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1 Introduction 

1.1 Executive summary 

This document provides an assessment of the end-to-end uncertainty budget the HRLC ECV products are 

associated with. HRLC products are based on a wide range of input data whose uncertainties propagate at 

different levels of dependency according to the data characteristics and the processing steps involved in the 

production. By taking into account the scarce availability of ground-measured reference information and the 

practical impossibility to collect physical measurements on wide areas as those selected for this project, the 

proposed uncertainty models will be, by necessity, theoretical.  

Many steps of the processing chain (e.g., pre-processing, geolocation, classification, etc.) involve algorithms that 

come with uncertainty models associated to them. For instance, the classification task is able to output 

probabilistic posteriors that can be managed at the fusion level to infer uncertainty score pixel-wise. Both 

uncertainties of input data sets and processing model-related ones must be considered, including error 

propagation dynamics. The nature of the input data sets (discrete classes vs. continuous variables) and the 

associated error characteristics (random error/ bias, error distribution), including potential correlations between 

errors of different input variables should be evaluated. Finally, uncertainties related to the spatial scales of data 

sets, scaling issues related to the validation activity must be accounted for as well. 

1.2 Purpose and scope 

This document provides both a detailed overview of the main sources of uncertainty for each step of the full 

processing chain and  representations of pixel-wise uncertainty for the final HRLC and LCC products. 

This document deals with all known potential sources of error, uncertainty and known correlations in the data 

that are seen as potential contributors for the definition of an uncertainty product. The output for classification 

is given as a three layer data-structure that includes: 

• Classification maps associated with both first- and second-best performers, in terms of posterior 

probability, as returned by the classification-fusion model. 

• Actual values of posterior probabilities corresponding to the two above mentioned maps. 

• Input quality index corresponding to the input optical-data quality, which is related to the number and 

temporal distribution of the images acquisitions used in the composite generation step.th 

The uncertainty of LCC is affected by the propagation of the uncertainties coming from the previous steps. The 

probability of change contributes as a source of information to model the certainty associated to LCC products 

as well as the availability of images on a yearly bases. If images are not enough for one year the change 

information is provided over a longer time span and becomes more uncertain. 

1.3 Applicable documents 

Ref. Title, Issue/Rev, Date, ID 

[AD1] CCI HR Technical Proposal, v1.1, 16/03/2018 

[AD2] CCI_HRLC_Ph1-D2.2_ATBD, latest version 

1.4 Reference documents 

Ref. Title, Issue/Rev, Date, ID 

1.5 Acronyms and abbreviations 

AMI  Active Microwave Instrument 

AOT  Aerosol optical thickness 

ASAR  Advanced Synthetic Aperture Radar  
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ATBD  Algorithm Theoretical Basis Document 

BOA  Bottom of Atmosphere  

CCI  Climate Change Initiative 

DEM  Digital Elevation Model 

ECV  Essential Climate Variables 

ERS  European Remote Sensing 

ETM  Enhanced Thematic Mapper 

GCOS  Global Climate Observing System 

GRD  Ground Range Detected 

GT  Ground truth 

GUM  Uncertainty in Measurement 

HR  High Resolution 

LaSRC  Landsat-8 surface reflectance code 

LC  Land Cover 

LCC  Land Cover Change 

LEDAPS  Landsat Ecosystem Disturbance Adaptive Processing System 

LOGP  Logarithmic opinion pool 

MAP  Maximum a posteriori 

MGRS  Military Grid Reference System 

MODIS   Moderate Resolution Imaging Spectroradiometer 

MPM  Marginal a posteriori modes 

MR   Medium Resolution 

MRF  Markov Random Field 

MSI  Multispectral Instrument 

MSS  Multispectral Scanner 

NIR  Near infrared 

OLI  Operational Land Imager 

RMSE  Root mean square error 

RST  Rotation scale translation 

SAR   Synthetic Aperture Radar 

SoW  Statement of Work 

SWIR  Short-wave infrared 

TIRS  Thermal Infrared Sensor 

TM  Thematic Mapper 

TOA  Top of Atmosphere 

UTM  Universal Transverse of Mercator 

VHR  Very High Resolution 

WGS84  World Geodetic System 1984 
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2 Optical pre-processing 

Detailed analysis of pre-processing errors/accuracy related to harmonized Sentinel-2 / Landsat products is given 

in [1]. Although the final processing chain of the CCI HRLC project will not be identical to [1], this work provides 

the most complete reference for the prior modelling of the variables that contributes to pixel-level measurable 

uncertainty of the products coming from an integrated pre-processing stage. 

2.1 Radiometric correction 

LaSRC assumes a Lambertian, plane-parallel atmosphere, and uses the 6S radiative transfer model to invert 

directional surface spectral reflectance from observed top-of-atmosphere reflectance. Several atmospheric 

parameters are required for the inversion including surface pressure, column water vapor, ozone, and aerosol 

properties. LaSRC algorithm assumes two SR ratios, red to blue and red to ultra-blue, and uses the difference 

between these assumed ratios and observed TOA reflectance ratios to invert for AOT and Angstrom exponent. 

The two fixed SR ratios for the globe are derived from MODIS and MISR data, and expressed as a function of mid-

infrared vegetation index. 

Currently, uncertainty estimates for LaSRC are based on comparison with corrections based on in situ 

atmospheric parameters from the Aerosol Robotic Network [1]. These comparisons indicate improved 

performance compared to the LEDAPS algorithm or an alternative version of LEDAPS that used MODIS aerosol 

products as input. For Landsat 8 OLI, overall uncertainty varied from 0.11% absolute reflectance (SWIR1 band) 

to 0.85% absolute reflectance (blue band). For Sentinel-2/MSI, overall uncertainty varied from 0.3% absolute 

reflectance (SWIR1band) to 1.4% absolute reflectance (blue band). 

2.2 Cloud and cloud-shadow detection / restoration 

Cloud and cloud-shadow detection accuracy is intrinsically difficult because of the impossibility of directly 

measuring physical parameters related to clouds. Posterior evaluation of cloud detection accuracy can be figured 

by referencing to appropriate literature, but this does not provide a direct method to quantify uncertainty in a 

pixelwise manner. A possible strategy to mitigate this problem is to associate probabilities in the classification 

step related to cloud identification. This is similar to the idea implemented in processors like sen2cor. 

2.3 Spectral filtering and harmonization 

Given the differing solar and view angles associated with Landsat 8 and Sentinel-2, normalizing the BRDF effects 

is desirable. Retrieving the BRDF information directly from medium resolution optical remote sensing data is not 

feasible with the current temporal and angular distribution of the data. Instead, the BRDF information needs to 

be ingested a priori. It is currently on-going revision of the most appropriate technique to achieve this so that 

effects of different illumination conditions may be included in the model. 

2.4 Composite Generation 

When working at large scale, it is necessary to harmonize the times-series of images acquired over different tiles 

which are characterized by different lengths and are acquired at different times. This is mainly due to the 

irregular cloud coverage (which hampers the use of some images of the time-series) and the different orbit 

acquisitions (different temporal sampling). To solve this problem, in the pre-processing step we generate 

monthly, seasonal and annual composites. This condition allows us to mitigate cloud occlusions problem and 

minimize the processing resources. To this end, we consider a statistic-based approach that computes the 

median value for each pixel. This approach is able to generate consistent results at large scale in an automatic 

way by sharply reducing the spatial noise. However, in many cases the available data for the composite 

generation can be limited to few acquisitions (e.g., from none to as few as 2-3 acquisitions). In such cases, the 

uncertainty related to the median values increases significantly. To mitigate this problem, an input quality index 

is associated to the mapped pixels for each year. The input quality index is strictly related to the number of 
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composites in a given year that are generated with at least three valid acquisitions (i.e., non saturated, cloud  

and shadow free pixels). In the case of annual composites, the input quality is proportional to the number of 

valid acquisitions of the only composite. 

3 SAR pre-processing chain 

The spaceborne synthetic aperture is a powerful key Earth observation technique for large-area monitoring, and 

in recent decades, its all-weather capability and fine ground resolution facilitated the development of a great 

variety of applications, such as the land mapping, for example. Due to the nature of the SAR range mapping and 

reflectance functions, the measurements of multi-channel SAR system can be biased by error originating from 

many deleterious factors in which significantly degrade the quality of SAR image. In this section we quantify 

sources of uncertainty on SAR results, i.e. all those aspects that leading doubts about the validity of the result of 

a measurement (or processing). 

3.1 SAR processing chain 

Undoubtedly a first uncertainty cause of uncertainty in SAR processing is to be researched in the application of 

techniques for reconstructing the observed scene, such as Level-1 data produced as Single Look Complex (SLC) 

and Ground Range Detected (GRD) from raw data (also so-called Level-0), i.e. the backscattered wave. This may 

be modeled for instance by the Uncertainty in Measurement (GUM) framework, introduced in [2] and used to 

evaluate the uncertainties of the amplitude values pixel by pixel, on the bases of a statistical analysis. 

3.2 SAR data 

The quality of land cover map is certainly changed by the number of the SAR images used to produce both static 

and historical maps. About the static production, in the PVASR document it is stated that at least five images per 

season are necessary to achieve reliable results. A smaller number of images degrades the quality of the results 

by reducing the discriminative power of SAR data sets among natural land cover classes. Concerning the historical 

production, the situation is even more complex because of the poor availability of ERS and ENVISAT products 

both in time and with respect to their geographical distribution. In addition, the processing of time series with 

data acquired by the same sensor (ERS or ENVISAT) but on different orbits, i.e., SAR sequences composed of both 

ascending and descending data, produces very noisy and distorted maps, very far by the best possible case. 

The number and the type of the images used to produce the maps every five years has a strong impact on the 

quality of the final products. To reduce this impact the production of historical maps from SAR was restricted 

considering only to the tiles with images belonging to the same acquisition orbit (ascending or descending), and 

with at least a number of images available in the year of interest, where this number was selected according to 

the data availability for each historical area, aiming at the best possible quality of the results. 

3.3 Geometric processing 

A second source of uncertainty refers to next steps applied to SAR data sets, such as geometric processing. 

Specifically, radar image processing requires the geometrical overlaying of the remotely data sensed from 

different sensors and/or geometries, in order to mitigate very severe distortions over elevated and sloping 

terrain [3]. Before the change detection and surface classification, these distortions must be mitigated by terrain 

correction. SAR imaging requires precise determination of the relative position and velocity of the radar platform 

with respect to its target at all times. However, this information is not available at the time of imaging, since the 

platform must be moving for the azimuth resolution technique to work. The basic solution is to assume that the 

platform has a uniform velocity over a smooth geoid [4]. To remove the geometric distortions due to terrain 

relief, the radiometric calibration could be applied for compensating all spatial and time dependent variation, as 

well as the cross-track and image to image intensity inconsistencies due to signal attenuation by distance [5]. 
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The algorithm is based on a Digital Elevation Model (DEM) and creates a simulated SAR image based on an 

imaging radar model. 

However, this process introduces a level of uncertainty because it simplifies the image creation considerably, 

introducing certain amount of distortions into the results. In fact, when there is significant relief in the area being 

imaged, for example, the DEM model that is being adopted will be based on a proper smooth geoid assumption 

and will lead to pixel placement, rendering it suitable (or not) for a quantitative analysis of terrain features.  

Finally, to correct image orientations, SAR images are geocoded. This phase includes SAR image resampling to a 

spatial representation with known geometric properties. Standard map projections, like the Universal Transverse 

Mercator (UTM) mapping, are used. Processing involves the image rotation and scaling to properly transform it 

into the mapping coordinates chosen [6]. The geocoding represents another uncertainty source, since images 

are taken at varying pass angles, and each resulting image contains an approximately square rotated SAR image 

inside it, with unused image pixels set to black. 

3.4 Speckle noise 

In addition to geometrical features, another limitation of SAR data sets is the speckle noise. The speckle noise is 

an intrinsic feature of SAR data, and it is given by the consistent summation of signals from ground scatters 

randomly and loosely distributed within the scene. The existence of speckle noise in SAR images is an inherent 

and specific random characteristic. This noise has an impact on the interpretation of these images and introduces 

further limitations in applications exploiting SAR time series [7]. The speckle noise reduction has to strictly be 

carried out in order to preserve polarimetric properties, without introducing any image quality degradation and 

corrupting statistical characteristics. Consequently, not using a suitable speckle filtering involves a dramatic 

impact in terrain classification performance [8]. 

Instead, performing a multi-temporal analysis based on multiple images acquired over time, backscattered 

values in can be aggregated in both coherent and incoherent ways to reduce the effect of noise. For classification 

purposes, it has been proved [9] that the use of multitemporal sequences improves the accuracy of the final 

results, either thanks to the fusion at the decision level of the results for each image, or by combining multiple 

SAR images into a single input to the classification procedure. 

4 Multi-sensor geolocation 

Multi-sensor geolocation [10] aligns data collected from different sensors (a reference and still image and an 

input image to be transformed) in a common reference system in order to process them coherently further in 

the processing chain. Within the CCI+ HRLC processing chain, the two image data sources correspond to optical 

and SAR data. The result of the geolocation process may be more or less precise, yielding uncertainty associated 

with the output images. Such uncertainty generally also affects the subsequent blocks along the processing chain. 

There exist different strategies for assessing the accuracy of the geolocation process: one of the possibilities is 

the computation of the root mean square error (RMSE) in pixel units [11]. In an experimental setup, where the 

correct transformation is known, the RMSE may be computed analytically. Otherwise, it is possible to estimate 

it by means of specific control points or landmarks. 

The control points are identified in both images and the RMSE is computed based on the residual spatial 

distances. Ideally, in case the images are perfectly matched, the distances of the control points in the reference 

and registered images is equal to zero. In all the other cases, the control points may not be perfectly matched, 

and the distances are generally non-zero, although they can be smaller than one-pixel size, on average. 

The following section describes the computation of the RMSE in case the transformation is known and is 

modelled as a “rotation-scale-translation” (RST) transformation. For lower-complexity transformations, like rigid 

or shift transformations, the same computation holds but it is necessary to fix unitary scale (rigid) and the 

rotation angle to zero degrees (shift). 
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4.1 An example of RMSE computation 
Let 𝑅𝑒𝑓(𝑥, 𝑦) and 𝐼𝑛(𝑥, 𝑦), (𝑥, 𝑦) ∈ Ω ⊂ ℝ2, where Ω is a region of interest, be two images called reference and 

input, respectively. If they are both of size 𝐴 ×  𝐵 pixels, then Ω =  [0, 𝐴]  ×  [0, 𝐵]. In the RST case, 𝑇𝑝(𝑥, 𝑦) is 

the geometric transformation described by the parameter vector 𝑝 = (𝑡𝑥, 𝑡𝑦, 𝜃, 𝑘) and has the form: 

𝑇𝑝(𝑥, 𝑦) = (
𝑘 cos (𝜃) 𝑘 sin (𝜃) 𝑡𝑥
−𝑘 sin (𝜃) 𝑘 cos (𝜃) 𝑡𝑦

) [
 𝑥 
 𝑦 
 1 
] 

where {𝑡𝑥 , 𝑡𝑦} determine translations in the 𝑥 and 𝑦 directions, 𝜃 is the rotation angle, and 𝑘 is the scaling factor. 

Thus, we can write 𝑇𝑝(𝑥, 𝑦) = 𝑄𝑝 ∙ [𝑥, 𝑦, 1]
𝑇, where 𝑄𝑝 is the RST transformation matrix given above, and the 

superscript “𝑇” indicates the transpose operator. There is a one-to-one correspondence between 𝑄𝑝 and 𝑝. To 

register 𝑅𝑒𝑓(𝑥, 𝑦) and 𝐼𝑛(𝑥, 𝑦) it is necessary to find the value of 𝑝 such that 𝐼𝑛 (𝑇𝑝(𝑥, 𝑦)), the input 

transformed by 𝑇𝑝, best matches the reference (see ATBD). 

When accurate ground truth is available, such as when test images are created synthetically (a typical scenario 

when a geolocation method is developed and is being validated), a standard way of assessing registration 

accuracy is by using the RMSE 𝐸(𝑝𝑒) [11]. Suppose the ground truth (GT) transformation is given by 𝑝𝐺𝑇 =

(𝑡𝑥1, 𝑡𝑦1, 𝜃1, 𝑘1) and the computed transformation is 𝑝 = (𝑡𝑥2, 𝑡𝑦2, 𝜃2, 𝑘2), with the two RST matrices 𝑄𝑝𝐺𝑇  and 

𝑄𝑝 respectively. It is possible to define the error transformation 𝑝𝑒 = (𝑡𝑥𝑒 , 𝑡𝑦𝑒 , 𝜃𝑒 , 𝑘𝑒), along with the 

corresponding RST matrix 𝑄𝑃𝑒 , and measure the discrepancy between 𝑝𝐺𝑇  and 𝑝. 

According to the matrix formulation of the RST transformation, being 𝑄𝑃𝑒  the error transformation matrix, the 

following should hold [11]: 

𝑄𝑃𝑒 = 𝑄𝑝 ∙ 𝑄𝑝𝐺𝑇
−1  

that yields: 

{
 
 

 
 𝑘𝑒 =

𝑘2
𝑘1
,   𝜃𝑒 = 𝜃2 − 𝜃1

𝑡𝑥𝑒 = 𝑡𝑥2 − 𝑘𝑒(𝑡𝑥1 cos(𝜃𝑒) + 𝑡𝑦1 sin(𝜃𝑒))

𝑡𝑦𝑒 = 𝑡𝑦2 − 𝑘𝑒(𝑡𝑦1 cos(𝜃𝑒) − 𝑡𝑥1 sin(𝜃𝑒))

 

Now, let (𝑥, 𝑦) ∈ Ω and let [𝑥′, 𝑦′]𝑇 = 𝑄𝑃𝑒 ∙ [𝑥, 𝑦, 1]
𝑇 . This can be equivalently written as: 

[
𝑥′

𝑦′
] = 𝑘𝑒 (

cos(𝜃𝑒) sin(𝜃𝑒)

−sin(𝜃𝑒) cos(𝜃𝑒)
) [
𝑥
𝑦] + [

𝑡𝑥𝑒
𝑡𝑦𝑒
] 

Then, the RMS error is defined as: 

𝐸(𝑝𝑒) = √
1

𝐴𝐵
∫ ∫ (𝑥′ − 𝑥)2 + (𝑦′ − 𝑦)2 𝑑𝑥 𝑑𝑦

𝐴

0

𝐵

0

, 

Substituting the formula for 𝑥′ and 𝑦′ and solving for 𝐸2(𝑝𝑒) yields: 

𝐸2(𝑝𝑒) =
𝛼

3
(𝑘𝑒

2 − 2𝑘𝑒 cos(𝜃𝑒) + 1) + (𝑡𝑥𝑒
2 + 𝑡𝑦𝑒

2 ) − (𝐴𝑡𝑥𝑒
2 + 𝐵𝑡𝑦𝑒

2 )(1 − 𝑘𝑒 cos(𝜃𝑒))

− 𝑘𝑒(𝐴𝑡𝑦𝑒 − 𝐵𝑡𝑥𝑒) sin(𝜃𝑒) 

where 𝛼 = 𝐴2 + 𝐵2. This formula is used in this research to measure registration accuracy when the ground 

truth transformation is available. This scenario holds when a geolocation method is being developed and semi-
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simulated data sets are used for its tuning and validation. It obviously does not apply to the case in which two 

real image data sets are available because the reference GT transformation is not known. 

4.2 RMSE computation without ground truth 

The previous section describes how to compute analytically the RMSE in case ground truth data is available. In 

case no ground truth information is available, it is still possible to compute an estimate of the RMSE through 

control points (landmarks) [10]. It is possible to identify well-known control points in both the reference and the 

registered input image and estimate the accuracy of the registration process from them. Hence, a sample 

estimate of the registration RMSE can be computed by averaging the single RMSE computed with respect to each 

pair of control points, i.e., as a sample estimate of the RMSE functional. Of course, the GT collection step can be 

considerably time-consuming. 

As an alternative, a common and effective approach to validate registration results when GT is unavailable is to 

use a visual (qualitative) assessment rather than a numerical (quantitative) calculation of RMSE figures. In the 

former case, the reference and registered images are combined in appropriate image composites that emphasize 

the spatial matching of the linear and curvilinear features in the image (e.g., colour composites with RGB 

channels drawn from both images or checkerboard spatial composites). This approach has been extensively used 

in the project to evaluate registration performance in the application to real image data pairs not endowed with 

any GT information. 

4.3 From registration error to uncertainty 

Once the registration error is estimated, one can indirectly derive information about the uncertainty generated 

by the geolocation process within the overall land-cover mapping process. In particular, it is convenient to 

distinguish two scenarios based on the achieved error. 

4.3.1 Sub-Pixel Registration Error 

There are cases where the registration error is less than a single pixel. Thus, the grid of the two images after 

registration is almost perfectly matched. Indeed, this is the goal of most image registration efforts. 

In this case, every pixel is matched with the corresponding pixel in the other image. Obviously, there may still be 

a residual error. However, achieving sub-pixel accuracy implies that the Earth region associated with a pixel in 

the reference image is almost the same as the Earth region associated with the registered image, i.e., spatial 

mismatch between the optical and SAR sources is smaller than the pixel size after registration. 

This is the best possible achievement in multi-sensor geolocation, and in this case, no uncertainty is deemed to 

be forwarded to the following processing blocks of the chain. Every pixel is correctly located, and no uncertainty 

needs to be propagated along the overall processing chain. 

4.3.2 Non-sub-pixel Registration Error 

If the registration RMSE is larger than one pixel, the pixels in the reference image are not correctly matched with 

the pixels in the registered image, on average, and the mismatch implies an actual misalignment of the data 

associated with the two pixel grids. Non-sub-pixel errors may cause artefacts in boundary regions, where pixels 

of different classes are superimposed due to the residual shift between the reference and registered images. 

Conversely, in a flat homogeneous image region, registration error may not cause problems, as the mismatch 

may not influence the resulting classification map. 

In this case, the uncertainty is propagated to the data fusion block. Operatively, the probabilistic fusion that takes 

place in the decision fusion module may generally be affected by the residual non-sub-pixel misregistration. The 

goal of the CCI+ HRLC processing chain is to estimate land cover. In principle, the impact of non-sub-pixel 

registration error on land cover uncertainty may be assessed, on each pixel, by making use of the probabilistic 

per-pixel information available to the decision fusion module within a local window, whose size may be 
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determined as a function of the registration RMSE. However, residual misregistration is expected to intrinsically 

translate per se into increased uncertainty in the pixelwise posterior probabilities obtained by the HRLC 

processing chain on each pixel. Moreover, the aforementioned local-moving-window process may add 

significantly to the overall computational burden. Therefore, consistently with the goal of assessing the 

uncertainty in the output HRLC product, the impact of residual misregistration on the overall uncertainty will be 

characterized through the pixelwise posterior distribution. The possible use of moving-window processes will be 

considered methodologically or experimentally in a tradeoff with computational burden. 

5 Classification 

Uncertainty is unavoidable in all classification domains: a certain amount of uncertainty is always involved in 

deciding the class a sample is assigned to. The unanimously recognized framework to represent uncertainty is 

probability. Specifically, the Bayesian concept of maximum posterior probability encloses the amount of 

uncertainty (measurable from data) that generates in the probabilistic decision of a classifier. Since no specific 

classifier has been selected yet (both for optical and SAR processing classification), the treatment is given in this 

section in a general way. In Figure 1, the general workflow associated with the classification part of the processing 

chain is recalled. 

 

Figure 1. Workflow of the classification process for optical and SAR time series of images. 

To model input of the Decision Fusion block dealing with integration of different sources of uncertainty, here we 

present a general framework to posterior probability definition that is algorithm independent [10]. We can model 

the posterior probabilities using 𝑚linear classifiers. Each linear classifier implements a hyperplane that separates 

its corresponding class from the other classes. The equation of each hyperplane is 

𝑓𝑗(𝒙) = 𝒘𝑗 ∙ 𝒙 + 𝑏𝑗  

where 𝒘𝑗  is a weight vector and 𝑏𝑗  is a bias term. Each source-specific posterior probability is typically computed 

using the softmax function:  

𝑃(𝜔𝑗|𝒙𝑖 , 𝜃ℎ) =
exp(𝑓ℎ(𝒙𝑖))

∑ exp(𝑓𝑘(𝒙𝑖))
𝑚
𝑘=1
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Hence, the parameter set 𝜃ℎ = (𝒘ℎ, 𝑏ℎ). For any probabilistic-based classifier, plugging the posterior 

probabilities into the cross-entropy function and solving the equation (gradient methods) is at the core of the 

well-known learning rules and or backpropagation algorithms. 

As widely acknowledged, SAR images are an important source of information but the speckle noise gives SAR 

images a granular appearance that makes interpretation and analysis hard tasks. Furthermore, one of the major 

issues is the assessment of topographic information content in this kind of images that could be extrapolated by 

exploiting classification techniques. Classification accuracy values, which include user’s accuracy (UA), producer’s 

accuracy (PA), and overall accuracy (OA), are strongly influenced by the adopted input model, which could cause 

considerable errors in the model output. 

An image contains an enormous amount of information, and the challenge is how to represent it in a more 

compact way, which is why features are originated. In other words, for a more compact and possibly more 

significant representation of the information embedded in image, it is usually decomposed into several features. 

Specifically, the extraction of spatial features from remotely sensed data and the use of this information as input 

to further processing steps has received considerable attention over the two last decades. Unfortunately, due to 

the complexity of the images and the existence of image noise and disturbances, the information derived from 

an image is always ambiguous. This source of uncertainty makes the following recognition/classification process 

more complex. The accuracy of spatial feature extraction can hardly be formulated due to intra-class variation 

and inter-class similarity [12]. This uncertainty of spatial features extraction is of course on top of the other 

source of inaccuracy, common to any image element, such as  positional uncertainty, attribute uncertainty, 

topological uncertainty, computational inaccuracy, imprecision/inexactitude, inconsistency, incompleteness, 

repetition, vagueness, omission, misinterpretation, misclassification, abnormalities and knowledge uncertainty. 

Land cover maps are generated by the classification of remote sensing data, and are frequently used as input to 

spatially explicit environmental models, and its quality is generally assessed at the global or class-specific. It is 

therefore clear that another uncertainty factor is closely correlated with the used classification algorithms. 

However, a clear assessment of classification accuracy is not easily provided, and several works have been 

proposed to evaluate the technical classification uncertainty [13], [14]. These studies demonstrate that 

uncertainty assessment provides valuable information on the performance of land cover classification models, 

both in space and time. Statistical inferences arise by supervised learning ensembles. Ensemble methods based 

on bootstrapping, such as random forests (e.g., used for the classification of SAR data), have improved the 

predictive accuracy of individual trees, but fail to provide a framework in which distributional results can be easily 

determined. Random forests are among the most popular machine learning techniques for prediction problems 

that are known for making predictions with low errors. 

We grow 𝑵 decision trees, and then our predictor 𝓨 for an input data 𝔁 is given by: 

𝒴 =∑𝜔𝑖𝑇𝑖(𝓍)

𝑁

𝑖

 

where 𝜔𝑖  is some weight and 𝑇𝑖(𝓍) is the value predicted by the 𝑖-th tree of classifier. 

When using random forests is very important to predict a quantitative response and to get a measure of 

uncertainty. No prediction is free from errors, as every model is a simplified representation of reality. The 

prediction error can be tracked down to uncertainty introduced in a model either as a result of input uncertainty 

or during incomplete construction of a model. Thus, the modelling process is very dependent on training data, 

not only because of its uncertainties but also because the data has to include representative samples of land 

covers [15]. Furthermore, wrong assumptions on the relations within the training data can also lead to an 

increase in prediction errors; the error related to bias. Due to their black-box nature, random forest models are 

difficult to interpret and the inherent modelling and input uncertainties are difficult to quantify. Within the last 

ten years statisticians discovered desirable properties of RF that make the models more transparent, especially 

with regards to the quantification of prediction uncertainties. In fact, the uncertainty of the RF predictions can 

be estimated using several approaches, one of them is the quantile regression forests method [16], which 
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estimates the prediction intervals. Other methods include the U-statistics approach as in [17] and the Monte 

Carlo simulations approach [18]. Many of these works have addressed the important challenge of the 

determination of prediction intervals that will contain with a given probability he value of an unobserved 

response. 

Finally, it must be noted that supervised classifiers are based on class assignment rules that derive from a set a 

multiclass training samples. A not negligible quantity of uncertainty stems from the choice of the training set and 

uncertainties related to its labelling. The training data are samples of individual classes and the class assignment 

rules are derived from the entire study area. A high quality training dataset is mandatory to train the classifier 

model. In our learning problem, we have a training set associated with labels taking values in the set of HRLC 

classes. Collecting training patterns whose actual class is known with certainty may be expensive, difficult, or 

even impossible. In particular, reference data for large-scale land cover map acquired by visual interpretation of 

remotely sensed data suffer from little but important factors influencing the quality of visually interpreted data. 

There are many effects tied to land cover class labelling of interpreters, whose activity strongly depends by 

multiple variables. Visual interpretation of high-resolution imagery, even when delivered by well-trained 

professionals, is subject to interpreters’ variation. Due to their perception of different land cover types, 

interpreters may incur in errors. This may have a substantial impact on the later uses of this reference dataset, 

as mentioned in the work by McRoberts [19]. In summary, reference data in the form of visual interpretations of 

remotely sensed data, even by well trained professional interpreters, are subject to substantial interpreter 

disagreement and error. If the reference data are imperfect in the sense of being subject to error, then the 

stratified estimators may be biased, and sometimes substantially biased despite the errors may be small. The 

use of inputs from at least three experienced interpreters to mitigate this effect is recommend. In conclusion, in 

practice, the label (class name) in a training dataset may not be correct (when it is generated by a human 

interpreter, for instance, mistakes are going to happen). Therefore, if the training dataset is not of high quality, 

it may lead to lower classification performances. Thus, classification accuracy is inherently associated with 

uncertainty [20]. 

6 Decision fusion 

Data fusion methodologies should consider source-specific uncertainties in order to estimate the overall 

uncertainty of the classification result. More in detail, decision fusion combines the posterior probabilities 

associated with the outputs of single classifiers when applied to the single data inputs, here namely optical and 

SAR data. Therefore, multiple decisions are combined into a final result by taking into account the level of 

uncertainty associated with each source, which is intrinsically expressed by the corresponding pixelwise posterior 

probability distribution. 

As described in ATBD-v3, the whole class legend Ω is divided into: Ω𝑂, the set of classes that are distinguished 

only by using optical data (“optical-exclusive”); Ω𝑆, the set of classes that are distinguished only by using SAR 

data (“SAR-exclusive”); and Ω𝑐, the set of classes that are discriminated by the classifiers operating with both 

data modalities (common classes). The optical classifier works on the set of classes Ω𝑂 ∪ Ω𝐶 , the SAR classifier 

outputs posterior probabilities for the set of classes Ω𝑆 ∪ Ω𝐶 . The decision fusion stage first merges the optical 

and SAR outputs on the common classes Ω𝐶 , then it takes into account the presence of the exclusive classes Ω𝑂 

and Ω𝑆 through a class-specific combination rule. 

The following subsections discuss uncertainty modelling issues with regard to the families of decision fusion 

methods that are developed, i.e., (i) weighted voting and consensus theory, and (ii) fusion based on Markovian 

modelling (both families are combined with the aforementioned class-specific combination rules). 

6.1 Uncertainty in consensus theory 
Consensus theory [21], [22] involves general procedures with the goal of combining multiple probability 

distributions to summarize their estimates. Since the use of consensus theory simply aims at fusing posterior 
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probabilities coming from different classifiers, it is possible to obtain again a probability distribution. The source-

specific uncertainties are therefore directly combined in the process, leading to an overall uncertainty. 

In the case of the HRLC pipeline, the individual information sources correspond to the outputs of the optical and 

SAR processing chains. Since the two classifiers generally work on different sets of classes, this fusion is possible 

on the set of common classes Ω𝐶  only. Considering this specific case, the two major consensus-theoretic 

approaches, i.e., linear and logarithmic opinion pool (LOP and LOGP) compute functionals 𝒞(𝜔𝑗|𝑥, Ω𝐶) and 

ℒ(𝜔𝑗|𝑥, Ω𝐶) (𝜔𝑗 ∈ Ω) that merge the pixelwise posteriors provided by the optical and SAR processing chains, 

conditioned on the common classes Ω𝐶  and as a function of the multisensor feature vector 𝑥 (see ATBD-v2). 

𝒞 and ℒ do not determine proper probability distributions per se, except in special cases (e.g., when the weights 

sum to one in the case of 𝒞 or when they are uniform in the case of ℒ). However, both functionals can be 

normalized (linearly in the case of LOP and nonlinearly through a softmax operator in the case of LOGP) to derive 

a probability distribution 𝑃ℱ(𝜔𝑗|𝑥, Ω𝐶), that expresses a pixelwise measure of uncertainty on the set of common 

classes. As proven in ATBD-v2, this measure of pixelwise uncertainty is extended to the whole set of classes as: 

𝑃ℱ(𝜔𝑗|𝑥) = 𝑃ℱ(𝜔𝑗|𝑥, Ω𝐶)[𝜆 𝑃(Ω𝐶|𝑂, Ω𝑂 ∪ Ω𝐶) + (1 − 𝜆)𝑃(Ω𝐶|𝑆, Ω𝑆 ∪ Ω𝐶)]

+ 𝜆𝑃(𝜔𝑗|𝑂, Ω𝑂)𝑃(Ω𝑂|𝑂, Ω𝑂 ∪ Ω𝐶) + (1 − 𝜆)𝑃(𝜔𝑗|𝑆, Ω𝑆)𝑃(Ω𝑆|𝑆, Ω𝑆 ∪ Ω𝐶), 

where purple terms result from consensus-theoretic fusion on the common classes, blue terms are derived from 

the output of the optical chain and regard the optical-exclusive classes, red terms are similarly associated with 

SAR-exclusive classes, and 𝜆 ∈ [0,1] is a weight computed as a function of the prior probabilities. The resulting 

𝑃ℱ(𝜔𝑗|𝑥) yields a probability distribution that expresses a pixelwise measure of uncertainty after the consensus 

processing stage. 

6.2 Uncertainty in Markov Random Fields 

Markov random fields (MRFs) are probabilistic graphical models able to include contextual information in the 

form of class interactions between neighbouring pixels. As discussed in ATBD-v3, an MRF is determined by an 

energy function, whose minimization with respect to the labels is equivalent to the application of the maximum 

a-posteriori (MAP) criterion [23]: 

𝑌𝑀𝐴𝑃 = argmax
𝑌

𝑃(𝑌|𝑋), 

where 𝑌 and 𝑋 indicate the random fields of all class labels and feature vectors, respectively, across the whole 

pixel grid 𝐼. In particular, the Hammersley-Clifford theorem specifies the relation between such energy 𝑈(⋅) and 

the posterior probability 𝑃(𝑌|𝑋): 

𝑃(𝑌|𝑋) =
1

𝑍
exp(−𝑈(𝑌|𝑋)) , 𝑍 =∑exp(−𝑈(𝑌|𝑋))

𝑌

, 

where 𝑍 is the normalization constant (named partition function). Considering the MRF model in which only up 

to pairwise clique potentials are non-zero, then the energy can be written as: 

𝑈(𝑌|𝑋) = −∑𝛼 log𝑃ℱ(𝑦𝑖|𝑥𝑖)

𝑖∈𝐼

− 𝛾 ∑ 𝛿(𝑦𝑖 , 𝑦𝑗)
𝑖∈𝐼
𝑗∈𝜕𝑖

, 

where 𝑦𝑖 ∈ Ω is the class label of the 𝑖th pixel, 𝑥𝑖  is its feature vector, 𝜕𝑖 is its neighborhood, 𝑃ℱ(𝑦𝑖|𝑥𝑖) is derived 

from pixelwise fusion (see above), 𝛼 and 𝛾 are weight coefficients, 𝛿(⋅) is the Kronecker impulse, the first 

summation considers pixelwise contributions, and the second one represents the pairwise interactions.  

The uncertainty associated with the class labels predicted according to such an MRF model can be computed as 

a function of the corresponding energy. Indeed, using the aforementioned Hammersley-Clifford theorem yields  

the global posterior probability 𝑃(𝑌|𝑋) that is not a pixel-wise measure of uncertainty and is generally hard to 

compute because the partition function 𝑍 is intractable except in special cases [23].  
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However, the local contextual pixelwise probability 𝑃 (𝑦𝑖|𝑥𝑖 , {𝑦𝑗}𝑗∈𝜕𝑖), i.e., the distribution of the class label of 

each pixel, conditioned to its observations from all sources and to the labels of the neighbouring pixels, can be 

derived from the energy [23] and provides a spatial-contextual measure of uncertainty of the predicted land 

cover.  

While LOGP directly conveys uncertainty in the form of 𝑃ℱ(𝜔𝑗|𝑥), the MRF formulation is based on an energy 

function. Therefore, the uncertainty in MRF should be estimated according to its energy. In order to do that, a 

softmax is applied: 

�̃�𝑀𝑅𝐹 (𝑦𝑖|𝑥𝑖 , {𝑦𝑗}𝑗∈𝜕𝑖) =
exp [− 𝑈 (𝑦𝑖|𝑥𝑖 , {𝑦𝑗}𝑗∈𝜕𝑖)]

∑ exp [− 𝑈 (𝜔𝑘|𝑥𝑖 , {𝑦𝑗}𝑗∈𝜕𝑖)]𝜔𝑘∈Ω

. 

However, the MRF energy depends on the weights 𝛼 and 𝛾 that tune the tradeoff among the various 

contributions to the energy function. This parameters also have an impact on the resulting uncertainty – an 

undesired behaviour given the different meaning of these parameters. In order to output an uncertainty 

distribution that both complies with the posteriors coming from LOGP and reflects the spatial structure of the 

MRF output, the uncertainty estimation is also parametrized with a further parameter 𝜇 so that the overall 

distribution remains similar, although with enhanced spatial regularity: 

�̃�𝑀𝑅𝐹 (𝑦𝑖|𝑥𝑖 , {𝑦𝑗}𝑗∈𝜕𝑖) =
exp [−𝜇 𝑈 (𝑦𝑖|𝑥𝑖 , {𝑦𝑗}𝑗∈𝜕𝑖)]

∑ exp [− 𝜇 𝑈 (𝜔𝑘|𝑥𝑖 , {𝑦𝑗}𝑗∈𝜕𝑖)]𝜔𝑘∈Ω

 

The value for 𝜇 is determined by comparing the distributions (histograms) of the LOGP and MRF uncertainty. 

 

In principle, a further possible measure of spatial-contextual pixel-wise uncertainty would be 𝑃(𝑦𝑖|𝑋), i.e., the 

probability distribution of the label of each pixel, conditioned to all image observations used to compute 

prediction. However, the calculation, estimation, and optimization of 𝑃(𝑦𝑖|𝑋) corresponds to the use of the 

marginal a-posteriori modes (MPM) criterion to MRF-based classification rather than to the MAP criterion. On 

one hand, MPM formulations for MRF-based classifiers are computationally convenient in the case of multiscale 

quadtree graphs. On the other hand, they are remarkably time-expensive in the case of planar graphs because 

of the need to iteratively run time-consuming stochastic samplers (Gibbs or Metropolis sampling) [24]. 

Accordingly, the use of this MPM-based uncertainty measure is deemed substantially disadvantageous in the 

HRLC pipeline. 

6.3 Uncertainty with Deep Learning 

Several formulations involving deep learning are discussed in the ATBD-v3 with regard to classification and fusion 

stages. Deep neural networks [25] allow the computation of pixelwise uncertainty measures. The output of the 

last layer may normally be interpreted probabilistically by using softmax activation functions. Let 𝜎(𝒛) be the 

output quantities, where 𝜎(⋅) is the softmax function and the vector 𝒛 = [𝑧1, 𝑧2, … , 𝑧𝐶] collects the inputs 

resulting from the last hidden layer, with 𝐶 being the number of classes. The softmax output is computed as: 

𝜎(𝒛)𝑖 =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑗𝐶
𝑗=1

, 𝑖 = 1,2, … , 𝐶. 

The softmax function takes as input a vector of real numbers and normalizes it into a new vector of numbers that 

can be interpreted as expressing a probability distribution associated with the predicted label. After applying the 

softmax, each component of the input vector will be in the interval (0, 1), and the components will sum up to 1, 

so that they can be interpreted as probabilities. Accordingly, picking the class that yields the largest value of 

𝜎(𝒛)𝑖  (𝑖 = 1,2… , 𝐶) is interpreted as a formulation of the MAP criterion. 
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Such consideration allows the deep learning formulations discussed in the ATBD-v3 to be automatically 

associated with pixelwise uncertainty measures by inspecting the output values of the softmax activation 

function, before thresholding such values in order to determine the class labels. 

6.4 Uncertainty Output 

The complete posterior probabilities may contain redundant information with respect to the goal of representing 

uncertainty, since the least probable classes may be associated with probability values close to zero. The final 

formulation for uncertainty has taken into account this comment and especially climate modellers' indications 

and data size/budget constraints.  

As the first indicator of the uncertainty, together with the output classification map (corresponding to the most 

probable class on each individual pixel), also the second most probable one is considered on a pixelwise basis. 

Moreover, the posterior probability values for these best and second best classes are also provided together 

with the corresponding classification maps. This allows to greatly reduce the data size for the uncertainty while 

keeping the information that has been deemed more relevant by the Climate Group. In fact, that formulation 

shows among which classes the major uncertainty is and the relevance of the possible doubt (higher when the 

posterior for these two classes are similar and lower as their difference increases). In addition, the optical input 

quality index is included in the uncertainty output, as the optical data is the main source of information and its 

quality directly affects the classifier performance. Therefore, the output for uncertainty includes: 

• Classification maps corresponding to best and second-best thematic classes; 

• Posterior probabilities corresponding to best and second-best thematic classes. 

• Input quality index corresponding to the optical input quality, related to the number and temporal 

distribution of the optical acquisitions used in the composite generation step. 

Their specific format has been defined in agreement with both the Climate Group and the Engineering Team to 

take into account both readability and storage constraints. 

6.5 Uncertainty in the multitemporal cascade model 

The adopted cascade approach is a rigorous probabilistic Bayesian strategy to incorporate temporal dependence 

information in the classification of a time series. In that sense, it combines the posterior probabilities coming 

from LOGP at time 𝑡1 with the posterior probabilities at time 𝑡0. This process directly conveys uncertainty in the 

form of probabilities [26]: 

𝑃𝐹(𝑦𝑖
1|𝑥𝑖

1, 𝑥𝑖
0) ∝  

𝑃𝐹(𝑦𝑖
1|𝑥𝑖

1)

𝑃(𝑦𝑖
1)

∑
𝑃𝐹(𝑦𝑖

0|𝑥𝑖
0)

𝑃(𝑦𝑖
0)

𝑦𝑖
0

𝑃(𝑦𝑖
0, 𝑦𝑖

1), 

where 𝑃𝐹(𝑦𝑖
0|𝑥𝑖

0) are the fused posteriors at 𝑡0 (the ones to propagate backward in time; see ATBD-v3) and 

𝑃𝐹(𝑦𝑖
1|𝑥𝑖

1) are the ones at 𝑡1. It is worth noting that 𝑃𝐹(𝑦𝑖
0|𝑥𝑖

0) coincides with the final posterior probabilities 

obtained at time 𝑡0, as described in Section 6.2. Then, 𝑃(𝑦𝑖
1) and 𝑃(𝑦𝑖

0) are the prior probabilities corresponding 

to 𝑡1 and 𝑡0, respectively, which are often omitted considering that spatial MRF prior is already in the model. 

Then 𝑃(𝑦𝑖
0, 𝑦𝑖

1) is the joint probability matrix (JPM) representing the chances of having a temporal transition 

among certain classes. 

The subsequent application of MRF at time 𝑡 = 𝑡1 follows the same criteria described in Section 6.2: 

�̃�𝑀𝑅𝐹 (𝑦𝑖
1|𝑥𝑖

1, 𝑥𝑖
0, {𝑦𝑗

1}
𝑗∈𝜕𝑖

) =
exp [−𝜇 𝑈 (𝑦𝑖

1|𝑥𝑖
1, 𝑥𝑖

0, {𝑦𝑗
1}
𝑗∈𝜕𝑖

)]

∑ exp [− 𝜇 𝑈 (𝜔𝑘|𝑥𝑖
1, 𝑥𝑖

0, {𝑦𝑗
1}
𝑗∈𝜕𝑖

)]𝜔𝑘∈Ω

, 

thus leading, in the historical case with the multitemporal cascade as well, to a pixelwise uncertainty measure 

that plays the same role as in the static case. 
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7 Multitemporal change detection and trend analysis 

As the last part of the CCI HRLC processing chain, the multitemporal change detection and trend analysis is highly 

influenced by the uncertainties coming from previous steps. In particular, uncertainty is co-related to: i) the 

decision fusion step, ii) the classification maps and iii) the multisensor geolocation part. In consequence, the 

analysis done in previous steps applies in the same way for this last step. 

Since products are developed at pixel-level (see [AD2] for further details), uncertainty will be associated in the 

same way but with more specifically, to the products from abrupt change detection maps (30m). As described in 

[AD2], for abrupt/permanent change maps the Break For Additive Seasonal and Trend (BFAST) [27] allows the 

computation of pixelwise uncertainty measures and there is indeed a function to save the confidence/probability 

of the BFAST method. BFAST is a method that analyses a univariate time series and decomposes it into three 

components: trend (𝑇𝑡), seasonal (𝑆𝑡) and noise (𝑒𝑡). The general model of BFAST is an addictive decomposition 

of the tree components in the form of: 

𝑌𝑡 = 𝑇𝑡 + 𝑆𝑡 + 𝑒𝑡   (𝑡 = 1, 2, … , 𝑛) 

In which 𝑌𝑡 is the observed data at time 𝑡. The model iteratively fits a piecewise linear trend and seasonal model, 

and the intercept and slope of consecutive linear models define breaks in the signal. The breaks detected in the 

pixels denote a potential change in the time series with a date associated. BFAST is available from the 

Comprehensive R Archive Network (CRAN) but is computationally heavy. As a result, it has implemented in 

python to increase the code efficiency and sophisticated functionalities to improve the performance of BFAST.  

BFAST provides several elements as the output. One of the outputs is bp.Vt (the output of the breakpoints 

function for the trend model) that represents the detected breaks in the trend component considering a segment 

size between potentially detected breaks. Also ci.Vt is the output of the breakpoints confint function for the 

trend model that defines lower and upper limits of the confint function in the date interval but always associated 

to a default 95% confidence level. Since a probability for the change date is required, the possible 

implementation is calling separately the confint function in order to retrieve the confidence level associated to 

a change happening within a day from the breakpoint. Starting from a given confidence value lv = 0.99, the model 

decreases the level of confidence (each time 0.01 percent) to reach a fixed "change interval" of length 4. Acquired 

confidence level refers to the percentage of probability, or certainty, that the confidence interval would contain 

the true date of change. 

The slope of consecutive linear models in BFAST can be used to derive the magnitude and direction of abrupt 

changes. The magnitude of change tends to be relatively large for real abrupt changes. So, the magnitude of the 

breaks detected is key to distinguish real abrupt changes from other disturbances of the signal in the time series. 

Moreover, the magnitude of change can be applied to define the uncertainty associated with each pixel. 

As described in [AD2], the feature magnitude is calculated between two adjacent years if enough data is available 

for each year (at least three acquisitions in consecutive months in a year). If enough data is not available for 

consecutive years, the algorithm keeps the first year (with enough data) and checks the number of acquisitions 

in the other years to find a year with sufficient acquisitions in the whole six years of data. If the data availability 

is verified, the year of the change and the probability of change are reported. Thus, considering this procedure 

the value of described as the reliability is introduced that shows the distance between the couple of years that 

the change information is provided and can be considered as a uncertainty value for the reported year of the 

change. The value is a number between 1 – 5 for the changed pixels and 0 for no change. 
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