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1 Introduction 

1.1 Scope of this document 

Sea Surface Salinity (SSS) is an Essential Ocean and Climate Variable, which is increasingly used as part of 
climate studies. SSS measurements are available from three satellite missions, SMOS, Aquarius and SMAP, 
each with very different instrument features leading to specific measurement characteristics.  The Climate 
Change Initiative Salinity project (CCI+SSS) aims to produce SSS Climate Data Record (CDR) to include 
satellite measurements, based on well-established user needs. To generate a homogeneous CDR, 
instrumental differences are carefully controlled by analysing SSS discrepancies, then adjusted based on 
in-depth analysis of the measurements themselves together with independent reference data. However, 
no spatial smoothing or temporal relaxation to reference data is applied in order to maintain the 
variability contained in the original data set. This document gives details on the algorithms used for CDR 
generation. It holds the Algorithm Theoretical Development Basis Document (ATBD) prepared by CCI+SSS 
team, as part of the activities included in the [WP230] of the Proposal (Task 2 from SoW ref. ESA-CCI-
PRGM-EOPS-SW-17-0032). 

1.2 Structure of the document 

This document (ATBD v4.0) is composed of 4 sections and presents the CCI+SSS algorithms implemented 
in the third version of the products (products delivered at the end of the phase 1).  Section 1 is an 
introduction presenting the scope, reference and applicable documents, acronyms, and the structure of 
the ATBD. Section 2 presents the algorithms of the so-called Level 2 products which are swath retrievals 
from L-band sensor SMOS. Section 3 presents the Level 3 SSS products, which are averaged intermediate 
products obtained sensor by sensor, without mixing inter-sensor information.  Level 4 data set, produced 
each year, form the core of the CCI+SSS products  and is described in §4. In Section 5, we provide summary 
and discuss the perspectives. The Annex presents the L2 and L3 algorithms.  

1.3 References 

1.3.1 Applicable Documents 

ID Document Reference 

AD01 Sea Surface Salinity Climate Change Initiative Phase 1 

Data Access Requirement Document. 

SSS_cci-D1.3-DARD-
v1r4 

AD02 SMOS Level2 Algorithm Theoretical Baseline Document (ATBD). Available at: 

https://earth.esa.int/documents/10174/1854519/SMOS_L2OS 
-ATBD 

SO-TN-ARG-GS-
0007_L2OS-ATBD 
v3.13 

https://earth.esa.int/documents/10174/1854519/SMOS_L2OS%20-ATBD
https://earth.esa.int/documents/10174/1854519/SMOS_L2OS%20-ATBD
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ID Document Reference 

AD03 CATDS (2017). CATDS-PDC L3OS 2P Algorithm Theoretical Basis Document. 
Available at: 

https://www.catds.fr/content/download/78841/file/ATBD_L3
OS_v3.0.pdf 

 

ATBD_L30S_v3 

AD04 Aquarius Official Release Level 2 Sea Surface Salinity v5.0 ATBD. Available at: 

 ftp://podaac-ftp.jpl.nasa.gov/allData/aquarius/docs/v5/ 

 

 RSS Technical Report 
120117 

 

AD05 Aquarius Official Release Level 3 Sea Surface Salinity v5.0.  

 Aquarius L2 to L3 Processing Document.ATBD. Available at: 

 ftp://podaac-ftp.jpl.nasa.gov/allData/aquarius/docs/v5/ 

AQ-014-PS-
0017_Aquarius_L2toL
3ATBD_DatasetVersio
n5.0 

AD06 RSS SMAP Level 2 Sea Surface Salinity V3.0 40km Validated Dataset. Available 
at: 

ftp://podaac-ftp.jpl.nasa.gov/allData/smap/docs/V3/ 

RSS Technical Report 
101518 

AD07 Sea Surface Salinity Climate Change Initiative Phase 1 

Product Specification Document 

SSS_cci-D1.2-PSD-v1r6 

AD08 Sea Surface Salinity Climate Change Initiative Phase 1 

Algorithm Theoretical Development Basis Document 

SSS_cci-D2.5-PVP-v1.0 

AD09 CCI Data Standards CCI-PRGM-EOPS-TN-
13-0009 

AD10 Sea Surface Salinity Climate Change Initiative Phase 1 

End-to-End ECV Uncertainty Budget (E3UB) 

SSS_cci-D2.3-E3UB-
v1.2 

AD11 NASA/RSS SMAP Salinity:  

Version 5.0 Validated Release, March 31, 2022                                                           

RSS Technical Report 
033122       

AD12 Sea Surface Salinity Climate Change Initiative Phase 2 

End-to-End ECV Uncertainty Budget (E3UB) 

SSS_cci-D2.3-E3UB-
v4r0 

1.3.2 Reference Documents 

ID Document Reference 

RD01 Boutin, J., N. Martin, N. Kolodziejczyk, and G. Reverdin (2016a), Interannual 
anomalies of SMOS sea surface salinity, Remote Sensing of Environment 

doi:http://dx.doi.org/1
0.1016/j.rse.2016.02.0
53 

RD02 Kolodziejczyk, N., J. Boutin, J.-L. Vergely, S. Marchand, N. Martin, and G. 
Reverdin (2016), Mitigation of systematic errors in SMOS sea surface salinity, 
Remote Sensing of Environment 

doi:http://dx.doi.org/1
0.1016/j.rse.2016.02.0
61. 

RD03 Liang Hong, Normal Kuring, Joel Gales and Fred Patt  (2017), AQ-014-PS-
0017_Aquarius_L2toL3ATBD_DatasetVersion5.0 

 

https://www.catds.fr/content/download/78841/file/ATBD_L3OS_v3.0.pdf
https://www.catds.fr/content/download/78841/file/ATBD_L3OS_v3.0.pdf
ftp://podaac-ftp.jpl.nasa.gov/allData/aquarius/docs/v5/
ftp://podaac-ftp.jpl.nasa.gov/allData/aquarius/docs/v5/
ftp://podaac-ftp.jpl.nasa.gov/allData/smap/docs/V3/
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ID Document Reference 

RD04 Fred Patt,  Liang Hong (2017), AQ-014-PS-
0018_AquariusLevel2specification_DatasetVersion5.0 

 

RD05 Meissner, T. and F. J. Wentz, 2016: Remote Sensing Systems SMAP Ocean 
Surface Salinities [Level 2C, Level 3 Running 8-day, Level 3 Monthly], Version 
2.0 validated release. Remote Sensing Systems, Santa Rosa, CA, USA. 

www.remss.com/missi
ons/smap, 
doi:10.5067/SMP20-
2SOCS 

RD06 Boutin J., J.-L. Vergely, S. Marchand, F. D'Amico,  A. Hasson, N. Kolodziejczyk, 
N. Reul, G. Reverdin, J. Vialard (2018), New SMOS Sea Surface Salinity with 
reduced systematic errors and improved variability, Remote Sensing Of 
Environment 

doi:http://dx.doi.org/1
0.1016/j.rse.2018.05.0
22 

RD07  Yiwen Zhou ; Roger H. Lang ; Emmanuel P. Dinnat ; David M. Le Vine (2017), 
L-Band Model Function of the Dielectric Constant of Seawater,  IEEE 
Transactions on Geoscience and Remote Sensing ( Volume: 55 , Issue: 12) 

 

RD08 Gaillard F. (2015), ISAS-13 temperature and salinity gridded fields. SEANOE. 

 

http://doi.org/10.1788
2/45945. 

RD09 Merchant, C. J., Paul, F., Popp, T., Ablain, M., Bontemps, S., Defourny, P., 
Hollmann, R., Lavergne, T., Laeng, A., de Leeuw, G., Mittaz, J., Poulsen, C., 
Povey, A. C., Reuter, M., Sathyendranath, S., Sandven, S., Sofieva, V. F., and 
Wagner, W.(2017), Uncertainty information in climate data records from 
Earth observation, Earth Syst. Sci. Data, 9, 511–527 

https://doi.org/10.519
4/essd-9-511-2017, 
2017 

RD10 Boutin et al., Satellite-based Time-Series of Sea Surface Salinity designed for 
Ocean and Climate Studies, JGR-Oceans, in revision, 2021. 

 

RD11 Boutin, J., J.-L. Vergely, E. P. Dinnat, P. Waldteufel, F. D'Amico, N. Reul, A. Supply, 

and C. Thouvenin-Masson (2020), Correcting Sea Surface Temperature Spurious 

Effects in Salinity Retrieved From Spaceborne L-Band Radiometer 

Measurements, IEEE Transactions on Geoscience and Remote Sensing, 1-14, 

doi:10.1109/tgrs.2020.3030488. 

 

RD12 Klein, L., and C. Swift (1977), An improved model for the dielectric constant of 

sea water at microwave frequencies, IEEE Transactions on Antennas and 

Propagation, 25(1), 104-111. 
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1.4 Acronyms 

AD  Applicable Document 

ATBD   Algorithm Theoretical Basis Document 

Aquarius Aquarius NASA/SAC-D sea surface salinity mission 

BV Boutin-Vergely sea water dielectric constant model 

CCI The ESA Climate Change Initiative (CCI) is formally known as the Global Monitoring 
for Essential Climate Variables (GMECV) element of the European Earth Watch 
programme 

CCI+ Climate Change Initiative Extension (CCI+), is an extension of the CCI over the 
period 2017–2024 

CMEMS Copernicus Marine Environmental Monitoring Service 

DARD   Data Access Requirements Document 

DOI   Digital Object Identifier 

DPM   Detailed Processing Model 

ECMWF  European Centre for Medium Range Weather Forecasts 

EASE  Equal-Area Scalable Earth (EASE) Grid 

ECV   Essential Climate Variable 

EO   Earth Observation 

FOV  Field Of View 

Hs  Significant Wave Height (see also SWH) 

ISAS  In Situ Analysis System 

KS  Klein and Swift sea water dielectric constant model 

MW  Meissner and Wentz sea water dielectric constant model 

NASA   National Aeronautics and Space Administration 

NOAA   National Oceanic and Atmospheric Administration 

NOP   Numerical Ocean Prediction 
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NWP   Numerical Weather Prediction 

OTT  Ocean Target Transform 

SMAP  Soil Moisture Active Passive  

SSS   Sea Surface Salinity 

SST  Sea Surface Temperature 

SWH   Significant Wave Height (see also Hs) 

TBC  To Be Confirmed 

UCR/CECR Uncertainty Characterisation Report (formerly known as the Comprehensive Error 
Characterisation Report) 

URD   User Requirements Document 

VOS   Volunteer Observing ships 

WS  Wind Speed 
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2 L-band SSS retrieval algorithm 

2.1 Level 2 Algorithms 

2.1.1 Introduction 

In the second phase of the CCI+SSS project (April 2022 – July 2023), the generation of the L4 
CCI+SSS dataset used input data at levels 2 (i.e. non averaged retrieved SSS along each satellite 
orbit) for SMOS and SMAP and Level 3 (i.e. daily ascending and descending orbits separately) for 
Aquarius sensor. These data are all projected on the same regular grid at a spatial sampling of 
0.25°. A global product is given on this grid and two polar products are generated from global 
product interpolation (nearest neighbour interpolation) over two polar EASE2 grids (north and 
south) at 25km of resolution.     

The SMOS L2 products come  from DPGS (ESA center).  

The SMAP L2 and Aquarius L3 products come from official space agency dedicated center (RSS ). 
They are therefore not generated by the CCI+SSS processing chains. 

The main characteristics of L-band radiometric satellite missions enabling global SSS 
measurements are summarized in Table 1.  

Table 1. Missions characteristics 

SMOS MISSION AQUARIUS MISSION SMAP MISSION 

Mission Characteristics 

-L-band interferometry. 0°-
~60° earth incidence angles 

-revisit times: 4 days 

-resolution: about 45 km  

-repeat sub-cycle: 18 days 

-see more in (Font et al., 
2010; Y.  Kerr et al., 2010) 

 

-L-band real-aperture 
radiometer. 3 fixed beams at 
28.7, 37.8, and 45.6° earth 
incidence angles 

-revisit times: 7 days 

-resolution: about 150 km 

-repeat cycle: 7 days 

-see more in  (Lagerloef et al., 
2008) 

-L-band real-aperture 
radiometer. Conical scanning, 
40° earth incidence angle 

-revisit times: 3 days 

-resolution: about 45 km 

-repeat cycle : 8 days 

-see more in (Piepmeier et al., 
2017) 

Vicarious calibration 

-Spatially constant and 
time-varying mean 
calibration: OTT: 10day 
mean differences in the 

- Spatially constant and time-
varying mean calibration: 
OTC: 7day mean differences 
over global ocean using 

- Zonal calibration: emissive 
reflector correction to minimize 
orbital biases, estimated for 
each day of the year using 



 

Climate Change Initiative+ (CCI+) 
Phase 2 

Algorithm Theoretical 
Development Basis Document 

Ref.: ESA-CCI-PRGM-EOPS-SW-17-0032 

Date:  15/07/2023 

Version : v4.0 

Page: 18 of 87 

 

© Commercial in Confidence ARGANS Ltd 2023 

south-east Pacific Ocean 
using WOA 2009 SSS 
climatology. 

 

 

 

Scripps Argo SSS (Meissner et 
al., 2018). 

 

 

Scripps Argo SSS. It is the same 
for all years (Meissner et al., 
2019) 

- Spatially constant and time-
varying mean calibration: OTC: 
3day mean differences over 
global ocean using Hycom SSS 
(Meissner et al., 2019). 

-specific processing (v5) for ice 
contamination mitigation.  

RFI filtering 

Outlier detection 
performed in Level 2 
processing. 

 

Specific RFI detection (Le 
Vine and Matthaeis, 2014) 

Specific RFI detection (Soldo et 
al., 2019) 

   

 

2.1.2 Input data for L4 CCI+SSS estimation 

2.1.2.1 Measurement products 

SMOS Level 2 

CCI SMOS L2 reprocessing has been performed over the period [01/2010-10/2022] by using 
SMOS L2 products. The L1 products used as input correspond to the v7 L1c processed by the 
DPGS which include gibbs2 algorithm. 

SMOS level 2 corresponds to  ESA v700 L2OS products. 

SMAP Level 2  

In CCI V4, we directly use as input  SMAP RSS Level 2 v5.0 products. These are  provided daily at 
40 km resolution. The data are split into ascending and descending products and between the 
fore and aft views. Details on the processing algorithms can be found in [AD06] and [AD11]. 

Aquarius Level 3  

Aquarius acquisitions present heterogeneous sampling according to latitude and longitude. Also, 
the zonal and meridian resolution is not homogeneous. In order to use the Aquarius data, it is 
therefore necessary to carry out a first spatial homogenization of the data. RSS offers such an L3 
product which distinguishes ascending and descending orbits and which is given on a regular grid 
at 1 °. In view of the results of the first versions  an analysis has shown that Aquarius had too 
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much weight in the error budget which generated too smooth L4 products. In order to give more 
weight to the other sensors, the error on the Aquarius data has been multiplied by 2. Note that 
a representativeness error is added to the Aquarius measurement error.  

2.1.2.2 SST correction    

An empirical correction depending on SST is applied for SMAP and Aquarius SSS (AD12).  

For SMOS, BV constant dielectric model has been updated and a correction has been applied 
(AD12). . 

2.1.2.3 Regular grid projection 

The choice of the CCI grid fell on the EASE rectangular regular 0.25° grid. Sampling in longitude 
and latitude is constant. Before aggregation, the SMOS, SMAP and Aquarius data must appear 
on the same grid. It is therefore a question of interpolating the salinities from one grid to another. 
For SMOS, the initial reconstruction grid is the ISEA 12 km grid. This is an oversampled grid at 
12km resolution. The projection from the ISEA grid to the regular grid is done by nearest 
neighbors. For SMAP, originally on a 0.25°grid, we also proceed by closest neighbors because of 
small shift. For Aquarius, the closest neighbor approach is not recommended because, given the 
native grid resolution of 1 °, this generates artificial constant SSS values on 1° per 1° tiles. To avoid 
this effect, a linear interpolation with a quadratic weighting according to the distance of the 4 
nearest neighbors has been implemented. Moreover, if only three neighbors are available, the 
interpolation is carried out which avoids artificially removing information on the swath edges. 

2.1.2.4 Representativity uncertainties and a priori variability. 

The L4 salinity retrieval algorithm is an optimal Bayesian interpolation. This interpolation scheme 
needs as input the covariance of the a priori salinity field. This covariance is described in section 
2.2.2.1. In addition, salinities coming from different sensors which have different spatial 
resolutions are mixed. In this situation, it is a matter of adding a representativity uncertainty to 
the measurement error. This representativity uncertainty also depends on the temporal 
smoothing (monthly or weekly). It is calculated from Mercator salinity fields.   

2.2 Level 4 algorithms 

2.2.1 Introduction 

In order to merge the SSS of the different sensors, we start directly from the SMOS and SMAP L2 
products and from the Aquarius L3 products as respectively described in section 2.1.2.1 after a 
projection on the 0.25° regular grid (section 2.1.2.3) and some additive corrections and filtering 
(see [AD12]).  
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Monthly and weekly maps of SSS are derived from the three satellite missions using a temporal 
optimal interpolation (OI). We do not apply any spatial smoothing so that the spatial resolution 
of each level 4 SSS is roughly 50 x 50 km2 over the 0.25° regular grid. We correct for systematic 
differences between the SSS from the various satellite missions acquired with different geometry 
as will be described below. We provide an uncertainty associated to the CCI L4 SSS product.  

In the following, we describe the methodologies we follow to derive level 4 SSS fields, 
successively including: 

- the optimal interpolation method,  

- the characterization of the uncertainties on level 2 SSS derived from each satellite mission, 
linked to observational uncertainties (Vinogradova et al., 2019), (with a covariance matrix 
denoted Cd in the following). 

The quantification of the SSS natural variability involved in: 

- the representativity uncertainty, also called sampling uncertainty (Vinogradova et al., 2019), 
which originates from the different spatial resolutions of the various sensors, (with a covariance 
matrix denoted Cr in the following),  

- the spatio-temporal variability relative to a mean value used to adjust the OI estimate 
(covariance matrix denoted C2 in the following). 

In order to estimate SSS at a given time, the algorithm is using an optimal interpolation. This 
interpolation is applied grid node per grid node, without spatial smoothing by merging 
temporally the SSS from the three sensors. Indeed, we want to preserve the spatial and temporal 
dynamics of the SSS and to avoid a spatial catch-up made to monthly reference climatological 
fields which might remove or attenuate important interannual and/or large mesoscale variations.   

The approach adopted to generate Level 4 CCI+SSS products is as follows: 

• The bias correction exploits as much information as possible from the data. SSS that seem 
to be affected by various contaminations (coastal, RFI, galactic, solar, etc.) are kept in our 
algorithm. It is considered that these contaminations can, to some extent, be corrected a 
posteriori, since in most cases these effects lead to systematic errors that can be confused 
with real geophysical signals. In fact, in some cases, satellite data provide information on 
strong geophysical signals that can reach several units in the Practical Salinity Scale (pss). 
In this situation, a bias in the order of the pss does not justify the removal of the data.  

• The self-consistency of the measurements (averaged over a monthly time window) over 
the whole time period (2010-2022), and accounting for the natural variability of the SSS 
expected in this window, allows the different inter-sensor biases to be corrected 
relatively to each other. An a posteriori 3 sigma filtering is then applied to remove 
outliers. These filters are applied with respect to the natural SSS variability that must be 
taken into account in the satellite SSS estimation process. Indeed, if a low variability is 
expected (in comparison to SSS L2 retrieval error), the filters applied must be more 
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severe. Otherwise (e.g., at river mouths, or, in strong currents where natural SSS 
variability is high), data that differ significantly (from more than 3 times the retrieval error 
on the SSS) from the mean should be retained.  

• The self-consistency criteria considered in the algorithms is temporal. A spatial correction 
of the SSS according to a certain reference (e.g. WOA climatology) could affect spatial and 
temporal dynamics and could remove some of the interannual signals and mesoscale 
signatures. This is why we didn't apply spatial correction. We therefore consider 
coastal/ocean biases that are constant over time. These biases can be corrected without 
affecting geophysical SSS dynamics. In practice, the SSS correction/estimation is done grid 
node per grid node considering the inter-sensor self-consistency in SSS. To correct for 
seasonal latitudinal biases, a relative correction is also applied on SMOS, SMAP L2 data 
and Aquarius L3 data, similar to what is described in Boutin et al (2018). It applies to all 
basins and should not affect the interannual dynamics. The time window applied for the 
SMOS latitudinal correction is [2013-2021] in order to reduce RFI contamination effect in 
the North hemisphere (see [AD12]).   

• The different corrections are relative. As a result, SSS anomalies are available at the end 
of the correction processing. These anomalies are then calibrated against an absolute 
reference. The derived bias should be a time-independent correction in order to maintain 
the temporal dynamics of the SSS. This correction is done by using ISAS quantiles over a 
time window over the [2010-2022] period, after sss_qc and isc_qc flags filtering. In some 
cases (e. g. high latitudes), coastal biases are not constant over time due to variations in 
ice edges. A specific processing shall be found in these areas and will be the subject of 
future studies.  

• In the settings of the various processing parameters (time correlation length, a priori 
variability), either spatially smooth fields, or slowly-evolving time fluctuations, are 
estimated to reduce errors as much as possible. This is why the CCI+SSS L4 products are 
split into two sub-products: a monthly product and a weekly product.      
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Figure 1:main L4 processing steps. 

The algorithm steps to perform the corrections in order to estimate the unbiased SSS are as 
follows: 

1. Correction of L2/L3 SSS from different biases.  (see [AD12]). 
2. Estimation of the inter-sensor biases and 30-day SSS are done simultaneously (section 

2.2.2.4). The inter-sensor biases are considered constant for each month and evaluated 
assuming SSS varies slowly over a month (Figure 3). This computation is carried out by an 
optimal interpolation whose cost function is described in section 2.2.2.3. 

3. Estimation of errors of the monthly SSS (section 2.2.2.7). Detection of outlier .  
4. Correction of individual SSS and computation of a weekly-averaged SSS field (section 

2.2.2.5). In this step, the bias correction is fixed and the 30-day SSS field is taken as a 
priori. We estimate fluctuations around this monthly field to achieve a time resolution of 
7 days.  

5. Estimation of errors of the weekly SSS (section 2.2.2.7).  
6. Absolute calibration of SSS (section 2.2.2.6). 

2.2.2 L4 algorithm 

2.2.2.1 Generation of level 4 fields 

To better understand the process, let's consider SSSobs observations from a single sensor with a 
measurement covariance Cd. First, systematic uncertainties are ignored. To estimate an SSS time 
series of spatial resolution R1 and temporal resolution T1, knowing that the observed data SSSobs 
are at spatial resolution r1 and temporal resolution t1, the cost function to be minimized is 
written (as a scalar product <X|Y>): 
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C(SSS)=<SSSobs-SSS|Ct-1·(SSSobs-SSS)>+<SSS-SSSprior|C2-1·(SSS-SSSprior)> (1) 

uncertainty Cr added to take into account the difference in resolution of fields (R1;T1) and (r1;t1): 

Ct=Cd+Cr 

This covariance is seasonal and specific to each grid node.  

C2 corresponds to the variability of the field with the spatio-resolution (R1;T1) relative to the 
SSSprior field. Again, this variability is seasonal and different for each grid node.  

However, each sensor must be considered independently in the cost function considering the 
space and time resolution of each product. In the case where we estimate the monthly SSS field 
from the three sensors SMOS, SMAP, and Aquarius, we therefore have: 

C(SSS)=<SSSobs_smos-SSS|Ct_smos-1·(SSSobs_smos-SSS)> +  

<SSSobs_smap-SSS|Ct_smap-1·(SSSobs_smap-SSS)> + 

<SSSobs_aqua-SSS|Ct_aqua-1·(SSSobs_aqua-SSS)> + 

<SSS-SSSprior|C2-1·(SSS-SSSprior)> 

In the SMOS Aquarius and SMAP covariance uncertainty, we add the representativity uncertainty 
that corresponds to the transition from acquisition time (about one second) to monthly 
resolution (30 days) or to weekly resolution (7 days). Also, covariance corresponding to variability 
is used in order to model the transition between monthly and weekly dynamic. These 
representativity uncertainties and this variability are computed from high resolution Mercator 
outputs.  

Finally, the cost function also contains estimation of systematic uncertainty, also called biases. 
For each type of acquisition, a different relative bias is considered. Only a constant bias over the 
whole time series is taken into account, the latitudinal bias being corrected beforehand. An a 
posteriori uncertainty term, corresponding to a L4 SSS uncertainty, is also derived. 

The methodology used to estimate observational random uncertainty, representativity 
uncertainty and SSS variability considered in the algorithm is described in the following sections. 
An example of climatological monthly SSS variability, the dominant term among the 
representativeness uncertainty and the variabilities between the several spatio-temporal scales 
involved in the OI, is illustrated on Figure 2. The main regions of high variability are consistent 
with expectations i.e. river outflow regions (Amazon, Congo, Mississippi, Ganges) and Gulf 
Stream variability.   
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Figure 2: Examples of climatological maps of monthly SSS variability relative to the whole period SSS mean, that are considered in 
the optimal interpolation. a) February; b) May; c) August; d) November. 

In order to estimate weekly SSS, we start from monthly SSS field estimate during the first step. 
In other words, the fluctuations of the weekly SSS are computed according to the monthly 
solution. For doing this in an OI context, we have to consider the variability of the weekly 
fluctuations relatively to the monthly field, i.e., not to consider the whole variability but only the 
relative variability. This variability has been computed by using Mercator field.  

2.2.2.2 Systematic uncertainty of satellite SSS measurements: 

We then remove main remaining systematic uncertainty following the methodology described in 
(Boutin et al., 2018) but applied to different sensors. It considers zonal seasonal varying biases 
(e.g. those linked to solar or galactic effects), as well as a constant bias over time which varies as 
a function of the location on the globe, the instrument and the geometry of observation (e.g. 
land-sea contamination): 

SSSobs(t, , ,X, xorb)=SSSref (, ) + SSSrel (t, , ) – bc(, ,X, xorb)–blat(,X,xorb,m)     (1) 

where SSSobs is the observed SSS, t is the time of the measurement, , and  are respectively the 
latitude and the longitude of the considered pixel over the ocean, X corresponds to a geometry 
of observation, xorb indicating the satellite orbit direction (ascending or descending); bc is a 
correction constant in time, blat is a zonal correction that varies seasonally as a function of the 
month, m. blat and bc are relative corrections with respect to an arbitrary reference SSS constant 
over time, SSSref which corresponds to the prior SSS in the Bayesian scheme (see 2.2.2.3). The 
residuals of SSSobs - SSSref + bc + blat correspond to the relative variations of SSS with respect to 
SSSref and are called SSSrel (see example on Figure 3ab).  

blat is pre-processed at L2/L3 sensor by sensor (see [AD12]) before bc and SSSrel retrieval.   
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bc are derived with SSSrel through a least square minimization approach, and through a series of 
iterations. The arbitrary reference SSSref is taken as the mean of ISAS SSS over 12 year period. At 
the end of the correction process, the whole corrected SSS time series are adjusted with a time-
invariant shift derived from intercomparison of a quantile of corrected SSS and of ISAS SSS (Figure 
3d). In regions with low SSS variability the 50% quantile (median) is considered, and it is increased 
up to 80% in regions with high SSS variability, where SSS statistical distribution is skewed towards 
low values which are not well represented in ISAS fields, due to the Argo undersampling and ISAS 
smoothing. 

At L-Band (frequency of 1.4GHz), the penetration depth (the skin depth) is 1cm. In most situation, 
this depth represents well the first meters of the upper ocean, except for a few hours after a 
rainfall or in very stratified regions like river plumes. In rainy areas, the SSS retrieved from L-Band 
radiometers is fresher than the ones measured at a few meters’ depths or in the non-rainy 
surrounding regions. On monthly SSS averaged over a longitudinal band centred on the ITCZ this 
effect is estimated to be up to 0.1, smaller in other regions [32]. Hence, before merging products, 
the salinity freshening associated with instantaneous rain rate has been corrected or filtered out 
in SMOS and SMAP salinities entering in CCI L4 v4 SSS using, for SMOS, a relationship between 
salinity freshening, wind speed and satellite rain rate (IMERG) [AD12]. 
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Figure 3: Principle of the self-consistency approach. Example of a grid point near the Amazon plume (48°W, 5.2°N) affected by 
land sea contamination, seen under various satellite geometry during ascending orbits (SMOS L2 SSS, left hand side of the FOV, 
green points; SMAP L2 SSS, aft antenna, red points; Aquarius L3 daily SSS, blue points). a) Satellite SSS before correction (SSS obs) 
and SSSref (black line) ; b) Satellite SSS after relative adjustment (SSSrel+SSSref) and SSSref (black line); c) Satellite SSS after relative 
adjustment (SSSrel+SSSref), weekly OI relative SSS (black) and ISAS SSS (light blue); d) Same as c) but after absolute calibration of 
the weekly OI SSS by adjusting the 80% quantile of the weekly OI SSS statistical distribution to that of the ISAS SSS.  

 

2.2.2.3 Parameter estimation 

The algorithm is therefore looking for solutions SSS(t) and bc that both minimizes the cost 
function. Each grid node is processed separately. All available SSS data associated with the grid 
node considered are used by the algorithm.  The problem is linear. To minimize the cost function, 
a classic Raphson-Newton descent is used. 

SSSobs is the observation vector that contains SMOS, SMAP and Aquarius data: 

SSSobs= (

SSSsmos
SSSaqua
SSSsmap

) 

The parameter vector is written: 

m=(

SSS
bc_smos
bc_aqua
bc_smap

) 
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bc_smos, bc_aqua,bc_smap are vectors that contain the biases for each type of acquisition 
(ascending/descending,dwell lines, fore-aft ...etc) that can be grouped into a vector bc. We will 
take as a priori bc=0 for all sensors and acquisition types. SSS is a function according to the time 
and is estimated every day over the 10 year period.  

The vector parameter a priori is written: 

m_prior= (

SSSref

0
0
0

) 

SSSref is the starting SSS used as a priori (this value is constant over time). It is taken equal to the 
mean ISAS SSS taken over 10 years.   

If we call H, the matrix of partial derivatives: 

H=

[
 
 
 
 
 
 
∂SSSsmos

∂SSS

∂SSSsmos

∂bc_smos

∂SSSsmos

∂bc_aqua

∂SSSsmos

∂bc_smap
∂SSSaqua

∂SSS

∂SSSaqua

∂bc_smos

∂SSSaqua

∂bc_aqua

∂SSSaqua

∂bc_smap
∂SSSsmap

∂SSS

∂SSSsmap

∂bc_smos

∂SSSsmap

∂bc_aqua

∂SSSsmap

∂bc_smap]
 
 
 
 
 
 

 

where :  
SSSsensor=F(m)=SSS-bc_sensor 

with "sensor" = smos (SMOS), aqua (Aquarius) or smap(SMAP).  

This matrix is calculated on the observation points.   

The covariance matrices used are as follows: 

- Cd the error matrix,  

- Cm the matrix of SSS variability and a priori error on bc, 

- Cr the matrix of representativity errors. 

Cd=[
Cd_smos 0 0

0 Cd_aqua 0
0 0 Cd_smap

] 

 

Cm= [
CSSS 0

0 Cbc
] 
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CSSS is a time smoothing operator that contains the expected variability that is provided as 
auxiliary data. Thus, the covariance of the SSS that links two times t1 and t2 is written: 

CSSS(t1,t2)=sigSSS(t1)sigSSS(t2)exp(-
(t1-t2)2

ξ2
) 

with ξ=25 days and 6 days for monthly and weekly products respectively.  

"sigSSS" is interpolated temporally to the acquisition times from seasonal variability. 

"Cbc" is a diagonal matrix that contains the a priori standard deviation of biases. This standard 
deviation is set at 4pss.  

The Cr matrix corresponds to representativity errors: 

 

Cr= [
Cr_smos 0 0

0 Cr_aqua 0
0 0 Cr_smap

] 

In addition to measurement errors, representativity errors are added: 

Ct=Cd+Cr 

Representativity errors are reported monthly. They are interpolated temporally to the 
acquisition times.  

In this formalism, the cost function is written, for each grid node: 

C(SSS,bc)=<SSSobs-F(m)|Ct-1 ∙ (SSSobs-F(m))>+ <m-m_prior|Cm-1 ∙ (m-m_prior) >  

with: 

F(m)=SSS-bc 

We look for SSS_est and bc_est that minimize C(SSS,bc). The solution of minimization is written: 

m_est=m_prior+Cm∙HT ∙ (H∙Cm∙HT+Ct)-1 ∙ (SSSobs-F(m_prior)) 

where "T" indicates the transpose operator. 

2.2.2.4 Estimation of monthly SSS 

In order to estimate the monthly SSS, we proceed in 3 steps:  
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1) a first estimation of the biases and time series of SSS, grid node by grid node is performed, 

2) a 3-sigma filtering of the observed SSS in comparison with the estimated SSS is done. 

 The aim here is to identify any outliers against the returned SSS field. Outliers can be linked to 
intermittent RFIs. It is considered here that stable RFI contamination can be corrected.  

3) a second estimate of SSS biases (bc) and SSS time series after removing outliers. 

The relative biases bc are estimated from the averaged ISAS SSS  taken as SSS a priori.  

2.2.2.5 Estimation of weekly SSS 

To estimate the weekly SSS, the biases calculated at the monthly SSS are frozen (it is assumed 
that the biases will not be better estimated from a weekly smoothing). We start from the monthly 
SSS as a priori. We try to estimate the weekly fluctuations around this a priori. We estimate the 
weekly fluctuations around this a priori, taking into account the acceptable SSS variability 
between weekly and monthly fields that was derived as a monthly climatology from the Mercator 
model. A 3-sigma filter is used in order to eliminate outliers that deviate too far from what is 

expected. Here, 𝜎 = √𝑒𝑟𝑟𝑜𝑟_𝐿22 + 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦2. This eliminates outliers that deviate too far 
from what is expected. The weekly SSS field estimate is done in a single step. 

2.2.2.6 Absolute correction 

At the end of the inter-sensor bias correction step, the salinities obtained are set on average of 
the SSS of all sensors. However, the SSS estimation can itself be affected by a bias. This is 
corrected by adjusting a quantile of the CCI and ISAS SSS statistical distributions in each grid node 
over the period considered. The dynamics of the SSS are not affected by this adjustment as only 
one constant value, grid node per grid node, is added for the entire period. In regions where SSS 
variability is low, we assume that high frequency variability better sampled by CCI than by ISAS 
does not affect significantly the median of the SSS and we therefore adjust both SSS median (50% 
quantile). In regions with larger variability, given that intermittent freshening is much more 
frequent than intermittent over-salting, we expect the high part of the SSS distribution to be less 
affected by the higher frequency sampling by satellite than by ISAS. Hence in case of high weekly 
variability, we perform the calibration of CCI SSS on ISAS SSS, not by using the median but a high 
quantile, in order to promote the calibration on the high SSS values. A high quantile is not used 
everywhere as in case the SSS error is greater than the variability, the high quantile of the satellite 
SSS is expected to differ (be higher) from the one of ISAS. 

If the variability is greater than 0.8, the quantile is taken as 80%. If the variability is between 0.6 
and 0.8, we take a quantile intermediate between 50% and 80% that varies linearly with the SSS 
variability. The map of quantiles used for the absolute calibration of the SSS is given in Figure 4. 
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Figure 4: Quantile map used for the SSS absolute calibration. x and y axis units in pixel number for longitude and latitude 
respectively.  

2.2.2.7 Error budget 

The computation of theoretical errors is obtained directly from the pseudo hessian matrix. 

Cpost=Cm-Cm∙HT ∙ (H∙Cm∙HT+Ct)-1 ∙ H ∙ Cm 

Note that the error a posteriori is necessarily lower than the variability introduced via the 
operator Cm. In the monthly case, this variability corresponds to the expected monthly 
fluctuations shown in Figure 2. In the weekly case, the variability is calculated relative to the 
monthly field. The latter is generally lower than the monthly variability. The a posteriori error 
obtained on the weekly fields should therefore be lower than that obtained on the monthly 
fields. However, this is only true if, to obtain the weekly fields, we started from noise-corrected 
monthly fields, which is not the case. The propagation of errors on the weekly fields must 
therefore take into account errors on the monthly field. Thus, for the monthly fields, we have: 

Cpost_month=Cm_month-Cm_month∙HT∙(H∙Cm_month∙HT+Ct)-1 ∙ H ∙ Cm_month 

and for the weekly fields: 

Cpost_week=Cm_tot+Cm_tot∙HT ∙ (H∙Cm_tot∙HT+Ct)-1 ∙ H ∙ Cm_tot 

where : 

Cm_tot=Cm_month+Cm_week 

with Cm_month, the monthly variability and Cm_week, the weekly variability relative to the 
monthly variability.  
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The a posterior errors on the monthly and weekly fields are therefore obtained as follows: 

 

σSSSmonth=√diag(Cpost_month) 

σSSSweek=√diag(Cpost_week) 

The number of outliers is also calculated on this same basis as well as the number of data 
available. The window sizes used are respectively +/- 30 days and +/- 10 days for monthly and 
weekly products respectively. 

In order to give an idea of the impact of the data in terms of information, a specific indicator 
named PCTVAR is computed. It corresponds to the ratio of the a posteriori variance (the square 
of the a posteriori error) with the a priori variance. This gives the part of the variability which is 
unexplained by the data. This ratio belongs to the interval [0 100] (if expressed in %) and larger 
value shows low contribution of SSSobs (because of too large measurement errors in comparison 
with the expected variability). 

2.2.2.8 Flags 

Three quality flags are computed : a global quality flag, a sea-ice flag and a coastal flag. 

Ice flag (isc_qc) 

Acard averaged over a 10 days slipping window gives a good indicator of ice contamination. This 
time average is done independently for each grid point.  

For each grid point and each time step, the ice flag is raised (only on zones 45N-85N and 45S-
85S) if the following conditions are met:  

• the averaged Acard over the time window (+/- 5 days) is less than 40. 
• the SST is lower than 8°C  

An intermediate  averaged Acard product is generated offline by using SMOS L2 products.   

Coastal mask and land-sea flag (lsc_qc) 

The coastal mask has been revised in order to retrieve SSS as close as possible to the land (up to 
less than 50km from the coast) and in order to ignore the small islands. The risk of contamination 
by land is therefore very high. This is why we are proposing a conservative strategy for flagging 
land-sea contamination which corresponds to the one used in CATDS.. 
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Quality flag (sss_qc) 

The quality flag is calculated on a criterion of the number of outliers. The number of outliers is 
calculated over a window of +/- 30 days for monthly salinities and over a window of +/- 10 days 
for weekly salinities. It corresponds to the number of SSSobs which deviates by more than 3 
sigmas from the estimated SSS. If the fraction of outliers is larger than 10%, the flag is raised.  
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3 Conclusions and way forward for L-band sensor Algorithm 

SSS measurements from the three L-band satellite sensors have been merged to produce CCI L4 
SSS time series over a decade at global scale. The methodology we have developed for building 
the CCI L4 dataset aims at preserving the SSS variability globally observed by satellite every few 
days in footprints integrated over typically 50 x 50 km2. No spatial smoothing nor temporal 
relaxation to in-situ SSS have been introduced in order to keep as much as possible SSS 
interannual variability sensed by original SSS satellite measurements. On another hand, the self-
consistency between satellite SSS measured by the various sensors and under various geometries 
have been used to correct for systematic uncertainties. External SSS information is considered 
only for calibrating the long term SSS absolute value and for estimating representativity 
uncertainties. The CCI+SSS approach is, therefore, upstream of the optimal interpolations which 
correct satellite SSS biases using in-situ SSS fields on a monthly basis or less, such as (Melnichenko 
et al., 2016), and the CCI+SSS fields could be used as inputs to such method, as was done with 
SMOS data (Nardelli et al., 2016) or with SMOS and SMAP data (Kolodziejczyk et al., 2020).  

Nevertheless, some issues have been identified in the PVASR which remain to be tackled in future 
versions: 

- in the high northern latitudes, both seasonal latitudinal biases and land-sea contamination 
(and/or ice-sea) contamination affect all SMOS ocean pixels. Hence a method which separates 
the determination of the two (or three) types of contamination does not allow to remove all the 
contaminations. The methodology should be adapted to deal with both contaminations. 

- it remains interannual variation of SMOS SSS biases after systematic bias correction. A specific 
L2OS processing will be implemented for CCI SSS v5 products by using ERA5 and an update of the 
PCA algorithm allowing to remove intermittent biases. Some tests will be done in order to look 
at the possibility to remove ice edge effect from PCA algorithm.. PCA method will be generalized 
over more RFI sources (see [AD12]).  
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4 AMSR-E C- and X-band SSS retrieval Algorithm 

4.1 SSS retrieval Algorithm Overview 

4.1.1 Historical Background and general approach 

 

 

Figure 5: Sketch showing the different satellites operating low-microwave frequency radiometers characteristics from which SSS 
remote sensing from Space can be estimated in the modern satellite era. Along the timeline, C-band sensors are shown in orange 
while L-band ones are in blue. 

The potential SSS retrieval capability from low frequency spaceborne radiometer data operated 
at C- (6.9 GHz) and X- (10.7 GHz) band beyond several other higher microwave frequencies 
(AMSR-E, AMSR-2, WindSAT, or, HY-2A, see Figure 5) has been demonstrated in RD01 for the 
very high SSS gradients and warm Amazon river Plume area. This principle was more recently 
applied to the SSS signal in the China Sea (RD02) using the same frequency channels data from 
the microwave radiometer onboard the HY-2A satellite. 

As illustrated in Figure 1, the main SSS-satellite era is covering the period 2010-now when L-band 
observations started with SMOS mission. C-band data can however also be used to  cover some 
regional specificities of the SSS fields back in time to 2002.  Combining C/X-band historical data 
with the L-band era, this would allow the generation of almost 20-years long satellite SSS time 
series in some key regional area for the water cycle. In the frame of this project, we started by 
only considering the C/X-band SSS data from AMSR-E radiometer.  WindSAT data are not 
considered at the beginning of phase-2 as the radiometer calibrated L1 data were not yet publicly 
available. They are now partially available at https://cmr.earthdata.nasa.gov/virtual-
directory/collections/C2559430954-POCLOUD/temporal for several years (2015,2016,2017) and 
will be considered for the next phases of the project.. By virtue of signal sensitivity, SSS retrievals 
(Reul et al., 2009) from differential C- and X-bands channel data combined with multi-higher 
frequency channel ones (e.g., AMSR-E) are limited to region exhibiting very high SSS gradients 

https://cmr.earthdata.nasa.gov/virtual-directory/collections/C2559430954-POCLOUD/temporal
https://cmr.earthdata.nasa.gov/virtual-directory/collections/C2559430954-POCLOUD/temporal
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(>4-5 pss) and apply in warm seas for which the sensitivity is highest (e.g. tropical river plumes). 
We developped AMSR-E based SSS products for  four specific river plume dominated warm 
oceanic regions to monitor strong frontal zones and over an extended time period back to 2002 
with respect the L-band era. The selected regions (see Figure 6) include: 

-Region 1: The Amazon and Orinoco River Plume region, which is analysed within the following 
spatial domain  (hereafter refered to as the AORP domain):  [5°S-30°N; 80°W-25°W] 

-Region 2: The Congo and Niger River plumes, which is analysed within the following spatial 
domain  (hereafter refered to as the CNRP domain):  [20°S-10°N; 10°W-20°E] 

-Region 3: The Mississippi river plume (MRP) region,  which will be analysed within the following 
spatial domain  (hereafter refered to as the MRP domain):  [18°N-30°N; 100°W-80°W] 

-Region 4: The Ganges, Brahamaputra, Irrawady river discharges, which will be analysed within 
the following spatial domain  (hereafter refered to as the BoB domain):  ):  [5°S-25°N; 75°E-110°E] 

 

 

 

 

Figure 6: Spatial Domain of the regional AMSR-E based SSS products developed for the CCI project 

Though the response of sea surface reflectance/emissivity to surface salinity is significantly 
weaker in the C- and X- bands compared with L-band used on the SMOS, Aquarius-SAC/D or SMAP 
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satellite missions (see Figure 7), the relative sensitivity of the signal to SSS with respect wind and 
SST is nonetheless significantly improved after differentiating the estimated sea surface 
reflectance frequential contrast between the C- and X –bands. We explain this further below. 

The major objective of the AMSR, AMSR-E, AMSR-2, WindSat or HY-2A microwave radiometers 
is to acquire global observations of the sea surface temperature, wind speed, water vapor and 
cloud liquid water. These instruments are (in general) equipped with twelve channel, six-
frequency, passive microwave radiometer system. They measure horizontally and vertically 
polarized brightness temperatures at 6.9 GHz, 10.7 GHz, 18.7 GHz, 23.8 GHz, 36.5 GHz, and 89.0 
GHz and with incidence angle ~53-55°. Note that AMSR-2 has 2 additional frequency channels at 
7.3 GHz used for RFI detection. In this first version of the C/X band-based CCI SSS products we 
shall only consider AMSR-E based SSS products as this sensor can provide SSS time series back to 
2002. 

 

Figure 7 Sensitivity of the flat ocean brightness temperature to SSS,  namely,  
𝜕𝑇𝐵

𝜕𝑆𝑆𝑆 
as a function of electromagnetic frequency (x-

axis) computed from Klein and Swift (1977) for the salinity of 35 psu and temperature of 15°C with a fixed incident angle of 53°. 

As shown in Figure 7, the response of the sea surface reflectance to sea surface salinity is sensitive 
near 1.4 GHz and drops sharply as microwave frequency increases for a given SST for both 
horizontal and vertical polarizations (H-pol and V-pol), while the signal is stronger for the V-pol. 
At 53° of incidence, SST=15°, SSS=35 pss, and V-polarization, the sensitivity thus drops from ~0.6 
K/psu at L-band to ~0.04 K/psu at C-band and the brightness is almost insensitive to SSS at X-
band. L-band is therefore much more sensitive to SSS than is C-band and this is even more the 
case for X-band. Retrieving SSS from C-band sensor is therefore very challenging and demands 
extremely accurate algorithms. 
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Figure 8 Brightness temperature of the flat sea surface in microwave bands as functions of SSS (y-axis) and SST(x-axis). (a) 
brightness at 6.9 GHz (C band) (b) Brightness at 10.7 GHz (X band) in V-pol  and (C) brightness temperature difference between 
the 10.7 GHz and 6.6 GHz in V-pol. 

To evidence nonetheless the capability of C/X band radiometer channels for measuring the sea 
surface salinity, the brightness temperature of the sea surface in microwave bands is computed 
as functions of SSS and SST (Figure 8) following Meissner and Wentz  [2004]’s model for the 
dielectric constant of sea water. At low frequencies, this model is a modified version of the Klein–
Swift’s 1977 model (see details in section 2). 

For a given SST, the flat ocean surface Tb in V-polarisation decreases monotonically with 
increasing SSS, while the reflectance of sea surface increases due to the presence of saline 
materials that increase the dielectric properties of sea water and thus decrease the emissivity or 
increase the reflectance.  Meanwhile, for a given SSS, the surface emissivity (reflectance) 
increases (decreases) due to higher molecular energy with higher temperature (Figure 8 a & b). 
By differentiating the reflectance between the C and X band in vertical polarisation, it is clearly 
seen in Figure 8c and Figure 9 that both SSS and SST have apparent impacts on the differential 
sea surface reflectance contrast between  X- and C-bands, which is defined as: 

or Δ T= T10.7V–T6.9V or  ∆R = R6.9V–R10.7V 

 

Figure 9: Change of the differential flat ocean surface brightness temperature with SSS for fixed values of SSS (left) and with SST 
for fixed values of SSS (right). 

At an SST of 28°C (see Figure 9), a change of 10 psu in salinity from 25 to 35 pss corresponds to a 
change of flat sea surface brightness temperature contrast Δ T of ~0.4 K. Comparatively, at an 
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SSS=35 (typical of open ocean conditions), a change of 10°C in SST induces also a change of Δ T 
~0.4 K. Therefore, in the warm tropical oceans, the sensibility to SSS of the quantity Δ T 

(~0.04K/pss)  is comparable  to its sensitivity to SST (~0.04K/°C). 

Given an auxiliary information on the SST, SSS can thus be derived from Δ T using the model 
shown in Figure 8c or using an empirically-derived model of this function. An accurate estimation 
of the ‘flat’ surface brightness frequency-differential contrast Δ T or ΔR quantity is therefore a 
key step of the proposed algorithm. 

4.1.2 AMSR-E sensor and characteristics 

The Advanced Microwave Scanning Radiometer for EOS (AMSR-E) is a twelve-channel, six-
frequency, total power passive-microwave radiometer system. It measures brightness 
temperatures at 6.925, 10.65, 18.7, 23.8, 36.5, and 89.0 GHz. Vertically and horizontally polarized 
measurements are taken at all channels. The Earth-emitted microwave radiation is collected by 
an offset parabolic reflector 1.6 meters in diameter that scans across the Earth along an 
imaginary conical surface, maintaining a constant Earth incidence angle of 55° and providing a 
swath width array of six feedhorns which then carry the radiation to radiometers for 
measurement. Calibration is accomplished with observations of cosmic background radiation and 
an on-board warm target. Spatial resolution of the individual measurements varies from 5.4 km 
at 89.0 GHz to 56 km at 6.9 GHz. The dates of operation of AMSR-E are May 2002 to Oct 2011. 

Table 2 Aqua/AMSR-E Instrument characteristics compared to L-band satellite radiometers 

Instrument Frequency 

(GHz) 

Spatial 
resolution 

[ km x km ] 

(3-dB footprint 
size) 

Earth 
Incidence 
angle (∘) 

NeΔT∗(K) 

 

Polarizations Swath 
Width 

(km) 

SMAP 1.4 L-band 39 x 47 km 40° 0.9 H, V, 3rd & 
4th Stokes 

~1000 km 

SMOS 1.4 L-band 30-60 km 0°-60° 1-2 K H, V, 3rd & 
4th Stokes 

~1200 km 

Aquarius 1.4 L-band 76 km x 94 km 

84x120 km 

95x156 km 

28.7°, 
37.8° 
45.6° 

0.2 H, V, 3rd & 
4th Stokes 

~300 km 
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AMSR-E 6.93  

C-band 

75 x 43 km 

=Res 1 

55 0.3 V,H  

 

 

 

~1450km. 

10.65  

X-band 

51 x 29 km 

=Res2 

55 0.6 V,H 

18.7 K-
band 

27 x 16  km 

=Res3 

55 0.6 V,H 

23.8 K-
band 

32 x 18 km 

=Res4 

55 0.6 V,H 

36.5 Ka-
band 

14 x 8 km 

=Res5 

55 0.6 V,H 

89.0  W-
band 

6 x 4 km 

=Res6 

55 1.1 V,H 

 

AMSR-E observes the Earth at 6.9, 10.7, 18.7, 36.5, and 89 GHz, where each frequency has a 
native footprint size associated with it. The AMSR-E Level-2A (L2A) product from the National 
Snow and Ice Data Center (NSIDC) contains a set of spatially coherent data sets corresponding to 
each of these native footprint sizes. This data set complement and extend NSIDC's existing EASE-
Grid brightness temperature data sets, with new data beginning June 2002 and continuing 
throughout the life-cycle of the instrument. 

AMSR-E L2A data contain data for each observed frequency in all resolutions equal to or higher-
valued (larger field of view) than its native one. That is, all channels are available in their own 
native footprint, as well as any larger footprint. When 10 GHz data is selected with resolution 1, 
the resulting effective footprint matches that of the 6 GHz native footprint. This is useful as we 
are deriving algorithms and producing products that involve more than one frequency. As a 
general rule, the resolution of all channels for algorithm development should share a common 
footprint size. While some information is lost by doing this, the benefit of consistent antenna 
observations is gained. We have chosen the L2A data resolution that we believe to be most 
suitable, i.e, the C-band resolution (Res 1) which is about 58 km in average. 
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The SST algorithm uses all 10 AMSR-E lower channels, while the wind algorithm does not use the 
6.9 GHz channels.  The reason is that 6.9 GHz is not significantly improving  the wind retrievals 
and hence by not using it, one can obtain wind retrievals at a higher spatial resolution. 

The columnar water vapor and columnar liquid cloud water algorithms also have a similar 
structure.  These two algorithms only use the 19, 23, and 37 GHz channels. 

The radiometer noise figure for one 6.9 GHz observation is 0.3 K. However, the 6.9 GHz 
observations are greatly over sampled. Observations are taken every 10 km, but the spatial 
resolution of the footprint is 58 km. During the Level-2A processing, adjacent observations are 
averaged together in such a way as to reduce the noise to 0.1 K. In doing this averaging, the 
spatial resolution is degraded by only 2%. 

Note that in contrast to IR retrieval techniques, the atmospheric interference at 6.9 GHz is very 
small and easily removed using the higher frequency channels, except when there is rain. And, 
observations affected by rain are easily detected and can be discarded. Thus, the atmosphere 
does not pose a problem for the SST retrieval. An SSS climatology (WOA) is used to correct for 
mean SSS impact on the REMSS SST retrieval. This is one reason why we first used an independent 
auxiliary SST product (CCI-SST from IR data) for the SSS retrieval from AMSR-E. The CCI-SST  
However, we found that there are large differences between ascending and descending passes, 
some of which could be attributed to the diurnal SST cycles. AMSR-E ascending and descending 
tracks are 12 hours apart, with the satellite ascending passes at ~01:30 pm  and descending 
passes at ~01:30 am (local time), implying that there can be significant differences in the SST. We 
found that the REMSS AMSR-E SST exhibit significant diurnal cycle in the 4 regions considered 
(with differences reaching about 2°C, which is the equivalent of 2 pss between day and nightime), 
varying seasonally and geographically. During the present algorithm development, we first used 
the CCI  Infrared based daily composite GHRSST SST products as the auxiliary SST data. Although 
independent from AMSR-E SST data, the later is a night-time foundation SST estimate.  However, 
neglecting the strength of the diurnal SST cycle induced large errors on the retrieved SSS and we 
therefore now use the local, both in space and time, AMSR-E SST data for the present algorithm.    

While the AMSR-E RTM algorithm was  tunned for SST and wind speed retrieval, much more 
precise atmospheric corrections are needed in the case of SSS retrievals. For these reason, we 
first correct the AMSR-E antenna Tb at 6.9 GHz and 10.7 GHz for atmospheric effects using the 
RTM model developed by Wentz and Meissner and Wentz for SST and wind retrieval but we have 
additional empirical adjustments to refine the model. 



 

Climate Change Initiative+ (CCI+) 
Phase 2 

Algorithm Theoretical 
Development Basis Document 

Ref.: ESA-CCI-PRGM-EOPS-SW-17-0032 

Date:  15/07/2023 

Version : v4.0 

Page: 41 of 87 

 

© Commercial in Confidence ARGANS Ltd 2023 

4.1.3 Algorithm Overview 

 

Figure 10: Sketch showing the flow of the AMSR-E SSS retrieval 
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A sketch of the Algorithm is shown in Figure 10.  The major steps of the algorithm are reviewed 
hereafter.  

4.1.3.1 Step 1: Input Data collection 

A common database of input AMSR-E L2A TB and L2B ocean products (organized as daily 50 
minute half-orbit swath) are collected daily (see section 4.2 for details) over the four specific 
regions of warm oceanic regions with high SSS gradients: 

❑ Region AORP: Amazon & Orinoco river plumes [80°W-25°W;5°N-30°N] 
❑ Region MRP; Mississippi river plume [100°W- 80°W;18°N-30°N] 
❑ Region CNRP: Congo  Niger river plume: [10°-20°E; 20°S- 10°N] 
❑ Region BoB: Bay of Bengal [75°E-110°E;5°S- 25°N] 

 

4.1.3.2 Step 2: Input Data Quality Control 

Surface types and brightness temperatures are examined for land, sea ice, and other sources of 
contamination (Radio Frequency Interference, Sunglint, rain, etc..). Ocean variables are not 
calculated for these areas. For all variables, values that are out of range are not included. Instead, 
the resulting product pixel indicates an out-of-range condition. 

4.1.3.3 Step 3: Data re-gridding 

The AMSR-E L2A & L2B products, which are including the antenna brightness temperature in 

Vertical Polarization at 6.9 GHz, namely, 𝑇𝐴;6.9
𝑉  , and at 10.7 GHz, 𝑇𝐴;10.7

𝑉 , as well as the AMSR-E 

surface wind (𝑈10), sea surface temperature (SST), columnar cloud liquid water (CLW) and the 

columnar Water vapor (WV) are spatially averaged at AMSR-E resolution (56 km) and re-gridded 

on a ¼°x1/4°  rectangular grid. 

4.1.3.4 Step 4: From Antenna to Specular ocean Surface brightness 

The SSS retrieval algorithm is based on the physical Radiative Transfer Model (RTM) described in 
(Wentz and Meissner 2000). The RTM consists of an atmospheric absorption model for water 
vapor, oxygen, liquid cloud water, and a sea surface emissivity model that parameterizes the 
emissivity as a function of sea surface temperature, sea surface salinity and sea surface wind 
speed. Extra-terrestrial contributions (solar, Microwave background) and their reflection are 
corrected for. Then, atmospheric effects (direct and sea surface scattered) are removed from the 
antenna signal using the SST and the AMSR-E retrieved wind (𝑈10), columnar cloud liquid water 
(CLW) and the columnar Water vapor (WV). Some components of the model were updated in 
recent versions of the algorithm including the dielectric constant of sea and cloud water 
(Meissner and Wentz 2004; 2006). This was taken into account. 
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At the end of this processing step, we obtain estimates of the sea surface brightness 

temperature in Vertical Polarization at 6.9 GHz, namely, 𝑇𝑆;6.9
𝑉  , and at 10.7 GHz, 𝑇𝑆;10.7

𝑉 ,  and we 

keep the  AMSR-E surface wind (𝑈10), columnar cloud liquid water (CLW) and the columnar Water 

vapor (WV), as well as the spatially averaged and re-gridded CCI-SST for further empirical 

adjustments. 

In parallel, the expected flat ocean surface reflectance (X- minus C-band) contrasts were 

estimated using the dielectric constant model for sea water of Meissner and Wentz (2004,2006) 
applied to  L-band based CCI v2.31 SSS and CCI-SST fields that were collected over Jan 2010-Sep 

2011 in the four regions. For these 21 common months, AMSR-E surface datasets were compared 

to the CCI-based modeled surface Tbs to further determine empirical corrections for 

• Surface wind speed dependent contributions. To characterize and correct for the impact 
of sea surface roughness separately on  C-, and X-band surface brightness in V-
polarization, one could use already developed Geophysical Model Functions of the 

isotropic wind induced sea surface emissivity (Meissner and Wentz 2006), and of the wind 

directional signal impact on the sea surface emissivity (Meissner and Wentz 2002) and 

(Meissner and Wentz 2006). However, we found some discrepancies in the highest wind 

speed regimes (> 12 m/s) between these GMFs and the residuals observations we 

obtained after performing all corrections except for roughness. Using the differences 

between the specular sea surface emissivity model and AMSR-E estimates, empirical GMFs 

of the wind induced isotropic contribution to emissivity were derived for C and X band 

and are used here to correct for the roughness effect on surface emissivity. In a first step, 

we neglected the wind directional signal of the sea surface emissivity. 

 

• Correction of residuals signals as function of SST, WV and CLW. Additional empirical 
corrections are finally applied to correct for residual biases as a function of first SST and 
then columnar water vapor V and columnar cloud liquid content L. These empirical 
corrections were derived as follows for each C- and X- band frequency of AMSR-E. The 
specular sea surface emission was evaluated using CCI SST and CCI L-band -based SSS 
(v2.31) products for 21 months from January 2010 to September 2011. The AMSR-E 
surface Tbs corrected for atmospheric effects including downwelling radiation scattering 
effects and corrected for the isotropic rough sea surface emission were evaluated using 
the RTM. These residual specular emission quantity were collected for all four regions 
together and binned as function of CCI SST. As found, after applying the full RTM 
corrections, residual systematic biases as a function of SST are found with differing 
behaviour at each electromagnetic frequency. Empirical fits were derived to correct for 
these residual biases 

 

4.1.3.5 Step 5: Land Sea Contamination and outliers removal  

 

https://nsidc.org/data/ae_ocean/versions/2#meissner_04
https://nsidc.org/data/ae_ocean/versions/2#meissner_02
https://nsidc.org/data/ae_ocean/versions/2#meissner_06
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To filter the land-sea contamination, we apply a spatial filter by removing data which show higher 
Median Absolute Deviation (MAD) of the ∆e in one pass direction than in the other and 
determined over the full AMSR-E archive (May 2002-October 2011). To this aim, we defined a 
mask where the difference of the temporal MAD for ascending data is greater than +0.06K 
(equivalent of 1.2 psu) and for the descending data where the difference is less than -0.06 K, 
creating two static masks applied separately for ascending and descending flat surface  ∆e  data. 

Once the land contamination mask has been applied, we scan the remaining ∆TB time series at 
each location to exclude potential outliers such as the one from unfiltered Radio Frequency 
Intereferences. The temporal median and Mean Absolute Deviation (MAD) of ∆TB is re-evaluated 
in ¼°x¼° boxes, separately for A and D direction, over May 2002-October 2011. Outliers (more 
than 3 MAD away from the median) are then filtered out. After these two filtering steps steps, 
the difference in the MAD of the A and D passes is less than 0.02K (0.4 pss)   

4.1.3.6 Neural Network inversion algorithm 

This part of the algorithm provides the SSS retrieval methodology from inputs of the filtered sea 

surface emissivity frequency differential contrasts ∆𝑒𝑠𝑢𝑟𝑓
𝑠𝑝𝑒𝑐 , SST, wind, WV and CLW. 

 

4.2 Input data for CCI+SSS from AMSR-E C/X-bands 

4.2.1 AMSR-E/Aqua L2A Global Swath Spatially-Resampled Brightness  Temperatures 

The AMSR-E Level-2A product (AE_L2A) contains daily 50 minute half-orbit swath brightness 

temperatures for six channels ranging from 6.9 GHz through 89 GHz. Data are resampled to spatial 

resolutions ranging from 5.4 km to 56 km. We use the low resolution (~56 km) data associated to 

the C-band channels. Each file is packaged with geolocation and quality information as well as 

ancillary data. We use the Version 4 L2A data distributed by the National Snow and Ice Data Center 

(NSIDC) at  https://nsidc.org/data/AE_L2A 

4.2.2 AMSR-E/Aqua L2B Global Swath Ocean Products 

The algorithm also uses as input the AMSR-E/Aqua L2B Global Swath Ocean Products derived 

from Wentz Algorithm, Version 2.  This daily Level-2B swath data set includes Sea Surface 

Temperature (SST), Near-Surface Wind Speed, Columnar Water Vapor, and Cloud liquid Water 

data arrays retrieved from the L2A brightness temperatures. We use the Version 2 L2B data 

distributed by the National Snow and Ice Data Center (NSIDC) at 

https://nsidc.org/data/ae_ocean/versions/2 

 

Input variable 

https://nsidc.org/data/ae_ocean/versions/2
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𝑇𝐴;6.9
𝑉  L2A daily 50 minute half-orbit 

swath Calibrated & Resampled 
Antenna Brightness 
Temperature in V-polarization at 
6.9 GHz 
 

Kelvins 

𝑇𝐴;10.7
𝑉  L2A daily 50 minute half-orbit 

swath Calibrated & Resampled 
Antenna Brightness 
Temperature in V-polarization at 
10.7 GHz 
 

Kelvins 

EIA Earth Incidence Angle Degrees 

EAA Earth Azimut Angle Degrees 
Sun_Glint_Angle Angle between sun specular 

direction and radiometer 
viewing angle 

Degrees 

lat Latitude of footprint center Degrees N 
lon Longitude of footprint center Degrees  

time UTC time of aquisition  

wind L2B near surface wind speed Meter per seconds 
sst L2B Sea Surface Temperature Degree Celcius 

vapor L2B Columnar water vapor mm 

clwc L2B Columnar cloud liquid water mm 

Ocean_products_quality_flag Ensemble of ocean flags  

rain_flag Ensemble of rain flags  

land_flag Ensemble of land flags  

 
 

4.3 Radiative Transfer Model (RTM) 

4.3.1 Top of the Atmosphere Brightness temperature 

The general RTM expression for the Top Of the Atmosphere (TOA) TB of polarization p=v,h 
and frequency f is (Meissner and Wentz, 2012): 

𝑇𝐵,𝑝 = 𝑇𝐵𝑈 + 𝜏 ∙ 𝐸𝑝 ∙ 𝑇𝑆 + 𝜏 ∙ 𝑇𝐵Ω       (1) 

where  𝑇𝐵Ω = 𝑅𝑝 ∙ [𝑇𝐵𝐷 + 𝜏 ∙ 𝑇𝑐𝑜𝑙𝑑] + 𝑇𝐵,,𝑠𝑐𝑎𝑡,𝑝 

Here 𝑇𝑆 denotes the SST, 𝐸𝑝 the total sea surface emissivity at frequency f, 𝑅𝑝 = 1 − 𝐸𝑝 the sea 

surface reflectivity, 𝜏 the atmospheric transmittance, 𝑇𝐵𝑈 the upwelling atmospheric brightness 
temperature, 𝑇𝐵𝐷 the downwelling atmospheric brightness temperature that is reflected at the 
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ocean surface, 𝑇𝑐𝑜𝑙𝑑 the effective cold space temperature after taking into account the deviation 
from the Rayleigh-Jeans approximation (Meissner and Wentz, 2010). The term 𝜏 ∙ 𝑇𝐵,𝑠𝑐𝑎𝑡,𝑝 

accounts for the atmospheric path length correction in the downwelling scattered sky radiation 
(see details further). 

4.3.2 Atmospheric contributions 

For atmospheres without rain where scattering can be neglected, the atmospheric parts 
𝜏𝑓 (atmospheric transmittance), 𝑇𝐵𝑈 (upwelling atmospheric brightness temperature) and 𝑇𝐵𝐷 

(downwelling atmospheric brightness temperature) can be calculated from the atmospheric 
profiles of temperature T(s) and the absorption coefficient α(s): 

𝑇𝐵𝑈 = ∫ 𝛼(𝑠)𝑇(𝑠)𝜏(𝑠, 𝑇𝑂𝐴)

𝑇𝑂𝐴

0

𝑑𝑠 

 

𝑇𝐵𝐷 = ∫ 𝛼(𝑠)𝑇(𝑠)𝜏(𝑠, 0)

𝑇𝑂𝐴

0

𝑑𝑠 

 

𝜏(𝑠1, 𝑠2) = 𝑒𝑥𝑝 [−∫ 𝛼(𝑠)
𝑠2
𝑠1

𝑑𝑠]    (2) 

In the equations above, 𝑠 is the path length along the propagation of the electromagnetic ray 
with 𝑠 = 0 being the ocean surface and 𝑠 = 𝑇𝑂𝐴 the TOA. 𝜏𝑓(𝑠1, 𝑠2) is therefore the 

transmittance between points 𝑠1 and 𝑠2 along the propagation path. The total transmittance is 
𝜏𝑓 = 𝜏𝑓(0, 𝑇𝑂𝐴). Following Meissner and Wentz, (2012), we will use a 1-dimensional RTM, which 

means that the atmospheric temperature is assumed to be horizontally uniform and depends 
only on the altitude ℎ above the surface. The transformation between 𝑠  and ℎ in the integrals of 
(2) is: 

𝜕𝑠

𝜕ℎ
=

1+𝛿

√cos2 𝜃𝑖+𝛿(2+𝛿)
      (3) 

Where 𝜃𝑖 is the earth incidence angle (EIA). 𝛿 = ℎ 𝑅𝐸⁄ , and 𝑅𝐸  is the radius of the Earth. In the 
troposphere δ << 1, and an excellent approximation for 𝜃𝑖 < 60° is 

𝜕𝑠

𝜕ℎ
≈

1.00035

√cos2 𝜃𝑖 + 7.001225 ∙ 10−4

≈ 𝑠𝑒𝑐𝜃𝑖 

With this approximation and the assumption of horizontal uniformity, if ℎ=H is the altitude of 
TOA, the above equations reduce to the following expressions: 
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𝜏(ℎ1, ℎ2, 𝜃𝑖) = 𝑒𝑥𝑝 [−𝑠𝑒𝑐𝜃𝑖 ∫ 𝛼(ℎ)
ℎ2

ℎ1
𝑑ℎ]    (4) 

𝜏 = 𝜏(0,𝐻, 𝜃𝑖)   (5) 

𝑇𝐵𝑈 = 𝑠𝑒𝑐𝜃𝑖 ∫ 𝛼(ℎ)𝑇(ℎ)𝜏(ℎ, 𝐻, 𝜃𝑖)
𝐻

0
𝑑ℎ   (6) 

𝑇𝐵𝐷 = 𝑠𝑒𝑐𝜃𝑖 ∫ 𝛼(ℎ)𝑇(ℎ)𝜏(0, ℎ, 𝜃𝑖)
𝐻

0
𝑑ℎ    (7) 

Thus, the estimation of the above atmospheric contributions to the antenna brightness 
temperature requires the vertical profiles of atmospheric temperature T(h) and the vertical 
profile of the atmospheric absorption α(h). 
. 

Determination of the Atmospheric Absorption α(h). 

For the microwave frequencies under consideration, the atmospheric absorption coefficient has 
three contributions: : oxygen, water vapor, and liquid water in the form of clouds and rain 
[Waters, 1976]. 

The sum of these three components gives the total absorption coefficient (neppers/cm) 

𝛼(ℎ) = 𝛼𝐿(ℎ)+𝛼𝑉(ℎ) + 𝛼𝑂(ℎ)   (8) 

Numerous investigators have studied the dependence of the oxygen and water vapor coefficients 
on frequency f (GHz), temperature T (K), pressure P (mb), and water vapor density 𝜌𝑉  (g/cm3) 
[Becker and Autler, 1946; Rozenkranz, 1975; Waters, 1976; Liebe, 1985]. To specify 𝛼𝑂 and 𝛼𝑉 as 
a function of (f,T,P, 𝜌𝑉) we use the Liebe [1985] expressions with one modification. The self-
broadening component of the water vapor continuum is reduced by a factor of 0.52 The liquid 
water coefficient 𝛼𝐿 comes directly from the Rayleigh approximation to Mie scattering and is a 
function of T and the liquid water density 𝜌𝐿  (g/cm2). 

The computation of the atmospheric parts 𝜏,  𝑇𝐵𝑈, and 𝑇𝐵𝐷 of the RTM function (1) can be done 
in different ways. The most accurate but also most computation intensive method is to use 
atmospheric profiles for T , p , 𝜌𝑉  and 𝜌𝐿, scale both 𝜌𝑉  and 𝜌𝐿  by the values of the total columnar 
integrals V and L , respectively, and then perform the numerical integrals in (2). A simplified 
approach, which was followed in [Meissner & Wentz, 2012] and that we follow also here, is to 
take typical ocean-atmosphere scenes derive analytic expressions for  𝜏,  𝑇𝐵𝑈, and 𝑇𝐵𝐷 as function 
of T(s)  and the columnar values V and L , that were retrieved from the Level 2B ocean products. 
 
Let 𝐴𝐼  denote the vertically integrated absorption coefficient. 

𝐴𝐼 = ∫ 𝛼𝐼(ℎ)
𝐻

0
𝑑ℎ   (9) 

Where h is the height (cm) above the Earth’s surface and subscript I equals O (oxygen), V (vapor), 
or L (cloud liquid water). Equations (4) and (5) then give the total transmittance to be 
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𝜏 = 𝑒𝑥𝑝[−𝑠𝑒𝑐𝜃𝑖(𝐴𝑂 + 𝐴𝑉 + 𝐴𝐿)]  (10) 

 

Assuming for the moment that the atmospheric temperature is constant with height and equal 
to the SST, i.e., T(h) = T=𝑇𝑆, then the integrals in equations (4-11) can be exactly evaluated in 
closed form to yield : 

𝑇𝐵𝑈 = 𝑇𝐵𝐷 = (1 − 𝜏)𝑇        (11) 

In view of (11), we find it convenient to parameterize the atmospheric model in terms of the 
following upwelling and downwelling effective air temperatures: 

𝑇𝑈 = 𝑇𝐵𝑈/(1 − 𝜏) 
𝑇𝐷 = 𝑇𝐵𝐷/(1 − 𝜏) 

These effective temperatures are indicative of the air temperature averaged over the lower to 
mid troposphere. Note that in the absence of significant rain, 𝑇𝑈 and 𝑇𝐷 are very similar in value, 
with 𝑇𝑈  being 1 to 2 K colder. In view of the above equations, one sees that the atmospheric 
model can be parameterized in terms of the following 5 parameters: 

1. Upwelling effective temperature 𝑇𝑈 

2. Downwelling effective temperature 𝑇𝐷 

3. Vertically integrated oxygen absorption 𝐴𝑂  

4. Vertically integrated water vapor absorption 𝐴𝑉  

5. Vertically integrated liquid water absorption 𝐴𝐿  
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Figure 11: Meissner and Wentz’s (2012) model of the effective air temperature for upwelling 𝑇𝐷 and downwelling 𝑇𝑈  radiation as 
a function of the vertically integrated Columnar water vapor V. The curves are provided for both C- and X- band frequencies 

As determined from radiosonde observation in Wentz (2000), for low to moderate values of V (0 
to 40 mm), 𝑇𝐷 increases with V, and above 40 mm, 𝑇𝐷 reaches a relatively constant value and 
then re-increase again above 60 mm. The 𝑇𝑈 versus V curves are very similar except that 𝑇𝑈 is 1 
to 2 K colder. Least-square regressions are found to be a good approximation of the 𝑇𝐷, 𝑇𝑈,  
versus V relationship: 

𝑇𝐷 = 𝑏𝑜 + 𝑏1 ∙ 𝑉 + 𝑏2 ∙ 𝑉2 + 𝑏3 ∙ 𝑉3 + 𝑏4 ∙ 𝑉4+𝑏5 ∙ 휁(𝑇𝑆 − 𝑇𝑉)    (12a) 

𝑇𝑈 = 𝑇𝐷 + 𝑏6 + 𝑏7 ∙ 𝑉        (12b) 

 f=6.9 GHz f=10.7 GHz 

𝑏𝑜 239.5 239.51 

𝑏1 213.92e-2 225.19e-2 

𝑏2 -460.6e-4 -446.86e-4 

𝑏3 457.11e-6 391.82e-6 

𝑏4 -16.84e-7 -12.2e-7 

𝑏5 0.5 0.54 

𝑏6 -0.11 -0.12 

𝑏7 -0.21e-2 -0.34e-2 
 

The computation of 𝑇𝑉, representing a sea surface temperature that is typical for water vapor V 
follows: 

𝑇𝑉 = 273.16 + 0.8337 ∙ 𝑉 − 3.029 ∙ 10−5 ∙ 𝑉3.33    for 𝑉 ≤ 48 𝑚𝑚          (12c) 
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𝑇𝑉 = 301.16         for 𝑉 > 48 𝑚𝑚          (12d) 

The term 휁(𝑇𝑆 − 𝑇𝑉) accounts for the fact that the effective air temperature is typically higher 
(lower) for the case of unusually warm (cold) water. 

휁(𝑇𝑆 − 𝑇𝑉) = 1.05 ∙ (𝑇𝑆 − 𝑇𝑉) ∙ (1 −
(𝑇𝑆−𝑇𝑉)2

1200
)       for  |𝑇𝑆 − 𝑇𝑉| ≤ 20𝐾   (12f) 

휁(𝑇𝑆 − 𝑇𝑉) = 𝑠𝑖𝑔𝑛(𝑇𝑆 − 𝑇𝑉) ∙ 14𝐾                   for  |𝑇𝑆 − 𝑇𝑉| > 20𝐾    (12e) 

The coefficients 𝛼𝑜  and 𝛼𝑉  are computed from the Liebe [1985] expressions, except that the 
water vapor continuum term is modified.The vertically integrated oxygen absorption 𝐴𝑜  is nearly 
constant over the globe, with a small dependence on the air temperature and can be 
approximated using: 

𝐴𝑜 = 𝑎𝑜1 + 𝑎𝑜2(𝑇𝐷 − 270)   (13) 
 
The coefficients 𝑎𝑜1,2 for both C and X-band channels of AMSR-E are 

 f=6.9 GHz f=10.7 GHz 

𝑎𝑜1 8.34e-3 9.08e-3 

𝑎𝑜2 -0.48e-4 -0.47e-4 

The vapor absorption 𝐴𝑉  is primarily a linear function of V, although there is a small second order 
term: 

𝐴𝑉 = 𝑎𝑉1 + 𝑎𝑉2 ∙ 𝑉2    (14) 

The coefficients 𝑎𝑉1,2 for both C and X-band channels of AMSR-E are 
 f=6.9 GHz f=10.7 GHz 

𝑎𝑉1 0.07e-3 0.18e-3 

𝑎𝑉2 0.001e-5 0.001e-5 

The liquid cloud water absorption profile 𝛼𝐿 depends on atmospheric temperature and liquid 
cloud water density 𝜌𝐿(ℎ) (in grams per cubic centimetre). For nonraining atmospheres, it can 
be treated using Rayleigh approximation: 

𝛼𝐿(ℎ) ≈
6𝜋𝜌𝐿(ℎ)

𝜆∙𝜌𝑜
∙ 𝐼𝑚 [

1−

2+
]   (15) 

where 𝜆 = 𝑐/𝑓 is the radiation wavelength (in centimeters) and 𝜌𝑜 ≈ 1.0 g/cm3 is the density of 
water. 휀 is the dielectric constant of pure (cloud) water, which depends on the radiation 
frequency f and the cloud temperature T. For its computation, we use the dielectric model of 
Meissner and Wentz (2004) as detailed in 4.3.3.2.1. Substituting (15) into (9) gives 

𝐴𝐿 =
0.6𝜋 𝐿

𝜆
∙ 𝐼𝑚 [

1−

2+
]  (16) 
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where L is the vertically integrated liquid water (mm) given by the input L2B products. A very 
good approximation of (16) is: 

𝐴𝐿 = 𝑎𝐿1[1 − 𝑎𝐿2(𝑇𝐿 − 283)]𝐿    (17) 

where 𝑇𝐿 is the mean temperature of the cloud, approximated by 

𝑇𝐿 =(𝑇𝑆  + 273)/2    (18) 

which is the mean temperature between the surface and the freezing level. 

and the 𝑎𝐿1,2 coefficients are given by: 

The coefficients 𝑎𝑉1,2 for both C and X-band channels of AMSR-E are 
 f=6.9 GHz f=10.7 GHz 

𝑎𝐿1 0.0078 0.0183 

𝑎𝐿2 0.0303 0.0298 

In practice in our algorithm, we generated Look-Up Tables (LUTs) for estimating  the five 
atmospheric parameters 𝑇𝑈 , 𝑇𝐷, 𝐴𝑂 , 𝐴𝑉  𝐴𝐿  from input values of the sst (𝑇𝑆) ,columnar water vapor 
(V), and columnar cloud liquid water (L). 

4.3.3 Sea Surface Emission 

𝐸𝑝 the total sea surface emissivity is the sum of two terms: 

𝐸𝑝 = 𝐸𝑜,𝑝 + ∆𝐸𝑝,𝑟𝑜𝑢𝑔ℎ   (19) 

Where 𝐸𝑜,𝑝 is the specular sea surface emission and ∆𝐸𝑝,𝑟𝑜𝑢𝑔ℎ is the roughened sea surface 

emission contribution. We detail these two models herafter. 

4.3.3.1 Specular sea surface Emission contribution 

For a perfectly flat ocean surface the scattered electric and magnetic fields may be expressed in 
terms of the incident fields. The reflected electric field components (𝐸ℎ

′  , 𝐸𝑣
′) are related to the 

incident components (𝐸ℎ , 𝐸𝑣) by the diagonal matrix equation: 

 

(
𝐸ℎ

′ (𝜃𝑠 , 𝜙𝑠)

𝐸𝑣
′(𝜃𝑠 , 𝜙𝑠)

) = (
𝑅ℎℎ

(0)
0

0 𝑅𝑣𝑣
(0)

) (
𝐸ℎ(𝜃𝑠, 𝜙𝑠 − 180°)

𝐸𝑣(𝜃𝑠, 𝜙𝑠 − 180°)
) 

 

Where (𝜃𝑠 , 𝜙𝑠) is the specular reflection direction for radiation incident from direction 
(𝜃𝑖 = 𝜃𝑠, 𝜙𝑖 = 𝜙𝑠 − 180°). The superscripts on the reflection coefficients indicate that they 
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correpond to zero order expansion in surface slope, i.e., the flat surface reflection. The flat 
surface reflection coefficients on the preceding matrix are given by the Fresnel equations: 

 

𝑅ℎℎ
(0)(𝑆, 𝑇𝑠, 𝜃𝑠) =

cos𝜃𝑠−√𝜖𝑠𝑤(𝑆,𝑇𝑠)−sin2 𝜃𝑠

cos𝜃𝑠+√𝜖𝑠𝑤(𝑆,𝑇𝑠)−sin2 𝜃𝑠
  (20a) 

𝑅𝑣𝑣
(0)(𝑆, 𝑇𝑠, 𝜃𝑠) =

𝜖𝑠𝑤(𝑆,𝑇𝑠)cos𝜃𝑠−√𝜖𝑠𝑤(𝑆,𝑇𝑠)−sin2 𝜃𝑠

𝜖𝑠𝑤(𝑆,𝑇𝑠)cos𝜃𝑠+√𝜖𝑠𝑤(𝑆,𝑇𝑠)−sin2 𝜃𝑠
 (20b) 

 

Where 𝜖𝑠𝑤(𝑆, 𝑇𝑠, 𝑓) is the dielectric constant for seawater, which is a function of the surface 
salinity S  and temperature 𝑇𝑠 as well as the electromagnetic frequency. We use  the Meissner et 
al. (2012)’s dielectric constant model for the C- and X-band data. The Fresnel reflection matrix 
equation is: 

𝑇′ = (

𝑇ℎ
′

𝑇𝑣
′

𝑈′

𝑉′

) = 𝑀(0)𝑇 =

(

 
 
 
 

|𝑅ℎℎ
(0)

|
2
𝛿2 0 0 0

0 |𝑅𝑣𝑣
(0)

|
2
𝛿2 0 0

0 0 ℜ{𝑅ℎℎ
(0)

(𝑅𝑣𝑣
(0)

)
∗
} ℑ {𝑅ℎℎ

(0)
(𝑅𝑣𝑣

(0)
)

∗
}

0 0 −ℑ {𝑅ℎℎ
(0)

(𝑅𝑣𝑣
(0)

)
∗
} ℜ {𝑅ℎℎ

(0)
(𝑅𝑣𝑣

(0)
)

∗
})

 
 
 
 

(

𝑇ℎ

𝑇𝑣

𝑈
𝑉

) 

 

For the linear polarizations, the Fresnel power reflection coefficients are thus: 

|𝑅ℎℎ
(0)

(𝑆, 𝑇𝑠 , 𝜃𝑠)|
2

= |
cos 𝜃𝑠 − √𝜖𝑠𝑤(𝑆, 𝑇𝑠) − sin2 𝜃𝑠

cos 𝜃𝑠 + √𝜖𝑠𝑤(𝑆, 𝑇𝑠) − sin2 𝜃𝑠

|

2

 

|𝑅𝑣𝑣
(0)

(𝑆, 𝑇𝑠 , 𝜃𝑠)|
2

= |
𝜖𝑠𝑤(𝑆, 𝑇𝑠)cos 𝜃𝑠 − √𝜖𝑠𝑤(𝑆, 𝑇𝑠) − sin2 𝜃𝑠

𝜖𝑠𝑤(𝑆, 𝑇𝑠)cos 𝜃𝑠 + √𝜖𝑠𝑤(𝑆, 𝑇𝑠) − sin2 𝜃𝑠

|

2

 

 

The specular emission in horizontal polarization can then be estimated : 

𝐸𝑜,ℎ(𝑆, 𝑇𝑠, 𝜃𝑖) = 𝑇𝑠 [1 − |𝑅ℎℎ
(0)

(𝜖𝑠𝑤 , 𝜃𝑖)|
2
]         (21) 

and in vertical polarization: 
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𝐸𝑜,𝑣(𝑆, 𝑇𝑠, 𝜃𝑖) = 𝑇𝑠 [1 − |𝑅𝑣𝑣
(0)(𝜖𝑠𝑤 , 𝜃𝑖)|

2
]       (22) 

 

4.3.3.2 Dielectric Constant of pure and Sea Water 

The model for 휀, the dielectric constant of water, depends on the radiation frequency f, the water 
temperature T and the salinity S of the sample.  휀 for pure water is used in Equation (9) to derive 
the vertically integrated liquid cloud water absorption and for salty water in (14-15). Following 
Meissner and Wentz (2004), the dielectric constant of water is fitted using a double relaxation 
law. The general form reads: 

휀(𝑇, 𝑆) = 𝑆(𝑇,𝑆)− 1(𝑇,𝑆)

1+𝑖𝜈/𝜈1(𝑇,𝑆)
+ 1(𝑇,𝑆)− ∞(𝑇,𝑆)

1+𝑖𝜈/𝜈2(𝑇,𝑆)
+ 휀∞(𝑇, 𝑆) − 𝑖

𝜎(𝑇,𝑆)

(2𝜋 𝑜)𝜈
  (23) 

Here: 

• 𝑖 = √−1, 𝜈 is the radiation frequency [in GHz], 

• The temperature T is in °C and the salinity S in pss 

• 휀𝑆(𝑇, 𝑆) is he static (zero frequency) dielectric constant 

• 휀∞(𝑇, 𝑆) is the dielectric constant at infinite frequencies 

• 휀1(𝑇, 𝑆) is the intermediate frequency dielectric constant. 

• 𝜈1(𝑇, 𝑆) and 𝜈2(𝑇, 𝑆) are the first and second Debye relaxation frequencies [in GHz], 
respectively 

• 𝜎(𝑇, 𝑆) is the conductivity of water in [S/m] 

• 휀𝑜 = 8.854 ∙ 10−12 is  [F/m] is the vacuum electric permittivity 

4.3.3.2.1 Dielectric Constant of Pure Water 

In this section we will consider pure water where S = 0 and 𝜎(𝑇, 𝑆 = 0)=0 . The dielectric 

constant for pure water then reads: 

휀(𝑇, 𝑆 = 0) =
휀𝑆(𝑇, 𝑆 = 0) − 휀1(𝑇, 𝑆 = 0)

1 + 𝑖𝜈/𝜈1(𝑇, 𝑆 = 0)
+

휀1(𝑇, 𝑆 = 0) − 휀∞(𝑇, 𝑆 = 0)

1 + 𝑖𝜈/𝜈2(𝑇, 𝑆 = 0)
+ 휀∞(𝑇, 𝑆 = 0) 

The static dielectric constant for pure water 휀𝑆(𝑇, 𝑆 = 0) is given by: 

휀𝑆(𝑇, 𝑆 = 0) =
3.70886 ∙ 104 − 8.2168 ∙ 101𝑇

4.21854 ∙ 102 + 𝑇
 

For the temperature dependence of the 4 fit parameters 휀1, 휀∞, 𝜈1 and 𝜈2, we use: 

휀1(𝑇, 𝑆 = 0) = 𝑎𝑜 + 𝑎1𝑇 + 𝑎2𝑇
2 
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𝝂𝟏(𝑻, 𝑺 = 𝟎) =
𝟒𝟓 + 𝑻

𝒂𝟑 + 𝒂𝟒𝑻 + 𝒂𝟓𝑻𝟐
 

휀∞(𝑇, 𝑆 = 0) = 𝑎6 + 𝑎7𝑇 

𝜈2(𝑇, 𝑆 = 0) =
45 + 𝑇

𝑎8 + 𝑎9𝑇 + 𝑎10𝑇2
 

The parameters for the fits are given by 

𝑎𝑜 =5.723;  𝑎1 = 2.2379e − 2; 𝑎2 = −7.1237e − 4; 𝑎3 = 5.0478; 𝑎4 = −7.0315e − 2; 
𝑎5 =6.0059e-4; 𝑎6 =3.6143; 𝑎7 = 2.8841e-2; 𝑎8 =1.3652e-1; 𝑎9 = 1.4825e-3; 𝑎10 =
2.4166e − 4 

4.3.3.2.2 Dielectric Constant of Sea Water 

For sea water, a model for the conductivity of sea water 𝜎(𝑇, 𝑆) is needed: 

𝜎(𝑇, 𝑆) = 𝜎(𝑇, 𝑆 = 35) ∙ 𝑅15(𝑆) ∙
𝑅𝜏(𝑆)

𝑅15(𝑆)
 

Where with the units: T [°C], S [pss], and 𝜎 [S/m]: 

𝜎(𝑇, 𝑆 = 35) = 
2.903602 + 8.607 ∙ 10−2 ∙ 𝑇 + 4.738817 ∙ 10−2 ∙ 𝑇2 −  2.991 ∙ 10−6 ∙ 𝑇3 + 4.3047 ∙ 10−9 ∙ 𝑇4 

 

𝑅15(𝑆) = 𝑆 ∙
(37.5109 + 5.45216 ∙ 𝑆 + 1.4409 ∙ 10−2 ∙ 𝑆2)

(1004.75 + 182.283 ∙ 𝑆 + 𝑆2)
 

𝑅𝜏(𝑆)

𝑅15(𝑆)
= 1 +

𝛼𝑜 (𝑇 − 15)

(𝛼1 + 𝑇)
 

𝛼𝑜 (𝑆) =
(6.9431 + 3.2841 ∙ 𝑆 − 9.9486 ∙ 10−2 ∙ 𝑆2)

(84.850 + 69.024 ∙ 𝑆 + 𝑆2)
 

𝛼1 (𝑆) = 49.843 − 0.2276 ∙ 𝑆 + 0.198 ∙ 10−2 ∙ 𝑆2  

For the remaining five constants in Equation (12), we use the following expressions: 

휀𝑆(𝑇, 𝑆) = 휀𝑆(𝑇, 𝑆 = 0) ∙ 𝑒𝑥𝑝[𝑏𝑜𝑆 + 𝑏1𝑆
2 + 𝑏2𝑇𝑆] 

𝜈1(𝑇, 𝑆) = 𝜈1(𝑇, 𝑆 = 0) ∙ [1 + 𝑆 ∙ (𝑑𝑜 + 𝑑1𝑇 + 𝑑2𝑇
2 + 𝑑3𝑇

3 + 𝑑4𝑇
4)] 

휀1(𝑇, 𝑆) = 휀1(𝑇, 𝑆 = 0) ∙ 𝑒𝑥𝑝[𝑏6𝑆 + 𝑏7𝑆
2 + 𝑏8𝑇𝑆] 
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𝜈2(𝑇, 𝑆) = 𝜈2(𝑇, 𝑆 = 0) ∙ [1 + 𝑆 ∙ (𝑏9 + 𝑏10𝑇)] 

휀∞(𝑇, 𝑆) = 휀∞(𝑇, 𝑆 = 0) ∙ [1 + 𝑆 ∙ (𝑏11 + 𝑏12𝑇)] 

We followed the changed made in Meissner and Wentz (2012), with respect Wentz (2000) 
algorithm with the parameters of the fits given by: 
 
𝑏𝑜=-3.3333e-3;𝑏1=4.74868e-6;𝑏2=0; 
 
𝑑𝑜=0.23232e-2; 𝑑1=-0.79208e-4; 𝑑2=0.36764e-5; 𝑑3=0.35594e-6 ; 𝑑4=0.89795e-8 ; 
 
𝑏6=-6.28908e-3; 𝑏7=1.76032e-4;  𝑏8=-9.22144e-5;  𝑏9=-1.99723e-2; 𝑏10=1.81176e-4; 𝑏11=-
2.04265e-3;  𝑏12=1.57883e-4; 
 

4.3.3.3 Rough sea surface emission 

The brightness temperature of the sea surface is expressed as follows: 

𝐸𝑝,𝑓
𝑠𝑢𝑟𝑓

= [𝐸𝑜,𝑝(𝑇𝑆 , S, f, p, θ) + ΔE𝑟𝑜𝑢𝑔ℎ,𝑝(𝑈10, 𝜑𝑟 , 𝜃, 𝑓)]     (24) 

and is the sum of two contributions to the total surface emissivity: 

• 𝐸𝑜: the specular sea surface emission defined in (14) and (15), and, 

• ∆𝐸𝑟𝑜𝑢𝑔ℎ,𝑝: the rough and foamy sea surface emission which is expressed as a function of 

the 10 m height ocean surface wind speed 𝑈10 and the relative direction 𝜑𝑟 following: 
 

∆𝑒𝑟𝑜𝑢𝑔ℎ,𝑝(𝑈10, 𝜃, 𝜑𝑟) = ∆𝑒𝑜,𝑝(𝑈10, 𝜃) + ∆𝑒1,𝑝(𝑈10, 𝜃) ∙ cos(𝜑𝑟) + ∆𝑒2,𝑝(𝑈10, 𝜃) ∙ cos(2𝜑𝑟) p=H,V (25) 

In these expression:  𝜑𝑟=𝜑𝑤 − 𝛼, where 𝜑𝑤  is the wind direction and α the radiometer azimuthal 
look direction relative to North. 

4.3.3.3.1 Isotropic components of the wind-induced emission at C- and X-bands 

In the present algorithm, we use an empirical model of the C- and X-band isotropic roughness-
induced emission in V-polarization ∆𝑒𝑜,𝑉(𝑈10) . These empirical fits were derived as follows for 
each C- and X- band frequency of AMSR-E. The specular sea surface emission was evaluated using 
CCI SST and CCI L-band -based SSS (v2.31) products as inputs to Equation (22) for 21 months from 
January 2010 to September 2011. The AMSR-E Tbs were corrected for atmospheric effects 
including downwelling radiation scattering effects (see next section) and for the specular sea 
emission determined from CCI data to estimate the residual roughness-induced emission in V-
polarization ∆𝑒𝑜,𝑉(𝑈10) .  This quantity was collected for all four regions together and binned as 

function of AMSR-E L2B surface wind speed to derive the following empirical fits: 

∆𝑒𝑜,𝑉(𝑈10) = ∑ 𝑎𝑜𝑖,𝑉 ∙ 𝑈10
𝑖4

𝑖=1     (25) 
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Where the 𝑎𝑜𝑖,𝑉 coefficients for the zeroth azimuthal harmonics are given here below: 

Table 3: Isotropic roughness emissivity coefficients 𝒂𝒐𝒊,𝑽 for the C- and X-band frequencies and V polarization 

f [GHz] i=0 i=1 i=2 i=3 i=4 

6.8 0.0024 -0.0014 1.5666e-04 -9.8011e-07 -5.0347e-08 

10.7 0.0023 -0.0015 1.8440e-04 -2.4595e-06 -1.0507e-08 

These GMFs function are plotted in Figure 12. As found the V-pol brightness temperature change 
induced by increasing wind is very similar between C and X-bands for winds below 15 m/s. At 
higher winds, X-band emissivity is higher than C-band and might generate a differential signal 
between both frequencies that can be corrected using (25).

 
Figure 12: Isotropic components of the wind-induced emission at C- and X-band and Vertical Polarization 

4.3.3.3.2 Anisotropic components of the wind-induced emission at C- and X-bands 

The wind direction signal of the sea surface brightness temperature comes from the 1st harmonic 
term ∆𝑒1,𝑝 and the 2nd harmonic term ∆𝑒2,𝑝. The different mechanisms responsible for sea surface 

emissivity in the microwave domain exhibit several anisotropic features, which, in turn, lead to a 
wind directional dependence of the observed brightness temperatures. The probability density 
function of the sea surface slope is skewed in the along wind axis and has a larger along wind 
variance than crosswind variance (Cox, 1958). Furthermore, the RMS height of the small gravity-
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capillary waves, which are riding on top of the large gravity waves, exhibits a noticeable 
anisotropy. The gravity-capillary waves traveling in the along-wind direction have larger 
amplitudes than those traveling in the crosswind direction (Mitsuyasu and Honda, 1982). Both 
effects cause an up-crosswind asymmetry of the emitted radiation. In addition, up-downwind 
asymmetries occur. The gravity-capillary waves and sea foam are not uniformly distributed over 
the underlying structure of large-scale waves. Aircraft radiometer measurements (Smith, 1988) 
show that the forward plunging side of a breaking wave is emitting warmer microwave emissions 
than its backside. Furthermore, the small-scale gravity-capillary waves have the tendency to 
cluster on the downwind side of the large-scale gravity waves (Cox, 1958; Keller and Wright, 
1975). Finally, several studies of nonlinear wave-wave interaction suggest that the small-scale 
ocean surface waves are not propagating in the wind direction (Banner and  Young, 1994; . Young 
et al., 1995; Ewans, 1998; Hwang et al., 2000; Irisov, 2000; Hwang and Wang, 2001). This might 
be an additional source of error in the wind direction retrieval from radiometer data. 
Nevertheless, based on SMAP,Aquarius, SMOS, WindSat data, empirical model for the 
anisotropic components of sea surface emissivity have been derived. 

The C- and X-band azimuthal anisotropic harmonic coefficients ∆𝑒𝑘,𝑝(𝑈10) were derived by 

Meissner et al. (2012) and follows:. 

 

∆𝑒𝑘,𝑝(𝑈10) = ∑ 𝑎𝑘𝑖,𝑝 ∙ 𝑈10
𝑖

5

𝑖=1

 

Where the 𝑎𝑘𝑖,𝑝 coefficients for the first and second azimuthal harmonics are given here below: 

 

Table 4: First azimuthal harmonic coefficients 𝒂𝟏𝒊,𝒑 for the C- and X-band frequencies and V-polarization 

f [GHz] p i=1 i=2 i=3 i=4 i=5 

6.8 V 4.46633E-07 3.34314E-07 3.12587E-06 -1.99336E-07 3.55175E-09 

10.7 V 4.96132E-05 -2.90991E-05 9.05913E-06 -5.73703E-07 1.10332E-08 

 

Table 5: Second azimuthal harmonic coefficients 𝒂𝟐𝒊,𝒑 for the C- and X-band frequencies and V-polarization 

f [GHz] p i=1 i=2 i=3 i=4 i=5 

6.8 V 2.21863E-04 -1.18053E-04 1.68718E-05 -8.94076E-07 1.60273E-08 
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10.7 V 1.48213E-04 -7.15954E-05 1.01992E-05 -5.41575E-07 9.71451E-09 

 

The directional dependence of the excess surface emissivity at C and X band is small for low winds 
and it increases with increasing wind speed.  There is larger first harmonic amplitude for vertical 
polarization than for horizontal polarization at all frequencies. The first harmonic amplitude is 
also in general significantly higher than the second harmonic amplitude. The relative polarization 
behavior is consistent with the characteristics of high-frequency observations (Yueh et al., 1999; 
Piepmeier and Gasiewski, 2001; Yueh et al., 2006). At a wind speed of 20 m/s, the peak‐to‐peak 
change of ∆𝑒1,𝑉(𝑈10) is about 1.5 K at C and X-bands in brightness temperature and increase to 

3-4 K (C/X-bands) at 50 m/s. The second harmonic coefficients ∆𝑒2,𝑝(𝑈10)  are generally quite 

small for wind speeds less than 10 m/s except in H-polarization and X-band where it reaches ~1 
K at 20 m/s. In between 10 m/s and 15 m/s, ∆𝑒2,𝑉(𝑈10)   appears to increase linearly until the 
wind speed reaches 15 m/s, while ∆𝑒2,𝐻(𝑈10)    appears to vary in opposite phase to ∆𝑒2,𝑉(𝑈10). 
Note that the behaviour of the first and second harmonic coefficients at the highest winds > 20 
m/s is rather uncertain. Some authors advise to keep the coefficient values constant at winds 
higher than 20 m/s (Meissner et al., 2014), some author advise to linearly interpolate the later in 
the wind speed range (e.g., Yueh et al., 2013). 

 

Figure 13: GMF of the first (left) and second (right) azimuthal harmonic coefficients ∆𝒆𝟏,𝑽(𝑼𝟏𝟎) as a function of surface wind 

speed for L- (blue), C-(black) and X-(red) bands.. The values have been multiplied by a common surface temperature of 290 K. 

Note: in the present version of the algorithm, for simplicity, we neglected the wind directional 
dependence of the emissivity at 6.9 GHz and 10.7 GHz. This effect, which can be locally important 
shall be taken into account but this will be applied in the next ahse-2 version of the algorithm. 
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4.3.4 Atmospheric and cosmic Radiation Scattered by the Sea Surface 

The electromagnetic radiation coming from the ocean surface consists of two parts. 

1) The radiation that is directly emitted from the surface, which is the term 𝐸𝑝 ∙ 𝑇𝑆 in the RTM 

(1). 

2) Downwelling sky radiation (atmospheric and cold space) that is scattered at the ocean surface, 
which is the term 𝑇𝐵Ω in Eq (1), , where  𝑇𝐵Ω = 𝑅𝑝 ∙ [𝑇𝐵𝐷 + 𝜏 ∙ 𝑇𝑐𝑜𝑙𝑑] + 𝑇𝐵,,𝑠𝑐𝑎𝑡,𝑝 

If the surface is rough, this radiation is scattered from a large range of directions θs into the 
incident direction θi. The atmospheric path through which this radiation has travelled differs 
from the atmospheric path if the reflection came only from the incident direction θs = θi. This 
difference in atmospheric path lengths needs to be taken into account in the RTM. There are 
different ways to do this. If the Kirchhoff law 𝑅𝑝 = 1 − 𝐸𝑝 is used in (1), a correction needs to be 

performed, which is formally done in (1) by adding the correction term τ · 𝑇𝐵,,𝑠𝑐𝑎𝑡,𝑝. The effect 

can be best understood by writing down 𝑅𝑝 and 𝑇𝐵Ω in terms of the normalized bistatic cross-

sections 𝜎(𝑘𝑠
⃗⃗  ⃗, 𝑘𝑖

⃗⃗  ⃗) where 𝑘𝑠
⃗⃗  ⃗ 𝑎𝑛𝑑 𝑘𝑖

⃗⃗  ⃗ are the scattered and incident wavenumber vectors: 

𝑅𝑝(𝒌𝒊) =
sec(𝜃𝑖)

4𝜋
∫ 𝑑𝜃𝑠sin

𝜋 2⁄

0

(𝜃𝑠)∫ 𝑑𝜑
𝑠

2𝜋

0

[𝜎𝛼𝛼𝑖
(𝒌𝒔, 𝒌𝒊) + 𝜎𝛼𝑖𝛼

(𝒌𝒔, 𝒌𝒊)] 

 

𝑇𝐵Ω,𝑝(𝒌𝒊) =
sec(𝜃𝑖)

4𝜋
∫ 𝑑𝜃𝑠sin

𝜋 2⁄

0

(𝜃𝑠)∫ 𝑑𝜑𝑠

2𝜋

0

(𝑇𝐵𝐷 + 𝜏 ∙ 𝑇𝑐𝑜𝑙𝑑) × [𝜎𝛼𝛼𝑖
(𝒌𝒔, 𝒌𝒊) + 𝜎𝛼𝑖𝛼

(𝒌𝒔, 𝒌𝒊)] 

Both integrals are over the 2π steradian of the upper hemisphere. If the term (𝑇𝐵𝐷 + 𝜏 ∙ 𝑇𝑐𝑜𝑙𝑑) in 
the second integral of 𝑇𝐵Ω,𝑝(𝒌𝒊) was independent on direction, it could be taken in front of the 

integral and one would simply recover that 𝑇𝐵Ω = 𝑅𝑝 ∙ [𝑇𝐵𝐷 + 𝜏 ∙ 𝑇𝑐𝑜𝑙𝑑], i.e., 𝑇𝐵,,𝑠𝑐𝑎𝑡,𝑝 would 

vanish. However, in general, both terls depend on the atmospheric path length according to (3), 
and therefore a finite correction term 𝑇𝐵,𝑠𝑐𝑎𝑡,𝑝 needs to be added. This is called the atmospheric 

path length correction. It is typically parameterized as: 

TB,scat,p = Ω𝑝(𝜏, 𝑈10) ∙ [𝑇𝐵𝐷 + 𝜏 ∙ 𝑇𝑐𝑜𝑙𝑑 − 𝑇𝑐𝑜𝑙𝑑] ∙ 𝑅𝑝 

Where Ω𝑝(𝜏,𝑈10 = 0)=0 and Ω𝑝(𝜏 = 0, 𝑈10)=0. This ansatz automatically guarantees that the 

TB,scat vanishes for a smooth surface (𝑈10 = 0) and for a completely opaque (τ = 0) and a 
completely transparent (τ = 1, 𝑇𝐵𝐷 = 0) atmosphere. Opaque and transparent atmospheres are 
isotropic, and therefore no atmospheric path length correction exists. 

The Kirchhoff Approximation (KA) is used  to model the bistatic scattering coefficients  𝜎𝛼𝛼𝑖
0  fro 

scattering of the incoming plane waves of polarization 𝛼𝑜 into the outgoing plane waves of 
polarization 𝛼: 
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𝜎𝛼𝛼𝑖
(𝒌𝒔, 𝒌𝒊) =

1

𝜋
|
2𝑞𝑠𝑞𝑖

𝑞𝑠 + 𝑞𝑖
𝐵𝛼𝛼𝑖

(𝒌𝒔, 𝒌𝒊)|
2

𝑒−(𝑞𝑠+𝑞𝑖)
2𝜌(0,0) ∙ 𝐼𝐾  

where   𝒌𝒊    and  𝒌𝒔 are  the incident and scattered radiation wavenumber vectors, respectively, 
and, can be expressed in component form as: 

𝒌𝒊   𝑘⁄ = (sin𝜃𝑖 cos 𝜙
𝑖
)�̂� + (sin𝜃𝑖 sin 𝜙

𝑖
)�̂� + (cos 𝜃𝑖)�̂� 

𝒌𝒔   𝑘⁄ = (sin𝜃𝑠 cos 𝜙
𝑠
)�̂� + (sin𝜃𝑠 sin 𝜙

𝑠
)�̂� + (cos 𝜃𝑠)�̂� 

where (𝒙, �̂�, �̂�) are basis vectors for a local cartesian coordinate system centered at the scattering 
surface and  k is the wavenumber vector magnitude. The Kirchhoff Integral 𝐼𝐾  is given in cartesian 
coordinates by: 

𝐼𝐾 = ∫ ∫{𝑒[(𝑞𝑠+𝑞𝑖)
2𝜌(𝐱)] − 1}

∞

−∞

∞

−∞

𝑒[−𝑖(𝒌𝒔−𝒌𝒊)∙𝒙]𝑑𝑥𝑑𝑦 

The vector x is the horizontal displacement and the integral is evaluated over all possible 
displacements on the horizontal plane.  𝑞𝑠 = 𝒛�̂� ∙ 𝒌𝒔 and 𝑞𝑖 = −𝒛�̂� ∙ 𝒌𝒊 are the vertical 
projections of the scattered and incident wavenumbers, respectively; the kernel functions  
𝐵𝛼𝛼𝑜

(𝒌𝒔, 𝒌𝒊) are functions of both the scattering geometry and the dielectric constant of sea 

water.  Analytical expression of these functions for the Kirchhoff Approximation (KA) can be 
found in  Voronovich and Zavarotny (2001, RD.15). The sea surface elevation function is assumed 
to be a Gaussian random process, and the correlation function of the ocean surface elevation, 
ρ(x), is obtained from the Fourier transform of the directional roughness spectrum W(k), which 
here is given by the wave spectrum model of [RD. 16]. In the present algorithm, only the isotropic 
part of the spectrum is considered. The computation shows that 𝑇𝐵Ω can be approximated by 

𝑇𝐵ΩV = 𝑅𝑝 ∙ [(1 + Ω𝑝(𝜏, 𝑈10))(1 − 𝜏)(𝑇𝐵𝐷 − 𝑇𝑐𝑜𝑙𝑑) + 𝑇𝑐𝑜𝑙𝑑]  (26) 

Where the cosmic microwave background temperature 𝑇𝑐𝑜𝑙𝑑 = 2.7 𝐾. With the KA 
approximation, the term  Ω𝑝(𝜏, 𝑈10, 𝑓) is also a function of the microwave frequency f and can 

be expressed as: 

Ω𝑉(𝜏, 𝑈10, 𝑓) = [2.5 + 0.018 ∗ (37 − f)] ∙ [ΔS2 − 70.0 ΔS6]. τ3.4    (27) 

where f is frequency (GHz) and ΔS2 is the effective sea surface slope variance given by : 

ΔS2 = 5.22 × 10−3[1 − 0.00748(37 − 𝑓)1.3] ∙ 𝑈10    (28) 

4.3.5 Frequency differential specular sea surface emissivity contrast 

Starting from the RTM equation (1), the TOA 𝑇𝐵,𝑝 brightness temperature at each 

frequency reads: 
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𝑇𝐵,𝑝 = 𝑇𝐵𝑈 + 𝜏 ∙ (1 − 𝑅𝑝) ∙ 𝑇𝑆 + 𝜏 ∙ 𝑅𝑝 ∙ [(1 + Ω𝑝(𝜏, 𝑈10))(1 − 𝜏)(𝑇𝐵𝐷 − 𝑇𝑐𝑜𝑙𝑑) + 𝑇𝑐𝑜𝑙𝑑] 

and therefore, one express the total surface relectivities in V-polarization as: 

𝑅𝑉,𝑓 =
𝑇𝐵,𝑉,𝑓−𝑇𝐵𝑈,𝑓−𝜏𝑓𝑇𝑆

𝜏𝑓[(1+Ω𝑉(𝜏,𝑈10,𝑓))(1−𝜏𝑓)(𝑇𝐵𝐷,𝑓−𝑇𝑐𝑜𝑙𝑑)+𝑇𝑐𝑜𝑙𝑑−𝑇𝑆]
     (29) 

Where : 

• 𝑇𝐵,𝑉,𝑓 is the input TOA AMSR-E Level-2A TB product (AE_L2A) 

• 𝑇𝐵𝑈 , 𝑓 is the upwelling brightness temperature and can be estimated using Equation (12b) 

• 𝑇𝑆 is the sea surface temperature 

• 𝜏𝑓 is the atmospheric opacity and can be evaluated using Equation (10) 

• Ω𝑉(𝜏, 𝑈10, 𝑓) can be evaluated using Equation (27) 

• 𝑇𝐵𝐷,𝑓 is the downwelling brightness temperature estimated using Equation (12a) 

• 𝑇𝑐𝑜𝑙𝑑 = 2.7 𝐾  is the cosmic microwave background temperature 

Finally, the perfectly flat surface emitted vertically polarized brightness temperature can then be 
obtained using: 

𝑇𝑠𝑢𝑟𝑓,𝑓
𝑠𝑝𝑒𝑐 = 𝑇𝑆  [1 − 𝑅𝑉,𝑓- ∆𝑒𝑜,𝑓,𝑉(𝑈10)]  (30) 

Where ∆𝑒𝑜,𝑓,𝑉(𝑈10) can be derived from (25). To note, in the approach (30), we neglected the 

anistropic impacts of the sea surface roughness on emissivity as they are very similar between C- 
and X-band for low to moderate winds (see Figure 13). 

The frequency differential specular sea surface emissivity contrast between C- and X-band is 
finally derived from (30) as: 

Δ𝑒𝑠𝑢𝑟𝑓
𝑠𝑝𝑒𝑐

= 𝑒𝑠𝑢𝑟𝑓,6.9
𝑠𝑝𝑒𝑐

-𝑒𝑠𝑢𝑟𝑓,10.7
𝑠𝑝𝑒𝑐

  (31) 

4.4 AMSR-E SSS retrieval Algorithm 

4.4.1 Input Data Filtering 

The input data  𝑇𝐵,𝑉,𝑓   are the TOA AMSR-E Level-2A TB product (AE_L2A) and AMSR-E Level-2B 

CLW,WV, and  𝑈10 product (AE_L2B) as well as the SST from CCI project. 

Table 9. Resolution Definitions for the Level-2A & B product 

Resolution Name Level-2A Antenna 
Pattern 

Spatial Resolution Level-2B Ocean 
Products 

Very low 6.9 GHz 56 km SST 

Low 10.7 GHz 38 km Near-surface wind 
speed 
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Medium 18.7 GHz 21 km Columnar water 
vapor 

High 36.5 GHz 12 km Columnar cloud liquid 
wate 

The input data  𝑇𝐵,𝑉,𝑓   are the TOA AMSR-E Level-2A TB product (AE_L2A) and are first filtered to 

keep only 𝑇𝐵,𝑉,𝑓  values within the expected range of physical TOA over ocean such that 

0 < 𝑇𝐵,𝑉,𝑓 < 320 𝐾 

Some degree of uncertainty is inherent to the input data, namely resampled brightness 
temperatures, geolocation, and earth incidence angle. Under optimal conditions, additional 
uncertainty is mainly due to residual errors in the radiative transfer model (RTM) and its inverse, 
which is essentially the ocean retrieval algorithm. Certain environmental conditions can 
significantly increase errors and uncertainty, in many cases making some retrievals unfeasible. 
These environmental factors include land, sea ice, rain, high wind speeds, sun glint, and Radio 
Frequency Interference (RFI). Some of these factors are stable (land), or at least somewhat 
consistent (sea ice, rain, winds). Sun glint effects can vary with solar activity, especially solar flare 
events. RFI is a continuously evolving source of errors. 
 
Low Resolution Wind Speed errors increase with proximity (~50km) to land, sea ice, rain, sun glint 
specular angle less than ~25°, 11 GHz RFI, and 18 GHz RFI. We therefore filter out the the data if 
Sun_Glint_Angle <= 25° 
which is the angle between the spacecraft viewing  vector and the sun specular reflection vector.  
If this angle is smaller than 25°, data corruption might occur. 
 
And we keep only the data over ocean such that the fraction of land in the FOV for C- and X-band 
channels is less than 0.2%: 

Land_Ocean_Flag_for_6==0  and 
Land_Ocean_Flag_for_10==0. 

 
A “Scan_Quality_Flag” is also provided for each scan in the L1 AMSR-E data. These flags pertain 
to all observations of a scan including all Level-1A and resampled channels. The summary bit 0 of 
the “Channel_Quality_Flag” in the L2A products is automatically set whenever any of the bits in 
the “Scan_Quality_Flag” are set. Thus, the user can determine whether the data are useable by  
examining only the “Channel_Quality_Flag” without examining the Scan_Quality_Flag.  We 
therefore filter the L2A data according to: 
 

Channel_Quality_Flag_6_to_52_bit0==0 
 

Similarly L2B ocean products can be quality filtered following the “Ocean_products_quality_flag” 
included into the AMSR-E L2B products. These are: 
 
Ocean Summary Quality Flag 
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The Ocean_summary_quality_flag indicates one of several conditions for each scan. In the event 
that more than one of the conditions are true, the flag will contain the lowest numerical value of 
the conditions that are true. 
 
Ocean Summary Quality Flag  Values 

Value Definition 
0 Good scan 

1 Bad calibration data 

2 Bad scan as identified by the scan summary bit 
in the Scan_quality_flag 

3 Bad time information based on Level-2A san 
summary flag 

 
The Ocean_products_quality_flag is an array of six bytes for each observation of each scan and 
are described herebelow: 
 
Byte One 
The first byte of the Ocean_products_quality_flag describes the possibility of ice based on 
climatology, and the general plausibility of the observed brightness temperatures 
 
Byte Two of the Ocean Products Quality Flag provide the acceptability of products at a given 
resolution. There is one flag for each resolution in the products 
Very Low resolution (VeryLowres_flag), 
Low resolution (Lowres_flag), 
Medium resolution    (Mediumres_flag) and, 
High resolution    (Highres_flag) 
 
Byte three of the Ocean Products Quality Flag: proximity and intensity of rain 
Bite 
0   No rain contamination 
16 Light rain in cell 
20 Light rain within 25 km of cell 
24 Very light rain within 25 km of cell 
30 Light rain within 40 km of cell 
31 Very light rain within 40 km of cell 
In the present version of the algorithm, the rain flag is not used to keep as much data as possible. 
 
Byte four of the Ocean_products_quality_flag indicates the surface type based on the fraction of 
land for three different spatial resolutions. It is refered to as “Land_flag”. 
based on the fraction of land for three different spatial resolutions. 
 

Bite Resolution Value Definition 

0-1 Very low 0 0 to 0.2% 

2-3 Low 1 0.2% to 1.4% land 

4-5 Medium 2 More than 1.4% land 
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6-7 n/a 

 

 
Byte Five 
The fifth byte of the Ocean_products_quality_flag is an unsigned integer representing the sun 
glint angle, which is the angle between the spacecraft viewing vector and the sun's specular 
reflection vector. Because of the possibility of clipping, an angle of 127.5 should be interpreted 
as 127.5 degrees or greater. 
 
Radio Frequency Interference (RFI) from a variety of sources has been identified as an ongoing 
and increasing source of contamination affecting channels 10.7 GHz and 18.7 GHz (both h-pol 
and v-pol) during the descending pass of the AMSR-E satellite. Beginning with the launch of 
AMSR-E in 2002, RFI from the Hotbird and Astra satellites was identified as the primary source of 
contamination in the 10.7 GHz channel. A flag was then implemented to identify and exclude the 
impacted observations, such as swath and wind data at low geostationary RFI angles. Since 2007, 
interference due to HDTV broadcasting activities has been identified as the primary source of RFI, 
which impacts the AMSR-E 18.7 GHz channel. The locations of interference are geometrically 
consistent with geosynchronous satellite signals reflecting off the ocean surface into AMSR-E's 
field of view, and the timing of the interference is coincident with the launch of HDTV satellites, 
such as DirecTV-10 in 2007 and DirecTV-11 in 2008. In addition, spot beams used by HDTV 
satellites to serve different local programming to different local markets (and thus reuse the 
same set of frequencies), have resulted in amplified RFI. Since spot beams cover nearly the entire 
U.S. coastline, data users should be aware that AMSR-E ocean products derived from descending 
18.7 GHz observations are potentially impacted along all U.S. coastal waters from September 
2007 forward. As RFI interference continues to be an issue, updates to the science algorithm to 
flag and exclude all sources of RFI contamination are ongoing. In addition, the AMSR-E ocean 
products now include an RFI angle grid as a parameter for determining glint angles. Byte 6 is an 
unsigned integer representing the RFI glint angle, which is the angle between the spacecraft 
viewing vector and some of the previously listed geostationary satellite specular RFI reflection 
vector.  Because of the possibility of clipping, an angle of 127.5 should be interpreted as 127.5   
degrees or greater. The associated flag is named “RFI_glint_angle”. 
 
We therefore filter the input L2B water vapor (WV), Cloud liquid water (CLW) and 10 m height 
surface wind speed (𝑈10) products following 
 

1. Land_flag=0 
 

2. VeryLowres_flag=0 & Lowres_flag=0 & Mediumres_flag=0 & 

Highres_flag=0 

 

3. RFI_glint_angle> 25 
 

4. Ocean_summary_quality_flag=0 
 

 



 

Climate Change Initiative+ (CCI+) 
Phase 2 

Algorithm Theoretical 
Development Basis Document 

Ref.: ESA-CCI-PRGM-EOPS-SW-17-0032 

Date:  15/07/2023 

Version : v4.0 

Page: 65 of 87 

 

© Commercial in Confidence ARGANS Ltd 2023 

Note that no filter for sea ice is  included as we consider only tropical regions and we keep all 
conditions of rain (in this first version of the ATBD). 

4.4.2 Input Data  re-gridding 

The Level2B product grids are 720 rows by 1440 columns. Cell spacing is 0.25 degrees x 0.25 
degrees. After filtering we therefore re-gridded all L2A data on this L2B rectangular grid using 
simple spatial bin averaging for L2A. 

4.4.3 Surface specular V-pol brightness temperature at C- and X-band 

Using L2B WV, CLW and 𝑈10 , re-gridded L2A and (CCI) SST data, the sea surface specular V-pol 
Tb are then estimated separately at both C and X band using (30) and the different terms of the 
RTM model components described previously : 

𝑇𝑠𝑢𝑟𝑓,𝑓
𝑠𝑝𝑒𝑐 = 𝑇𝑆  [1 − 𝑅𝑉,𝑓- ∆𝑒𝑜,𝑓,𝑉(𝑈10)] 

4.4.4 Earth Incidence Variations 

The surface emissivity also depends on the Earth Incidence Angle (EIA). Due to the oblateness of 
the Earth the EIA can deviate by about ±0.5 degrees from the nominal EIA of 55 degrees over the 
course of an AMSR-E orbit. The method to compensate for the variation in EIA is frequency 
dependent and follows : 

𝑇𝑠𝑢𝑟𝑓,6.9
𝑠𝑝𝑒𝑐 = 𝑇𝑠𝑢𝑟𝑓,6.9

𝑠𝑝𝑒𝑐 − 2.9 (𝐸𝐼𝐴 − 55) 

 

𝑇𝑠𝑢𝑟𝑓,10.7
𝑠𝑝𝑒𝑐 = 𝑇𝑠𝑢𝑟𝑓,10.7

𝑠𝑝𝑒𝑐 − 2.7 (𝐸𝐼𝐴 − 55) 

 

4.4.5 SST and Atmospheric corrections refinements 

Additional empirical corrections are finally applied to correct for residual biases as a function of 
first SST and then columnar water vapor V and columnar cloud liquid content L. These empirical 
corrections were derived as follows for each C- and X- band frequency of AMSR-E. The specular 
sea surface emission was evaluated using CCI SST and CCI L-band -based SSS (v2.31) products as 
inputs to Equation (22) for 21 months from January 2010 to September 2011. The AMSR-E surface 
Tbs corrected for atmospheric effects including downwelling radiation scattering effects and 
corrected for the isotropic rough sea surface emission were evaluated using the previous RTM. 
These residual specular emission quantity were collected for all four regions together and binned 
as function of CCI SST. As found, after applying the full RTM corrections, residual systematic 
biases as a function of SST are found with differing behaviour at each electromagnetic frequency 
(see Figure 14). 
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Figure 14: Redidual Biases between estimated specular sea surface emission from AMSR-E and forward model estimates (based 
on CCI SSS and SST) as a function of CCI SST for C-band (left) and X-band (right) at V-polarized data. The blue curves are showing 
the median bias ±1 STD as a function of the SST. The red curves are 6th-order polynomial fits. 

After aplying the previous RTM, the surface specular Tb are therefore corrected with an 
additional SST-dependent correction: 

𝑇𝑠𝑢𝑟𝑓,6.9
𝑠𝑝𝑒𝑐′

= 𝑇𝑠𝑢𝑟𝑓,6.9
𝑠𝑝𝑒𝑐

− ∆𝑇𝑆𝑆𝑇,6.9
𝑎𝑑𝑗

(𝑇𝑠) 

𝑇𝑠𝑢𝑟𝑓,10.7
𝑠𝑝𝑒𝑐′ = 𝑇𝑠𝑢𝑟𝑓,10.7

𝑠𝑝𝑒𝑐 − ∆𝑇𝑆𝑆𝑇,10.7
𝑎𝑑𝑗

(𝑇𝑠) 

Where the ∆𝑇𝑆𝑆𝑇,𝑓
𝑎𝑑𝑗

(𝑇𝑠) are 6th-order polynomial functions of the SST, which were derived by 

fitting observed residual biases (see Figure 14): 

∆𝑇𝑆𝑆𝑇,𝑓
𝑎𝑑𝑗

(𝑇𝑠) = 𝑇𝑠 ∑𝑐𝑖,𝑓 ∙ 𝑇𝑠
𝑖

6

𝑖=0

 

The coefficients 𝑐𝑖,𝑓for C- and X-band frequencies are given in the following table: 

𝑐𝑖,𝑓 f=6.9 GHZ F=10.7 GHz 

i=0 0.5186 0.1691 

i=1 -0.1191 -0.0266 

i=2 0.0111 9.5888e-04 

i=3 -5.2418e-04 5.3752e-05 

i=4 1.3158e-05 -5.0486e-06 
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i=5 -1.6187e-07 1.3794e-07 

i=6 7.1766e-10 -1.3016e-09 

After correcting for residual biases in  SST, residual biases as function of both columnar water 
vapor V and columnar cloud liquid content L were found (see Figure 15). We therefore further 

correct the SST-corrected surface  𝑇𝑠𝑢𝑟𝑓,𝑓
𝑠𝑝𝑒𝑐′  using: 

𝑇𝑠𝑢𝑟𝑓,6.9
𝑠𝑝𝑒𝑐′′ = 𝑇𝑠𝑢𝑟𝑓,6.9

𝑠𝑝𝑒𝑐′ − ∆𝑇𝑎𝑡𝑚,6.9
𝑎𝑑𝑗

(𝑉, 𝐿) 

𝑇𝑠𝑢𝑟𝑓,10.7
𝑠𝑝𝑒𝑐′ = 𝑇𝑠𝑢𝑟𝑓,10.7

𝑠𝑝𝑒𝑐′ − ∆𝑇𝑎𝑡𝑚,10.7
𝑎𝑑𝑗

(𝑉, 𝐿) 

Where the ∆𝑇𝑎𝑡𝑚,𝑓
𝑎𝑑𝑗

(𝑉, 𝐿) are bivariate polynomial corrections: 

∆𝑇𝑎𝑡𝑚,𝑓
𝑎𝑑𝑗

(𝑉, 𝐿) = ∑∑ 𝑑𝑖,𝑗,𝑓𝑉
𝑖

6−𝑖

𝑗=𝑜

6

𝑖=𝑜

𝐿𝑗  

Where V and L are the columnar water vapour (in [mm]) and the cloud liquid content (in kg/m3), 
respectively. 
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Figure 15: Observed (left plots) and modeled (right plots) residual biases as a function of both columnar Water Vapor (V) and 
Cloud liquid water (L).  Top and bottom panels are for C- and X- band corrections, respectively. 

Note that the range of valid values for the AMSR-E L2B cloud liquid water content is -0.05 to 2.45 
mm. REMSS use a small negative offset to account for random noise in the data. In clear sky 
conditions, all cloud values should be zero. However, there is some noise inherent in the data. So 
in practice, clear sky values average zero. Some are a little above and some are a little below 
zero. Clear sky values that land a little below zero are kept so that they average out with the clear 
sky values that land a little above zero. If one set negative cloud retrievals to zero, then it would 
tend to push the average a little too high. Note that the correction is most important for clear 
sky conditions (L<0) and strong water vapour. 

The 28  polynomial coefficients 𝑑𝑖,𝑗,𝑓 are given herebelow for each frequency: 
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𝑑𝑖,𝑗,𝑓 f=6.9 GHZ F=10.7 GHz 

i=0,j=0 -0.0022 -0.0014 

i=0,j=1 -0.0181 -0.0811 

i=0,j=2 0.7813 1.4239 

i=0,j=3 -0.0916 -4.1525 

i=0,j=4 -73.6988 -55.1092 

i=0,j=5 755.6296 921.0287 

i=0,j=6 -3.3162e+03 -4.1704e+03 

i=1,j=0 2.2718e-04 8.1722e-05 

i=1,j=1 0.0037 0.0121 

i=1,j=2 -0.0791 -0.1432 

i=1,j=3 0.0238 0.2447 

i=1,j=4 1.2992 -0.5798 

i=1,j=5 5.8124 6.8483 

i=2,j=0 -6.9924e-06 1.8660e-06 

i=2,j=1 -2.7975e-04 -6.7317e-04 

i=2,j=2 0.0038 0.0061 

i=2,j=3 -0.0078 -0.0083 

i=2,j=4 -0.0249 0.0011 
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i=3,j=0 -6.4174e-08 -2.3399e-07 

i=3,j=1 7.7236e-06 1.5979e-05 

i=3,j=2 -6.7072e-05 -1.0807e-04 

i=3,j=3 1.0365e-04 4.8352e-05 

i=4,j=0 8.1096e-09 6.6315e-09 

i=4,j=1 -8.1112e-08 -1.5401e-07 

i=4,j=2 4.0436e-07 7.3521e-07 

i=5,j=0 -1.6668e-10 -9.0218e-11 

i=5,j=1 2.2051e-10 3.7474e-10 

I=6,j=0 1.1178e-12 5.3490e-13 

4.4.6 Land Sea Contamination filtering and Outliers Removal  

4.4.6.1 Land Sea Contamination filtering 

  

Figure 16:  Standard deviation of the surface brightness temperature contrast in Ascending (left) and Descending (right) passes 
evaluated over the AORP region and the period 07/2002 to 11/2011. 

As illustrated in Figure 16 for the specific case of the AORP region, we found that the standard 
deviation of the surface brightness temperature contrast evaluated over the period 07/2002 to 
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11/2011 do not show the same spatial patterns in Ascending (left) and Descending (right) passes.  
The temporal Median Absolute Deviation (MAD) of the differences between A and D passes are 
high up to ~140 km from the nearest coasts with a high standard deviation, before converging to 
similar values more than 140 km offshore where the salinity signal variability is detected. Similar 
along coasts differences in the A and D signals were found for the three others regions. The > 
0.3K differences between A and D tracks near the cost would correspond to > 6 pss signals, which 
are way larger than those induced by a potential diurnal SSS cycle in the studied regions, and 
thus very likely linked to land contamination. MAD maps for A and D passes calculated from the 
entire AMSR-E database shows that A and D brightness temperatures display extreme values at 
different locations, always situated downstream of the coast when following the satellite track. 
These outliers in brightness temperature are thus most likely associated with contamination by 
land signals.  

 

Figure 17: Means and standard deviation of the absolute difference of the Median Absolute Deviation (MAD) between ascending (A) and 

descending (D) brightness temperature in function of the distance to the nearest coast [in km] in the Bay of Bengal. In blue the mean before filtering 

the land-sea contamination, in orange the mean on the spatial filtered data and in green the mean on the spatial and temporal filtered data. 
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Figure 18: Temporal Median Absolute Deviation of the brightness temperature contrast between X- and C-band from all 2002-2011 AMSR-E data 

for a) ascending (A) and b) descending (D) satellite passes and c) for their difference.  

 

To filter this land-sea contamination, we apply a spatial filter by  removing data which show 
higher MAD in one pass direction than in the other. To this aim, we defined a mask where the 
difference of the temporal MAD for ascending data is greater than +0.06K (equivalent of 1.2 psu) 
and for the descending data where the difference is less than -0.06 K, creating two static masks 
applied separatlty for ascending and descending brightness temperature data (see Figure 18). 
After applying such filter (see Figure 17), the variations of the MAD decreases consistently, 
indicating a clear attenuation  of the land impact on the brightness temperature. 

 

4.4.6.2 Remaining outlier filtering 

Once the land contamination mask has been applied, we scan the remaining ∆TB time series at 
each location to exclude potential outliers such as the one from unfiltered Radio Frequency 
Intereferences. The temporal median and Mean Absolute Deviation (MAD) of ∆TB is re-evaluated 
in ¼°x¼° boxes, separately for A and D direction, over May 2002-October 2011. Outliers (more 
than 3 MAD away from the median) are then filtered out. After these two filtering steps steps, 
the difference in the MAD of the A and D passes is less than 0.02K (0.4 pss) (Figure 17, green 
curve). 

 

AMSR-E data are collected and processed for each day of a given month and then temporally 
averaged to provide monthly averaged median SSS fields. Prior averaging, it is important to 
remove remaining  (after the quality filters described previously) outliers in the time series. We 
used the 21 months from January 2010 to October 2011 to estimate static spatial maps of the 
median absolute temporal deviation (MAD) of the specular sea surface emissivity frequency 

differential contrasts ∆𝑒𝑠𝑢𝑟𝑓
𝑠𝑝𝑒𝑐  for each of the 4 regions. An outlier is defined as an  element that is 
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greater than 3 scaled median absolute deviation (MAD) away  from the median. The scaled MAD 
is defined as  

𝑀𝐴𝐷(∆𝑇𝑠𝑢𝑟𝑓
𝑠𝑝𝑒𝑐) = 𝐾 ∙ 𝑀𝐸𝐷𝐼𝐴𝑁(|∆𝑇𝑠𝑢𝑟𝑓

𝑠𝑝𝑒𝑐 − 𝑀𝐸𝐷𝐼𝐴𝑁(∆𝑇𝑠𝑢𝑟𝑓
𝑠𝑝𝑒𝑐)|) 

 where K is the scaling factor and is approximately 1.4826. 

4.4.7 Neural Network SSS inversion  

4.4.7.1 Neural Network training 

 In each region, 21 monthly maps of CCI SSS v3.2 data from January 2010 to September 
2011 were used to train a two layer feed-forward neural network (NN) with 40 Neurones per 
layers. A Bayesian regularization backpropagation technique  is used to minimize a linear 
combination of squared errors and weights. It also modifies the linear combination so that at the 
end of training the resulting NN has good generalization qualities. Backpropagation uses the 
Jacobian for calculations with a mean of squared errors performance function. 

The input data to the NN training are the following 6 parameters:   

❑ The monthly averaged estimated ∆e flat surface emissivity difference between the C-X 
bands (corrected for atmospheric, celestial, roughness effects, LSC contamination and 
outliers), 

❑ The monthly averaged AMSR-E SST, CLW, WV and SWS, and, the, 

❑ SSS from CCI, 

4.4.7.2 Neural Network functions 

 

Figure 19: Neural Netwrok architecture 
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For each region, the Neural Network functions determined from the NN training have the 
following shape using as input ∆e, SST, CLW, SWS and WV: 

𝑆𝑆𝑆𝑁𝑁 =
(𝑁𝑁𝑁 − 𝑏𝑆𝑆𝑆)

𝑎𝑆𝑆𝑆
 

where 

 

𝑁𝑁𝑁 = 𝑊2 ∙ 𝐴2 + 𝐵3 

with 

𝐴2 =
2

(1 + exp(−2 ∙ 𝑛2))
− 1 

and 

𝑛2 = 𝑊1 ∙ 𝐴1 + 𝐵2 

𝐴1 =
2

(1 + exp(−2 ∙ 𝑛1))
− 1 

and 

𝑛1 = 𝐼𝑊 ∙ 𝑃𝑛 + 𝐵1 

Where  

𝑃𝑛 =

[
 
 
 
 
𝑎1 ∙ ∆𝑒 + 𝑏1

𝑎2 ∙ 𝑠𝑠𝑡 + 𝑏2

𝑎3 ∙ 𝑐𝑙𝑤 + 𝑏3

𝑎4 ∙ 𝑠𝑤𝑠 + 𝑏4

𝑎5 ∙ 𝑤𝑣 + 𝑏5 ]
 
 
 
 

 

where  

• 𝑎𝑖=1,…,5,  𝑏𝑖=1,…,5, 𝑎𝑠𝑠𝑠  and 𝑏𝑠𝑠𝑠  are single coefficients, 

• 𝐼𝑊 and 𝑊1 are 40 x 5 and 40 x 40 matrices, respectively,  

• 𝐵1, 𝐵2, and 𝑊2 are 1 x 40 vectors,   

of numerical coefficients which depend on the selected river plume region.  
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4.4.8 References for AMSR-E SSS algorithm 

ID Document Reference 

RD01 Reul Nicolas, Saux Picart Stephane, Chapron Bertrand, Vandemark D., 
Tournadre Jean, Salisbury J. (2009). Demonstration of ocean surface salinity 
microwave measurements from space using AMSR-E data over the Amazon 
plume. Geophysical Research Letters ( GRL ) , 36, 1-5 .  

https://doi.org/10.102
9/2009GL038860 

RD02 Qingtao Song and Zhaohui Wang. (2017). Sea surface salinity observed from 
the HY-2A satellite. Satellite Oceanography and Meteorology, vol.2 (1): 41–
48. 

http://dx.doi.org/10.1
8063/SOM.2017.01.00
4. 

RD03 Meissner T., and F.J. Wentz, (2004) The Complex Dielectric Constant of Pure 
and Sea Water From Microwave Satellite Observations, IEEE TRANSACTIONS 
ON GEOSCIENCE AND REMOTE SENSING, VOL. 42, NO. 9 

 

RD04 Merchant, C.J., Embury, O., Bulgin, C.E., Block T., Corlett, G.K., Fiedler, E., 
Good, S.A., Mittaz, J., Rayner, N.A., Berry, D., Eastwood, S., Taylor, M., 
Tsushima, Y., Waterfall, A., Wilson, R., Donlon, C. Satellite-based time-series 
of sea-surface temperature since 1981 for climate applications, Scientific 
Data 6:223 (2019).  

http://doi.org/10.1038
/s41597-019-0236-x 

RD05 Good, S.A.; Embury, O.; Bulgin, C.E.; Mittaz, J. (2019): ESA Sea Surface 
Temperature Climate Change Initiative (SST_cci): Level 4 Analysis Climate 
Data Record, version 2.1. Centre for Environmental Data Analysis, 22 August 
2019. doi:10.5285/62c0f97b1eac4e0197a674870afe1ee6. 

http://dx.doi.org/10.5
285/62c0f97b1eac4e0
197a674870afe1ee6 

 Meissner, T. and F.J. Wentz, (2012), The Emissivity of the Ocean Surface 
Between 6 - 90 GHz Over a Large Range of Wind Speeds and Earth Incidence 
Angles, IEEE Transactions on Geoscience and Remote Sensing, 50(8), 3004-
3026. 

 

RD04 Wentz, F. J. and T. Meissner, (2016), Atmospheric Absorption Model for Dry 
Air and Water Vapor at Microwave Frequencies below 100 GHz Derived from 
Spaceborne Radiometer Observations, Radio Science, 51, 381-391. 

 

RD05 Rodgers, C. D. (1976). Retrieval of atmospheric temperature and 
composition from remote measurements of thermal radiation. Reviews 
of Geophysics, 14(4), 609. 

 

RD06 C. S. Cox, “Measurements of slopes of high frequency wind waves,” J. Mar. 
Res., vol. 16, pp. 199–225, 1958. 

 

RD07 H. Mitsuyasu and T. Honda, “Wind-induced growth of water waves,” J. Fluid 
Mech., vol. 123, pp. 425–442, 1982 

 

RD08 Rodgers, C. D. (1990). Characterization and error analysis of profiles retrieved 
from remote sounding measurements. Journal of Geophysical Research, 
95(D5), 5587. 

 

RD09 P. M. Smith, “The emissivity of sea foam at 19 and 37 GHz,” IEEE Trans. Geosci. 
Remote Sensing, vol. GE-26, pp. 541–547, Sept. 1988.  

 

RD10 W. C. Keller and J. W. Wright, “Microwave scattering and the straining of 
wind-generated waves,” Radio Sci, vol. 10, pp. 139–147, 1975. 

 



 

Climate Change Initiative+ (CCI+) 
Phase 2 

Algorithm Theoretical 
Development Basis Document 

Ref.: ESA-CCI-PRGM-EOPS-SW-17-0032 

Date:  15/07/2023 

Version : v4.0 

Page: 76 of 87 

 

© Commercial in Confidence ARGANS Ltd 2023 

ID Document Reference 

RD11 M. L. Banner and I. R. Young, “Modeling spectral dissipation in the evolution 
of wind waves. Part I: Assessment of existing model performance,” J. Phys. 
Oceanography, vol. 24, pp. 1550–1571, 1994.  
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and Remote Sensing Applications, Puerto Rico, USA, 2006, Paper 
Catalog # 06EX1174C. [Online]. Available: 
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S. H. Yueh, W. J. Wilson, S. Dinardo, and F. K. Li, “Polarimetric 
microwave brightness signatures of ocean wind directions,” IEEE 
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J. R. Piepmeier and A. J. Gasiewski, “High-resolution passive 
polarimetric microwave mapping of ocean surface wind vector 
fields,” IEEE Trans. Geosci. Remote Sens., vol. 39, no. 3, pp. 606–
622,Mar. 2001. 
 
 S. H. Yueh, W. Wilson, S. Dinardo, and S. V. Hsiao, “Polarimetric 
microwave wind radiometer model function and retrieval testing for 
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5 Conclusions and way forward for AMSR-E SSS algorithm 

Most of the AMSR-E SSS retrieval algorithm have been developed and tested. So far, we have 
tested NN with 2 hidden layers  and 40 Neurones per layers using as input data the surface 
emissivity frequency differential contrasts after atmospheric corrections and the extra 
polynomial empirical adjustments (wind, sst, clw, wv).  Retrieval tests will be conducted with or 
without  these extra polynomial empirical adjustments to determine in which conditions do the 
NN inversion performs better. As found, one of the remaining issue is the relatively low number 
of training observations for the freshest SSS (due in part to low coverage of fresh waters and LSC 
filtering) which lead to overestimation of SSS from AMSR-E in the freshest SSS zones. To better 
characterize these conditions, the distance to coast might be used as an input to the NN. An 
additional task will finally  be to develop an error estimate for the AMSR-E SSS retrievals.  
Validation procedures will include in situ SSS data (Argo, TSG, XBT and moorings) gathered over 
the four regions back to 2002.  

 

 

 

  



 

Climate Change Initiative+ (CCI+) 
Phase 2 

Algorithm Theoretical 
Development Basis Document 

Ref.: ESA-CCI-PRGM-EOPS-SW-17-0032 

Date:  15/07/2023 

Version : v4.0 

Page: 78 of 87 

 

© Commercial in Confidence ARGANS Ltd 2023 

 

 

 

 

 

  



 

Climate Change Initiative+ (CCI+) 
Phase 2 

Algorithm Theoretical 
Development Basis Document 

Ref.: ESA-CCI-PRGM-EOPS-SW-17-0032 

Date:  15/07/2023 

Version : v4.0 

Page: 79 of 87 

 

© Commercial in Confidence ARGANS Ltd 2023 

Appendix A - L2P algorithms 

A.1 Introduction 

CCI L2 products are Level 2 Pre-Processed (L2P) products defined in the CCI data standards 
document (AD.9).   

Table A-1: L2P definition extracted from processing level of CCI Data Standards document [AD.9]. 

 

 

L2P files are daily files with ascending/descending orbit separation and are available for both 
SMOS and SMAP sensors.  

The main content of L2P products are SSS from SMOS or SMAP. SSS is corrected from different 
systematic errors, as land-sea contamination systematic errors and latitudinal systematic errors, 
as outputs of the Level4 CCI SSS data version 3 chain (last release of the phase 1). 

L2P products are used only for internal validation and are not distributed to external users.  

A.2 Method 

A.2.1 Input Data re-gridding  

While the SMOS Level 2 data are provided onto the EASE grid at 25 km resolution, the SMAP 
Level 2 data is not given on that grid. A first step therefore consists in projecting SMAP SSS onto 
the EASE grid at 25 km resolution. A closest neighbour interpolation scheme is used for that 
purpose. 

A.2.2 L2P variables definition  

SSS 

The sea surface salinity in L2P files is unbiased: it is corrected from land-sea contamination 
systematic errors and seasonal latitudinal systematic errors. For SMOS, the SSS is also corrected 
from rain rate by using A. Supply relation which gives the SSS freshening according to the 
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instantaneous rain rate. This formula is not applicable to SMAP data. For SMOS rain rate larger 
than 10 mm/h, the SSS is not corrected from rain rate and put to NaN.  For SMAP rain rate larger 
than 0.5 mm/h, the SSS is put to NaN.  

sss = sss_uncorrected + sss_correction  

Where sss_uncorrected is SSS from input data described in section 2.1.2 and sss_correction =
−sss_bias. 

SSS random uncertainties 

The random error of SSS, sss_random_error, is the theoretical error and it is estimated as follows 
for SMOS and SMAP.  

L2P SMOS 

The random error of SMOS SSS is estimated as follow (see E3UB for more details): 

sss_random_error = eSSS × error_factor × Chi  

Where eSSS and Chi are outputs from SMOS L2OS processor, and represent the ‘theoretical error’ 
and the retrieval Chi, respectively. The error_factor parameter depends on the distance from the 
nearest coast dmin and is estimated as follow:  

error_factor = p1 × (
dmin

1000
)

3
+ p2 × (

dmin

1000
)

2
+ p3 ×

dmin

1000
+ p4  

With: p1=-1.773 10-11; p2=1.025 10-7; p3=-2.057 10-4;  p4=1.140 and dmin is the distance from 
the coast expressed in km.  

L2P SMAP 

The random error of SMAP SSS is as follow: 

sss_random_error =
0.38

0.015×SST+0.25
× error_factor  

Where error_factor has been determined based on observed errors derived from internal 
consistency comparisons and depends on the distance from the coast dmin and is estimated as 
follow:  

error_factor_smap = p1 × (
dmin

1000
)

8
+ p2 × (

dmin

1000
)

7
+ p3 × (

dmin

1000
)

6
+ p4 × (

dmin

1000
)

5
+ p5 ×

(
dmin

1000
)

4
+ p6 × (

dmin

1000
)

3
+ p7 × (

dmin

1000
)

2
+ p8 ×

dmin

1000
+ p9  

p1=0.002991909878747; p2=-0.057895699052765; p3=0.454231563716574; 
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p4=-1.869918681721869; p5=4.369867374935416; p6=-5.877381371897917; 

p7=4.439753964071140; p8=-1.785811244191490; p9=1.353937878613555; 

SSS systematic errors  

sss_bias is estimated from L4 data products (Cf. 4.3) and is defined as follows: 

sss_bias = sssuncorrected − sss 

Flag computation 

Three flags are defined for L2P SSS and described hereafter: 

SSS quality check 

sss_qc = 0 for good pixels and sss_qc=1 for bad pixels.  

A bad pixel is a pixel associated with SSS values verifying the following condition: 

|sss –  SSS_monthly_L4| >  3 𝜎  

Where 𝜎 = √sss_random_error2  + weekly_variability + sss_random_error_L42 

σ combines the random error on the L2P SSS, the random error on L4 salinity and the weekly 
natural variability (corresponding to the representativity error between monthly and weekly SSS 
fields used in L4 processing).  

This condition means that L2P SSS (which is not averaged) should be comparable to the monthly 
SSS estimated in L4 in a range of 3 times the natural variability and the measurement error.     

Land-sea quality check 

L2P lsc_qc is computed in the same way than for L4 (section 0).  

Ice-Sea quality check 

The ice flag is the same than the one computed at L4 (section 0)   

A.3 Conclusion 

L2P products are used as inputs to Level 3 CCI+SSS products. These products have been designed 
as useful tools for investigating  validation results obtained for L4 and/or L3 products. 
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Appendix B - L3C algorithms 

 

B.1 Introduction 

The level 3 (L3) products are, by definition, time and space-averaged products obtained sensor 
by sensor, without mixing inter-sensor information. Here, we consider simple averages of swath 
Level 2 SSS products, which may have been already corrected for some biases (e.g. land sea 
contamination or spatio-temporal drifts corrections). These products can thus be used as a 
reference in terms of observed SSS and of its variability as derived from each sensor. Indeed, we 
don't apply to the observed SSS any specific smoothing operation (for example, by introducing 
representativity errors or variance filtering).   

L3C products are used only for internal validation and are not distributed to external users.  

B.2 Input data for CCI+SSS L3 data 

B.2.1 SMOS and SMAP L2P products 

SMOS and SMAP L3 products are computed from Level 2P CCI+SSS output. These products are 
the swaths L2P SMOS and SMAP data generated by the algorithms described in section 2.  

B.2.2 Aquarius Level 3 products 

For Aquarius, we use as input the official release products L3 v5.0, which is the official end of 
mission public data release from the AQUARIUS/SAC-D mission (with DOI: 10.5067/AQR50-
3SADS and which are accessible here). Aquarius Level 3 sea surface salinity standard mapped 
image data contains gridded 1 degree spatial resolution SSS averaged over daily, 7 day, monthly, 
and seasonal time scales. We use the daily non averaged dataset for generating the CCI+SSS L4 
dataset V3. The ATBD for these Aquarius L3 products is detailed in [AD.4] and [AD.5] and 
therefore, not reproduced here.  

B.3 CCI+SSS L3 product overview 

CCI L3 products are Level 3 collated products (L3C).  

https://podaac.jpl.nasa.gov/dataset/AQUARIUS_L3_SSS_SMID_ANNUAL_V5
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Table B-1: L3C definition extracted from processing level of CCI Data Standards document [AD.9]. 

 

The L3 products contain the averaged SSS field and the associated error for each L-band sensor: 
SMOS, Aquarius, and SMAP. 

There are three types of L3C products:  

- L3C products with data averaged weekly on a daily sliding window, cumulating ascending 
and descending orbits; 

- L3C products with data averaged monthly on a 15-day sliding window, cumulating 
ascending and descending orbits; 

- L3C products with data averaged monthly on a 15-day sliding window for ascending and 
descending orbits separately; 

The files’ names indicate the date the time-composite are centred on.  The weekly average is 
computed at the central date ± 3 days, every day, and the monthly average is computed at the 
central date ±15 days every 1st and 15th of each month. 

B.4 Method 

B.4.1 Input Data re-gridding  

While the L2P SMOS and SMAP data are already available on the EASE grid at 25 km resolution, 
Aquarius Level 3 products are not provided on that grid. A first step therefore consists in 
interpolating Aquarius SSS onto the EASE grid at 25 km resolution. A bilinear interpolation 
scheme is used for that purpose. 

B.4.2 Input Data correction 

As for SMOS and SMAP (Cf. 0), systematic errors corrections are applied to AQUARIUS L3 SSS 
resulting on the following systematic error estimation:  

sss_bias = sssuncorrected − sss 

B.4.3 Data filtering 

Before averaging the data over the corresponding period, SSS values are first filtered.  



 

Climate Change Initiative+ (CCI+) 
Phase 2 

Algorithm Theoretical 
Development Basis Document 

Ref.: ESA-CCI-PRGM-EOPS-SW-17-0032 

Date:  15/07/2023 

Version : v4.0 

Page: 84 of 87 

 

© Commercial in Confidence ARGANS Ltd 2023 

For SMOS, SSS values are filtered when :  

- lsc_qc = 1; 
- isc_qc = 1; 
- ws > 16 m.s-1; 
- |Acard_model −  Acard_measured | >  2; 
- flag_many_outlier = 1; 
- |sss –  sss_window_median |  >  3 × sss_random_error 

sss_window_median is the median evaluated over the weekly or monthly time window used for 
averaging.  

For SMAP, SSS values are filtered:  

- According to the SMAP filtering criteria described in [AD10] 
- When lsc_flag =1; or, when 
- |sss –  sss_window_median |  >  3 ×  sss_random_error 

For Aquarius, SSS values are filtred when: 

- According to the Aquarius filtering criteria described in [AD10], 
- When lsc_qc =1; 
- When |sss –  sss_window_median |  >  3 × sss_random_error 

B.4.4 L3C variables definition 

SSS 

Assuming that, for a given grid node and over the duration of a month (in case of monthly 
average) or a week (in case of weekly average), we have a set of level 2 salinities 𝑠𝑠𝑠𝑖 

characterized by errors sss_random_errori
2, then the weighted average salinity is obtained as 

follows: 

sss_sensor̃ =

∑
sss_sensori

sss_random_error_sensori
2

n
i=1

∑
1

sss_random_error_sensori
2

n
i=1

 

i designates an individual measurement after filtering, n the number of individual measurements 
over the period (7days/30days) and sensor is either SMOS, SMAP, or Aquarius. 

This average is calculated for each grid node and on a daily or a two-week temporal sliding 
window.  
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SSS random uncertainties 

The random error associated with the averaged SSS is computed as follow: 

 

sss_random_error_sensor̃ =
√

1

∑
1

sss_random_error_sensori
2

n
i=1

 

SSS systematic uncertainties 

The systematic error associated with the averaged SSS is computed as follow:  

sss_bias_sensor̃ =

∑
sss_bias_sensori

sss_random_error_sensori
2

n
i=1

∑
1

sss_random_error_sensori
2

n
i=1

 

Flag computation 

For quality check definition, we use monthly L4 salinities as a reference.  

Weekly L3C 

sss_qc = 0 for good pixels and sss_qc=1 for bad pixels.  

A bad pixel is a pixel associated with SSS checking the following condition: 

|sss –  SSS_monthly_L4| >  3 𝜎  

Where 𝜎 = √sss_random_error2  + weekly_variability + sss_random_error_L42 

sss_random_error_L4 is the random error on the L4 SSS.  

Monthly L3C 

sss_qc = 0 for good pixels and sss_qc=1 for bad pixels.  

A bad pixel is a pixel associated with SSS checking the following condition: 

|sss –  SSS_monthly_L4| >  3 𝜎  

Where 𝜎 = √sss_random_error2  + sss_random_error_L42 
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Number of L4 outliers 

The number of L4 outliers corresponds to the number of SSS rejected in L4 for an individual 
sensor. It is estimated as the occurrence over a temporal window of SSS values such as:  

|sss –  SSS_monthly_L4| >  3 𝜎  

Where 𝜎 = √sss_random_error2  + weekly_variability + sss_random_error_L42 

Number of observations 

Total_nobs corresponds to the number of Level 2 observations on the temporal window, used to 
compute the average L3 SSS, after the filtering explained in B.4.3.  

B.5 Conclusion 

L3C products are intended as a tool to interpret results obtained with L4 products: if two sensors 
see consistent SSS variability that is similar to SSS L4 observation, it is an indication of reliability 
of L4 SSS. Contrarily, if L4 SSS appears dubious and that the SSS from two sensors are very 
different, this could help to interpret where the dubious observation comes from. L3 products 
are not used as inputs to the algorithm used to generate L4 CCI+SSS products, as their quality 
checks remain peculiar to each sensor contrarily to what is performed for deriving L4 products. 
For example, if L4 filters retain only dubious data, this could be retrieved from L3C data.   
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