

Product User Guide (PUG) Version 5.0

for the RemoTeC XCH4 GOSAT-2 Proxy Product (CH4_GO2_SRPR) version 2.0.3

for the Essential Climate Variable (ECV)

Greenhouse Gases (GHG)

Written by:

GHG-CCI+ project team

Lead author:

Andrew Gerald Barr

(SRON Netherlands Institute for Space Research, Leiden, The Netherlands)

Co-authors:

Tobias Borsdorff, Jochen Landgraf

(SRON Netherlands Institute for Space Research, Leiden, The Netherlands)

Product User Guide (PUG) XCH₄ GOSAT-2 SRON PROXY (CH4_GO2_SRPR)

for the Essential Climate Variable (ECV) Greenhouse Gases (GHG) Version 5.0 (contractual version 2)

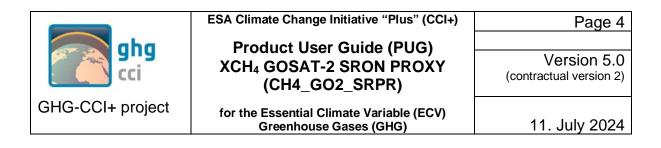
contractual version 2)

11. July 2024

Change log:

Version Nr.	Date	Status	Reason for change
Version 1	27. Oct. 2020	Draft	New document
Version 1.1	04. Jan. 2021	As submitted	 Update format Update purpose of document
Version 1.1	04. Feb. 2021	As submitted	Update after ESA reviewsRemove typos
Version 2.0	04. Nov. 2021	As submitted	 L2 data reprocessing: update filter criteria, selection of TCCON station, and bias correction
Version 3.0	27. Jan. 2022	As submitted	- Updated doc to version 3.0
Version 4.0	15. Aug. 2023	As submitted	 Update doc to version 4.0 Quality filtering via random forest model prediction
Version 5.0	11. July 2024	As submitted	 Update doc to version 5.0 New product version v2.0.3 Timeseries extended to end of 2023

Product User Guide (PUG) XCH₄ GOSAT-2 SRON PROXY (CH4_GO2_SRPR)


for the Essential Climate Variable (ECV) Greenhouse Gases (GHG) Version 5.0 (contractual version 2)

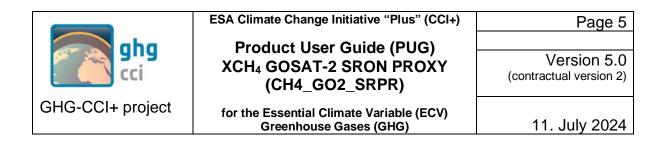
,

11. July 2024

Table of Contents

1	•	Purpose of document	4
2		Greenhouse gases Observing SATellite-2 (GOSAT-2)	. 5
3		RemoTeC retrieval algorithm	. 6
4		XCH ₄ RemoTeC Proxy data product (Feb. 2019 – Dec 2023)	7
	4.1	Global maps	7
	4.2	Validation with TCCON	. 9
	4.3	Bias correction	12
5	•	Description of data format	14
	5.1	Product Content and Format	14
	5.2	Quality Flags and Metadata	18
	5.3	Recommended data usage	22
	5.4	Tools for Reading the Data	22
6		References	23

1. Purpose of document

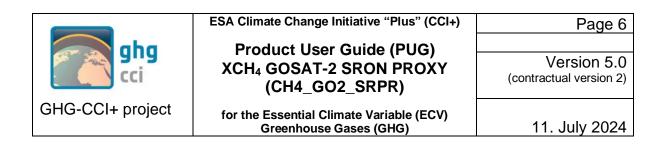

This document describes the Product User Guide (PUG) of the RemoTeC XCH₄ GOSAT-2 SRON Proxy Product (CH4_GO2_SRPR), which is a deliverable for the ESA GHG-CCI+ project led by University of Bremen, Germany.

Within the project, satellite-derived atmospheric Carbon Dioxide (CO₂) and Methane (CH₄) Essential Climate Variable (ECV) data products are generated and delivered to ESA for inclusion into the ESA-GHG-CCI+ database from which users can access these data products and the corresponding documentations.

The satellite-derived data products are:

• Column-averaged dry-air mixing ratios (mole fractions) of CO₂ and CH₄, denoted XCO₂ (in parts per million, ppm) and XCH₄ (in parts per billion, ppb), respectively.

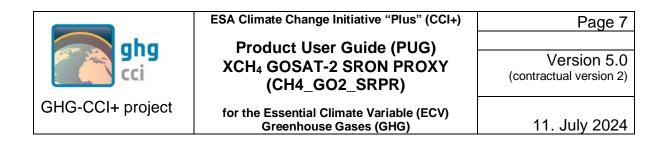
This document will be focused on the XCH₄ Level-2 product retrieved using the GOSAT-2 Proxy algorithm developed by SRON Netherlands Institute for Space Research, The Netherlands.



2. Greenhouse gases Observing SATellite-2 (GOSAT-2)

The Japanese Greenhouse gases Observing SATellite-2 (GOSAT2) was launched on 29th October 2018 and started operational observations form February 2019. GOSAT2 provides dedicated global measurements of total column CO_2 and CH_4 from its SWIR bands. It is equipped with two instruments, the Thermal And Near Infrared Sensor for carbon Observations - Fourier Transform Spectrometer-2 (TANSO-FTS2) as well as a dedicated Cloud and Aerosol Imager-2 (TANSO-CAI-2).

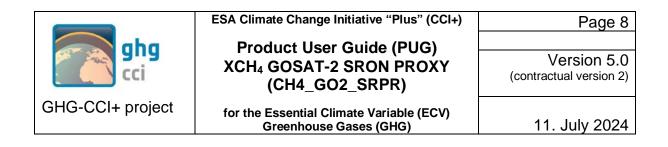
The TANSO-FTS2 instrument (Nakajima et al., 2017) has five spectral bands with a high spectral resolution 0.2 cm⁻¹. Three operate in the SWIR at 0.75-0.77, 1.56-1.69 and at the extended 1.92-2.33 μ m range, providing sensitivity to the near-surface absorbers. The fourth and fifth channels operating in the thermal infrared between 5.5-8.4 and 8.4-14.3 μ m providing mid-tropospheric sensitivity.

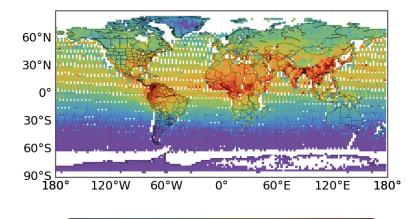

The measurement strategy of TANSO-FTS2 is optimized for the characterization of continental-scale sources and sinks. TANSO-FTS2 utilizes a pointing mirror to perform off-nadir measurements at the same location on each 6-day repeat cycle. The pointing mirror allows TANSO-FTS2 to observe up to $\pm 35^{\circ}$ across track and $\pm 40^{\circ}$ along-track. These measurements nominally consist of 5 across track points spaced ~160km apart with a ground footprint diameter of approximately 9.7 km and a 4 second exposure duration. The satellite has an intelligent pointing monitor camera which makes it possible to adjust the line of sight of the FTS to steer away from cloud contaminated areas. Whilst the majority of data is limited to measurements over land where the surface reflectance is high, TANSO-FTS2 also observes in sun-glint mode over the ocean.

3. RemoTeC retrieval algorithm

The CH4_GO2_SRPR product is retrieved from GOSAT-2 TANSO-FTS spectra using the RemoTeC algorithm that has been developed jointly by SRON and Karlsruhe Institute of Technology (KIT). The algorithm retrieves simultaneously XCH₄ and XCO₂. For the retrieval, we analyze four spectral regions: the 0.77 μ m oxygen band, two CO₂ bands at 1.61 and 2.06 μ m, as well as a CH₄ band at 1.64 μ m. Within the retrieval procedure the sub-columns of CO₂ and CH₄ in different altitude layers are being retrieved. To obtain the column averaged dry air mixing ratios XCO₂ and XCH₄ the sub-columns are summed up to get the total column which is divided by the dry-air columns obtained from ECMWF model data in combination with a surface elevation data base. As the Proxy retrievals perform a non-scattering retrieval, the retrieved XCH₄ column cannot be used directly, as effects of aerosol scattering modify the light path. To correct the scattering effects, in the Proxy approach, the retrieved XCH₄ column is divided by the retrieved XCO₂ column at the 1.61 μ m band and then multiplied by the XCO₂ total column obtained from the Copernicus Atmosphere Monitoring Service (CAMS) (Chevallier 2019, 2020, 2021).

The retrieved XCH₄ has been validated against ground based TCCON measurements. To further improve accuracy of XCH₄ product, a bias correction has been developed based on TCCON comparisons. We use the GGG2020 release of the TCCON data (Wunch et al., 2015, Laughner et al. 2021). More details on the technical aspects of the retrievals can be found in the ATBD GO2-SRPR document (Barr et al. 2023).




4. XCH₄ RemoTeC Proxy data product (Feb. 2019 – Dec 2023)

In this section, we show examples of the GOSAT-2 XCH₄ Proxy data product by showing global averaged maps (Sec. 4.1) and by giving a summary of the validation results relative to TCCON (Sec. 4.2).

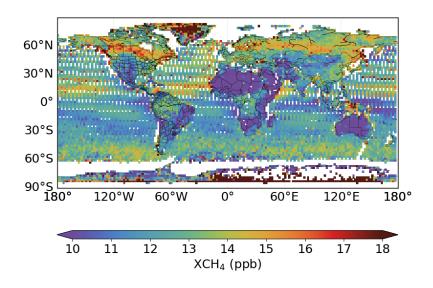

4.1 Global maps

Figure 1 shows global average maps of the RemoTeC GOSAT-2 Proxy XCH₄ data product with the bias-corrected XCH₄ data and scaled random error, which is described in detail in the uncertainty budget (E3UB, Barr et al. 2024). The GOSAT-2 Proxy XCH₄ product provides a good global spatial coverage. As can be seen, in some regions the coverage is limited by cloud cover (the observations correspond to cloud free scenes), sun illumination conditions, etc. The error on XCH₄ varies from around 10 ppb to 18 ppb and is higher for high latitude regions and low albedo areas.

1800	1820	1840	1860	1880	1900	1920	1940
			XCH_4	(ppb)			

Figure 1: Global averaged XCH₄ (top) and its error (bottom) over February 2019 and December 2023 for the CH4_GO2_SRPR product on a 2x2° latitude/longitude grid.

	ESA Climate Change Initiative "Plus" (CCI+)	Page 9
ghg cci	Product User Guide (PUG) XCH₄ GOSAT-2 SRON PROXY (CH4_GO2_SRPR)	Version 5.0 (contractual version 2)
GHG-CCI+ project	for the Essential Climate Variable (ECV) Greenhouse Gases (GHG)	11. July 2024

4.2 Validation with TCCON

This section summarizes the main validation results presented in the RemoTeC GOSAT-2 ESA GHG CCI+ End-to-End ECV Uncertainty Budget (E3UB) document version 5.0 (Barr et al. 2024). We used ground based TCCON GGG2020 (Laughner et al. 2021) data obtained from <u>https://tccondata.org/</u> as reference data set. We co-located GOSAT-2 and TCCON measurements with a maximum time difference of 2.5h, a maximum distance of 300 km in both longitudinal and latitudinal directions.In cases of multiple TCCON measurements of the same site collocating with a GOSAT-2 sounding, we averaged the TCCON measurements.

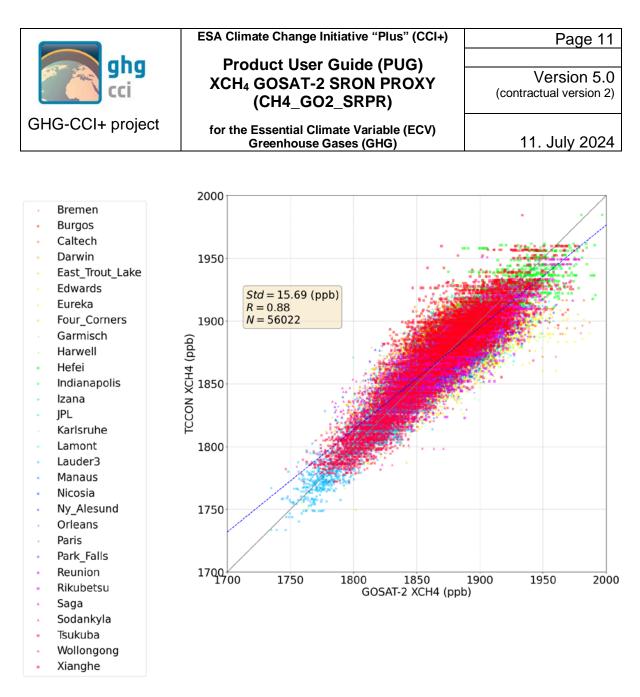

The mean bias (global offset) amounts to -0.23 ppb. The standard deviation of the site biases (spatial accuracy or station-to-station variability) is 5.2 ppb. TCCON observes these gases with a precision on mole fractions of ~0.15 % and ~0.2 % for CO₂ and CH₄, respectively (Toon et al., 2009). The single measurement precision of GOSAT-2 compared to TCCON amounts to 15.69 ppb. The validation results are summarised in Table 1.

Figure 3 shows the collocations of GOSAT-2 Proxy XCH₄ for land observations, and Figure 4 the same for observations over ocean (sunglint), with the TCCON sites. Detailed bias and scatter (i.e., single sounding precision measured by the standard deviation of the difference to TCCON after removing systematic effects) are described in the E3UB (Barr et al. 2024).

	ESA Climate Change Initiative "Plus" (CCI+)	Page 10
ghg 💦	Product User Guide (PUG)	Version 5.0
cci	XCH₄ GOSAT-2 SRON PROXY (CH4_GO2_SRPR)	(contractual version 2)
GHG-CCI+ project	for the Essential Climate Variable (ECV) Greenhouse Gases (GHG)	11. July 2024
GHG-CCI+ project		11. July 2024

		Ргоху							
Variable	Ν	µ (ppb)	σ (ppb)	γ (ppb yr ⁻¹)	δ (ppb)	R			
GOSAT2 Land	56022	-0.23	15.69	1.18	5.2	0.88			
GOSAT-2 Ocean	798	0.16	16.07	1.77	9.0	0.92			

Table 1: Overview of the GOSAT-2 XCH₄ products vs TCCON co-located measurements. N is the number of collocated measurements, μ is the mean bias, σ is the single measurement precision, γ is the linear drift term, δ is the station-to-station bias, and R is the correlation coefficient.

Figure 2: GOSAT-2 XCH₄ for soundings over land plotted against TCCON, for the RemoTeC Proxy product. Data are compared only if they are fully colocated in space and time. The standard deviation of the population, Pearson's correlation coefficient and number of retrievals are given in the inset. The legend plots the different TCCON stations where markers are as follows. Stations that are along the coast and also sensitive to glint mode (ocean) measurements are indicated as circles. Those that have high latitudes in the northern and southern hemispheres are upward triangles and crosses, respectively. Stations in Asia, North America and Europe are indicated by squares, pluses and downward triangles respectively.

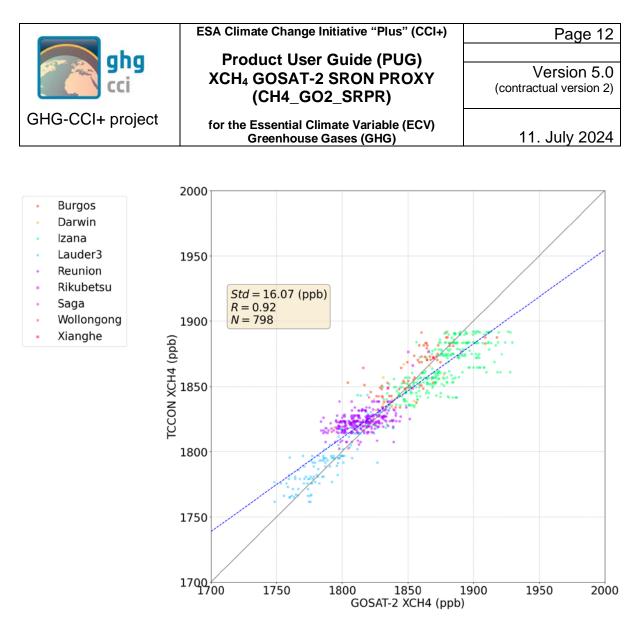
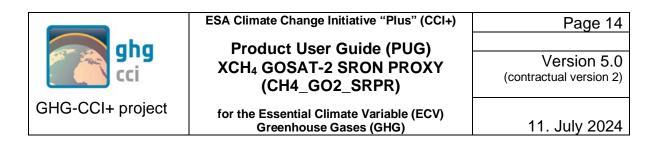


Figure 3: Same as Figure 3 but for soundings taken in glint mode.

4.3 Bias correction

From comparison with TCCON it was found, that the error in XCH₄ is highly correlated with the retrieved albedo α at window 2 (1600 nm). Based on this correlation, the following bias correction for land observations has been developed.

$$XCH4_{corr} = XCH4 * (a + b * \alpha)$$


with 0.9906 , b = 0.00934. The bias correction parameters are obtained by the fitting of GOSAT-2 and TCCON differences.

	ESA Climate Change Initiative "Plus" (CCI+)	Page 13
aha	Product User Guide (PUG)	
cci	XCH ₄ GOSAT-2 SRON PROXY (CH4_GO2_SRPR)	Version 5.0 (contractual version 2)
GHG-CCI+ project	for the Essential Climate Variable (ECV) Greenhouse Gases (GHG)	11. July 2024

For sun-glint observations, it is found that XCH_4 error is correlated with the O₂ ratio RO₂. It defines the ratio between retrieved and prior O₂ column. In this case, a similar correction function is applied,

 $XCH4_{corr} = XCH4 * (a + b * RO_2)$

with a = 0.9700 and b = 0.0215.

5. Description of data format

5.1 Product Content and Format

The RemoteC XCH₄ data product is stored per day in a single NetCDF file. Retrieval results are provided for the individual GOSAT-2 spatial footprints. The product file contains the key products, i.e., the retrieved column averaged dry air mixing ratio XCH₄ with and without bias correction. Information relevant for the use of the data is included in the data file, like the vertical layering and averaging kernels. Also, the parameters that are retrieved simultaneously with XCH₄ are included (e.g., surface albedo), as well as retrieval diagnostics like retrieval errors, quality of the fit.

Dimensions	Туре	Unlimited	Units	Description
sounding_dim	int	no		Number of sounding
polarization_dim	int	no		Number of polarization = 2
level_dim	int	no		Number of level = 5
layer_dim	int	no		Number of layer = 4
window_dim	int	no		Number of retrieval window = 4
char_l1bname	int	no		Number of character of L1B name = 44

Table 2: Common dimensions for the CH4_GO2_SRPR product.

Table 3: Common variables for the CH4_GO2_SRPR product.

Name	Туре	Dim.	Units	Description
solar_zenith_angle	float	n	degrees	Angle between line of sight to the sun and local vertical
sensor_zenith_angle	float	n	degrees	Angle between the line of sight to the sensor and the local vertical

Product User Guide (PUG) XCH₄ GOSAT-2 SRON PROXY (CH4_GO2_SRPR)

for the Essential Climate Variable (ECV) Greenhouse Gases (GHG)

Page 15

Version 5.0 (contractual version 2)

11. July 2024

time	float	n	seconds	Seconds since 1970-01-01 00:00:00
longitude	float	n	degrees _east	Center longitude
latitude	float	n	degrees _north	Center latitude
pressure_levels	float	n, 5	hPa	Pressure levels define boundaries of averaging kernel and mole fraction profile layers.
pressure_weight	float	n, 4		Layer dependent weights needed to apply the averaging kernels
h2o_column_1593	float	n	m-2	Retrieved total water column at 1593 nm
h2o_column_1629	float	n	m-2	Retrieved total water column at 1629 nm
h2o_column_2042	float	n	m-2	Retrieved total water column at 2042 nm
surface_albedo_758	float	n		The retrieved albedo at 758 nm
surface_albedo_1593	float	n		The retrieved albedo at 1593 nm
surface_albedo_1629	float	n		The retrieved albedo at 1629 nm
surface_albedo_2042	float	n		The retrieved albedo at 2042 nm
intensity_offset_o2a	float	n	W cm-2	The retrieved intensity offset in the O2A band
flag_landtype	int	n		0 = land, 1 = ocean
flag_sunglint	int	n		0 = no sunglint, 1 = sunglint
gain	char	n		Number of gain coefficient calculated from solar calibration mode data. [1P 1S 2P 2S 3P 3S]
exposure_id	int	n		Exposure identification number of the sounding
l1b_name	char	n		Name of the Level 1B file of the sounding
signal_to_noise_window	float	n, 4, 2		Signal to noise ratio per retrieval window and for both polarization directions
dry_airmass_layer	float	n, 4	m-2	Dry airmass per layer
altitude	float	n	m	Vertical altitude above the surface

Product User Guide (PUG) XCH₄ GOSAT-2 SRON PROXY (CH4_GO2_SRPR)

for the Essential Climate Variable (ECV) Greenhouse Gases (GHG) Page 16

Version 5.0

(contractual version 2)

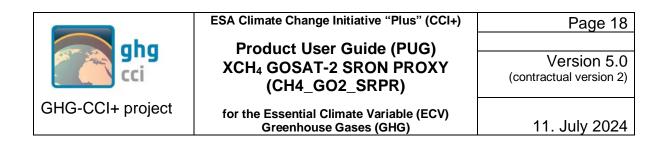
11. July 2024

air_temperature	float	n, 5	К	The bulk temperature of the air at each level
surface_altitude_stdv	float	n	m	Standard deviation of the surface elevation within the sounding
x_wind	float	n, 5	m s-1	Eastward wind velocity
y_wind	float	n, 5	m s-1	Northward wind velocity
chi2	float	n		Chi-squared value of the sounding
optical_thickness_of_atmosphere_lay er_due_to_ambient_aerosol	float	n, 4		Scattering optical thickness per retrieval window

Table 4: Product specific (additional) variables for the CH4_GO2_SRPR product.

Name	Туре	Dim.	Units	Description
raw_xch4_err	float	n	1e-9	1-sigma statistical uncertainty of the retrieved column-average dry-air mole fraction of atmospheric methane
raw_xch4	float	n	1e-9	Retrieved column dry-air mole fraction of atmospheric methane (XCH4) in ppb before scattering correction
xch4_no_bias_correction	float	n	1e-9	Retrieved column dry-air mole fraction of atmospheric methane (XCH4) in ppb before bias correction
raw_xco2	float	n	1e-6	Retrieved column dry-air mole fraction of atmospheric carbon dioxide (XCO2) in ppm before scattering correction
xco2_apriori	float	n	1e-6	A priori dry-air mole fraction of atmospheric carbon dioxide
co2_profile_apriori	float	n, 4	1e-6	A priori dry-air mole fraction profile of atmospheric carbon dioxide
xco2_averaging_kernel	float	n, 4		Normalized column averaging kernel for carbon dioxide
raw_xco2_err	float	n	1e-6	1-sigma statistical uncertainty of the retrieved column-average dry-air mole fraction of atmospheric carbon dioxide

Product User Guide (PUG) XCH₄ GOSAT-2 SRON PROXY (CH4_GO2_SRPR)


for the Essential Climate Variable (ECV) Greenhouse Gases (GHG)

11. July 2024

Version 5.0 (contractual version 2)

Page 17

xch4	float	n	1e-9	Retrieved column dry-air mole fraction of atmospheric methane (XCH4) in ppb
xch4_uncertainty	float	n	1e-9	1-sigma uncertainty of the retrieved column-average dry-air mole fraction of atmospheric methane
xch4_averaging_kernel	float	n, 4		Normalized column averaging kernel
ch4_profile_apriori	float	n, 4	1e-9	A priori dry-air mole fraction profile of atmospheric methane
xch4_quality_flag	int	n		Quality assurance (QA) value for XCH4 retrieval. A value between 0 and 1 is given to each pixel, where 0 is the best. Pixels with QA value of 1 should never be used and are considered bad quality.

5.2 Quality Flags and Metadata

To use the data products, users are encouraged to check the corresponding quality flag. In the NetCDF files, the quality flag, namely xch4_quality_flag, has been generated. The quality flag takes the form of a quality assurance (QA) value, with a range of values from 0 to 1, where 0 is considered to be the best quality data. Increasing the QA value taken will give more data but increase the uncertainty, e.g. QA <= 0.4 will give better coverage but larger scatter in the bias with TCCON.

- 0.8 to 0: progressively better quality data (quality has been checked).
- 1: data should not be used (e.g. bad fit to data, residual cloud contamination)

TCCON validation results (precision) for each QA value can be seen in Figure 7 for XCH_4 .

Quality Filtering

Quality filtering is conducted through the use of a trained random forest classifier model which predicts the quality of the retrievals based on a selection of retrieval parameters, such as the cirrus signal, intensity offset, slope of the continuum etc.

The random forest model is trained on GOSAT-2 colocations with TCCON, where retrievals are classified via the bias. Retrievals in the training set are flagged as good quality if the bias is within a certain range and those outwith this range are flagged as bad quality. The model then learns the relationship between the quality of the retrieval and the selection of retrieval parameters on which it is trained, and uses these to predict the quality of all future data.

Data TCCON are also used in the validation of the final product. The random forest model is trained in a supervised way, where the model is given values for a selection of features as well as a classification label. Thus inclusion of the same data in both training and predicting can lead to artificial features, as the model has already seen the target label in training and therefore simply predicts this. In order to avoid this, we implement a temporal extrapolation by excluding one year from the training data,

	ESA Climate Change Initiative "Plus" (CCI+)	Page 19
ghg cci	Product User Guide (PUG) XCH₄ GOSAT-2 SRON PROXY (CH4_GO2_SRPR)	Version 5.0 (contractual version 2)
GHG-CCI+ project	for the Essential Climate Variable (ECV) Greenhouse Gases (GHG)	11. July 2024

and using the resulting model to make the quality predictions for the excluded year. This results in one model per year of filtered data. Here we assume that the relationship between retrieval quality and features used in training is not temporally dependent. Figure 8 shows the classification metrics for the random forest model for 2021.

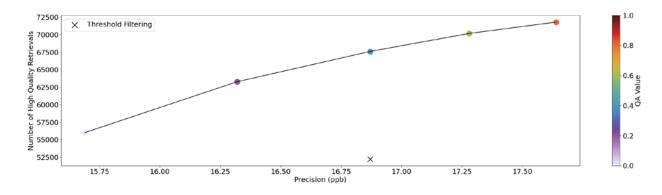
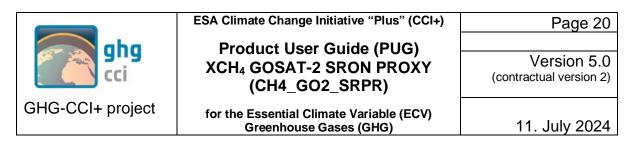
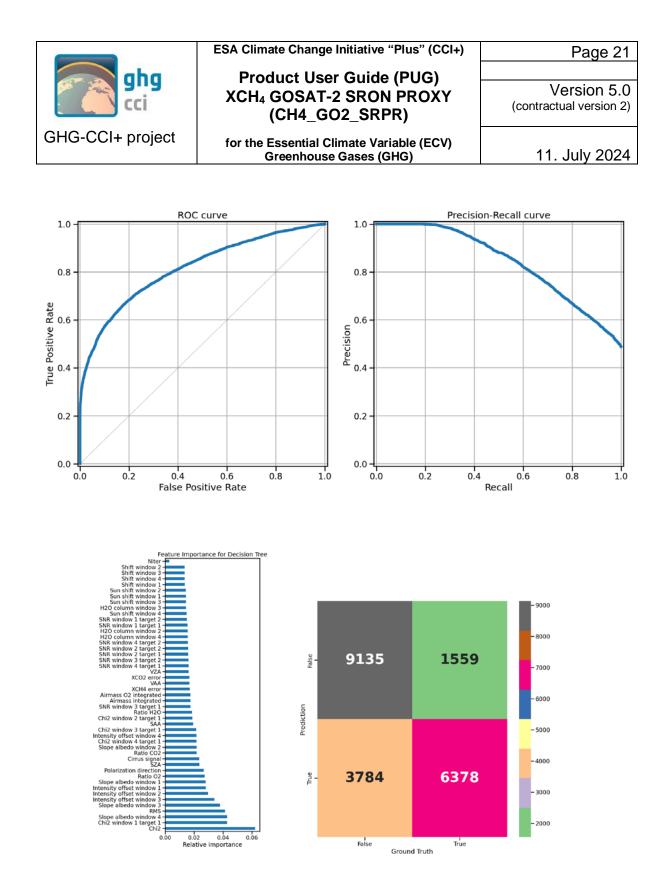



Figure 7: Plot of the number of retrievals flagged as good against the precision as a function of QA value for and XCH₄ Proxy products. The cross marks the parameter space for filtering the data product with threshold criteria (v2.0.0).

A consequence of training the random forest model on GOSAT-2 colocations with TCCON is that retrievals with surface albedo ≥ 0.4 are absent from the training sample, due to the lack of TCCON stations in high albedo areas. To circumvent this we define a set of high albedo data to include in the training set using a list of threshold criteria (following v2.0.0 of this product). Furthermore the random forest method is limited only to land retrievals due to the low number of colocations over ocean. For ocean measurements we then also apply the threshold criteria for determining the quality flag. The criteria are as follows where any retrieval that does not satisfy <u>all</u> of these is assigned a 1 for the quality flag:


For land and ocean (sun-glint):

- Number of iterations < 10
- Cost function (chi2) < 18.0
- Signal to noise ratio (SNR) > 50
- Std. deviation of surface elevation within GOSAT-2 ground pixel < 150 m

- Solar zenith angle (SZA) < 75⁰
- 0 < Blended Albedo < 0.8
- 0.98 < CO₂ ratio < 1.08
- 0.91 < O₂ ratio < 1.05
- 0.92 < H₂O ratio < 1.25

The yield and accuracy of the data of the final product is directly correlated to the strictness of the classification of the training dataset.

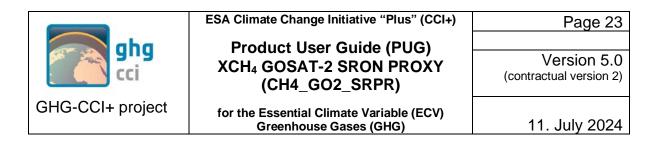
Figure 8: *Top*: The ROC curve (left) shows the true positive rate vs. false positive rate at different classification thresholds. Lowering the classification threshold classifies more items as positive, thus increasing both false positives and true positives. In the precision-recall (right) curve, a high area under the curve represents both high recall and high precision, where high precision relates to a low false positive rate, and high recall relates to a low false negative rate. *Bottom left:* List of features used in the model in order of importance from top to bottom. *Bottom right:* Confusion matrix comparing number of correct predictions.

	ESA Climate Change Initiative "Plus" (CCI+)	Page 22
aha	Product User Guide (PUG)	
cci	XCH₄ GOSAT-2 SRON PROXY	Version 5.0 (contractual version 2)
	(CH4_GO2_SRPR)	(,
GHG-CCI+ project	for the Essential Climate Variable (ECV) Greenhouse Gases (GHG)	11. July 2024

5.3 Recommended data usage

It is strongly recommended to only use the bias-corrected data in, except if users explicitly correct for biases themselves (e.g. in an inverse modeling framework). The bias correction has been developed independently for land and sun-glint observations.

If the data are to be compared with other XCH₄ data for which vertical profile information is available (e.g. inverse modeling, comparison to models, comparison to measured profiles), the column averaging kernels should be used. Here, it should be noted, that **the column averaging kernels are to be applied to layer sub-columns** (m-2), as these are the quantities directly retrieved by the RemoTeC algorithm.


For model comparisons, the retrieved XCH₄ should be compared to [VCH4]'_{model}/[VAIR]_{model}, where [VAIR]_{model} is the total dry air column provided by the model and [VCH4]'_{model} is the model total CH₄ column after applying the column averaging kernel, viz.:

$$[VCH4]'_{model} = [VCH4]_{prior} + \mathbf{a}^T (\mathbf{x}_{model} - \mathbf{x}_{prior})$$

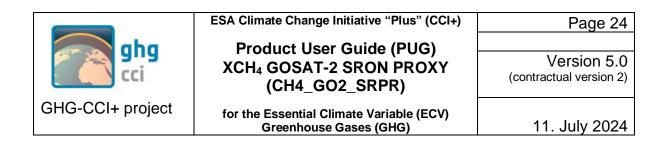
where $[VCH4]_{prior}$ is the prior CH₄ total column used in the retrieval, \mathbf{x}_{model} is the vertical CH₄ profile from the model (as sub-columns) and \mathbf{x}_{prior} is the prior vertical profile from the retrieval. For application of the column averaging kernel, the model vertical profile should be re-calculated on the vertical grid of the retrieval (preferred) or the averaging kernel has to be interpolated to the vertical grid of the model.

5.4 Tools for Reading the Data

The data are stored in NetCDF format which can be read with standard tools in the common programming languages (IDL, Matlab, Python, Fortran90, C++, etc).

6. References

/Barr et al. 2023/ A.G Bar, Borsdorff, T., Ladgraf, J.: ESA Climate Change Initiative "Plus" (CCI+) ATBD (ATBDv4) for the RemoTeC CH4 GOSAT-2 Data Product CH4_GO2_SRPR v2.0.2 for the Essential Climate Variable (ECV) Greenhouse Gases (GHG), ESA GHG CCI+, 2023.


/Barr et al. 2024/ A.G Bar, Borsdorff, T., Ladgraf, J.: ESA Climate Change Initiative "Plus" (CCI+) End-to-End ECV Uncertainty Budget Version 2.0.3 for the RemoTeC CH4 GOSAT-2 Data Product CH4_GO2_SRPR for the Essential Climate Variable (ECV) Greenhouse Gases (GHG), ESA GHG CCI+, 2024.

Chevallier, 2019: Chevallier, F.: Validation report for the CO2 fluxes estimated by atmospheric inversion, v19r1Version 1.0, Copernicus Atmosphere Monitoring Service, ECMWF Copernicus report, CAMS73_2018SC2_D73.1.4.1-2019_v3_202008_Validation inversion CO2 fluxes_v1, https://atmosphere.copernicus.eu/sites/default/files/2020-08/CAMS73_2018SC2_D73.1.4.1-2019-v1_202008_v3-1.pdf

Chevallier, 2020: Chevallier, F.: Validation report for the CO2 fluxes estimated by atmospheric inversion, v20r2Version 1.0, Copernicus Atmosphere Monitoring Service, ECMWF Copernicus report, CAMS73_2018SC2_D73.1.4.1-2020_v5_202109_Validation inversion CO2 fluxes_v1, https://atmosphere.copernicus.eu/sites/default/files/custom- uploads/EQC-GHG/CAMS73_2018SC2_D73.1.4.1-2020-v5_202109_v1.pdf

Chevallier, 2021: Chevallier, F.: Validation report for the CO2 fluxes estimated by atmospheric inversion, v21r1Version 2.0, Copernicus Atmosphere Monitoring Service, ECMWF Copernicus report, CAMS255_2021SC1_D55.1.4.2-2022_202208_Validation inversion CO2 fluxes_v2, https://atmosphere.copernicus.eu/sites/default/files/custom-uploads/CAMS255_2021SC1_D55.1.4.2-2022_202208_Validation%20inversion%20CO2%20fluxes_v2_.pdf

/Laughner et al., 2021/: Laughner, J., Andrews, A., Roche, S., Kiel, M., and Toon, G. ginput v1.0.10: GGG2020 prior profile software (Version 1.0.10), https://doi.org/10.22002/D1.1944, 2021.

/Nakajima et al., 2017/ M. Nakajima, Hiroshi Suto, K. Yotsumoto, K. Shiomi, T. Hirabayashi, "Fourier transform spectrometer on GOSAT and GOSAT-2," Proc. SPIE 10563, International Conference on Space Optics — ICSO 2014, 105634O (17 November 2017); <u>https://doi.org/10.1117/12.2304062</u>.

/Toon et al., 2009/ Toon, G., Blavier, J.F., Washenfelder, R., Wunch, D., Keppel-Aleks, G., Wennberg, P., Connor, B., Sherlock, V., Griffith, D., Deutscher, N. and Notholt, J., 2009, April. Total column carbon observing network (TCCON). In Fourier Transform Spectroscopy (p. JMA3). Optical Society of America.

/Wunch et al., 2015/ Wunch, D., Toon, G.C., Sherlock, V., Deutscher, N.M., Liu, X., Feist, D.G., Wennberg, P.O., The Total Carbon Column Observing Network's GGG2014 Data Version. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA (available at: doi:10.14291/tccon.ggg2014.documentation.R0/1221662), 2015.

*** end of document