones.  

The multi-sensor geolocation process is composed, as depicted in Figure 63, of different elements, i.e.: (i) the 

geometric transformation used to warp the input image; (ii) the similarity measure used to compare the 

reference and input images during the registration process; and (iii) the optimization strategy used to minimize 

or maximize the similarity measure, depending on the semantic of the metric. 

 

Figure 63. Composition of the multisensor geolocation process. 

According to the HRLC proposal, we have developed and tested area-based image registration methods with a 

combination of different geometric transformations, similarity measures, and optimization strategies (see also 

ATBD-v3). 

 

4.3.1.1 Geometric Transformations 

With respect to the geometric transformations, we have considered: 

• Shift transformations 

[
𝑋
𝑌
1

] = [
1 0 −𝑇𝑥

0 1 −𝑇𝑦

0 0 1

] [
𝑥
𝑦
1

] 

• Rigid transformations 

[
𝑋
𝑌
1

] = [
1 0 −𝑇𝑥

0 1 −𝑇𝑦

0 0 1

] [
cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0

0 0 1
] [

𝑥
𝑦
1

] 

• Similarity transformations (RST) 

[
𝑋
𝑌
1

] = [
1 0 −𝑇𝑥

0 1 −𝑇𝑦

0 0 1

] [
𝑠 0 0
0 𝑠 0
0 0 1

] [
cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0

0 0 1
] [

𝑥
𝑦
1

] 

Here, (𝑥, 𝑦) and (𝑋, 𝑌) indicate the axes of the coordinate frames in the reference and input images, respectively, 

𝑇𝑥  and 𝑇𝑦 are translation parameters, 𝜃 is a rotation angle, and 𝑠 is a scale parameter [27]. 
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4.3.1.2 Similarity Measures 

With respect to the similarity measures, we have considered: 

• Cross-correlation 

CC(𝑅𝑒𝑓, 𝐼𝑛 | 𝑥, 𝑦) = ∑ ∑ 𝐼𝑛(𝑚, 𝑛) 𝑅𝑒𝑓(𝑚 − 𝑥, 𝑛 − 𝑦)

𝑁−1

𝑛=0

𝑀−1

𝑚=0

 

 

• Mutual Information 

MI(𝑅𝑒𝑓, 𝐼𝑛) = ∑ ∑ 𝑝𝑅𝑒𝑓,𝐼𝑛(𝑟, 𝑖) log
𝑝𝑅𝑒𝑓,𝐼𝑛(𝑟, 𝑖)

𝑝𝑅𝑒𝑓(𝑟) 𝑝𝐼𝑛(𝑖)
𝑖𝑟

 

Here, 𝐼𝑛(⋅) and 𝑅𝑒𝑓(⋅) indicate the input and reference images (which are both assumed composed of 𝑀 × 𝑁 

pixels), respectively, 𝑝𝑅𝑒𝑓,𝐼𝑛is their joint probability density function (PDF), 𝑝𝑅𝑒𝑓  and 𝑝𝐼𝑛 are their marginal PDFs, 

CC(⋅) is their cross-correlation evaluated on a given pixel location, MI(⋅) is their mutual information [27], [28], 

[29]. 

It is worth noting that the cross correlation is computed through the fast Fourier transform (FFT) algorithm. Such 

process takes advantage of the relation between the convolution operation in the spatial or time domain and 

the product operation in the frequency domain: 

ℱ(𝑓 ∗ 𝑔) =  ℱ(𝑓) ∙ ℱ(𝑔)   →     𝑓 ∗ 𝑔 = ℱ−1(ℱ(𝑓) ∙ ℱ(𝑔)), 

where ℱ(⋅) denotes the Fourier transform operator and 𝑓 and 𝑔 are two signals defined in the spatial or time 

domain. It is straightforward to write the cross-correlation in terms of a convolution operator, which allows 

taking benefit from the computational efficiency of the FFT [30]. 

In order to compute the cross-correlation between two images it is necessary to: (i) compute the FFT of each 

image to pass from the spatial domain to the frequency domain; (ii) compute the complex conjugate of one of 

the two resulting signals in the frequency domain because of the mirroring operation performed during 

convolution and not during correlation; (iii) multiply the images in the frequency domain; and (iv) compute the 

inverse FFT transform of the product to obtain the cross-correlation of the two images in the spatial domain. The 

flowchart of such computation is given in Figure 64. 

 

Figure 64. Block diagram of the application of fast Fourier transform (FFT) to compute cross-correlation. 

 

4.3.1.3 Optimization Strategies 

With respect to the optimization strategies, we have considered: 

• Powell’s algorithm, for unconstrained minimization. It uses Powell's formulation of an approximate 

conjugate direction method. The objective function does not need to be differentiable, and no 
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derivatives are required (differently from the standard conjugate gradient algorithm). The method 

minimizes the function using a line search along a set of search vectors [31]. Moreover, the line search 

is done by the Golden-section and Brent's methods [32]. 

• Constrained optimization by linear approximation (COBYLA), for constrained minimization. It 

addresses constrained optimization by a linear approximation. It works by iteratively approximating 

the actual constrained optimization problem with linear programming problems. At each iteration, the 

resulting linear programming problem is solved to obtain a candidate for the optimal solution. The 

candidate solution is evaluated using the original objective and constraint functions, yielding a new 

data point in the optimization space. This information is used to improve the approximating linear 

programming problem used for the next iteration of the algorithm. When no improvement is possible, 

the step size is reduced, refining the search. When the step size becomes sufficiently small, the 

algorithm stops [33]. 

• Constrained reformulation of the Powell’s method (Powell’s algorithm with barrier functions). Indeed, 

the standard Powell’s algorithm is unconstrained and, therefore, may perform its search on a large 

portion of the parameter space. On one hand, this is a benefit because it allows the method to 

perform a broad exploration of the parameter space in search of an appropriate transformation to 

match the input optical and SAR images. On the other hand, it is also one of the biggest downsides of 

the method from the viewpoint of reaching convergence in a limited timeframe. Indeed, the input 

optical and SAR images are natively cropped on the same pixel grid based on their georeferencing 

information. Given this model assumption, it is not hard to determine bounded intervals on the 

transformation parameters. Limiting the search to the multidimensional box determined by these 

ranges is not restrictive from the viewpoint of registration accuracy and makes for a significant 

reduction in computational burden. A modification to the standard Powell’s minimization method 

integrates a set of barrier functions to cope with the unconstrained nature of the original optimization 

algorithm and combine it with the aforementioned box constraint. This way it is possible to restrict the 

search space to a subspace of feasible transformations (i.e., based on the size and spatial resolution of 

the input images). This constrained formulation of Powell’s algorithm with barrier functions is 

integrated in the HRLC pipeline of the first production. 
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4.3.2 Automatic tiling for large-scale registration 

The HRLC pipeline operates geometrically on the pixel grid of the Sentinel-2 granules. Accordingly, the multi-

sensor geolocation module also works with respect to this lattice. Given the size of the Sentinel-2 granules, taken 

as reference images in the multi-sensor geolocation module, a single global transformation may not be sufficient 

to carefully address local distortions. In fact, the images acquired by the two satellites may present distortions 

which significantly differ locally. This is especially true in the cases in which a single S2 granule lays over a border 

among different S1 images. Furthermore, the application of the aforementioned area-based approach to the 

entire granule area may be computationally heavy.  

In order to address these problems, a dedicated automatic tiling algorithm has been developed in the project: 

both the reference (output of the optical pre-processing chain) and input (output of the SAR pre-processing 

chain) images are divided into patches. Each of these patches is registered separately using a global 

transformation and the final image is reconstructed starting from the patches. On one hand, considering one 

patch at a time reduces the computational complexity of the registration. Furthermore, the resulting overall 

transformation is non-global across the whole granule and allows to better account for misaligned details. On 

the other hand, the developed algorithm also takes into account the need for favouring consistency across the 

patches and to prevent border artefacts. While for the first patch the algorithm is initialized with the identity 

transformation 𝑇0 consisting of: (i) no translation along neither one of the two axis; (ii) no rotation; and (iii) 

unitary scaling (𝑖. 𝑒. 𝑇0 = [𝑇𝑥 = 0, 𝑇𝑦 = 0, 𝜃 = 0, 𝑠 = 1]), the result �̂�1 of the geolocation for this first patch is 

passed to the next one.  That way, the next patch is initialized with 𝑇1 = �̂�1. The same is done for each subsequent 

patch and transformation value is propagated so as to initialize the next iteration of the algorithm. Figure 65 

details the tiling scheme of the multi-sensor geolocation procedure. 

 

Figure 65. Detail of the tiling scheme for multi-sensor geolocation. 

This allows for faster convergence, giving the algorithm a reliable initialization for each patch after the first one. 

Moreover, it generally leads to more precise results, considering that local distortions among adjacent patches 

can be assumed to be minor and the initialization allows the minimization algorithm to start from a good solution 

and quickly exploring the closer ones in the search space. Dedicated procedures are also integrated in the 

algorithm to detect anomalies in this iterative process and prevent them for affecting the registration output. 
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4.3.3 Quantitative evaluation using COBYLA and the unconstrained Powell’s algorithm 

Several experiments have been carried out with respect to multi-sensor geolocation. First, experiments with 

synthetic data generated from single-sensor measurements have been performed. Second, the aforementioned 

registration methods have been applied to multi-sensor S1-S2 data. The imagery associated with the first round 

robin were used for experiments. The focus has been initially on the unconstrained Powell and constrained 

COBYLA methods. 

In particular, the dataset used for the experiments is composed of two S1 SAR tiles and an S2 optical tile. The 

single-sensor synthetic datasets have been built by extracting an area from either an S1 or an S2 tile and by 

transforming it according to predefined transformations (translation, rigid, RST, etc.). This strategy allows to 

quantitatively determine the registration accuracy obtained by registering the resulting couples. 

The multi-sensor dataset has been built by extracting an area from the result of stacking the S1 and S2 tiles. This 

way, it is possible to test the registration methods in a fully real-world scenario, although analytical and 

quantitative results are not available of course, because the “true” ideal matching of the optical and SAR data is 

undefined. In this case, registration accuracy can be qualitatively appreciated using false color representations 

and checkerboard visualizations. 

Finally, the synthetic multi-sensor dataset has been built by registering the S1 and S2 tiles using accurate geo-

referencing information, extracting an area from the stacking of the two georeferenced tiles, and applying a well-

known transformation to one of the two. As for the first scenario, this strategy allows to quantitatively evaluate 

the accuracy of the proposed methods in a multi-sensor scenario as well. 

The experiments that have been carried out are the following: 

• Finding the optimal translation using cross-correlation as metric; 

• Finding the optimal translation using both cross-correlation and mutual information as metrics; 

• Finding the optimal rigid transformation using both cross-correlation and mutual information as 
metrics; 

• Finding the optimal RST transformation using mutual information as a metric. 

In the case of the synthetic dataset, where the ground truth (GT) transformation is known, the root mean square 

error (RMSE) between the real and the resulting transformation is used as a measure of registration accuracy. 

For details on the RMSE computation we refer to [34] and [29]. Additionally, the computer used for the 

experiments is a Windows system equipped with a quad-core Intel i7 processor with a working frequency of 

3.60GHz and 24Gb of RAM. 

Before analyzing the results in more detail, it is worth anticipating that the use of cross-correlation as a similarity 

metric is effective and satisfactory only in the case of the single-sensor dataset. In the multi-sensor cases, the 

different nature of the images prevented the usage of such a similarity metric, because of the overall low values 

achieved by the inter-sensor correlations. On the contrary, the mutual information measure resulted to be more 

robust in this case. 

Therefore, cross-correlation has been experimentally validated only in the cases of translation and rigid 

transformations. The results have been proved satisfactory only in the single-sensor scenarios, with poor 

performances in the multi-sensor cases. Hence, multi-sensor experiments with more challenging scenarios 

(higher-order transformations and multi-step registration) have been focused on the use of the more promising 

mutual information similarity metric. 
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4.3.3.1 Optimal translation using cross-correlation 

This type of registration performed well only in synthetic cases where the translation transformation was 

manually applied. Experiments were carried out with respect to optical-optical, SAR-SAR, and optical-SAR 

matching. 

Note that from now on, the convention used to represent the parameters of the geometric transformation is the 

following: Transformation = [translation on the x axis, translation on the y axis, rotation (deg.), scale factor] 

4.3.3.1.1 Synthetic Optical-to-optical matching 

Elapsed Time: True Transformation: Resulting Transformation: Registration RMSE: 

0.636 seconds [-76, 52, 0, 1] [-76.0, 52.0, 0.0, 1.0] 0.0 pixels 

Figure 66 shows: (i) the reference optical image (left panel); (ii) the input optical image to be registered (central 

panel); and (iii) the resulting cross-correlation with the corresponding point of maximum (right panel). 

 

Figure 66. The reference optical image (left panel); the input optical image to be registered (central panel); and the 
resulting cross-correlation with the corresponding point of maximum (right panel). 

Figure 67 shows a false color composition of the images before and after registration. The composition uses the 

green and the magenta colors for the input and the reference images (left) and for the transformed input and 

reference images (right), respectively. 

 

Figure 67. False color composition of the optical images before (left) and after (right) the registration. 
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4.3.3.1.2 Synthetic SAR-to-SAR matching 

Elapsed Time: True Transformation: Resulting Transformation: Registration RMSE: 

0.680 seconds [-76, 52, 0, 1] [-76.0, 52.0, 0.0, 1.0] 0.0 pixels 

As in previous case, Figure 68 shows the reference SAR image, the input SAR image to be registered, and the 

resulting cross-correlation with its own point of maximum. 

 

Figure 68. The reference SAR image (left panel); the input SAR image to be registered (central panel); and the resulting 
cross-correlation with the corresponding point of maximum (right panel). 

Figure 69 shows a false color composition of the images before and after registration. The same composition as 

in the Optical-to-Optical case is used. 

 

Figure 69. False color composition of the SAR images before (left) and after (right) the registration. 

In these simple cases of optical-to-optical and SAR-to-SAR registration with only a shift transformation, the cross-

correlation proves indeed a valid metric. 

 

4.3.3.1.3 Synthetic Optical-to-SAR matching 

Elapsed Time: True Transformation: Resulting Transformation: Registration RMSE: 

0.616 seconds [-76, 52, 0, 1] [-0.0, 52.0, 0.0, 1.0] 76.0 pixels 

Figure 70 shows the reference optical image, the input SAR image to be registered, and the resulting cross-

correlation with its point of maximum. 
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Figure 70. The reference optical image (left panel); the input SAR image to be registered (central panel); and the resulting 
cross-correlation with the corresponding point of maximum (right panel). 

In this case, Figure 71 shows a checkerboard representation of the images before and after registration. On the 

left, alternate rectangles show either the input or the reference images. On the right, alternate rectangles show 

either the transformed input or the reference images. A qualitative assessment of the registration accuracy can 

be achieved by looking at the borders between each rectangle and at the continuity of linear image features 

across those borders. 

 

Figure 71. Checkerboard representation of the optical and SAR images before (left) and after (right) registration. 

Such a result points out the non-satisfactory performances of using cross-correlation as a measure of similarity 

in the multi-sensor case. 
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4.3.3.2 Optimal translation using cross-correlation and mutual information  

The difference with respect to the previous case is that, in these experiments, the optimal translation is found 

by maximizing either the cross-correlation or the mutual information. Again, experiments have been carried out 

with respect to both multi-sensor and single-sensor synthetic scenarios. For the sake of brevity, we report here 

the results obtained for the SAR-to-SAR and for the Optical-to-SAR registration using the COBYLA optimization 

method. The experiments with the optical-to-optical and with the Powell optimization methods showed 

comparable results. It is worth noting that COBYLA usually outperforms Powell’s method when the solution is far 

from the initialization (for a complete analysis refer to the experiments with the RST transformation below). 

 

4.3.3.2.1 Synthetic SAR-to-SAR matching 

The results obtained by using cross-correlation or mutual information are similar in this synthetic case. What it 

is worth noting is the required time needed for convergence, which is longer in the mutual information case.  

Cross-correlation 

This experiment is similar to the one reported above, but here the cross-correlation is maximized using COBYLA 

and not by computing the whole cross-correlation function through the FFT. Figure 72 shows the result using the 

false-color composite defined for the previous single-sensor experiments. 

Elapsed Time: True Transformation: Resulting Transformation: Registration RMSE: 

21.172 seconds [-76, 52, 0, 1] [-75.9, 51.9, 0.0, 1.0] 5.65 e-4 pixels 

 

Figure 72. False color composition of the SAR images before (left) and after (right) the registration. 

Mutual Information 

Elapsed Time: True Transformation: Resulting Transformation: Registration RMSE: 

42.221 seconds [-76, 52, 0, 1] [-76.0, 51.9, 0.0, 1.0] 5.33 e-4 pixels 

The false color composition in Figure 73 points out the accuracy of the registration result obtained. As 

anticipated, the accuracy when using either cross-correlation or mutual information is similar. The difference is 

the computation time, which is longer in the mutual information case, thus suggesting a preference for the cross-

correlation metric in the single-sensor case. 
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Figure 73. False color composition of the SAR images before (left) and after (right) the registration. 

4.3.3.2.2 Synthetic Optical-to-SAR matching 

This experiment, in combination with the one considering cross-correlation through FFT in the optical-to-SAR 

matching case, highlights the importance of using mutual information as a similarity measure in the multi-sensor 

scenario [35], [36]. 

 

Mutual Information 

Elapsed Time: True Transformation: Resulting Transformation: Registration RMSE: 

7.59 seconds [-76, 52, 0, 1] [-81.5, 49.6, 0.0, 1.0] 5.99 pixels 

The checkerboard representation of the images before and after registration shown in Figure 74 highlights that, 

even in the multi-sensor case, the mutual information is effective for determining the optimal translation. 

 

Figure 74. Checkerboard representation of the optical and SAR images before (left) and after (right) registration. 
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4.3.3.3 Optimal rigid transformation using cross-correlation and mutual information  

As in the case above, in these experiments, the optimal transformation is found by maximizing either the cross-

correlation or the mutual information using COBYLA. The difference is in the geometric transformation, since 

here the model is considered as a rigid transformation (i.e., translation + rotation). 

For the sake of brevity, the experiments reported here consider: (i) a comparison of using cross-correlation with 

synthetic single-sensor data and synthetic multi-sensor data; (ii) a comparison of using mutual information with 

synthetic multi-sensor data and real multi-sensor data. 

Experiment (i) highlights the poor performances of cross-correlation with multi-sensor data. It is worth noting 

that, according to these results, the use of cross-correlation will not be considered for the further multi-sensor 

experiments in this document. Conversely, experiment (ii) shows the satisfactory accuracy achievable in the 

synthetic case through the mutual information, but also confirms that the rigid transformation is often a too 

restrictive model for the application to real S1-S2 data. 

 

4.3.3.3.1 Synthetic Optical-to-Optical Matching 

Cross-correlation 

Elapsed Time: True Transformation: Resulting Transformation: Registration RMSE: 

37.39 seconds [-45, 26, 1.1, 1] [-44.39, 25.34, 1.14, 1.0] 1.48 pixels 

As expected, and as illustrated in the false color composition of Figure 75, an accurate registration was obtained 

in this case of rigid transformation of a single-sensor image pair. 

 

Figure 75. False color composition of the optical images before (left) and after (right) the registration. 

 

4.3.3.3.2 Real Optical-to-SAR matching 

Elapsed Time: 13.52 seconds Resulting Transformation: [66.44, -44.43, -0.75, 1.0] 

Figure 76 shows a checkerboard representation of the images before and after registration. Well-registered areas 

are highlighted in green, while areas that still suffer from unprecise registration are highlighted in red. 



 

Ref CCI_HRLC_Ph1-PVASR 

 
Issue Date Page 

3.rev.1 13/01/2023 82 

 

  
 

 

Figure 76. Checkerboard representation of the optical and SAR images before (left) and after (right) registration. Green 
and red circles highlight where the match is good or bad, respectively. 

As anticipated above, on one hand, the registration through the cross-correlation improved as compared to the 

initial georeferencing. A particularly effective alignment can be noted in the green circles. Nevertheless, the 

resulting rigid transformation is not globally accurate, as it can be noted by inspecting the crop fields in the lower 

left corner of the image, together with the other areas highlighted in red. 
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4.3.3.4 Optimal RST transformation using mutual information  

The following experiments consider the more general case of rotation-scale-translation transformations. The 

experiments reported in the following sections do not consider anymore the synthetic single-sensor cases to 

focus on the HRLC multi-sensor scenario.  

Also in this case, the performances are evaluated both quantitatively, with synthetic data where the true 

transformation is known, and visually-qualitatively in the case of the real dataset. 

The following experiments are also aimed at testing the registration method on different areas of the available 

Amazonian tile. Three separate areas (1000x1000 pixels each) have been registered using the RST transformation 

and the COBYLA and Powell’s optimization strategies. 

It is worth noting that the unconstrained Powell’s algorithm performs well in the cases where the solution of the 

registration process falls in a neighborhood of the starting point. Conversely, the COBYLA method, with the initial 

search radius parameter, allows to better explore the search space and usually grants better convergence 

properties. This is shown especially in Areas from 2 to 4 in the following experiments, where the solution is 

significantly far away from the initialization and Powell algorithm fails to converge. Indeed, these results from 

the unconstrained Powell’s algorithm is expected for a greedy unconstrained technique: on one hand, the lack 

of constraints allows exploring large portions of the parameter space; on the other hand, the greedy search 

approach does not guarantee that the convergence point, which is generally a local optimum of the adopted 

metric, is an effective solution, unless the initial configuration is already appropriate. From this perspective, a 

constrained reformulation of the method, which encodes prior information about the meaning of the parameters 

in terms of box constraints, may focus the exploration of the method to a relevant target subspace of the 

parameter space, thus leading to a more effective behavior. 

 

4.3.3.4.1 Synthetic Optical-to-SAR Matching 

Elapsed Time: True Transformation: Resulting Transformation: Registration RMSE: 

23.81 seconds [-45, 42, 2.1, 0.98] [-45, 42, 2.1, 0.98] 5.16 pixels 

The checkerboard representation of the images before and after registration is shown in Figure 77. For all the 

experiments within the synthetic optical-to-SAR matching, the COBYLA optimization method has been used. 

 

Figure 77. Checkerboard representation of the optical and SAR images before (left) and after (right) registration. 
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This result is comparable in accuracy with the case of rigid transformation. Nevertheless, it is worth noting that 

for the registration process to converge to a qualitative satisfactory result, the scaling factor should not be too 

large (or small). An experimental example is reported here, where a scaling factor of 0.9 prevented the 

registration to succeed. During the experiments, all the other parameters were kept constant and the scaling 

factor was reduced from 0.98 to 0.90. 

 

With a scale factor reduced from 0.98 to 0.95, the rigid transformation still converged to a satisfactory result, as 

depicted in Figure 78. 

 

Figure 78. Checkerboard representation of the optical and SAR images before (left) and after (right) registration. Scale in 
range 0.98 to 0.95. 

Scaling even further to 0.92 still granted acceptable results, as depicted in Figure 79. 

 

Figure 79. Checkerboard representation of the optical and SAR images before (left) and after (right) registration. Scale 
equal to 0.92. 

However, further tests failed to converge effectively. An example is reported below in Figure 80, where the 

scaling factor was chosen equal to 0.9 and the other parameters were kept constant. 
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Figure 80. Checkerboard representation of the optical and SAR images before (left) and after (right) registration. With a 
scale factor of 0.9 the matching is not completely satisfactory. 

This analysis is important especially with respect to the COBYLA minimization method. Indeed, such technique 

allows defining constraints in the search space, thus preventing the scale parameter to assume excessive values. 

This consideration is also consistent with the project, as the available images are not expected to be 

characterized by a large-scale difference. Indeed, as the input S1 and S2 data are first georeferenced on pixel 

grids associated with the same nominal pixel spacing of 10 m, the possible scaling factor is indeed expected to 

take values in a narrow neighborhood of unity. 

 

4.3.3.4.2 Real Optical-to-SAR Matching: Area 1 

Elapsed Time: 13.24 seconds Resulting Transformation: [76.40, -44.31, -0.17, 0.99] 

The checkerboard in the Figure 81 points out that this result is comparable with the one obtained in the case of 

rigid transformation (i.e., only translation and rotation) in the application to the real multi-sensor dataset as well. 

The scale factor does not have great importance in the registration process of this dataset, as it is suggested by 

the convergence value of 0.99 and in accordance with the aforementioned comments on the expected behavior 

of this parameter. COBYLA is used for minimization both for Area 1 and for all the following experiments 

considering other areas. 
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Figure 81. Checkerboard representation of the optical and SAR images before (left) and after (right) registration.  

 

4.3.3.4.3 Real Optical-to-SAR Matching: Area 2 

Elapsed Time: 13.39 seconds Resulting Transformation: [77.52, -62.89, 0.16, 1.03] 

 

Figure 82. Checkerboard representation of the optical and SAR images before (left) and after (right) registration. The 
green circles highlight the good matching. 

The same comments made for Area 1 hold with regard to Area 2 as well. See Figure 82 in particular, the green 

ellipses in the checkerboard emphasize regions where accurate registration of linear image features is especially 

evident.  

 

4.3.3.4.4 Real Optical-to-SAR Matching: Area 3 

In this area, the spatial difference between the reference and input images is large, especially in the translation 

along the x axis. COBYLA was able to reach an effective registration result, though, while the unconstrained 

Powell’s method failed to converge due to the large distance between the solution and the initialization point. 

In Figure 83 and Figure 84 the green and red ellipses superimposed to the following two sets of checkerboards 

emphasize this significant difference in performance. 
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COBYLA 

Elapsed Time: 15.12 seconds Resulting Transformation: [222.11, -3.23, 0.48, 1.00] 

 

Figure 83. Checkerboard representation of the optical and SAR images before (left) and after (right) registration. The 
green circles highlight the good matching. 

Unconstrained Powell 

Elapsed Time: 46.29 seconds Resulting Transformation: [28.07, 16.23, 0.06, 1.00] 

 

Figure 84. Checkerboard representation of the optical and SAR images before (left) and after (right) registration. The red 
circles highlight the major misalignments. 

 

4.3.3.4.5 Real Optical-to-SAR Matching: Area 4 

As for Area 3, also Area 4 is characterized by a large spatial difference, which is even larger than the previous 

case, see Figure 85 and Figure 86. Nevertheless, COBYLA succeed to find a good transformation fitting the input 

and the reference images, and outperformed the unconstrained Powell’s method.  

Another experimental advantage of COBYLA is a lower time needed for convergence, most probably due in this 

case to the fact that Powell failed to find a good matching. However, the short convergence time suggests the 

possibility of tuning online the “initial search radius” parameter. Indeed, it should be possible to implement a 



 

Ref CCI_HRLC_Ph1-PVASR 

 
Issue Date Page 

3.rev.1 13/01/2023 88 

 

  
 

new version of such registration procedure that integrates a grid search on that parameter. The resulting 

similarity metrics could be compared to decide which value of such parameter is able to grant the best 

registration result for the dataset at hand. 

COBYLA 

Elapsed Time: 13.33 seconds Resulting Transformation: [270.68, -55.25, 0.51, 1.02] 

 

Figure 85. Checkerboard representation of the optical and SAR images before (left) and after (right) registration. The 
green circles highlight the good matching. 

Unconstrained Powell 

Elapsed Time: 38.93 seconds Resulting Transformation: [3.63, -1.58, 0.01, 1.00] 

 

Figure 86. Checkerboard representation of the optical and SAR images before (left) and after (right) registration. The red 
circles highlight the major misalignments. 
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4.3.4 Quantitative evaluation of Powell’s algorithm with barrier functions and automatic tiling 

This section focus on the latest results obtained on multi-sensor data from the Round Robin areas for the 

modified version of Powell’s method that integrates barrier functions to support box constraints on the 

parameters. This also allows for further comparison between COBYLA and Powell’s abilities to converge to an 

effective solution. Moreover, integrating barrier functions into Powell’s algorithm allows to avoid the need to 

correctly tune the search radius characteristic of COBYLA, allowing for faster convergence as compared to 

COBYLA itself. These experiments are also integrated with those associated to the automatic tiling algorithm that 

has been developed for the application to images as large as the entire S2 granule. 

4.3.4.1 Quantitative Analysis on Siberia 

The first analysis is performed on a Siberian area, in particular, tile 42WXS. Figure 87 represents the Sentinel-2 

and Sentinel-1 seasonal composites for the summer season of 2019 in the area identified by the Sentinel-2 

granule 42WXS.  

 

Figure 87. Sentinel-2 (left) and Sentinel-1 (right) images, as received (top) and after registration (bottom).  

Panel (a) shows the images before registration, while Figure panel (b) shows the registration result. The white 

part of the registered Sentinel-1 image corresponds to the area where no data is present (e.g, the input S-1 image 

does not contain the information corresponding to the whole S-2 42WXS granule). Indeed, the output images 

must share the same pixel lattice for the further processing steps aiming at jointly benefiting from the input 

optical and SAR data. This is especially important in the context of the CCI+ HRLC processing chain (i.e., the two 

classification steps and the fusion step), but the very same considerations are valid for any other application 

aiming at jointly extracting information from optical and SAR data.  
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The next figures allow for a more detailed analysis of the registration results: 

 

Figure 88. The top panel present a checkerboard representation of the optical and SAR image tiles before (left) and after 
(right) registration, for the granule 42WXS. On the bottom, a zoomed detail, with red and green circles highlighting the 

zones in which the effect of the registration can be better appreciated, respectively before and after.  
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Figure 89. The top panel present a checkerboard representation of the optical and SAR image, corresponding to another 
tile in which granule 42WXS is divided into, before (left) and after (right) registration. On the bottom, a zoomed detail, 

with red and green circles highlighting the zones in which the effect of the registration can be better appreciated, 
respectively before and after. 

 

Indeed,  Figure 88 and Figure 89 show the registration results for two of the patches that the input images 

(belonging to the Siberian S-2 granule 42WXS) are divided into. In particular, in both cases, the images in the top 

panels show a checkerboard visualization of the situation before and after the registration is performed. 

Neighbouring squares show either the optical or the SAR image, allowing the reader to appreciate the matching 

and mismatching of the spatial features in the area. Similarly, the images in the bottom panels show the same 

checkerboard visualization, but considering only a zoomed detail of the patch. In this case, red and green circles 

have been added to the picture in order to highlight the most significant spatial features. Both figures highlight 

the effectiveness of the registration process, using the constrained variation of Powell’s algorithm and the 

mutual information as metric.  
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Figure 90 displays the registration results for other two patches. For the sake of brevity, only the registration 

results are shown. Also in this case, it is possible to appreciate the matching in the rivers and in the bodies of 

water: 

 

Figure 90. Checkerboard representation of the results achieved by the registration for granule 42WXS, with details of 
rivers. 

Concerning the quantitative analysis, the proposed tiling-based strategy has also been evaluated in terms or root 

mean squared error by generating a semi-synthetic dataset from pairs of manually registered images. Two 

registered images (corresponding to the Siberian S-2 granule 42WXS) have been warped with a set of known RST 

transformations. Then, the proposed method has been applied to the resulting unregistered pairs.  

Due to the tiling-based processing, for each one of the pairs, the root mean square errors obtained in each patch 

are averaged to get the final score. In order to also quantitatively assess the gain that the proposed solution 

allows in terms of computation time, the same semi-synthetic datasets have been used for experiments with the 

straightforward application of the area-based registration method, without the tiling strategy. As a consequence, 

the time needed for convergence, together with the obtained root mean squared error, has been compared to 

the one achieved by the proposed automatic tiling solution.  

It is worth recalling that the registration problem faced by the area-based method (without tiling) is intrinsically 

less complex than the one faced by the proposed method. Indeed, the synthetic transformations applied to 

construct the synthetic dataset belong to the family of global RST transformation models. On the one hand, there 

exist a feasible solution that the area-based method can converge to, thus allowing a fair comparison. On the 

other hand, the dimensionality of the problem faced by the proposed solution is much higher, due to the larger 

search space. Nevertheless, comparing the results allow us to appreciate the level of accuracy that the proposed 

method is able to reach. The results of the comparison are reported in the following table: 

 

 Entire granule Proposed automatic tiling 

Time [min] 68 31 

RMSE [pixels] 2.1 2.6 

 

The computation times are measured in minutes, while the root mean squared errors are measured in terms of 

pixel units. The numbers have to be considered as averaged across a synthetic dataset generated from a set of 5 

transformations applied to the Siberian and the Amazonian images. The table allows us to appreciate a significant 
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reduction in the computation time, thus assessing the capability of the proposed method to achieve a speedup 

of around 2.2, while also achieving accuracy performances that are comparable to those obtained by the area-

based method (which operates in the aforementioned favourable setup). We also note that, as mentioned above, 

the traditional approach used here for comparison could obtain low RMSE values also because a unique well-

defined parametric transformation, valid across the whole scene, existed by construction. Indeed, in a 

registration problem on a large-scale data set (as the in CCI+ HRLC), this is normally not the case, because the 

geometric relation between the two input images may generally be space variant and a unique parametric 

transformation usually does not exist. 

4.3.4.2 Quantitative analysis on Amazonia 

The same analysis has been conducted on the two tiles of the Amazonian RR, in particular tile 21KUQ and 21KXT.   

Figure 91 allow the reader to appreciate the effectiveness of the registration method when run on different 

geographical areas:  

 

Figure 91. Checkerboard representation of the results achieved by the registration, with details for the granules 21KUQ 
(left) and KXT (right). 

The spatial features present in the scenes are different with respect to the ones in the Siberia area, and the 

registration method has been proven to be robust enough to adapt accordingly. Also in this case, the proposed 

tiling-based strategy has been evaluated in terms of root mean squared error by generating a semi-synthetic 

dataset from pairs of manually registered images. Again the computational time is almost halved by the proposed 

method while the RMSEs are similar. The same comments on the existence of a well-defined unique global 

transformation in this semi-synthetic case – and generally not in the real case – hold for this image pair as well. 

 Entire granule Proposed automatic tiling 

Time [min] 51 27 

RMSE [pixels] 2.0 2.2 
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4.3.4.3 Qualitative analysis on Africa 

The study on Africa was meant to investigate the robustness of the proposed method also in those cases where 

the spatial features are very few. This is clearly noticeable in Figure 92, in which the lake cover almost the entire 

patch used for the registration and consists of a nearly flat surface that is almost uninformative for registration 

purposes:  

 

Figure 92. Details of the spatial feature in one of the tiles in which the granule 37PCP is divided into. On the left, Sar 
image; in the centre, optical image; on the right, a checkerboard representation of the results achieved by the 

registration, even with very few features available. 

Also in this particular case the method is able to achieve accurate results. This suggests the robustness of the 

algorithm to a lack of spatial features. 
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4.3.4.4 Results on historical images 

With this analysis, the goal is to investigate the effectiveness of the method also in the application to images 

from the sensors involved in the historical HRLC product. Indeed, Figure 93 and Figure 94 below show the results 

of: (i) an experiment conducted with 2005 data acquired by Landsat-7 (optical image) and ENVISAT ASAR (radar 

image); and (ii) an experiment considering 2015 data acquired by Landsat-8 (optical image) and Sentinel-1 (radar 

image). Again, the geographical area that is taken into consideration is the same used for the experiments 

illustrated before (i.e., the S-2 granule 42WXS in Siberia). 

 

Figure 93. Registered Landsat 7 (left) and ENVISAT (right) images acquired in 2005. 

 

Figure 94. Registered Landsat 8 (left) and Sentinel-1 (right) images acquired in 2015. 

We recall that the inputs to the multi-sensor geolocation module are the composites generated by the optical 

and SAR pre-processing chains. This explains the lack of artifacts in the aforementioned Landsat-7 image (post 

scan line corrector failure). 
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To investigate the registration accuracy, Figure 95 shows the result on one of the patches the images are divided 

into. Green circles have been added to the images to highlight the good matching obtained between the spatial 

features in the multisensor dataset coming from historical images as well: 

 

Figure 95. Checkerboard representation of the results achieved by the registration, for ENVISAT and Landsat 7 in 2005 
(left) and for Sentinel-1 and Landsat 8 in 2015 (right). The green circles highlight appreciable matchings.  

4.3.5 Final decision 

The experimental analysis conducted with respect to multi-sensor geolocation pointed out a list of guidelines 

that indicated which registration strategy was pursued in the pipeline for the first production and suggested 

possible directions where to focus the future work on the topic. The following list enumerates such 

considerations and gives some insight in each of the points: 

• The choice of the similarity metric.  

Both cross-correlation and mutual information have been experimented with. The results pointed out 

that cross-correlation is valuable in the single-sensor case, while mutual information should be 

preferred in the multi-sensor scenarios. As a result, for the CCI+ HRLC product, mutual information 

have been prioritized. As discussed in ADP-v2, different implementations and approximations of such 

metric will be taken into account in the future (e.g., Parzen window estimation, Parzen window 

applied to a random selection of sample to reduce the computation time, etc.). Future work will 

consider the possible effectiveness of other metrics. 

• The choice of the geometric transformation.  

The experiments pointed out that, at least with respect to the available dataset, a simple translation 

transformation is not sufficient to find a good match between the input and reference images. 

However, rigid and RST transformations performed equally, as the available dataset was not affected 

by a consistent scale factor between the input couple. The last two transformations have therefore 

been considered and the HRLC pipeline makes use of the more general RST. The exploration of 

additional higher-order transformations (e.g., affine transformation) seems not to be necessary but 

can be considered in the future. Indeed, the proposed automatic tiling algorithm is also integrated into 

the HRLC pipeline to support an efficient application to large scale data. From the viewpoint of image 

transformation, the use of this algorithm is equivalent to the application of non-global transformation 

that is patchwise-RST. 
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• The choice of the optimization strategy.  

Both the unconstrained Powell’s method and COBYLA performed effectively when the spatial 

difference between the reference and input images was not large. On one hand, COBYLA 

outperformed the unconstrained Powell’s method in the case of very large transformations.  On the 

other hand, the constrained extension on the Powell’s algorithm, which is based on the use of barrier 

functions, did not share this limitation of the original unconstrained Powell’s formulation. The 

combination of this case-specific optimization algorithm and of the aforementioned automatic tiling 

method overall performed best, obtaining low errors with short computational times. Jointly, the tiling 

solution allows to compute non-global transformation, addressing for space variant distortion 

(common in large scale datasets). Future work will explore the possibility of integrating more 

sophisticated minimization methods (e.g., global search methods like genetic algorithms and 

simulated annealing). In this case, the focus will be in analyzing the time versus accuracy tradeoff. 

4.3.6 Decision Fusion Methods 

Decision fusion methodologies are used in the HRLC project in order to combine the posterior probabilities 

coming from the disjoint classification of SAR and optical images. Different families of decision fusion methods 

have been implemented and experimentally compared, including consensus-theoretic methods and fusion 

strategies based on Markovian modelling (i.e., Markov random fields), integrating a class-specific matching rule, 

and leading to the solutions adopted for the first production.  Experimental comparisons have been focused on 

the round robin areas. 

Specifically, the posterior probabilities coming from the optical and SAR processing chains are quantized and 

coded into unsigned integers using 8 bits per class and per pixel. This choice is aimed at minimizing memory 

requirements without any expected loss in appreciable precision. As discussed in the deliverables of the previous 

milestones, the sets of classes that can be accurately discriminated by using optical and SAR data exclusively 

generally do not coincide. In particular, SAR data are expected to well discriminate especially built-up classes and 

water bodies. Accordingly, SAR and optical classification algorithms may generally work on different sets of 

classes. Decision fusion methodologies are aimed at fusing posterior probabilities related to the common classes. 

Hence, a class-specific combination rule has been devised to take this into account.  

 

4.3.6.1 Consensus theory and class-specific combination 

Consensus theory [37],[38] involves general procedures with the goal of combining multiple probability 

distributions to summarize their estimates in a non-contextual manner. Under the assumption that both the SAR 

and the optical classifiers can be made into generating Bayesian outputs and that, accordingly, their predictions 

are endowed with a probabilistic characterization, i.e., pixelwise posteriors are available, the goal is to produce 

a single probability distribution that summarizes their estimates. The most common consensus theory methods 

are linear opinion pool (LOP) and logarithmic opinion pool (LOGP) [37],[38]. Both these methods were 

implemented and tested in combination with the aforementioned class-specific rule.  

Let 𝑥 = [𝑂, 𝑆] be the input data vector on a generic pixel, resulting from the stacking of optical (𝑂) and SAR (𝑆) 

individual feature vectors, and let 𝜔𝑗  be the 𝑗th information class (𝜔𝑗 ∈ Ω). The LOP functional can be expressed 

as: 

𝒞(𝜔𝑗|𝑥, Ω𝐶) = 𝛼𝑗  𝑃(𝜔𝑗|𝑂, Ω𝐶) + 𝛽𝑗  𝑃(𝜔𝑗|𝑆, Ω𝐶), 

where 𝑃(𝜔𝑗|𝑂, Ω𝐶) is the optical posterior probability of 𝜔𝑗  conditioned to the common subset of classes Ω𝐶  

and 𝑃(𝜔𝑗|𝑆, Ω𝐶) is the SAR posterior probability conditioned to the same subset Ω𝐶 . 𝛼𝑗  and 𝛽𝑗  are optical and 

SAR source-specific weights, respectively, and control the relative influence of the two sources on the fusion 

output corresponding to class 𝜔𝑗. We note that the pixelwise outputs of the optical-based and SAR-based 

classification chains are 𝑃(𝜔𝑗|𝑂, Ω𝑂 ∪ Ω𝐶) and 𝑃(𝜔𝑗|𝑆, Ω𝑆 ∪ Ω𝐶), respectively, i.e., the pixelwise posteriors 
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associated with the corresponding sets of classes. Deriving 𝑃(𝜔𝑗|𝑂, Ω𝐶) and 𝑃(𝜔𝑗|𝑆, Ω𝐶) (as well as 𝑃(𝜔𝑗|𝑂, Ω𝑂) 

and 𝑃(𝜔𝑗|𝑆, Ω𝑆)) is straightforward. 

According to the same definitions, the logarithmic opinion pool (LOGP) functional can be defined as: 

ℒ(𝜔𝑗|𝑥, Ω𝐶) = 𝛼𝑗 log 𝑃(𝜔𝑗|𝑂, Ω𝐶) + 𝛽𝑗 log 𝑃(𝜔𝑗|𝑆, Ω𝐶)  

LOGP differs from the linear version in that it is usually unimodal and less dispersed. Zeros are considered vetoes: 

if any of the two sources assigns a zero posterior (i.e. 𝑃(𝜔𝑗|𝑂, Ω𝐶) = 0 or 𝑃(𝜔𝑗|𝑆, Ω𝐶) = 0), then by definition 

ℒ(𝜔𝑗|𝑥, Ω𝐶) = 0. This dramatic behaviour is a drawback when the single-source predictions are very inaccurate 

and can be generated even by roundoff error. In order to prevent this, all posterior values are increased by the 

machine epsilon (the minimum number that can possibly be represented given a certain data type). 

𝒞(⋅) and ℒ(⋅) provide probabilistic fusion results associated with the classes in common between the two single-

sensor outputs, although they generally do not take values in the interval [0, 1]. Either can be mapped to proper 

posteriors by suitably transforming to a probabilistic output, which represents a fused posterior probability 

𝑃ℱ(𝜔𝑗|𝑥, Ω𝐶). In the case of LOP, 𝑃ℱ(𝜔𝑗|𝑥, Ω𝐶) is computed from 𝒞(𝜔𝑗|𝑥, Ω𝐶) by just re-normalizing so that the 

sum over all 𝜔𝑗 ∈ Ω𝐶  is unity. In the case of LOGP, the following softmax operator is appropriate to take into 

account the logarithmic relation between the ℒ(⋅) functional and the original probabilities: 

𝑃ℱ(𝜔𝑗|𝑥, Ω𝐶) =
exp ℒ(𝜔𝑗|𝑥, Ω𝐶)

∑ exp ℒ(𝜔𝑘|𝑥, Ω𝐶)𝜔𝑘∈Ω𝑐

 

This probabilistic fusion output 𝑃ℱ(⋅) covers the subset of classes in common across the two single-sensor 

classifications. To extend it to the whole set of classes, the posterior probability (unconditional with respect to 

Ω𝐶) can be defined according to the total probability theorem: 

𝑃ℱ(𝜔𝑗|𝑥) = 𝑃(𝜔𝑗|𝑥, Ω𝐶)𝑃(Ω𝐶|𝑥) + 𝑃(𝜔𝑗|𝑥, Ω𝑂)𝑃(Ω𝑂|𝑥) + 𝑃(𝜔𝑗|𝑥, Ω𝑆)𝑃(Ω𝑆|𝑥) = 

= 𝑃ℱ(𝜔𝑗|𝑥, Ω𝐶)𝑃(Ω𝐶|𝑥) + 𝑃(𝜔𝑗|𝑂, Ω𝑂)𝑃(Ω𝑂|𝑥) + 𝑃(𝜔𝑗|𝑆, Ω𝑆)𝑃(Ω𝑆|𝑥), 

where the aforementioned probabilistic fusion result 𝑃ℱ(𝜔𝑗|𝑥, Ω𝐶) is used for the common classes, whereas the 

optical-based and SAR-based posteriors 𝑃(𝜔𝑗|𝑂, Ω𝑂) and 𝑃(𝜔𝑗|𝑆, Ω𝑆) are used for the two sets of exclusive 

classes. 

4.3.6.2 Markov Random Fields 

Markov random fields (MRFs) can include contextual information in the form of class interactions between 

neighbouring pixels. An MRF is determined by an energy function, composed of two main terms: one 

characterizing class likelihood at the pixel level (depending on per-class scores obtained by the optical and SAR 

classification methods), and another promoting label smoothness in a local neighbourhood . This means that the 

model encourages two neighbouring pixels to be labelled with the same class and that the fusion processing 

stage allows incorporating spatial-contextual information as well. 

Define the regular pixel lattice as 𝐼, and let 𝑦
𝑖
 be the class label of the 𝑖-th pixel (𝑦

𝑖
∈ Ω, 𝑖 ∈ 𝐼). The MRF consider 

𝑦
𝑖
 as a sample of the random field 𝑌 = {𝑦𝑖}𝑖∈𝐼 of class labels, which is discrete-valued. A neighbourhood system 

{𝜕𝑖}𝑖∈𝐼, which provides each 𝑖-th pixel with a set 𝜕𝑖 ⊂ 𝐼 of neighbouring pixels, is defined [39]. In this case, 𝜕𝑖 

was chosen to be made of the four pixels adjacent to the 𝑖-th pixel (four-connected). 

Considering the frequently used family of the MRF models in which only up to pairwise clique potentials are non-

zero, the energy is written as: 

𝑈(𝑌|𝑋) = − ∑  log 𝑃ℱ(𝑦𝑖|𝑥𝑖)

𝑖∈𝐼

− 𝛾 ∑ 𝛿(𝑦𝑖 , 𝑦𝑗)
𝑖∈𝐼

𝑗∈𝜕𝑖

, 
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where 𝑋 = {𝑥𝑖}𝑖∈𝐼 is the random field of all optical and SAR observations (𝑥𝑖 = [𝑂𝑖 , 𝑆𝑖] on each pixel 𝑖 ∈ 𝐼), 

𝑃ℱ(𝑦𝑖|𝑥𝑖) is the pixelwise fusion output described in the previous section, and the spatial energy contribution 

has been modelled using the Potts model [39]. 

The local contextual pixelwise probability 𝑃 (𝑦𝑖|𝑥𝑖 , {𝑦𝑗}
𝑗∈𝜕𝑖

), i.e., the distribution of the class label of each pixel, 

conditioned to its observations from all sources and to the labels of the neighbouring pixels, can be derived from 

the energy and provides a spatial-contextual measure of uncertainty of the predicted land cover. While LOGP 

directly conveys uncertainty in the form of 𝑃ℱ(𝜔𝑗|𝑥), the MRF formulation is based on an energy function. 

Therefore, the uncertainty in MRF should be estimated according to its energy. In order to do that, a softmax is 

applied: 

�̃�𝑀𝑅𝐹 (𝑦𝑖|𝑥𝑖 , {𝑦𝑗}
𝑗∈𝜕𝑖

) =
exp [− 𝑈 (𝑦𝑖|𝑥𝑖 , {𝑦𝑗}

𝑗∈𝜕𝑖
)]

∑ exp [− 𝑈 (𝜔𝑘|𝑥𝑖 , {𝑦𝑗}
𝑗∈𝜕𝑖

)]𝜔𝑘∈Ω

. 

However, the MRF energy depends on the weight 𝛾 that tune the tradeoff among the various contributions to 

the energy function. These parameters also have an impact on the resulting uncertainty – an undesired behaviour 

given the different meaning of these parameters. In order to output an uncertainty distribution that both 

complies with the posteriors coming from LOGP and reflects the spatial structure of the MRF output, the 

uncertainty estimation is also parametrized with a further parameter 𝜇 so that the overall distribution remains 

similar, although with enhanced spatial regularity: 

�̃�𝑀𝑅𝐹 (𝑦𝑖|𝑥𝑖 , {𝑦𝑗}
𝑗∈𝜕𝑖

) =
exp [−𝜇 𝑈 (𝑦𝑖|𝑥𝑖 , {𝑦𝑗}

𝑗∈𝜕𝑖
)]

∑ exp [− 𝜇 𝑈 (𝜔𝑘|𝑥𝑖 , {𝑦𝑗}
𝑗∈𝜕𝑖

)]𝜔𝑘∈Ω

 

The value for 𝜇 is determined by comparing the distributions (histograms) of the LOGP and MRF uncertainty. 

In the application of MRF-based methods to decision fusion, special focus has been devoted to the minimization 

of the energy function 𝑈 with respect to the random field 𝑌 of the class labels. For that reason, the iterated 

conditional mode (ICM) algorithm has been applied, since it represents an efficient tradeoff between accuracy 

and computational burden [40]. Moreover, a lot of effort was spent to make the implementation of ICM as fast 

as possible. This was achieved by making use of convolution-like operations only, which have a very fast 

implementation in the Python environment. That way it was possible to speedup the computations, at a cost of 

a slight increase in memory occupation, and make MRF feasible to be applied to large scale dataset as the one 

of HRLC. 
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4.3.7 First experimental analysis on the Amazon round robin area 

The first phase of the experimental analysis of the developed decision fusion methods was initially pursued by 

using the posterior probabilities estimated by the optical and SAR chains applied to the preliminary draft class 

legend including 8 classes, corresponding to numbers 1, 3, 5, 6, 7, 8, 10, 15 of the table illustrated in Figure 96. 

 

Figure 96. Draft of the class legend used during first year. Note that this class legends has been updated and does not 
correspond with the final one. 

 

In that preliminary phase, the focus was initially concentrated on the Amazon round robin area, i.e., the S2 tile 

21kuq and the S1 images that spatially overlapped with it. Then, similar results, omitted for brevity, were 

obtained in this preliminary experimental analysis on the African and Siberian round-round areas as well. 

The set of classes in common to the optical and SAR chains is Ω𝐶 = {1,3, 5, 6, 7, 8, 10}. There were one optical-

exclusive class, i.e., no. 15 (Ω𝑂 = {15}) and no SAR-exclusive classes (Ω𝑆 = ∅). The next sections focus on the 

consensus (non-contextual) and Markovian (contextual) approaches. The class-specific combination is explained 

together with the former. 
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Figure 97 collects a detail of the classification maps obtained by the optical and SAR processing chains (the color 

legend is reported at the beginning of the current section): 

 

      Optical classification map (detail)     SAR classification map (detail) 

Figure 97. Detail of the optical (left) and SAR (right) classification maps. 

 

As expected, the two results differed in spatial regularity (smoother in the optical-based case than in the SAR-

based case, because of the influence of residual speckle), class legend (see above) and in the labels assigned by 

the classification of the two sources to several areas. While optical data were expected to be fundamental in 

discriminating the considered land cover classes, Figure 98 and Figure 99 provide an example of a case in which 

residual impact of cloud cover may have affected the optical-based map but obviously not the SAR-based map. 

 

Optical classification map (detail of cloudy area)          SAR classification map (detail of cloudy area)  

Figure 98. Detail of the optical (left) and SAR (right) classification maps, with a residual cloudy area. 
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          Optical data (detail of cloudy area)   

Figure 99. Detail of the optical image, with the residual cloudy area. 

 

 

4.3.7.1 Results - Consensus Theory 

The results of applying linear opinion pool to the posterior probabilities associated with the aforementioned 

maps is shown in Figure 100. 

 

         LOP classification map (detail)      LOP classification map (detail of cloudy area) 

Figure 100. Details of the LOP classification maps, with the residual cloudy area on the right. 

In particular, LOP was applied by giving slightly larger weight to the optical source than to the SAR source (𝛼 =

0.6 and 𝛽 = 0.4, uniformly on all classes in Ω𝐶), consistently with the expected reliability of the corresponding 

land cover classification output. Indeed, linear opinion pool made minor changes as compared to the optical-

based classification map. It was however the fastest method among those described above, requiring around 30 

seconds on a 8200x8200 tile on a standard desktop machine (no GPU). In particular, it did not compensate for 
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the impact of the aforementioned residual cloud on the classification map. Indeed, the stronger influence of the 

optical-based result than of the SAR-based result on the fusion map was consistent with both the expected 

contribution of each type of sensor to class discrimination and with the different behaviours of the corresponding 

posteriors. The posterior probabilities obtained from the optical source on a given pixel most often indicated the 

most probable class membership with higher confidence as compared to the posteriors obtained from the SAR 

source. Accordingly, they more strongly affected the pixelwise decision fusion outcome. 

 

The results of logarithmic opinion pool are shown in Figure 101. 

 

          LOGP classification map (detail)  LOGP classification map (detail of cloudy area) 

Figure 101. Details of the LOGP classification maps, with the residual cloudy area on the right. 

In the case of the logarithmic opinion pool, while the overall classification output was still significantly influenced 

by the optical source, it is worth noting that the erroneously labelled residual cloud was mostly corrected thanks 

to the SAR source, thus confirming the relevance of fusing the two separate classification results. LOGP required 

around 50 seconds to run on the 8200x8200 tile. Hyperparameter setting was addressed for LOGP analogously 

to the case of LOP. 

In both cases of LOP and LOGP, the spatial regularity of the output classification map was similar to that of the 

optical-based result. On one hand, this suggests that the two fusion strategies are not negatively affected by the 

impact of residual speckle on the SAR-based result. On the other hand, further smoothness is obviously not 

achieved by LOP or LOGP, because they are fully non-contextual approaches.  

 

4.3.7.2 Results – Markov Random Fields 

While the previous methods make no use of contextual information, Markov random fields model this type of 

information explicitly. Here, consistently with the results discussed in the previous subsection, the adopted MRF 

used a unary energy term derived according to LOGP, while the contextual term depending on a 4-connected 

neighbourhood was given by the Potts model. A unary based on LOP is not presented for brevity as it could 

benefit less than LOGP from the fusion of the two sources, as argued in the previous subsection.  
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The classification map obtained by applying ICM to this Markovian energy is as in Figure 102. 

 

         MRF classification map (detail)   MRF classification map (detail of cloudy area) 

Figure 102. Details of the MRF classification maps, with the residual cloudy area on the right. 

 

MRF required around 7 minutes to run on the 8200x8200 tile and applying fusion on 7 classes. It is possible to 

appreciate the spatial regularization achieved with MRF as compared to the previous classification map. On one 

hand, the comments made in the previous section with regard to LOGP and its relation to the optical-based and 

SAR-based individual outputs hold in this case as well. In particular, the impact of the residual cloud is significantly 

mitigated in the MRF result, too. On the other hand, the Markovian output is overall smoother than the 

aforementioned pixelwise results. In particular, these maps were obtained by setting the spatial parameter 𝛾 to 

0.8. Stronger or less spatial regularization can as well be achieved increasing or decreasing the value of 𝛾. That 

way, the tradeoff between spatial smoothness and small-scale spatial details can be controlled explicitly. On one 

hand, this tradeoff can be tuned by applying automatic hyperparameter optimization methods that determine 

an optimal value for 𝛾 through mean-square-error or Bayesian approaches [5], [6]. Moreover, alternate spatial 

models, including contrast sensitive conditional random fields, mitigate the possible degradation in small-scale 

details. On the other hand, the opportunity to explicitly tune the tradeoff between spatial smoothness and detail 

provides further flexibility in the generation of an output HRLC product that meets the requirements of the 

climate community. 

 

  



 

Ref CCI_HRLC_Ph1-PVASR 

 
Issue Date Page 

3.rev.1 13/01/2023 105 

 

  
 

4.3.8 Experimental analysis on all round robin areas 

The experimental phase leading to the first production was focused on all round robin areas with regard to the 

final formulation of the class legend defined within the project in accordance with the Climate Group and the 

Validation Team. Input posteriors associated with the first level of this final class legend and coming from the 

optical and SAR classifiers were used. 

The final class legend is reported in Figure 103. 

 

Figure 103. Final class legend 

The set of classes with associated available posteriors was different from tile to tile, in accordance to the actual 

covers that could be present within each region. 

For what regards the posterior probability map, the values are represented as grey scale with black 

corresponding to 0% probability and white to 100%, according to the pictured colorbar: 

 

 

In the following, we shall focus first on the African round robin tile 37PCP, and then, we will move to the other 

round robin areas. For the sake of brevity, the results will be discussed for LOGP only, comparing them with 

optical and SAR classification maps. In fact, similar comments hold also in the case of MRF about the overall 

structure of the map and the meaning of the pixelwise posteriors. Then, a comparison between these results and 

those of the MRF will be shown on a smaller crop of tile 37PCP to focus on the impact of MRFs on spatial 

properties. MRF required around 20 to 30 minutes to run on the 10980x10980 tiles and applying fusion on a 

varying number of classes, ranging from 10 to 14. 

4.3.8.1 African tile T37PCP 

4.3.8.1.1 LOGP 

The next figures show the results obtained by LOGP on the African tile 37PCP, in particular the fused 
classification map and the corresponding uncertainty products.   

0% 100% 
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The top panel consist in optical classification map (left) and Sar classification map (right). The middle panel 

consists in the final fused classification map (left) and the posterior probability corresponding to the most 

probable class (right). On the bottom, the classification map and the posterior probability corresponding to the 

second best class are shown in Figure 104.  

Figure 104. Results of LOGP on RR granule T37PCP, together with optical and SAR classification maps. 
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Looking at the top row of the figure, it is clear that the SAR map (top right panel) over estimates the presence of 

urban class. However, the fusion map (middle left panel) correctly enforces the correct classification obtained 

by optical map (top left panel). 

Then, for example, the area of the lake allows for a clear interpretation of the results. The first class, in this case 

permanent water, is assigned with high confidence, for that reason the corresponding area in the top right panel 

is very bright. On the contrary, the area corresponding to the lake on the bottom right panel is very dark since 

the second most probable class (in this case seasonal water or trees) is unlikely. This is an example of how the 

posterior probability maps that come together with the classification maps emphasize the confidence / 

uncertainty associated with the labelling of each pixel. In turn, this uncertainty measures comes from the fusion 

of the uncertainty encoded in probabilistic terms in the outputs of the optical and SAR classification chains. 

It is also interesting to note how the map of the second-best labels exhibits a significantly more noisy spatial 

behaviour than the map of the best labels and more poorly captures the spatial features in the scene. This is 

consistent with the meaning of these two labels in relation to the target land cover. 
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4.3.8.1.2 MRF 

Figure 105 shows the results obtained using MRF on the same tile, Africa 37PCP. On top, the final fused 

classification map (left) and the posterior probability corresponding to the most probable class (right). On the 

bottom, the classification map and the posterior probability corresponding to the second best class are shown:  

Similar comments hold also in this case about the overall structure of the map and the meaning of the pixelwise 

posteriors. However, a more effective spatial regularization can be noted in the MRF result rather than in the 

LOGP output: more details on this aspect can be found later in Section 0. We also note how the uncertainty 

measures represented by the pixelwise posteriors are overall consistent with those of the LOGP result, yet with 

the spatial structure determined by the MRF model. This confirms the effectiveness of the proposed dedicated 

algorithm that has been developed for quantifying the pixelwise uncertainty associated with the MRF-based 

classification product.  

  

Figure 105. Results of MRF on RR granule T37PCP. 
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4.3.8.2  Amazon tile T21KUQ 

4.3.8.2.1 LOGP 

Figure 106 shows the results obtained by MRF for the Amazonian tile T21KUQ. The structure of the panels is the 

same of the previous LOGP section: 

Figure 106. Results of LOGP on RR granule T21KUQ, together with optical and SAR classification maps. 
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The top panel consist in optical classification map (left) and Sar classification map (right). The middle panel 

consists in the final fused classification map (left) and the posterior probability corresponding to the most 

probable class (right). On the bottom, the classification map and the posterior probability corresponding to the 

second best class are shown. 

SAR classifier over estimates the presence of bare areas but the fusion step is able to correctly address for this. 

On the other hand, some missing watery areas in the SAR map had an impact on the final fused map. 

Looking at the top right panel it is possible to see some areas which are classified with lower confidence. In fact, 

on the left part of the posterior probability map some darker areas are present, some of which are assigned to 

bare areas. Looking then at the posterior probabilities for the second best class, it can be noticed that the same 

points corresponds to brighter areas, meaning that the posterior probabilities for the first and second best class 

are similar – an intrinsic indication of uncertainty in the labeling of those pixels. 

4.3.8.2.2 MRF 

Figure 107 shows the results obtained by MRF for the Amazonian tile T21KUQ (same structure of the panels of 

MRF as before):  

 

Figure 107. Results of MRF on RR granule T21KUQ. 
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The discussion of the results obtained by the MRF-based approach shown above are omitted for brevity, since 

similar comments as in the previous LOGP section hold as well. 
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4.3.8.3 Amazonian Tile T21KXT 

4.3.8.3.1 LOGP 

Figure 108 shows the results obtained by LOGP for the Amazonian tile T21KUQ. The structure of the panels is the 

same of the previous LOGP section: 

Figure 108. Results of LOGP on RR granule T21KXT, together with optical and SAR classification maps. 
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In this case, the confidence of the classification, indicated by the pixelwise posterior measures, is quite uniform 

all over the tile, without major uncertain areas.  

4.3.8.3.2 MRF 

Figure 109 shows the results obtained by MRF for the Amazonian tile T21KXT:  

 

Figure 109. Results of MRF on RR granule T21KXT. 

In this case as well, the map obtained by the MRF approach are shown but the discussion is omitted for brevity. 
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4.3.8.4 Siberian Tile T42WXS 

4.3.8.4.1 LOGP 

The last round robin tile is the Siberian T42WXS, which results obtained from LOGP are shown in Figure 110. 

 

Figure 110. Results of LOGP on RR granule T42WXS, together with optical and SAR classification maps. 
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The overall confidence of the final classification is lower as compared to the previous tile, with peaks of 

“brightness” (i.e., higher confidence) in the areas corresponding to small lakes, which are correctly assigned to 

the permanent water class. This indicates an overall higher uncertainty in the labeling associated with this round 

robin tile, as compared to those of the previous tiles. 

4.3.8.4.2 MRF 

Concluding the analysis of the tile, the Figure 111 shows the results for MRF on the Siberian tile T42WXS: 

 

Figure 111. Results of MRF on RR granule T42WXS. 

In this case as well, we show the map associated with the MRF output, but omit the discussion for brevity. As 

anticipated at the beginning of Section 4.3.8, we shall focus in the next subsection precisely on the effect of 

spatial regularization that can be obtained using the MRF approach and on the capability to tune it to meet the 

user requirements. 
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4.3.8.5 Parameterizable spatial regularization through the MRF approach 

As mentioned above, this section presents a brief comparison of the effect of MRF as compared to LOGP in terms 

of spatial structure of the output map. Among the advantages of MRF modelling, we recall the possibility to tune 

the spatial regularization by mean of appropriate parameters (𝛾 in the proposed formulation). Figure 112 shows 

a crop taken from the African tile T37PCP – on top, the results of LOGP; on the bottom, the results of applying 

the MRF-based method with two different regularization levels, heavier on the left and softer on the right: 

 

 

Figure 112. LOGP map (top) and different spatial regularizations achieved using MRF (bottom). On bottom left, the old 
heavier spatial regularization. On the bottom right, the new parametrization with very light regularization. 

 

The use of the MRF removes errors in the form of salt and pepper classification noise, thus favouring a higher 

classification accuracy. Simultaneously, MRF-based processing may generally tend to remove small spatial 

structures. Especially when these structures have an important significance in relation to the HRLC goals, like the 

dry rivers structures on the bottom left parts of the crops, their preservation can be recommended. For that 

reason, also taking into account intermediate feedback from the Climate Group and the Validation Team, a low 

regularization level has been chosen in the first production.  
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4.3.9 Final decision 

Both LOP and LOGP are fast since they are one-shot non-iterative pixelwise methods. However, data fusion 

performed that way does not benefit from contextual information, which can be important in order to remove 

salt-and-pepper classification noise and favour the spatial regularity of the output map. Between LOP and LOGP, 

the experiments also suggested a stronger potential of the latter in taking benefit from both input sources. 

Markov Random fields are able to also capture local spatial information, thus providing more – and tuneable – 

spatial regularization at a cost of a comparatively higher, yet still quite short, computational time. 

Overall, LOGP and MRF-ICM have been identified as appropriate solutions for HRLC, in combination with the 

aforementioned class-specific combination strategy. In particular, the default choice in the first production is the 

MRF approach with low regularization, thanks to its ability to promote spatial regularity up to the desired level. 

In this framework, further development may regard the automatic optimization of the hyperparameters of these 

methods (weights of the various information sources), the integration of edge-preserving / contrast-sensitive 

spatial terms in the Markovian approach, and the evaluation of the potential of alternate energy minimization 

algorithms based on graph theory. The last item is possibly promising from the viewpoint of classification 

accuracy, although at the cost of significantly longer computation time. This time-vs-accuracy tradeoff will be 

addressed carefully. 

5 Algorithms and procedures (year 3) 

5.1 Optical data processing 

 

Figure 113. Optical data processing chain for the production of the HR LC map obtained by classifying the time series of 
Sentinel 2 and Landsat data. 

Figure 113 depicts the optical data processing chain for the production of the HR LC maps obtained by classifying 

the time series of Sentinel 2 L2A data for the static map of 2019 and the time series of Landsat L2 data for the 

historical maps of 1990, 1995, 2000, 2005, 2010 and 2015. The images are first pre-processed in order to remove 

spectral outliers and to detect clouds and shadows. Then, monthly, seasonal and annual composites are 

generated according to the availability of cloud free images. The missing data (caused by cloud and shadow 

coverage) are restored. Finally, topographic shadows are detected and corrected. Due to the missed availability 

of training data, the team has integrated the pixel-based photo-interpretation activity with the inclusion of 

samples from the agreement of available land cover products (static map production only). To provide spatial 

information to the classifier the altitude and textural features (GLCM-based) have been computed. For the 

production of the static maps, the ecological region of the pixel is taken into account by splitting the areas into 

ecoregions. Finally, we performed the ecoregion-based classification by using SVM on the times series of the 

considered composites. 

5.1.1 Satellite images  

The considered study area for the static production analysis production is Amazon, specifically the Sentinel-2 tile 

21KXT. Figure 114 shows the selected patches used for the analyses. 
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Figure 114.  Considered patches for the analysis on the cloud masks improvement and topographic shadow reconstruction. 
(left) prototype HR LC map for tile 21KXT, (right) cloud mask of an acquisition on this area. 

The historical analysis related to the presence of Landsat 7 data started from an analysis of the Landsat data 

available in the historic regions in the considered areas. Figure 115 shows the number of available images for 

each area for each Landsat sensor. Africa is the most critical region, as the number of images is low, and Landsat 

7 is the only source of images in 2005 and the main source in 2010. Note that in Siberia an annual composite is 

produced instead of four seasonal composites, thus Siberia has on average a larger number of images (without 

considering their quality) used in the composite generation, thus the use of Landsat 7 data in Siberia (and 

Amazonia) has been avoided. 

Therefore, the considered study area for the historical production analysis is located in Africa, specifically in the 

Sentinel-2 tile 37PCP. For the tests on single acquisitions on this area, we considered the following Landsat-7 

products cropped to the 37PCP Sentinel-2 tile: 

• LE07_L2SP_169051_20050225_20200914_02_T1 

• LE07_L2SP_169052_20050225_20200914_02_T1 

• LE07_L2SP_170051_20050131_20200914_02_T1 

• LE07_L2SP_170052_20050216_20200914_02_T1 
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Figure 115. Number of Landsat images available for each historic region for each Landsat sensor. 

5.1.2 Method/algorithm/technique 

Within this Section, the final developed methods during the third year in the optical image processing chain are 

presented and compared. 

5.1.2.1 Composite input quality improvement 

The goal of this year was to improve the composite quality. In the case of Sentinel-2, the sen2cor cloud and cloud 

shadow masks have been refined to better filter out noise in the composite generation step (see ATBD). In the 

case of Landsat data, we defined a strategy to handle the presence of Landsat-7 data with SLC-off. Indeed, the 

considered composite strategy showed to be affected by it when Landsat-7 is the main or only source of optical 

data used in the composite. This is particularly relevant for Africa, where Landsat-7 is scarce and is the only 

source in 2005 and a main source in 2010. For this reason, we adopted a gap-filling strategy (see ATBD) for 

retrieving the missing information, which is then used in the composite for generating spectrally consistent 

composites. 

5.1.2.2 Topographic shadows correction 

A residual problem in the composites (for both Sentinel and Landsat) is related to topographic shadows, which 

is associated to low reflectance values. The proposed approach is able to identify the topographic shadows and 

then reconstruct the information contained in them (see ATBD). 

5.1.3 Qualitative evaluation 

5.1.3.1 Results – Composite input quality improvement in static map production 

Figure 116 shows examples of the residual cloud cover in the composites due to missed detection in the sen2cor 

masks. Figure 117and Figure 118 show the improvement with the proposed strategy. 

Corrupted  Landsat  data

Corrupted Landsat  data 
combined with reduced 
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Su cient Landsat  ,   and   data.
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Figure 116.  Three composite examples on the considered patches showing the residual cloud cover in the composites. 

 

Figure 117. Improvement in the January composite of patch 2 after using the proposed cloud and cloud shadow detection 
strategy. 

 

Figure 118. Improvement in the January composite of patch 7 after using the proposed cloud and cloud shadow detection 
strategy. 

 

5.1.3.2 Results – Composite input quality improvement in historic map production 

The experiments were performed on the RR tile 37PCP for year 2005. Figure 119 shows the effect of the gap 

filling operation on the single acquisition image. We can see in Figure 120 the corresponding effect on the 
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seasonal composite. Note that the gap filling strategy is not able to reconstruct accurately the spatial 

information, hence this can result in a loss of detail in the composite. However, we can see in Figure 121 that the 

classification map is significantly improved. This can be understood in better spectral uniformity with gap filling, 

as the composite generation with few images can result in discontinuities due to the systematic oscillation of the 

number of valid acquisitions used for the composite. Indeed, the composite generation strategy works better 

when enough images are used. 

 

Figure 119. Example of the effect of the gap filling strategy on the single acquisitions: (left) before and (right) after. 

 

Figure 120. Example of the effect of the gap filling strategy on the composite: (left) before and (right) after. 
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Figure 121. Example of the effect of the gap filling strategy on the classification map: (left) before and (right) after. 

5.1.3.3 Results – Topographic shadow reconstruction 

Figure 122 shows examples of topographic shadows in the composites. They affect the classification as they recall 

classes with low reflectance values as seen in Figure 123. Figure 124 shows the result after reconstructing the 

reflectance values in the shadows. The improvements in the classification maps can be clearly seen in Figure 125. 

 

Figure 122. Examples of topographic shadows in the composites. 

 

Figure 123. Examples of the effect of the topographic shadows on the prototype classification 
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Figure 124. Examples of the effect on the composite of the topographic shadow reconstruction 

 

Figure 125. Overall improvement on the prototype classification when using the topographic shadow reconstruction 
(below) vs. not using it (above). 
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5.1.4 Final decision 

According to the qualitative analysis, the proposed approaches are successful in improving the composite quality 

and the performance of the classifier: the sen2cor cloud and cloud shadow mask refinements successfully 

remove residual noise in the composites; the gap filling strategy for Landsat 7 allows the Africa historic 

composites to be spectrally consistent, resulting in improved classification maps; the topographic shadow 

reconstruction approach is able to retrieve the information in the shadows, reducing the misclassification of the 

classifier.  

In the case of Landsat 7, residual striping in the maps may be present in the classification maps. However, they 

are minimized and the multitemporal cascade model showed to be effective in removing the residual striping. 

5.2 SAR data processing 

The main goal of this year was to improve and release the final version of the processing chain designed for the 

high resolution and global land cover mapping. The processing chain was tested and used for two specific tasks: 

a) the extraction of the static map for the year 2019; 

b) the extraction, whenever possible because of the availability of SAR data in the past, of additional 

historical land cover maps every five years from 2015 backwards. 

For the production of the static map, a time series of Sentinel-1 images was considered as input, while for the 

second task, data for the ASAR sensors on board of the ENVISAT satellite or by the ERS-1 and 2 satellites were 

considered, with a much more limited time series and geographical coverage. 

The processing chain for the static and historical maps exploiting the SAR data is realized according to the 

structure highlighted in Figure 126. 

 

Figure 126. The final version of the SAR processing chain for the production of static and dynamic HRLC products 

5.2.1 Satellite images 

5.2.2 Method/algorithm/technique 

The chain in Figure 126 is composed by the following tasks, which are described in detail in the ATDB document: 

1. SAR preprocessing, obtained by the standard SNAP chain, to correct radiometrically and geometrically the 

SAR sequence, and to coregister the data sets not perfectly aligned. 

2. Multitemporal despeckling, according to the approach described in [22] and applied separately to four 

temporal segments of the yearly sequence used as input to the chain. The rationale for this choice is to 

reduce the overall set of data and make the procedure less computationally complex, retaining at the same 

time the possibility to exploit the temporal trajectory of land cover samples, which is particularly important 

for vegetation -related classes. As the output of this chain, the original sequence was reduced to four 

seasonal super-images, extracted as intermediate product of the despeckling method. 
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3. SAR feature extraction, which aims at adding spatial features to the already extracted temporal features. In 

this case, as mentioned in [41], simple statistical features corresponding to the neighborhood of each pixel 

have been considered. 

4. Classification, which is in turn subdivided into three parts: 

• an unsupervised water extraction routine as presented in [42], applying a K-means procedure to 

discriminate areas with low backscatter and low variance along the year from other potential areas of 

interest for the water class. 

• An unsupervised urban extent extraction approach based on the extraction of a single super-image for 

the whole year to which the algorithm described in [26] is applied; 

• A supervised classification implemented by means of a RF classifier, trained by samples manually 

extracted by the team on the basis of the hierarchical approach (see ATDB).  

5. A reconciliation step, aimed at composing the final land cover map by spatially combining the three maps 

extracted in the previous step. 

The novelty introduced this year concerns in the improvement of the classification task, to make the best use of 

the SAR signal backscattered in discriminating the urban settlements and the water bodies. Two dedicated 

routines in Python language have been properly developed and tested. 

The random forest classifier was trained with the ground truths collected by the team via the hierarchical 

approach (see ATDB) according to the high resolution land cover classes in Figure 53, excluding training points of 

the urban and the water classes.  

5.2.3 Qualitative evaluation 

The experiments were performed on three regions of interest, both for static and historical production, in 

different portions of the areas in order to check the performance of the approach with respect to very different 

land cover environments. 

The standard implementation of UEXT has been adapted to the two chains (static and historical) as follow: 

• The parameters for each of the three static/historic regions (Siberia, Amazonia and Africa) are different, 

to take into consideration the different environments and the effect of vegetations, level of water and 

humidity and so on. 

• Additionally, the algorithm is applied with two different sets of parameters depending on the 3D 

structure of the tile, specifically whether or not the tile includes mountainous areas, defined by means 

of a threshold on the standard deviation of the DEM. The latter method has been implemented for 

Amazonia and Africa but has not been applied to Siberia, since SAR is not used in Siberia. 

• The basic implementation of the water extraction procedure has been improved to deal with desert 

areas, or areas which have a strong similarity with water because of their dominant backscattering 

mechanism. Specifically, water areas that are extracted but belong to classes that are desert or bare soil 

in coarser resolution existing land cover maps (e.g., the Copernicus 100 m spatial resolution Land Cover 

Map) are masked out. This approach may cause a “staircase effect” on the border of water surfaces that 

are adjacent to areas of this type (e.g., a lake bordering a desert). To avoid this issue, the masking layers 

are spatially filtered to reduce this effect (see examples in Figure 127 and Figure 128).  
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Figure 127. Tile 36PVB: ESRI satellite image (a), water layer without masking out desert/bare soil areas (b), water layer 
with masking using coarser maps (c) and the final result including all steps described in the text (d). 
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Figure 128. Detail of tile 36PVB: ESRI satellite image (a), water layer without masking out desert/bare soil areas (b), 
water layer with masking using coarser maps (c) and the final result including all steps described in the text (d). 

 

Additionally, this implementation of the water extraction procedure has been further changed in the processing 

chain for the historical maps, because of the lower quality of the SAR data sets, due both to the different 

resolution and signal to noise ratio of the past sensors and, more importantly, to the small number of images 

that have been collected on each tile. Accordingly, for historical mapping the cluster which is assigned to the 

“water” class is not the one which has more points superimposed with the water class in coarser resolution 

existing water maps (e.g., the water class in the above-mentioned Copernicus map). Instead, the cluster with the 

lower minimum average value is considered as water. This ensures that the cluster which is most likely the water 

one is extracted even when the superposition between it and the coarser map is not ensured, see examples in 

Figure 129 and Figure 130. 



 

Ref CCI_HRLC_Ph1-PVASR 

 
Issue Date Page 

3.rev.1 13/01/2023 128 

 

  
 

 

Figure 129. 1995 historical land cover map, tile 22KVQ: ESRI satellite image (a), super image (b), blue: coarse water layer 
(c) blue: water layer extracted from SAR historical data using the standard approach (d) and the final result exploiting the 

alternative, in blue (e). 
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Figure 130. An enlargement of the1995 historical land cover map, tile 22KVQ: ESRI satellite image (a), super image (b), 
blue: coarse water layer (c) blue: water layer extracted from SAR historical data using the standard approach (d) and the 

final result exploiting the alternative, in blue (e). 

5.2.3.1 Amazonia: static and historical classification 

As mentioned in the previous section, the whole classification task is given by the merging of three algorithms: 

the Random Forest classifier, the urban extent and the water detectors. The RF classifier is trained with training 

samples collected by the team deprived of urban and water ground truths. Then, the trained model is applied to 

SAR features in a dedicated task. Concerning the two detectors, they accept in input a series of parameter to 

classify the study area, according to suitable instructions to be typed in the Python command prompt. About 

urban detector, the parameters to set are listed above: 

• m, the threshold value applied to the image given by the average of the SAR time sequence (the default 

value is 3); 

• dg, value in degree used to compute the mask from the DEM image (the default value is 2); 

• t, threshold value applied to the cost function (the default value is 40); 

• w, size of the filter kernel (the default value is 3); 

• b, number of iterations for the closing and opening morphological operations (the default value is 2); 

• oo, flag to perform the opening operation to the output image (post-processing); 

• oi, number of closing and opening iterations to be applied in the post-processing phase (the default 

value is 1); 

• ow, dimension of the opening kernel (the default value is 3). 

The last three parameters are used for the post-processing of the resultant urban map. To compute the Amazon 

static land cover map, the urban parameters “-dg 0 -b 10 -t 45 -m 3 - oo” are used, while “-dg 20 -b 10 -t 15 -m 3 

-oo” sequence is applied for the historical production. If the parameters are not directly specified, default values 

are used. 

For the water extractor, Instead, the following parameters are used: 
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• a, value used to compute the altitude mask (the default value is 400); 

• cp, geographical coverage (in percentage) that the SAR data must have to be processed (the default 

value is 70%); 

• dg, value in degree used to compute the mask from the DEM image (the default value is 8); 

• w, size of the erosion filter kernel (the default value is 3); 

• e, number of erosion iterations (the default value is 1); 

• m, max number of water points used to train the K-means classifier (these points are extracted by the 

coarser land cover maps, ESA CCI LC map 300m and CGLC at 100m) (the default value is 1000); 

• kt, parameter used to specify the type of K-means algorithm to use: “auto”, “full”or “elkan”, according 

to the routine available in the Scikit learn tool [43]; 

• kn, value used to set the number of cluster for the K-means (the default value is 4); 

• ki, parameter used to initialize the K-means (the default value is “k-means++”); 

• sn, minimum water pixel number extracted by the coarser maps: this value helps to understand if water 

bodies are present or not in the area under investigation (the default value is 200). 

Taking into the account the list of parameters mentioned above, to carry out the water detection in Amazonia 

both in the static and historical areas, the following values are used: “-ki random -kt full -sn 50 -cp 10”. 
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Figure 131. Static land cover maps in Amazonia: 22KCB tile ESRI satellite image (a), 22KCB tile coarser map (b), 
22KCB tile S1 2019 land cover map (c), 22KGE tile ESRI satellite image (d), 22KGE tile coarser map (e), 22KGE tile 

S1 2019 land cover map (f), 23KPA tile ESRI satellite image (g), 23KPA tile coarser map (h) and 23KPA tile S1 
2019 land cover map (i). 
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Figure 132. Historical land cover maps in Amazonia: 22LBK tile ESRI satellite image (a), 22LBK tile coarser map (b), 22LBK 
tile ENVISAT_ASA.IMP.1P 2005 land cover map (c), 22KGE tile ESRI satellite image (d), 22KGE tile coarser map (e), 22KGE 
tile ERS_SAR.IMP.1P 2000 land cover map (f), 21LWC tile ESRI satellite image (g), 21LWC tile coarser map (h) and 21LWC 

tile ERS_SAR.IMP.1P 1995 land cover map (i). 

By looking at Figure 131, the static maps show a better classification performance than the coarser ones. The 

classes in the high-resolution maps well represent the geographical scenario observed in the reference image, 

and more details (e.g., crops, narrow roads, water streams) are depicted. This is very easy to see by comparing 

Figure 131 (h) and v (i), for instance. About historical classification, Figure 132 shows that urban and water 
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detectors work well also with the historical SAR data, while the classification of the other land covers is not as 

accurate as in the static maps, because of the much smaller number of SAR images in the sequence. 

Moreover, within the maps, several “orbit” artefacts are present. They arise because of the low and not 

homogeneous geographical coverage of the historical SAR datasets. In fact, some portions of the tile are covered 

by more images than other ones, and this is emphasized with the average operation applied to the time series, 

which generates different SNR values. 

5.2.3.2 Africa: static and historical classification 

To compute the static maps in Africa, the parameter set “dg 20 -b 10 -t 15 -m 3 –oo” is used for the urban 

recognition, and “-ki random -kt full -sn 50 -cp 10” is applied for the water extraction. 
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Figure 133. Static land cover maps in Africa: 32NQK tile ESRI satellite image (a), 32NQK tile coarser map (b), 32NQK tile S1 
2019 land cover map (c), 32NQM tile ESRI satellite image (d), 32NQM tile coarser map (e), 32NQM tile S1 2019 land cover 

map (f), 34PGC tile ESRI satellite image (g), 34PGC tile coarser map (h) and 34PGC tile S1 2019 land cover map (i). 

Same classification performances already encountered in Amazonia can be appreciated also in Africa. Once 

again, urban and water classifiers can detect details that are not present in the coarser reference map. This is 

easily seen in Figure 133 (i), for instance, where a lake, not present in the medium resolution map (see Figure 

133 (h)), is depicted. However, several urban outliers are also evident in Figure 133 (i), which correspond to the 

mountainous reliefs. These are removed easily by a proper thresholding during the urban detector application: 
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the slopes image is computed by the DEM, and its mean value is analysed. If it is more than 7, the following 

parameters are applied “-dg 0 -b 10 -t 45 -m 3 – oo”. For the historical production, “-dg 20 -b 10 -t 15 -m 3 -oo” 

is used for the urban, and ‘-ki random -kt full -sn 50 -cp 10’ for the water algorithm, respectively. 

 

 

Figure 134. Historical land cover maps in Africa: 35NPJ tile ESRI satellite image (a), 35NPJ tile coarser map (b), 35NPJ tile 
ERS_SAR.IMM.1P 2005 land cover map (c), 35PPT tile ESRI satellite image (d), 35PPT tile coarser map (e), 35PPT tile 

ERS_SAR.IMM.1P 2000 land cover map (f), 35NRJ tile ESRI satellite image (g), 35NRJ tile coarser map (h) and 35NRJ tile 
ERS_SAR.IMM.1P 1995 land cover map (i). 
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5.2.3.3 Siberia: static and historical classification 

To produce the 2019 land cover map in Siberia, the combination of the urban and water classifier parameters 

are properly adjusted. Concerning the urban detector, the series “-b 10 - oo” is used, while “-ki random -kt full -

sn 50 -cp 10” is used for water detection. The following figure reports several maps for different regions of Siberia 

static area, according to the S2 tiling grid. 
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Figure 135. Static land cover maps in Siberia: 42WXT tile ESRI satellite image (a), 42WXT tile coarser map (b), 42WXT tile 
S1 2019 land cover map (c), 42WXS tile ESRI satellite image (d), 42WXS tile coarser map (e), 42WXS tile S1 2019 land 

cover map (f), 42VWN tile ESRI satellite image (g), 42VWN tile coarser map (h) and 42VWN tile S1 2019 land cover map 
(i). 

The classification task does not perform well where the number of images is low, which is increasingly the case 

moving backwards from 2015. This is what happens in this test site, where the SAR historical coverage of the tile 

is incomplete. 
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Figure 136 shows the historical maps obtained using SAR only in 2010, 2005 and 1995 years, for the following 

test tiles: 42WXS, 43WET and 43WFV.  

 

Figure 136. Historical land cover maps in Siberia: 42WXS tile ESRI satellite image (a), 42WXS tile ERS_SAR.IMP.1P 2010 
land cover map (b), 42WXS tile ENVISAT_ASA.IMP.1P 2005 land cover map (c), 42WXS tile ERS_SAR.IMP.1P 1995 land 

cover map (d), 43WET tile ESRI satellite image (e), 43WET tile ERS_SAR.IMP.1P 2010 land cover map (f), 43WET tile 
ENVISAT_ASA.IMP.1P 2005 land cover map (g), 43WET tile ERS_SAR.IMP.1P 1995 land cover map (h), 43WFV tile ESRI 
satellite image (i), 43WFV tile ERS_SAR.IMP.1P 2010 land cover map (j), 43WFV tile ENVISAT_ASA.IMP.1P 2005 land 

cover map (k) and 43WFV tile ERS_SAR.IMP.1P 1995 land cover map (l). 

In this test site the classification was performed with the RF classifier only, given the scarcity of SAR images. 

Indeed, the water and urban extent extraction unsupervised techniques do generate accurate result. However, 

due the severe data lack, the RF classification performances are not so appealing, too, and a lot of classification 

errors are evident in the final products. The maps in the figure above present serious urban outliers and the 

water bodies are not correctly recognized. In addition, we should note in Figure 136 that the historical sequence 

is not consistent since the classes reported into the maps are very different. In fact, by observing the optical 

image reference in Figure 136 (i) there is a water target (a lake) in the bottom part of the picture. Considering 

the 2010 and 2005 land cover maps in Figure 136 (j) and Figure 136 (k) respectively, the lake is not correctly 

classified in 2010, where it is represented as a mixture of the grassland and cropland classes.  In the 2005 map, 
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the lake is approximately recognized, but results much more performing cannot be achieved because of the 

scarcity of the SAR geographical coverage in the area. 

5.2.3.4 UEXT case study: slums detection in the SAR map 

Upon request by ESA, the urban extraction algorithm was tested to verify its capability in detecting slums, very 

poor and crowded areas. Three Sentinel-2 test sites has been identified, in Africa and Amazonia, within three 

important cities: 

• Nairobi, Kenya, Africa (37MBU S2 tile); 

• Rio de Janeiro, Brazil, Amazonia (23KPQ S2 tile); 

• Buenos Aires, Argentina, Amazonia (21HUB S2 tile); 

Where it is well known that social and economic gaps led to the creation of important districts of barracks and 

dilapidated buildings. As ground truths, a database with the most important slums in India, Africa and South 

America was considered, freely available at the following web link: https://github.com/jkkersey/Mapping-Urban-

InformalityError! Hyperlink reference not valid.. 

As mentioned earlier, the urban detector exploits the mean backscatter coefficient of the 2019 S1 time series, 

and a thresholding operation is applied. Apparently, the module seems to work well, but not all slums sites are 

properly delineated. 

 

 

Figure 137. Slums detected in Nairobi city, tile 37MBU. 

Error! Reference source not found. reports the results for the Nairobi test site, where the slums ground truth a

re in green while in red is the extracted urban map. 

https://github.com/jkkersey/Mapping-Urban-Informality
https://github.com/jkkersey/Mapping-Urban-Informality
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Figure 138. Slums in Nairobi city, tile 37MBU: ground truth of the Kibera district (a), urban detection of the Kibera district 
(b), ground truth of the Dandora/Korogocho district (c) and urban detection of the Dandora/Korogocho district (d). 

In Error! Reference source not found. two of the most important and well known slums in Nairobi, Kibera and D

andora/Gorogocho districts, are reported. Comparing the ground truth and urban map. Error! Reference source 

not found. (a) and Error! Reference source not found. (b), for instance, the slums are detected and reported in 

the urban map in both cases, although small areas are not well covered due the spatial limitation of the S1 sensor. 

However, not all settlements are correctly depicted in the urban map, as reported in Error! Reference source n

ot found.. This can be easily explained since the urban algorithm works based on a strong thresholding applied 

to mitigate those large-scale outliers arising from SAR distortions. Anyway, the application of a DEM can solves 

this issue. 

 

 

Figure 139. Examples of slums in Nairobi not detected by the UEXT module. 

To strengthen this result, the detection has been validate on two additional cities, Rio de Janeiro, for example, 

and good capability of urban detector to recognize the slums was find. In Rio, for instance, the “complexo do 

Alemao” is completely covered, and, in the same way, this is true also for the other barrios/districts. 
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Figure 140. Slums detected in Rio de Janeiro city, tile 23KPQ. 

 

Figure 141 Slums in Rio de Janeiro city, tile 23KPQ: ground truth of the Jardim Carioca barrio (a), urban detection of the 
Jardim Carioca barrio (b), ground truth of the Complexo do Alemão (c) and urban detection of the Complexo do Alemão 

(d). 
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Figure 142. Slums detected in Buenos Aires city, tile 21HUB 

 

Figure 143. Slums in Buenos Aires city, tile 21HUB: ground truth of the 17 de Noviembre barrio/ Villa Fiorito (a), urban 
detection of the 17 de Noviembre barrio/ Villa Fiorito (b), ground truth of the Loma Hermosa district (c) and urban 

detection of the Loma Hermosa district (d). 

 

5.2.3.5 UEXT case study: slums detection in the HRLC10 map 

The performance of the UEXT algorithm about the slums detection have been evaluated also for the HRLC10 

maps, given by the fusion of the optical S2 and the SAR S1 classification maps. The following test sites have been 

considered for the evaluation: 

• Kampala city, Uganda, Africa (36NVF S2 tile). 

• Youndè city, Cameroon, Africa (32NQK S2 tile). 



 

Ref CCI_HRLC_Ph1-PVASR 

 
Issue Date Page 

3.rev.1 13/01/2023 143 

 

  
 

• Rio de Janeiro city, Brazil, Amazonia (23KPQ S2 tile). 

As concerns the urban sites in Uganda and Cameroon a qualitative assessment only is provided since that areas 

are not covered by the ground truth collected in the considered database, which is free accessible at the following 

link: https://github.com/jkkersey/Mapping-Urban-InformalityError! Hyperlink reference not valid.. For the Rio 

de Janeiro city both the qualitative and the quantitative assessments have been evaluated. 

The figures below show the slum districts identified via photointerpretation of the Google images in the cities of 

Kampala and Youndè, which were also recognized by the urban detection algorithm and depicted into the 

HRLC10 maps. In Kampala (Uganda, Africa), four slums have been identified: Bwaise, Katanga, Kasanvu, and 

Kasokoso (Figure 144). 

 

 

Figure 144. An example of slums distribution in Kampala (Uganda, Africa): slum settlements boundaries are reported on 
the Google optical reference image (a) and in the HRLC10 map (b). 

 

https://github.com/jkkersey/Mapping-Urban-Informality
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Figure 145. Enlargement of the Bwaise slum in Kampala (Uganda, Africa): Google optical reference image (a), HRLC10 
map (b) and photointerpreted ground truths acquired with the Google map street view tool (c), (d). 

 

 

Figure 146. Enlargement of the Kasanvu slum in Kampala (Uganda, Africa): Google optical reference image and HRLC10 
map (a) and a zoom from Google map of a little area in the Kasanvu slum (b). 

In the following, the slum settlements of the Youndé city, in Cameroon (Africa) are shown (Figure 147 and Figure 

148).  
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Figure 147. An example of a slum in Youndè (Cameroon, Africa): slum settlement boundary is reported on the Google 
optical reference image (a) and in the HRLC10 map (b). 

 

 

Figure 148. Enlargement of a slum in Youndè (Cameroon, Africa): Google optical reference image (a), HRLC10 map (b) and 
photointerpreted ground truths acquired with the Google map street view tool (c), (d). 
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Concerning the city of Rio de Janeiro in Brazil (Amazon area) the slums extraction from HRLC10 map have been 
visually compared according to the geospatial data for urban informality downloaded from the open web 
repository. 

 

 

Figure 149. Slums distribution in Rio de Janeiro (Brazil, Amazon): slum settlements boundaries are reported in pink on 
the Google optical reference image (a) and in the HRLC10 map (b). 

 

 

Figure 150. Enlargement of the Rocinha slum in Rio de Janeiro (Brazil, Amazon): the Google optical reference image (a) 
and the HRLC10 map (b) are compared. 
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Figure 151. Enlargement of a slums distribution (in blue) in Rio de Janeiro (Brazil, Amazon): the Google optical reference 
image (a) and the HRLC10 map (b) are compared. 

 

Given the availability of the ground truth, also a quantitative analysis was provided. A validation dataset with 

2000 points have been randomly extracted from the slums ground truth to achieve the following balanced 

distribution: 1000 slum points and 1000 no-slum points (see ). Then, the confusion matrix and the overall 

accuracy (OA) have been computed and reported in the Table 7. 

 

 

Figure 152. Distribution of a balanced validation dataset extracted for the Rio de Janeiro city (Brazil, Amazon). Slum 
validation points are in green, while the no slum ones are in yellow. 
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Table 7. Quantitative assessment for the slum detection in Rio de Janeiro (Brazil, Amazon). 

 

Sl
u

m
 

N
o

 

sl
u

m
 

PA (%) UA (%) 
OA 

(%) 

Slum 1903 97 99,95 95,15 

97,55 

No slum 1 1999 95,37 99,95 

 

The obtained values confirm what via visual inspection has been seen, with an OA value of about 97% that asserts 

the good capability of the UEXT approach in identifying the dilapidated urban districts as well. 

5.2.4 Final decision 

SAR images for years prior to 2013 (and the launch of Sentinel-1) have a very different quality in terms of signal 

to noise ratio and there are very different amounts of acquisitions per year in different geographic locations. The 

preliminary analysis performed by UNIPV shows that there are tiles in the historic areas that are not covered by 

any acquisitions in one or more of the years where the mapping should be performed. The remaining tiles have 

from 1 to more than 20 acquisitions per year, making their quality very different. Additionally, in some cases the 

images are obtained from ascending and descending orbits, or from different orbits. As a result, and to reduce 

the differences, SAR has been used in different ways depending on the geographic location: 

a) In Siberia, no SAR data sets has been considered for the historic map, because of the low quality. 

b)  In Amazonia, only tiles that are covered by at least six images form the same orbit are considered, 

although it has been found that 8 to 10 images are necessary to ensure a consistent quality and a 

contribution by SAR-based maps to the fusion that can be reasonably considered as always constructive.  

c) In Africa, tiles that are covered by at least 5 images form the same orbit are considered. The number of 

images is different in this case because the overall number of images per year form the same orbit is in 

most of the cases smaller than 6 (the threshold used in Amazonia).  

 

5.3 Multi-Sensor Optical-SAR Data Fusion and Decision Fusion 

5.3.1 Experimental analysis on the static and historical area 

This section presents a combined analysis of the static map of 2019 and of the historical maps, for the years 

2015, 2010, 2005, 2000, 1995 and 1990, as generated by the pipeline of the second production. In particular, the 

effect of the multitemporal cascade model is investigated. 

A fundamental aspect to keep in mind when analysing the historical maps is the focus of the study on climate 

changes. For that reason, while the advantages given by the increase in the spatial resolution of Sentinel-1/2 

acquires a central role, it is necessary to keep coherence with the historical data acquired by Landsat 7, Landsat 

5, etc. Therefore, for each tile, the static map of 2019 is analysed and then used as a comparison. 

A main issue when going back in time is the scarcity in the quantity and quality of the input data available for the 

classification at that time. This is especially true for Sentinel-1 data, as compared to previous missions with SAR 

payloads. This can make traditional fusion approaches less effective in the historical case than in the static case. 

The proposed cascade approach is aimed at propagating the information through time (as MRF does in space) in 

order to improve the classification accuracy and favour consistency along the time axis. 
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5.3.1.1 Africa Tile T37PCP 

 

Figure 153. Static map for tile 37PCP 

 

The 2019 classification map for African tile 37PCP is shown in Figure 153. With respect to the previous 

production, the overestimation of urban and shrub classes is greatly reduced.  

The comparisons of optical and cascade maps for years 2015, 2010 and 2005 are shown in Figure 154, while 

Figure 155 shows the comparison for 2000, 1995 and 1990. Comparing the maps, the effectiveness of cascade in 

the reduction of false changes across the considered years is evident. In particular, the propagation of 

multitemporal information using cascade can improve the consistency of the maps in time. In particular, different 

typologies of errors, which exclusively impact some years or areas, are fixed thanks to the cascade contribution.  

As an example, the optical map for 2010 (central row, left panel of Figure 154) is affected by a striping effect. 

This is caused by the well-known striping issue in the acquisitions coming from Landsat-7. Thanks to the cascade 

module, this issue is almost completely removed. The maps for 2000, 1995 and 1990, shown in Figure 155, all 

show a certain overestimation of the urban class in the upper right part of the tile. In all the cases, with the 

multitemporal cascade model it is possible to strongly mitigate or even removing the issue entirely.  

On one hand, this confirms the ability of the cascade approach to correctly propagate the information backward 

in time and to correctly fix changes in the classification maps which are not reflected by actual changes in the 

landscape. On the other hand, it is also important to assure that the multitemporal cascade does not influence 

the cases in which a change actually happened. Figure 156 shows a detail of tile 37PCP and illustrates a well-

known case of change, in order to verify the aforementioned case. The figure shows a detail of the artificial lake 

which can be seen in the middle-low area in the right of Figure 153. This lake was originated by the building of a 
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dam over the Rib river in Ethiopia, which was completed in 2017, providing 234 million cubic meters in water 

conservation ability. As can be noticed in , in this case, the information propagated by cascade is enough to 

partially recover the parts of the river which are missed in the optical map while no part of the artificial lake is 

present in 2015. This also confirms that the ability of cascade to work at a Bayesian level allows to avoid strict 

constraints which may end up censoring changes. 

In other words, the conducted experimentation indicates that the multitemporal cascade approach is 

advantageous in the reduction of false changes across consecutive LC maps without leading to missed changes. 

We also recall that, among the hyperparameters of the cascade module, the JPM (joint probability matrix) is 

included and that the JPM is defined according to prior knowledge on the expected temporal transitions in each 

area (Siberia, Amazon, Sahel), as formulated by the Climate Group (v. ATBD-v3). In this respect, the tuning of the 

JPM on each area has been performed precisely in such a way to minimize risks of censoring changes or 

propagating artifacts from 2019 to the past. The aforementioned experimental results did confirm this rationale 

and the opportunity of taking benefit from prior knowledge on each target area within the multitemporal 

modelling. Similar comments holds with regard to the Amazon and Siberian areas as well. 
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Figure 154. Comparison of the optical map (left panels) with the final cascade map (right panels) for tile 37PCP. Year 2015 
on the top row, 2010 in the centre and 2005 in the bottom.  
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Figure 155. Comparison of the optical map (left panels) with the final cascade map (right panels) for tile 37PCP. Year 

2000 on the top row, 1995 in the centre and 1990 in the bottom. 
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Figure 156. Comparison of a detail of an artificial lake over the Rib river in Ethiopia. On top, the static map for 2019. The 
optical map of 2015 is in the middle while the final cascade map is on the bottom. 
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5.3.1.2 Africa Tile T37PES 

 

Figure 157. Static for tile 37PES. 

 

Figure 157 shows the 2019 classification maps for African tile 37PES. The comparisons of optical and cascade 

maps for years 2015, 2010 and 2005 are shown in Figure 158, while Figure 159 shows the comparison for 2000, 

1995 and 1990. 

Also in this case, the effect of cascade is evident and causes a great increase in the consistency of the maps across 

the years. In particular, the overestimation of urban class in the mountainous area in the central-lower part of 

the tile which affected 2015, 2005 is greatly reduced. The same issue also affected the top-left part of the tile in 

2000, 1995 and 1990 and, also in this case, the cascade module can mitigate the issue. The same is true for an 

overestimation of the shrubs and tree classes which partially affected the previous versions of all the historical 

maps.  
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Figure 158. Comparison of the optical map (left panels) with the final cascade map (right panels) for tile 37PES. Year 2015 
on the top row, 2010 in the centre and 2005 in the bottom. 
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Figure 159. Comparison of the optical map (left panels) with the final cascade map (right panels) for tile 37PES. Year 2000 
on the top row, 1995 in the centre and 1990 in the bottom. 

5.3.1.3 Amazon Tile T21KUQ 

 

 

Figure 160. Static for tile 21KUQ. 

 

The 2019 classification maps for Amazon tile 21KUQ is shown in Figure 160. The comparisons of optical and 

cascade maps for years 2015, 2010 and 2005 are shown in Figure 161, while Figure 162 shows the comparison 

for 2000, 1995 and 1990. 

Also in this case, it is possible to confirm the ability of the cascade approach to correctly propagate the 

information and to correctly remove changes in the classification maps which are not reflected by actual changes 

in the landscape while preserving the actual ones. This can be noticed by looking at the evolution of the crops, 

which are increasingly present in the tile, moving from 1990 to 2019.  

The use of cascade allows to solve some overestimation of watery and aquatic vegetation classes in 2015, 2010 

and 2005 and also to reduce the overestimation of bare in 2000 and 1995 without impacting the correct evolution 

of the crops over time.  
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Figure 161. Comparison of the optical map (left panels) with the final cascade map (right panels) for tile 21KUQ. Year 
2015 on the top row, 2010 in the centre and 2005 in the bottom. 



 

Ref CCI_HRLC_Ph1-PVASR 

 
Issue Date Page 

3.rev.1 13/01/2023 160 

 

  
 

 



 

Ref CCI_HRLC_Ph1-PVASR 

 
Issue Date Page 

3.rev.1 13/01/2023 161 

 

  
 

Figure 162. Comparison of the optical map (left panels) with the final cascade map (right panels) for tile 21KUQ. Year 
2000 on the top row, 1995 in the centre and 1990 in the bottom. 

5.3.1.4 Amazon Tile T21KXT 

 

 

 

Figure 163. Static for tile 21KXT. 

 

Figure 163 shows the 2019 classification maps for Amazon tile 21KXT. The comparisons of optical and cascade 

maps for years 2015, 2010 and 2005 are shown in Figure 164, while Figure 165 shows the comparison for 2000, 

1995 and 1990. 

With the use of the cascade approach the overestimation of aquatic vegetation class, especially relevant in 2005 

and 1995, is mitigated. Moreover, the consistency of the discrimination of the city, present in the central-left are 

of the time, across the years is greatly improved. 
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Figure 164. Comparison of the optical map (left panels) with the final cascade map (right panels) for tile 21KXT. Year 2015 
on the top row, 2010 in the centre and 2005 in the bottom. 
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Figure 165. Comparison of the optical map (left panels) with the final cascade map (right panels) for tile 21KXT. Year 2000 
on the top row, 1995 in the centre and 1990 in the bottom. 

5.3.1.5 Amazon Tile T21KVR 

 

 

Figure 166. Static for tile 21KVR. 

 

The 2019 classification maps for Amazon tile 21KVR is shown in Figure 166. The comparisons of optical and 

cascade maps for years 2015, 2010 and 2005 are shown in Figure 167, while Figure 168 shows the comparison 

for 2000, 1995 and 1990. 

In this case, the impact of cascade is mainly visible in 2000 and 1995. In those years, the bare class was 

overestimated and, thanks to cascade, the final multitemporal classification is improved. The same holds for the 

overestimation of the vegetation aquatic class in 1990. 
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Figure 167. Comparison of the optical map (left panels) with the final cascade map (right panels) for tile 21KVR. Year 
2015 on the top row, 2010 in the centre and 2005 in the bottom. 
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Figure 168. Comparison of the optical map (left panels) with the final cascade map (right panels) for tile 21KVR. Year 
2000 on the top row, 1995 in the centre and 1990 in the bottom. 

5.3.1.6 Siberia Tile T43WET 

 

 

Figure 169. Static for tile 43WET. 

 

Figure 169 shows the 2019 classification maps for Siberia tile 43WET. The comparisons of optical and cascade 

maps for years 2015, 2010 and 2005 are shown in Figure 170, while Figure 171 shows the comparison for 2000, 

1995 and 1990. 

In this tile, the advantage of using the cascade approach can be noticed especially in 2015. In this case, in fact, a 

polygonal-shaped artifact, which is due to the input images, affects the left side of the tile. With cascade, the 

artifact is completely removed. 

Moreover, the consistency of the maps for the other years is generally improved. 
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Figure 170. Comparison of the optical map (left panels) with the final cascade map (right panels) for tile 43WET. Year 
2015 on the top row, 2010 in the centre and 2005 in the bottom. 
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Figure 171. Comparison of the optical map (left panels) with the final cascade map (right panels) for tile 43WET. Year 
2000 on the top row, 1995 in the centre and 1990 in the bottom. 

5.3.1.7 Conclusion 

Summing up, the proposed cascade approach, integrated with the specific MRF formulation, is capable of 

recovering the vast majority of the errors and inconsistencies which are present in the historical maps. In fact, 

while 4-connected MRF mainly deals with isolated points or smaller areas – since it acts as neighbourhood spatial 

context –, the cascade model can also recover huge areas that were densely classified in the wrong way by 

propagating the information through the multitemporal series.  

Moreover, it is important to consider one of the main aspects of the proposed implementation, which is the 

required computational time. In fact, each historical image at 30 meters resolution, corresponding to a Sentinel-

2 tile, has an extension of 3660 × 3660 pixels. The whole data fusion process, integrated with the cascade 

method, which both integrates the information coming from the already computed posterior probabilities of 

year 2019 and applies the MRF model, requires an average of 30 to 40 s/granule to be completed. 

 

5.3.2 Results of the spatial harmonization 

 

The spatial harmonization module is needed in order to ensure consistency across the granule borders in the 

final mosaic. Due to the different characteristics of data, and more generally due to possible issues on data 

availability, neighbouring granules may result in land cover maps with slightly different characteristics. Therefore, 

the final mosaic may present edge artifacts at the interface between the two granules.  

In order to prevent such possible artifacts and obtain a spatially smooth mosaic, a spatial harmonization module 

is run on the pairs of neighbouring granules.  

Figure 172 shows the area across two adjacent tiles before (top) and after (bottom) the spatial harmonization 

module. Looking at the areas highlighted by the ellipses it can be noticed that the edge among the two granules 

is completely removed by the spatial harmonization module. 
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Figure 172 . Detail of the result obtained before (top) and after (bottom) the spatial harmonization module. The ellipses 
highlight the edges of the two tiles. 

5.3.3 Results of the temporal harmonization 

The temporal harmonization module is needed to check the temporal consistency of the land cover products and 

to update the maps based on the results of the change detection module. It first analyses the land-cover time 

series to check for inconsistencies and then applies the proper corrections. Then, the module works iteratively 

with the change detection module to remove the high-priority changes that are identified as wrong. The output 

of the temporal harmonization is the whole land-cover time series from 1990 to 2019 (every 5 years) at 30m 

resolution together with the change detection products. Figure 173 shows an example where the output of the 

multitemporal cascade model (left column) is compared with the output of the temporal harmonization (right 

column). We can see that in 2005 the output of the multitemporal cascade model is underestimating the urban 

area. In many cases, the cascade model is able to solve these problems. However, it is unable to characterize 

temporal trends that involve more than two years. Thus, it is possible that some inconsistency might remain. In 

the temporal harmonization, a backward moving window of three or more consecutive years is considered, thus 

allowing to analyse longer temporal trends than in the cascade model. Only clearly wrong patterns are corrected. 

Examples are the tree cover seasonality, which showed to be difficult to detect for historic classifiers; built-up, 

whose presence is not allowed to oscillate in time; and generally other highly oscillating behaviours that are not 
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likely to happen. In the case of end-point years, i.e., 1990 and 2019, additional regularization was necessary to 

make them consistent with the whole time series (as the moving window can never be centred on these years). 

Moreover, 1990 represents the most difficult year to map with respect to data availability and quality, whereas 

2019 is produced using data from a different sensor with a different resolution. In the example below, Figure 173 

(h) shows the correct reconstruction of the built-up area, while Figure 173 (d) shows the removal of shrubs, 

which was present only in 1995 in the original cascade output (due to overestimation in the 1995 classification). 

Note that this is in addition to the use of the change detection results for the removal of wrong detected changes. 
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Figure 173. Example of result from the temporal harmonization module: (left) result from the multitemporal cascade 
model; (right) result from the temporal harmonization module. 

 

(a) 1  0  cascade (b) 1  0  temp. harm. 

(c) 1     cascade (d) 1     temp. harm. 

(e)  000  cascade (f)  000  temp. harm. 

(g)  00   cascade (h)  00   temp. harm. 

(i)  010  cascade ( )  010  temp. harm. 

(l)  01   cascade (m)  01   temp. harm. (n)  01   temp. harm. ( 0m)(k)  01   sta c (10m)
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5.4 Change Detection 

5.4.1 Change Detection data processing 

 

 

Figure 174. Change Detection processing chain. 

Figure 174 depicts the change detection processing chain for producing the CD maps. First the features are 

extracted considering all possible couples of the available original sensor bands to compute a set of Normalized 

Difference Indices 𝑁𝐷𝐼𝑓. Then, a feature reduction strategy is implemented to preserve the most informative 

features [44]. A time series regularization is considered to generate a sequence of values, denser than the source 

signal that is uniformly sampled [45]. In this stage the cloud/shadow and Post Classification Comparison (PCC) 

masks are imposed to filter out cloudy pixels and the changed pixels, respectively. Finally, a binary CD method 

based on Breaks For Seasonal and Trend (BFAST) [46] is implemented to effectively discriminate changed and 

unchanged pixels. In order to reduce the computational burden, a feature fusion strategy is considered to fuse 

informative features. The final product is a four-channel image, one is related to the years in which a change has 

occurred, the second provides information on the probability of a certain change occurring, the third one shows 

how reliable is the reported year, considering the distance among the  years in which the feature magnitude is 

calculated (some years does not have enough data for yearly change information thus more than a couple of 

years is considered in the calculation), and the last channel is the PCC map giving the information of the high and 

low priority pixels. The processing chain was applied consecutively to a five years Landsat 5, 7 and 8 SITS from 

1990 to 2019 over three different areas being Amazonia, Africa and Siberia. 

5.4.1.1 Time series reconstruction 

Clouds, cloud shadows, and radiometric effects generate missing data and reduce images regularity in the SITS. 

The gaps in the SITS decrease the data quality and thus the capability of performing LCC detection. To have 

continuous and regular SITS in time (thus denser sequences than the source signal), a time series reconstruction 

technique is applied over extracted features from SITS. The choice of the appropriate interpolation approach is 

critical in this case since it has a direct impact on the CD accuracy. As a result, for the non-vegetation profiles the 

strategy is based on an upper-envelope piecewise cubic interpolation (PCHIP interpolation) and for the 

vegetation classes an adaptive non-parametric regression is performed that considers a General Regression 

Neural Network (GRNN). A non-parametric regression captures the temporal signatures trend reducing the 

profile complexity and arithmetic dependency. An analysis is performed using Upper-envelope PCHIP with 

General Regression Neural Network and another popular time series reconstruction methods (Univariate Spline) 

using a test area in Amazonia between 2013 and 2018 (see Figure 175) to evaluate the performance of each 

method. Looking at Figure 175 of GRNN and upper-envelope PCHIP interpolation have nearly same performance. 

However GRNN is more time consuming than PCHIP interpolation (these aspects have been analysed in details 

in [AD7]). By considering the performance of two reconstruction methods that and the computational burden of 

the two methods, the upper envelope PCHIP methodology was selected for all the classes. 
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Figure 175. Comparison of different time series reconstruction methods. 

5.4.1.2 Abrupt change detection 

A limited number of methods have been developed in the literature that allow the analysis of long time series 

(with 16 days acquisitions) and can be considered as scalable to the spatial resolutions of the available sensors 

in this project. To detect the abrupt changes BFAST is selected that models both linear trends and seasonal 

variations without the need to select a reference period, set a threshold, or define a change trajectory that makes 

it suitable for detecting changes in different areas with different type of change. BFAST in an unsupervised 

manner recursively evaluates the possibility of every single time point being a breakpoint, and then chooses the 

most optimal set of breakpoints. BFAST is mainly exploited on medium spatial resolution SITS and in the most 

cases it is analysed for the Normalized Difference Vegetation Index (NDVI) or a few vegetation indices. But it is 

modified to deal with multi-feature data using HR SITS. As an output, BFAST provides the information regarding 

the time of the occurrence of the of the abrupt changes and the probability of change.  Considering the huge 

amount of data to be processed by BFAST methodology for different areas (Amazonia, Africa and Siberia [AD4]), 

a feature fusion step based on the calculation of the feature magnitude is implemented to meliorate the 

computation burden of BFAST for different features extracted in feature extraction step. 

5.4.1.2.1 Qualitative and Quantitative evaluation 

For a zoomed area in the tile defined below the LC maps for the years 1995 to 2019, the CD maps of the years 

1990 to 2019 have visualised.  

• Amazonia area for 21KUQ Sentinel-2 tile. 

Moreover, a detailed quantitative analysis is provided in this section considering three processing areas 

(Amazonia, Africa, and Siberia) over the whole processing period (1990 to 2019). The first analysis has been 

carried out to determine the percentage of the pixels that have changed one to six times during 30 years of 

analysis in three areas. It is worth mentioning that considering the available LC maps every five years, it is 

assumed that each pixel can change once every five years. As a result, the maximum number of changes for each 

pixel from 1990 to 2019 will be six times. Another analysis provides the percentage of high priority changes for 

each year, the percentage of low priority changes every five years, the percentage of the high priority changed 

pixels without enough data to report the year of change (NoData) and the total amount of changes every five 

years. Please refer to Table 8 for Amazon, Table 9 for Africa and Table 10 for Siberia. 

 



 

Ref CCI_HRLC_Ph1-PVASR 

 
Issue Date Page 

3.rev.1 13/01/2023 179 

 

  
 

 

LC 2019 Year of change 2019-2015 Probability of change 2019-2015 

   
LC 2015 Year of change 2015-2010 Probability of change 2015-2010 

   
LC 2010 Year of change 2010-2005 Probability of change 2010-2005 

   
LC 2005 Year of change 2005-2000 Probability of change 2005-2000 

   
LC 2000 Year of change 2000-1995 Probability of change 2000-1995 

   
LC 1995 Year of change 1995-1990 Probability of change 1995-1990 
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Figure 176. Examples of historical LC maps (1st column) and year of change maps (2nd column) change probability (3rd 
column) of the period from 1990 to 2019 for an area in tile 21KUQ in Amazon. 

Looking at Figure 177 the percentage of the pixels that have changed one (21.97%) and two times (4.89%) in 

Amazon are significantly higher than the other percentages that are 0.99%, 0.11%, 0.0085% and 0.004%, 

respectively for three, four, five and six times. The same happens for the other areas being Africa and Siberia.  

 

 

 

Figure 177. Percentage of the pixels changing one-six times in Amazon, Africa and Siberia. 
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Table 8. The percentage of high/low priority and overall changes in Amazon from 1990 to 2019 

Year of Change High Priority Changes Low priority Changes NoData Overall Changes 

1991 0.40% 

1.71% 0.47% 4.62% 
 

1992 0.32% 

1993 1.04% 

1994 0.36% 

1995 0.32% 

1996 0.29% 

3.60% 0.71% 6.58% 
 

1997 0.24% 

1998 0.20% 

1999 0.86% 

2000 0.69% 

2001 0.47% 

4.01% 0.59% 7.40% 
 

2002 0.63% 

2003 0.64% 

2004 0.68% 

2005 0.39% 

2006 0.29% 

3.48% 0.61% 5.77% 
 

2007 0.43% 

2008 0.45% 

2009 0.30% 

2010 0.21% 

2011 0.36% 

3.08% 0.54% 5.57% 
 

2012 0.06% 

2013 0.57% 

2014 0.53% 

2015 0.43% 

2016 0.60% 

2.17% 0.57% 5.31% 
2017 0.58% 

2018 0.75% 

2019 0.65% 

 

  



 

Ref CCI_HRLC_Ph1-PVASR 

 
Issue Date Page 

3.rev.1 13/01/2023 182 

 

  
 

Table 9. The percentage of high/low priority and overall changes in Africa from 1990 to 2019 

Year of Change 
High Priority 

Changes 

Low priority 

Changes 
NoData Overall Changes 

1991 0.01% 

0.18% 
 

0.17% 0.50% 
 

1992 0.01% 

1993 0.02% 

1994 0.06% 

1995 0.04% 

1996 0.07% 

0.20% 
 

0.97% 1.44% 
 

1997 0.05% 

1998 0.04% 

1999 0.06% 

2000 0.05% 

2001 0.19% 

0.81% 
 

1.60% 2.87% 
 

2002 0.22% 

2003 0.04% 

2004 0.01% 

2005 0.01% 

2006 0.01% 

0.69% 
 

3.32% 4.12% 
 

2007 0.01% 

2008 0.01% 

2009 0.02% 

2010 0.05% 

2011 0.03% 

0.71% 
 

2.78% 4.14% 
 

2012 0.02% 

2013 0.10% 

2014 0.24% 

2015 0.27% 

2016 0.02% 

0.94% 0.03% 1.07% 
2017 0.02% 

2018 0.02% 

2019 0.03% 
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Table 10. The percentage of high/low priority and overall changes in Siberia from 1990 to 2019 

Year of Change 
High Priority 

Changes 

Low priority 

Changes 
NoData Overall Changes 

1991 0.007% 

0.31% 0.11% 0.46% 
 

1992 0.008% 

1993 0.002% 

1994 0.003% 

1995 0.019% 

1996 0.001% 

0.22% 0.04% 0.27% 
 

1997 0.001% 

1998 0.003% 

1999 0.000% 

2000 0.005% 

2001 0.001% 

0.40% 0.11% 0.51% 
 

2002 0.002% 

2003 0.000% 

2004 0.000% 

2005 0.000% 

2006 0.000% 

0.23% 0.04% 0.28% 
 

2007 0.001% 

2008 0.000% 

2009 0.007% 

2010 0.001% 

2011 0.000% 

0.30% 0.03% 0.35% 
 

2012 0.000% 

2013 0.006% 

2014 0.009% 

2015 0.006% 

2016 0.002% 

0.07% 0.00% 0.08% 
2017 0.001% 

2018 0.001% 

2019 0.001% 
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To have a better overview of the quantity and temporal behaviour of the changes in different areas (Amazon, 

Africa and Siberia) the additional figures for the high priority yearly changes and 5-year changes have been 

provided. Figure 178 and Figure 179 visualise the temporal behaviour of the percentage of high priority changes 

and 5-year changes for the Amazon area. As it is clear, the amount of annual high priority change has a significant 

fluctuation during 1990 to 2019 and has a peak of 1.04% in 1992, with an increasing trend in the last 10 years. 

Considering Figure 179, the overall 5-year changes has a rising trend from 1991-1995 to 2001-2005 but we record 

a decreasing trend till 2016-2019. This is mainly because of the decrease of the amount of low priority changes, 

that compensate for the increasing trend of the high priority ones. 

 

 

Figure 178. Percentage of high priority change of Amazon. 

 

 

Figure 179. Percentage of 5 year changes in Amazon. 

Considering Figure 180, the percentage of yearly high priority changes of Africa has two peaks of about 0.22% 

and 0.27% in the years 2002 and 2015, respectively. Figure 181 shows that the 5-year low priority changes 

increase dramatically from 1991-1995 to 2006-2010 while the high priority changes without reported the year 

of change (NoData) has a peak in 2006-2010 and decreases in 2016-2019. As it is shown, because of the lack of 
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data to reveal the year of change, a majority of the high priority changes detected by post classification 

comparison mask (pcc) has been represented as NoData.  

 

 

Figure 180. Percentage of High priority yearly changes of Africa. 

 

 

Figure 181. Percentage of 5-year changes of Africa. 

The number of changes in Siberia is mainly affected by data availability especially for earlier years and it is 

considerably low in comparison with the other areas (see Figure 182 and Figure 183). Looking at Figure 183, the 

overall 5-year changes is aligned to the 5-year low priority changes since they represent the highest percentage 

of the overall changes. The percentage of low priority changes has the highest value of 0.4% for the years 2001-

2005 and the lowest value for the years 2016-2019 of 0.08%.   

0.00%

0.05%

0.10%

0.15%

0.20%

0.25%

0.30%

1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 2017 2019

High Priority Yearly Changes

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

4.00%

4.50%

1991-1995 1996-2000 2001-2005 2006-2010 2011-2015 2016-2019

5-year Changes

High Priority Low Priority NoData All



 

Ref CCI_HRLC_Ph1-PVASR 

 
Issue Date Page 

3.rev.1 13/01/2023 186 

 

  
 

 

 

Figure 182. Percentage of High priority yearly changes of Siberia. 

 

 

 

Figure 183. Percentage of 5-year changes of Siberia. 

In order to have a better understanding of the number of LC transitions per year, another analysis has been done 

considering the yearly high priority changes for the years 2010 to 2019. Figure 184, Figure 185 and Figure 186, 

shows the amount of LC transitions on a yearly basis for the Amazonia, Africa and Siberia, respectively. From 

each plot it is possible to understand which kind of transition (among the high priority ones) contributes more 

to the LCC. For Amazonia (Figure 184) we can observe that there is an increasing trend for almost all kinds of 

high priority transitions except “Tree cover deciduous broadleaf to Crop” that shows a peak in 2015 and after 

that tends to decrease. “Grass to Shrub cover deciduous” is the main LC transition in Africa (Figure 185). It has 

increased dramatically in 2014 and then started a decreasing trend yet dominating the others. In general, we can 

observe that most of the changes show an increasing trend over time. Siberia (Figure 186) has the lowest number 

of high priority changes. Different kinds of tree cover to grass and shrubs to grass are the main changes that have 

happened in this area. Some of the changes show a peak between 2013 and 2015 and then their incidence 

reduces, others show a more regular increasing trend over time.  
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Figure 184. The number of LC transitions for Amazonia from 2010 to 2019 

 

 

Figure 185. The number of LC transitions for Africa from 2010 to 2019 
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Figure 186. The number of LC transitions for Siberia from 2010 to 2019 

5.5 Post processing 

The post processing module has been developed to address the residual misregistration in the land-cover map 

time series and the residual errors of the change detection module. The post processing considers the spatial 

extent of the detected changes. Those changes that are too small to be realistic are removed and the land cover 

of the most recent year is used. The priority of the changes is taken into account in order to avoid removing small 

high priority changes that are still reasonable. Also, the classes involved in the changes are considered regardless 

of the priority. For example, changes related to road construction are always kept, even if they are associated to 

small changes. 

5.5.1 Results of post processing 

Figure 187 shows an example of residual misregistration between the 2015 LC map and the 2019 map, which is 

mostly related to the down sampling of the 2019 map to the resolution of 30m. The post processing is able to 

remove the misregistration noise as well as other noisy small changes without affecting the real line-like changes 

associated to roads. 
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Figure 187. Example of results of post processing. The left column shows the input data for 2015 and 2019, while the 
right column shows the corresponding output of post processing. In the middle, the PCC is shown, where the green color 

is used for low-priority changes and the red color is used for high-priority changes. 
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