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Detailed Change Record 

Issue RID Description of discrepancy Sections Change 

1.0 ESA-
02 

The sentence "for future 
product versions as part of our 
ongoing strategy" should be 
replaced by "in Phase 2" 

Section 1.1 The sentence has been updated. 

1.0 ESA-
03 

The sentence "for best 
implementation of the" 
should be replaced by "for the 
best implementation / for best 
implementing the ..." 

Section 1.2 The sentence has been updated. 

1.0 ESA-
04 

The sentence "These maps 
were obtained by classifying 
time series data from 
Sentinel-2 L2A for the 2019 
HRLC10 and HRLC30 maps" 
should be replaced by "These 
maps were obtained by 
classifying time series data 
from Sentinel-2 L2A for the 
2019 HRLC10 map" 

Section 2.1 The sentence has been changed for clarity as 
it was ambiguous. 

1.0 ESA-
05 

The text of the caption should 
be modified as follow 
"Workflow for optical data 
processing chain to produce 
the 2019 HRLC10 and HRLC30 
maps obtained by classifying 
the time series of Sentinel-2 
L2A data, and the HRLC30 
historical maps obtained by 
classifying the time series of 
Landsat L2 data for 1990, 
1995, 2000, 2005, 2010 and 
2015." 

Section 2.1 
– Figure 1 

The sentence has been changed for clarity as 
it was ambiguous. 

1.0 ESA-
06 

In the considered 
implementation of the 
processing chain, the team 
generates monthly, seasonal 
and annual composites to 
harmonize the data and to 
remove the cloud coverage 

Section 
2.1.1 

"to remove cloud contamination" is correct. 
The sentence has been updated. 
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1 Introduction 

1.1 Executive summary 

Building on the activities and insights from Phase 1, the algorithms will be refined and enhanced, or new 

algorithms and methodologies will be selected to ensure high-quality outputs. This document outlines the 

activities to identify the most reliable methodologies and the planned improvements in Phase 2.  

1.2 Purpose and scope 

This Algorithm Development Plan (ADP v1.0) provides the details on the expected evolutions to the current 

processing chain following the first production in phase 1. It includes planned developments to: 

• The algorithms themselves. 

• The necessary auxiliary data for the best implementation of the algorithms. 

• The training strategy and implementation. 

The algorithms under development in the next processing cycles will be those selected from Consortium inter-

comparison exercise as selected from internal benchmarking/development activities. The evolutions outlined in 

this document will be implemented in the end-to-end system to generate the updated/new HRLandCover_cci 

climate data records in the next Cycle. It is also important to note that this document will be regularly updated 

according to the schedule, with possible intermediate notes in case of significant achievements are obtained in 

between. 

1.3 Reference documents 
Ref. Title, Issue/Rev, Date, ID 

[RD1] CCI_HRLC_Ph1-D2.1_PVASR, latest version 

[RD2] CCI_HRLC_Ph1-D2.2_ATDB, latest version 

[RD3] CCI_HRLC_Ph1-D1.1_URD, latest version 

[RD4] CCI_HRLC_Ph1-Modelers_TN 

1.4 Acronyms and abbreviations 

ASM  Angular Second Moment 

ATDB  Algorithm Theoretical Basis Document 

BOCPD  Bayesian Online Change Point Detection 

BFAST  Breaks For Additive Season and Trend 

CCI  Climate Change Initiative 

CD  Change Detection 

CPDNN  Change Point Detection based on Neural Networks 

CNN  Convolutional Neural Network 

DEM  Digital Elevation Model 

DL  Deep Learning 

ETM  Enhanced Thematic Mapper 

FCN  Fully Convolutional Network 

GLCM  Gray Level Co-occurrence Matrix 

GRNN  General Regression Neural Network 

GRU  Gated Recurrent Unit 

HMM  Hidden Markov Models 

HR  High Resolution 
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HRLC10  High Resolution Land Cover product at 10m resolution 

HRLC30  High Resolution Land Cover product at 30m resolution 

HRLCC30 High Resolution Land Cover Change product at 30m resolution 

ICA  Independent Component Analysis 

LC  Land Cover 

LCC  Land Cover Change 

LPP  Locality Preserving Projections 

LSTM  Long-Short-Term Memory 

MOLCA  Map Of LC Agreement 

NDVI  Normalized Difference Vegetation Index 

NDWI  Normalized Difference Water Index 

NIR  Near-Infrared 

PCA  Principal Component Analysis 

PCC  Post Classification Comparison 

PCHIP  Piecewise Cubic Interpolation 

PGM  Probabilistic Graphical Models 

PVASR  Product Validation and Algorithm Selection Report 

RBF  Radial Basis Function 

RNN  Recurrent Neural Networks 

RF  Random Forest 

R-G-B  Reed-Green-Blue 

SAR  Synthetic Aperture Radar 

SITS  Satellite Image Time Series 

SLC  Single Look Complex 

SRTM  Shuttle Radar Topography Mission 

SVM  Support Vector Machine 

TS  Time Series 

UEXT  Urban EXTraction 

URD  User Requirement Document 

UMAP  Uniform Manifold Approximation and Projection 
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2 Algorithm development Plan for Optical Data 

Based on the results from the three study areas of Phase 1, the team aims to explore potential improvements 
for each step of the optical processing chain. The following sections provide details on both the status of the 
optical processing chain and the algorithm development plan for Phase 2. 

2.1 Current Status of Optical data classification 
Figure 1 illustrates the optical data processing chain used to produce the Phase 1 HRLC maps. These maps were 
obtained by classifying time series data from Sentinel-2 L2A for 2019 LC maps, and from Landsat L2 for 1990, 
1995, 2000, 2005, 2010, and 2015 LC maps. The processing chain involves three main steps: 

1. Optical Data Pre-processing, which prepares the optical data for subsequent steps. 
2. Optical Feature Extraction, which characterizes the contextual information of the pixels. 
3. Optical SVM Classification, which produces the optical class-posterior probability maps. 

 
 

 
Figure 1. Workflow for optical data processing chain to produce the 2019 optical class-posterior probabilities obtained by 
classifying the time series of Sentinel-2 L2A data, and the 1990, 1995, 2000, 2005, 2010 and 2015 optical class-posterior 

probabilities obtained by classifying the time series of Landsat L2 data. 

2.1.1 Optical Data Pre-processing 
In the considered implementation of the processing chain, the team generates monthly, seasonal and annual 
composites to harmonize the data and to remove the cloud contamination, exploiting automatically generated 
cloud and cloud shadows masks. The considered temporal window changes depending on the data availability 
and quality. HRLC10 optical class-posterior probabilities are generated using 12 bimonthly Sentinel-2 composites 
(with overlap) to represent 2019. HRLC30 optical class-posterior probabilities are generated using seasonal 
composites, where Landsat L2 acquisitions of the considered season from both the target year, the previous and 
the subsequent years are considered for the composite generation. The Siberian area required special care due 
to poor data availability and quality, resulting in a single yearly composite focused on the summer season. When 
seasonal or bimonthly composites are considered, a standard linear temporal filling approach have been used to 
replace the pixels still associated to a cloud or a cloud shadow in the composites. For the seasonal composites of 
year 2005 and 2010 in Africa, a gap filling procedure is included to improve the spectral homogeneity of the 
composites when using Landsat-7 (whose scan-line corrector (SLC) failed in 2003, resulting in about 22% of the 
pixels per scene not being scanned) as the main source of optical acquisitions. 

2.1.2 Optical Feature Extraction 
In addition to the spectral bands, additional features are extracted and fed to the classifier to improve the 
mapping accuracy and include additional information: 

• Topographic features: Altitude, extracted from a SRTM DEM raster; 

• Textural features: Dissimilarity, Correlation, Contrast, Homogeneity, Energy, and Angular Second 

Moment, extracted from the first composite of the considered year. 

2.1.3 Optical Land Cover Classification 

For the automatic generation of Optical class-posterior probabilities, machine learning approaches have been 
adopted. The considered machine learning model is fed with the optical composites’ spectral bands and the 
additional topographic and textural features. To train the classification model, a training database needed to be 
developed, such that to comprehensively represent the specific phenological patterns and spectral signatures of 
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the classification legend [RD2]. 

2.1.3.1 Training Set Production 

 
Figure 2. Considered study areas during Phase 1: Amazonia, Africa and Siberia. The HRLC10 static areas, where the 

training set has been extracted, are the larger green rectangles, whereas the HRLC30 historical areas are orange 
rectangles. 

 
Due to the lack of available training data, the team has devoted significant effort to generating a training set for 
the three study areas. This effort has resulted in a high-quality photo-interpreted training set that aligns with the 
legend definitions and consistently represents the LC every 5 years from 1990 to 2019. Figure 3 shows a 
qualitative example of extraction of training set, while Figure 4 represents the number of tiles considered for the 
Amazonia study area. 
 

 
Figure 3. Training Set Production conducted via photo-interpretation. 
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Figure 4. Example of number of tiles covered by photointerpretation in Amazonia. 

 
While complex LC classes require reliable samples that cannot be extracted from the outdated coarse thematic 
products, existing thematic products represent a valid source of information for the other classes, allowing to 
significantly expand the training set and properly represent the whole areas to map. For this reason, only for the 
static map production, we integrated the training sets delivered through photointerpretation with samples 
extracted from the agreement of available LC products. Moreover, the increased amount of training labels 
unlocked the possibility of exploiting the specific properties of the local LC. This has been done by considering 
the global ecoregions, which are areas of water or land that contain characteristic assemblages of natural 
communities and species. By training a classifier for each ecoregion, we can exploit the fact that inside an 
ecoregion the probability of encountering different vegetation species (which may be mapped in the same class) 
and communities remains relatively constant. This feature is important in LC mapping as it allows to mitigate the 
intra-class variability, a well-known issue in remote sensing. 

2.1.3.2 Classification Algorithms  

Several well-known classifiers widely employed to generate LC maps have been tested and compared during 
Phase 1. From this analysis, the standard SVM classifier and the deep recurrent neural network LSTM classifier 
has shown the most promising performance. From further analysis provided by the validation team, the SVM 
classifier has shown to allow the production of more robust classification results. The composites’ spectral bands 
and the topographic and textural features are stacked into a single feature vector and classified by means of an 
SVM using an RBF kernel. The generated class scores are then used to estimate class-posterior probabilities using 
the Isotonic Regression calibration strategy. 

2.2 Development Plan for Optical Data classification 

2.2.1 Optical Data Pre-processing 
The pre-processing of Sentinel-2 and Landsat-5/7/8 involves several steps: i) cloud/cloud shadow detection, ii) 
atmospheric correction, iii) spectral filtering, and iv) composites generation. 
In Phase 1, cloud and cloud shadow detection relied on the operational algorithms of FMASK [1] and Sen2Cor [2] 
for Landsat-5/7/8 and Sentinel-2, respectively, which were then improved with custom algorithms in the case of 
Sentinel-2. In Phase 2, additional algorithms [3] will be considered to further enhance the quality of the 
generated cloud mask, such as FORCE [4], MAJA [5] and s2cloudless [6]. For Sentinel-2, attention will be given to 
algorithms that exploit the parallax effect due to the time delay between the acquisition of different bands to 
improve cloud detection, especially for reducing the false detection of clouds on bright surfaces [7]. The most 
recent FMASK 4.0 [8] and Sen2Cor v2.11 already include the parallax test and will be the baseline for assessing 
possible improvements in this direction. 
Regarding atmospheric correction, the activities in Phase 2 will be related to the analysis of alternative algorithms 
[9] and their topographic correction capabilities. Sentinel-2 Level 2 Surface Reflectance products by default 
include the topographic correction, whereas the corresponding Level 2 Landsat Surface Reflectance operational 
products lack this processing step, which was addressed in Phase 1 with the definition of an ad-hoc topographic 
correction algorithm for topographic shadow correction. The activities in Phase 2 will include the analysis of 
possible alternatives. Also, indirect approaches will be considered, where, instead of using topographic 
correction, slope and sun view angle will be provided to the classifier as features, thus allowing the classifier to 
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implicitly be invariant to these illumination conditions. However, note that this requires for the stratification in 
the training set extraction to consider both illuminated and topographic shadow areas as strata. 
The activities on spectral filtering for Phase 2 will be mainly focused on enhancing the performance of gap-filling 
operations in Landsat-7 ETM+ SLC off images [10]. 
Regarding the composite generation step, Phase 1 showed that it was the most demanding step in the optical 
pre-processing step. Therefore, the focus will be code optimization and efficiency, and alternative algorithms will 
also be considered to better handle the variable number of valid observations used to compute the composite, 
especially when the observations available are few. 

2.2.2 Optical Feature Extraction 
During Phase 1, additional features were considered for the training of the SVM classifiers: GLCM-based features 
such as contrast, dissimilarity, homogeneity, energy, correlation and ASM, and altitude. However, GLCM features 
computation have shown to be time demanding. Hence, the activities in Phase 2 will focus on improving the 
feature extraction efficiency and compare with alternative spatial features. In addition, other features will be 
considered, such as the slope and aspect derived from the digital elevation models and spectral indices. 

2.2.3 Optical Land Cover Classification 
For the classification step in the optical processing chain, the main challenges in Phase 1 were defined by i) the 
scarcity of available photo-interpreted data able to properly characterize the large areas that need to be mapped, 
ii) the considered input features, and iii) the optimization and efficiency of the considered classification 
algorithm. Given the complexity of the considered classification problem, the training of the classifiers can be 
performed in a completely supervised, a partially supervised (or semi-supervised) and an unsupervised 
framework. In Phase 2 of the project, attention will be given to weakly supervised learning [11], which stands in 
between complete supervision and partial supervision, and is based on the use of unreliable sources of training 
labels. In the context of the project, weak supervision can be used to leverage obsolete maps as an additional 
source of labels [12], [13]. In Phase 1, the training set was augmented using part of the maps intercomparison 
activities, which provided weak training labels where the available land cover maps agreed. While this was shown 
to be helpful, there is still room for improvement. Indeed, labels produced in this way tend to be biased towards 
“easy” samples, th s providin  little help in points  here e istin  maps disa ree. Instead,  eak s pervision 
provides a framework where all the available labels (not only the map agreement) can be exploited, and the 
uncertainty of the label can be considered during training to guide its effect on the learning process.  
Comprehensive analysis of different classification algorithms will be performed, addressing the new state of the 
art in the classification of satellite image time series led by Transformer deep learning models [14]. Focus will be 
given to strategies for properly handling intra-annual time series of composites, but also to multi-year 
classification for temporally consistent classifications [15]. The considered models will be compared both in 
terms of performance and inference time. Indeed, focus will be given to the optimization and efficiency of the 
model inference step, in order to allow faster generation of optical land cover maps. 

3 Algorithm development plan for SAR data 

This section describes the planned improvements to SAR land cover classification based on the results obtained 

and defined in Phase 1 of the CCI+ project in the three identified test areas, i.e. Amazon, Africa and Siberia. 

3.1 Current status of SAR data classification 
The CCI+ HRLC Phase 1 initiative evaluated and compared the performance of candidate SAR (Synthetic Aperture 
Radar) data classification algorithms. The main objective was to identify the most promising methods for 
implementation in the SAR image processing chain shown in Figure 5. 
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Figure 5. Workflow for the SAR data processing chain to produce the 2019 HRLC10 map using time series of Sentinel-1 

data and the historical HRLC30 maps using time series of ERS or ENVISAT data for 1990, 1995, 2000, 2005, 2010 and 2015. 

 
Initially, in the absence of a consistent and much more accurate set of reference samples, the first experiments 
were carried out on the four benchmark areas of the Round Robin using a training set extracted from the medium 
resolution products. Subsequently, in the second year of the CCI HRLC Phase 1 project, high-resolution training 
data sets were extracted. The high-resolution reference data are much more powerful than those extracted from 
the thematic products on a global scale. The method used to extract these new training points is based on a 
stratified approach and photo-interpretation of very high resolution imagery, as described in more detail in the 
PVASR [RD1] document. The main goal of the last year of the Phase 1 was to improve and release the final version 
of the processing chain designed for the high resolution and global land cover mapping. The novelty lies in the 
improvement of the classification task, to make the best use of the backscattered SAR signal to distinguish built-
up settlements and water bodies. For this purpose, two dedicated routines in the Python language have been 
properly developed and tested. Accordingly, the Random Forest (RF) classifier was trained with training samples 
collected by the team using the hierarchical approach (see ATDB [RD2]), excluding the points belonging to the 
"built-up" and "water (permanent and seasonal)" classes. 
The algorithms chosen for each step of chain in Figure 5 were: 

• Training set Selection 

o Photointerpreted and hierarchically extracted reference data 

• Speckle Filtering 

o Multitemporal despeckling filter [16] 

• Feature Extraction 

o Single band analysis: 

▪ Mean filter 

▪ Median filter. 

▪ Lee filter. 

▪ Minimum (maximum). 

o Dual band analysis: 

▪ Ratio, VV/VH; 

▪ Sum, VV+VH; 

▪ Mean, (VV+VH) / 2; 

▪ Difference, VV-VH.  

• Classification 

o RF classifier 

o UEXT algorithm (for built-up extent extraction) 

o Water permanent and water seasonal detection 

These algorithms will be further improved over the Phase 2 cycles. Their current status is available in the ATBD 
deliverable of the Phase 1 [RD2]. 

3.1.1 Training set extraction 
The training set extraction followed the hierarchical approach outlined in the ATBD document to achieve a 
consistent and accurate training set through photointerpretation of very high-resolution imagery. The final 
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version of the land cover legend used is detailed in the URD document [RD3]. Specifically, the team focused on 
collecting training samples in Siberia, targeting both static and historical data production. 

3.1.2 SAR pre-processing chain 
SAR scenes go through a standard pre-processing chain using a workflow implemented in a graph of the SNAP 
toolbox [17]. These steps are: 1) the application of the orbit file to correct the satellite position and add velocity 
information; 2) border noise removal, to remove invalid data at the edges of the image; 3) radiometric 
calibration, to adjust the grey level of the SAR image according to the backscatter signals from the objects; 4) 
geometric terrain correction, to remove the distortion caused by the topographic variations and is performed by 
using a Digital Elevation Mode (DEM). 

3.1.3 Multitemporal despeckling filter 
The multitemporal denoising filter used to reduce speckle in SAR images is the one described in [16], which was 
applied to the four "seasonal" SAR clusters. The multitemporal approach seems to give better results than a 
spatial filter applied independently on each SAR image, thanks to the exploitation of the temporal sequence in 
favour of a better preservation of the spatial resolution. The filter is ratio-based and computes an image, called 
the super image, by exploiting the SAR time series. In fact, the temporal averaging of the SAR time series produces 
the super image, where speckle is reduced, and spatial resolution is preserved. The filtered image is thus 
recovered by exploiting the statistical properties associated with the original super image. Basically, the method 
consists of three steps: a) calculation of the super image by arithmetic averaging of SAR time series images; b) 
denoising of the ratio image; c) calculation of the final image given by the multiplication between the denoised 
ratio and the super image. 

3.1.4 Features extraction 
Radar images are a valuable source of spatial and temporal information, as they make it possible to study the 
nature of the scene observed and captured by the sensor, and to study in detail the physical and morphological 
characteristics of the terrain, also known as features. In this context, feature extractors allow the extrapolation 
of structural descriptors to improve the radar image classification task and optimise the class recognition. Spatio-
temporal feature extraction is performed using the polarimetric information derived from the SAR intensities. 
Rather than considering complex spatial features such as shape and size, which would require unsupervised 
segmentation of the image, a set of texture features is computed for each of the four seasonal composites: Lee 
filter, spatial median, mean, maximum, minimum and range (maximum minus minimum). 

3.1.5 SAR Land Cover Classification 
SAR land cover mapping is performed using the seasonal set of features as input to the RF algorithm. However, 
the classification results obtained in the first two years of the Phase 1 revealed problems due to outliers in the 
detection of built-up and water (both permanent and seasonal) land cover classes. Based on a careful preliminary 
analysis and a study of the state of the art in the literature, two modules dedicated exclusively to the extraction 
of the two imputed classes, i.e. built-up and water, were developed. The maps obtained were then integrated 
with the resulting RF classification map. The built-up and water classifiers have been optimized to work mainly 
with radar sequences acquired by the Copernicus Sentinel-1 sensor, which provides high-resolution images at 
10m per pixel. The built-up area recognition module uses the average image, called the super image, which is 
given by the time average of the SAR temporal series. From the super image, the built-up 'seeds' (i.e. source 
positions) and the cost of each pixel are then extracted to evaluate a cumulative cost map from which the built-
up area recognition information is extracted. For water detection, this module employs features that track 
changes in the backscattering coefficient over time. Specifically, the temporal mean, minimum, maximum, and 
variance are computed from monthly SAR time series data. These metrics are then fed into the unsupervised K-
means classifier to differentiate between water and non-water pixels. Next, morphological operations (closing 
and opening, which involve erosion and dilation) are applied to remove any outliers misclassified as water or 
built-up areas. This process produces monthly water masks (where water pixels are assigned a value of 1 and 
non-water pixels a value of 0) for the year of interest. To create the final water map, distinguishing between 
seasonal and permanent water classes, an additional step is performed. This step involves pixel-based analysis 
of the calculated monthly water masks: a pixel is labeled as 'permanent' if it remains water (value 1) for more 
than 6 months; otherwise, it is labeled as 'seasonal.' Finally, the maps given by the RF classifier, built-up and 
water detectors are merged to produce the SAR HRLC10 map. 
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3.2 Development plan for SAR classification 
Phase 1 successfully established a Synthetic Aperture Radar (SAR) processing framework, and the current phase 
seeks to enhance this chain using Deep Learning (DL) techniques on multitemporal SAR sequences for the 
classification task. This section describes the proposed improvements in the Phase 2 of the project for the SAR 
processing system, focusing on: 

• SAR land cover classification. 

• SAR Water extraction. 

3.2.1 SAR Land Cover Classification 
The current plan for SAR LC classification involves using a classification pipeline that employs a DL network 
applied to multitemporal SAR sequences. The proposed approach uses a DL architecture to classify SAR 
sequences by dividing them into seasonal subsequences and extracting spatial features, as done in Phase 1. These 
features are then processed using DL. The methodology, designed to work on spatial subsets, allows for 
comprehensive geographical coverage. It has been tested on Sentinel-1 SAR datasets from Amazon, Africa, and 
Siberia to evaluate its effectiveness across diverse environmental and climatic conditions. 
A considered Sentinel-1 SAR sequence consists of multiple images from the same orbit, beam, and polarization. 
These images undergo several correction and refinement steps, as outlined in the pre-processing procedures 
used in Phase 1 of the CCI+ project, including orbit file application, thermal noise removal, border noise removal, 
radiometric calibration, and geometric terrain correction. After pre-processing, spatio-temporal SAR features are 
extracted for use in DL models. The SAR sequence is divided into four seasonal clusters to represent different LC  
types. Due to speckle distortion inherent in SAR imaging, a multitemporal despeckle filter is applied to mitigate 
this effect while preserving spatial resolution. Subsequently, 7 textural features (Lee filter, spatial median, mean, 
maximum, minimum and range, i.e. maximum minus minimum) are computed from each seasonal composite 
using a 5×5 pixel kernel, resulting in a total of 28 features for DL classification. 
The LC information from the Map Of LC Agreement (MOLCA) [18] will be used to build the training set for the DL 
approach. MOLCA was generated using existing global High-Resolution LC (HRLC) maps, retaining only areas 
where all datasets agree on LC classes and discarding areas of disagreement (these pixels are labeled 'no-data'). 
The MOLCA images, arranged according to the tiling grid of the Sentinel-2 Level-1C product and distributed in 
GeoTIFF format, cover about 19 million square kilometers in three regions (Amazonia, Africa, and Siberia) with 
approximately 117 billion pixels at 10m resolution. 
Three DL-based systems (Attention Unet [19], Swin-Unet [20], or 3D-FCN [21]) are currently under evaluation, 
and their performance will be compared to identify the most effective method for LC classification. These 
approaches use DL systems that depend solely on radar data, employing temporal and spatial synthetic SAR 
image features derived from annual series organized into seasonal clusters. Instead of using dense temporal 
image sequences, these synthetic features are input into the DL network. This approach not only provides spatial 
information about the scenes but also integrates multitemporal data through seasonal partitioning. 
The proposed methodology achieves high LC classification performance even with Sentinel-2 tiles that have 
limited images per season, proving effective in situations with sparse temporal sequences. Preliminary tests 
suggest that the system performs well for global LC classifications, delivering robust results by efficiently 
summarizing spatial features from less dense temporal data and adapting to the climatic conditions of various 
regions at a 10m resolution. Future work includes enhancing the classification capabilities of the water extractor, 
a specialized module designed to analyze SAR time series for the classification of water bodies. 

3.2.2 SAR water extraction 
The water improvement method involves fusing optical data and an index-based approach to enhance water 
extent extraction accuracy, particularly in areas with limited SAR data or challenging environmental conditions. 
As outlined in [22], the previous project processing chain used unsupervised k-means clustering on SAR 
sequences to extract water features. However, this approach is less effective on smooth surfaces like desert 
sand. To address this, the classification process is improved by integrating data from SAR sequences with 
multitemporal indices from multispectral data sequences. For instance, the NDVI (Normalized Difference 
Vegetation Index) and NDWI (Normalized Difference Water Index) can be calculated. NDVI provides information 
on vegetation health and quantity by comparing Near-Infrared (NIR) and Red (R) reflectance, while NDWI 
evaluates the presence of water or soil moisture by comparing NIR and green (G) reflectance. The time-averaged 
values of these indices, combined with features extracted from the Red-Green-Blue (R-G-B) bands (such as 
maximum, minimum, and variance values over the time period of interest), can be merged with features from 
SAR sequences and fed into the k-means algorithm. Preliminary tests in the La Picasa Laguna area in Argentina 
indicate that this method yields a more accurate water mask, particularly on sandy or smooth surfaces. 
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4 Algorithm development plan for decision fusion 

Based on the experimental results and the validation outcome on the three study areas of Phase 1, the team 
plans on exploring potential improvements within the data fusion processing chain and especially its higher 
semantic level components (spatial / temporal / multi-sensor decision fusion and harmonisation). The following 
subsections provide details on both the status of the decision fusion processing chain and the algorithm 
development plan for Phase 2. 

4.1 Current status of decision fusion 
The current pipeline of decision fusion, which corresponds to the ones built and validated during Phase 1, is 
illustrated in Figure 6. Figure 6.a indicates the block diagram to produce the static map while Figure 6.b shows 
the steps in the creation of the historical maps. The first data fusion processor is the multi-sensor geolocation, 
which takes inputs from both the optical pre-processing chain and the SAR pre-processing chain. In this step, the 
SAR data is spatially aligned to match the coordinate system of the optical data. Then, the decision fusion module, 
in the form of optical-SAR multi-sensor fusion, combines the classes taking into account the posterior 
probabilities of the processed optical and SAR data. In the historical map pipeline, the cascade multi-temporal 
model is additionally applied to this module to favour the temporal consistency of the product. The spatial 
harmonisation step is also performed to ensure a smooth spatial fusion on the overlapping part of two 
neighbouring Sentinel-2 granules. The final HRLC map is built by mosaicking together the spatially harmonised 
granules of the final fusion products. 

 

Figure 6. Decision fusion processing chain. The steps belonging to this chain are indicated in bold and light blue (cyan) 
background. (a) shows the workflow for the static map production while (b) indicates the pipeline for the historical maps. 
 

4.1.1 Multi-sensor geolocation 

In order to compare or integrate the data corresponding to the same scene but obtained from different 
measurements, image registration is necessary. Image registration is a general term to describe the process to 
align sets of images by referencing them into a common coordinate system [23]. In the CCI+ HRLC pipeline, image 



 

Ref D2.4 - ADP 

 
Issue Date Page 

1.0 02/08/2024 14 

 
registration is applied to the outputs from the optical and SAR pre-processing chains to spatially align the data 
from both sensors, which is referred to as the multi-sensor geolocation. Multi-sensor geolocation is done to 
enable the joint use of data from optical and SAR sensors to eventually produce the land cover map. The optical 
ima ery is taken as the “reference ima e” and the inp t i.e., data from  A , is transformed to match the fixed 
reference image. The registration method is mainly composed of three elements: the geometric transformation, 
the similarity measure, and the optimization strategy. The geometric transformation consists of mapping the 
input image to the coordinate system of the reference image by applying affine transformations, and performing 
the nearest neighbour interpolation as the resampling strategy [24]. The similarity measures define to which 
extent the input and reference images match together. Within the pipeline of CCI+ HRLC, the similarity measure 
is based on the maximum mutual information [23], [25], [26] between the two images. The optimization strategy 
is  tilized to find the optimal matchin  condition for the t o ima es.  his is achieved by  o ell’s al orithm  ith 
barrier functions [27]. Moreover, an automatic tiling algorithm is developed in order to accommodate the 
possible local distortions due to the large size of the Sentinel-2 granules. Hence, the multi-sensor geolocation is 
applied to the patches divided from both input and reference images, instead of applying a single global 
transformation to the whole image [28]. 
In Phase 2, the multi-sensor geolocation will not be modified. This choice is because of both (1) the effectiveness 
of this processor, confirmed by the extensive validation conducted during Phase 1 with both optical-SAR and 
multi-mission SAR data [28], [29], and (2) the consistency with the general plan for Phase 2 to operate starting 
from the pixel-wise posteriors generated by the optical and SAR chains, whenever possible. 
 

4.1.2 Optical-SAR multi-sensor and multi-temporal fusion 
Each classification model applied to optical and SAR data not only assigns each pixel to a class, but also takes into 
account the uncertainty associated with each source by producing pixel-wise posterior probabilities. In particular, 
based on the sources of the data, there are classes that are exclusively classified using only the optical data or 
the SAR data, and a subset of classes which is found in both optical and SAR classification outputs. While the 
sensor-exclusive classes are used as they are, the common classes across the output of the two sensors are fused 
using optical-SAR multi-sensor fusion method. Considering that the sets of classes confidently classified from 
optical and SAR data are generally different, i.e., the data from the optical sensor are normally useful to 
discriminate all considered land cover classes while the SAR data in general are beneficial in distinguishing 
especially built-up areas and water bodies, a class-specific probabilistic decision fusion is utilized to address these 
outp t’s characteristics [30]. Furthermore, after this pixel-wise decision fusion step, a Markov Random Field 
(MRF) model [31] is applied in order to include the contextual information in the form of class interactions among 
the neighbouring pixels. This spatial MRF is formulated while taking into account the desired attributes of the 
final output of HRLC map in terms of smoothness, the degree of the salt-and-pepper classification noise, and the 
detail preservation, as indicated by the Climate Group. A fast implementation of the MRF energy minimization 
process, based on appropriate convolution operators, is integrated in the pipeline to minimize the computational 
burden [30]. 
Moreover, in the historical LC map pipeline, there is also a variability in the availability of the data due to the 
acquisitions that are often sparsely taken in different months of the year. To address this problem, a multi-
temporal cascade model is used to propagate information towards past years in a probabilistic manner. This 
harmonisation step favours the temporal consistency across the historical land-cover products generated every 
five years. 

4.1.3 Spatial harmonisation 
When mosaicking granules together to generate the final LC map, the spatial harmonisation step is responsible 
for favouring the spatial regularity across the boundary between adjacent mapping tiles. Due to the different 
properties of the data, and more generally due to different data availabilities, the land cover maps of 
neighbouring granules may have slightly different characteristics, which impact on the mosaicking products in 
the form of edge artifacts at the interface between the neighbouring granules. In order to mediate this possible 
issue, the spatial harmonisation is performed on the overlapping parts of the two neighbouring granules utilizing 
the linear opinion pool (which belongs to the family of probabilistic decision fusion approaches) that incorporates 
space-varying weights to favour a seamless spatial fusion. 

4.2 Development plan for decision fusion 
The current decision fusion processing chain consists of multi-sensor geolocation, optical-SAR multi-sensor and 
multi-temporal fusion, as well as spatial harmonisation. As mentioned before, the development of the decision 
fusion processing chain will focus on the other high-semantic level modules (and not on the geolocation one), 
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mainly to enhance the quality of the performance of the processors. For the multi-sensor fusion, the 
improvement in both the combination method for the class-specific pixel-wise posteriors and the fusion that 
takes into account spatial information is emphasized, while the temporal and spatial harmonisations will be 
refined to have a smoother spatial transition and a better temporal consistency, respectively. Furthermore, all 
of the enhancements will take into account the degree of the pixel fragmentation which will be agreed upon with 
the Validation and the Climate teams to determine to which extent the pixel labelling should be regularized 
according to the semantic of the surrounding classes. 

4.2.1 Optical-SAR multi-sensor and multi-temporal fusion 
The development for the optical-SAR multi-sensor fusion will put a focal point on the improvement on the fusion 
of the pixel-wise posterior probabilities coming from both sensors on all tiles for which input SAR image 
availability is sufficient, as well as on producing a better spatial quality of the fusion map. To achieve this goal, 
the artefacts on the fusion map will be minimized by adopting a probabilistic standpoint that takes into account 
the semantics of the classes explicitly. Furthermore, in order to capture the underlying spatial structure more 
accurately, the broader area of Probabilistic Graphical Models (PGM) [32], [33], [34] will be considered. Focus 
will be given again to the feedback from the Climate team, to make sure that the spatial properties of the map 
(smoothness, detail-preservation, etc.) are consistent with the behaviour expected by the climate community. 
Regarding the multi-temporal fusion, the problem will be formulated in the broader methodological framework 
of satellite image time series (SITS) analysis. The probabilistic fusion models will be developed, especially from 
the areas of 1-D Markov models [35] and Recurrent Neural Networks (RNNs) [36]. On one hand, the family of 1-
D Markov models, such as Markov chains [34], hidden Markov models (HMM) [37], [38], or generally Bayesian 
networks i.e., PGMs on directed graphs [32], [39], is a class of powerful and flexible methods to model the time 
series data while still maintaining computational efficiency. On the other hand, the RNN family, including 
architectures such as the Long Short-Term Memory (LSTM) and the Gated Recurrent Unit (GRU) networks [40], 
[41], [42], is well-known from past studies to favour a good mapping accuracy. However, in their use, there are 
many aspects that need to be considered, especially in terms of the requirements of training data and the 
processing time for training. The choice among the PGM and neural families of methods will be addressed taking 
carefully into account these requirements. 
We emphasize that all considered data fusion methodologies either are based on or can be linked to probabilistic 
formulations. This property ensures that the input uncertainty information, represented by the input posterior 
distributions, can be used to endow the output maps with a further probabilistic uncertainty measure. 

4.2.2 Spatial harmonisation 
The refinement of the spatial harmonisation involves reducing the possible residual harmonisation artefacts. The 
identification of these artefacts will be done by focusing on the modelling of the spatial gradient on the 
overlapping part across the boundary of two adjacent mapping granules. Moreover, a special attention will be 
given to the role of each class label, possibly conditioning the spatial gradient on the estimated labels. In this 
case as well, the spatial harmonization will be framed as a probabilistic fusion process, thus ensuring the 
possibility to propagate uncertainty information from the input to the output of the processing module. 

5 Algorithm development plan for multitemporal change detection 

The multitemporal change detection and trend analysis utilize Satellite Image Time Series (SITS) data from optical 

sensors, along with five-year regional HRLC maps at 30m spatial resolution. These data are analysed to identify 

abrupt and permanent changes as well as trends. The change detection process considers all available yearly 

datasets within the processing time and detects abrupt and permanent changes between consecutive years. The 

method employs regional LC maps every five years to identify candidate change pixels. The time series (TS) 

analysis is conducted at pixel level, utilizing all available data. 

5.1 Current status of multitemporal change detection 

Current status of the multitemporal Land Cover Change (LCC) detection is demonstrated in Figure 7 considering 

the developed methodology in phase 1 [RD1]. The input dataset is the multi-annual SITS containing six years of 

multi-temporal acquisitions to detect the changes between the adjacent years. If insufficient data is available for 

adjacent years (for more details see [RD1]) the method searches for subsequent years to find a year with enough 

information to proceed with the change detection analysis. The process begins with the extraction of features 
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by considering all possible pairs of the available sensor bands to compute a set of Normalized Difference Indices. 

A feature reduction strategy is employed to retain only the most informative features [43]. The time series is 

regularized to generate a denser, uniformly sampled sequence compared to the original signal [44]. During this 

stage, cloud/shadow and Post Classification Comparison (PCC) masks (from regional LC maps every five years) 

are applied to filter out cloudy pixels, detect candidate changed pixels and to select the priority change pixels for 

each region, as introduced by the climate modelers [RD4]. Subsequently, a binary change detection method 

based on Breaks For Seasonal and Trend (BFAST) [45] is utilized to further highlight changed and remove 

unchanged ones. To minimize computational complexity, a feature fusion strategy is applied to combine the 

reduced features. 

The resulting product is a four-channel image: the first channel indicates the years in which changes occurred, 

the second provides the probability of a particular change, the third assesses the reliability of the reported year 

(taking into account the gaps in data across years), and the fourth is the PCC map, which highlights high and low 

priority pixels. This processing chain was implemented consecutively over a five-year Landsat 5, 7, and 8 SITS 

dataset. 

 

 
Figure 7. Change detection processing chain 

5.1.1 Time Series reconstruction 
Missing data and irregularities happen because of the clouds, cloud shadows, and radiometric effects. They lead 
to decrease data quality and hampers LCC detection. To address this, a time series reconstruction technique is 
applied to the extracted features from SITS, ensuring continuous and regular time series that are denser than 
the original signal. The choice of interpolation method is critical as it directly affects change detection accuracy 
and processing time. For non-vegetation profiles, upper-envelope piecewise cubic interpolation (PCHIP 
interpolation) is used, while for vegetation classes, an adaptive non-parametric regression using a General 
Regression Neural Network (GRNN) is performed [44]. Non-parametric regression captures temporal signature 
trends, reducing profile complexity and arithmetic dependency, thereby enhancing the overall quality and 
reliability of the reconstructed time series. 

5.1.2 Abrupt change detection 

To detect abrupt changes, the Breaks For Additive Season and Trend (BFAST) method is selected. BFAST models 

both linear trends and seasonal variations without requiring a reference period, setting a threshold, or defining 

a change trajectory, making it suitable for detecting changes in diverse areas with different types of changes. 

BFAST works by recursively evaluating the possibility of each time point being a breakpoint and then selecting 

the most optimal set of breakpoints. It requires a set of parameters to run, such as parameter h, which defines 

the minimal segment size between potentially detected breaks in the trend model. The magnitude of change is 

crucial for distinguishing real abrupt changes from other disturbances in the time series. Additionally, the 

probability of change for each pixel is calculated as a measure of uncertainty using the p-values from the OLS-

MOSUM structural change test, the same test that BFAST employs to filter out time series with no change prior 

to run. This assigns probabilities of change to every time series.  

BFAST is typically used on medium spatial resolution Satellite Image Time Series (SITS) and often analysed for the 

Normalized Difference Vegetation Index (NDVI) or other vegetation indices. However, it has been modified to 

handle multi-feature data using high-resolution SITS. BFAST outputs include the timing of abrupt changes and 
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the probability of change. Given the substantial amount of data processed by the BFAST methodology for 

different regions, a feature fusion step based on calculating feature magnitude is implemented. This step 

alleviates the computational burden of BFAST for the various features extracted in the feature extraction phase.  

5.2 Development plan for multitemporal change detection 

The current processing chain for multitemporal change detection and trend analysis utilizes SITS data from 

optical sensors and five-year regional HRLC maps at 30m spatial resolution, analysing this data to identify abrupt 

and permanent changes. Considering that new areas are introduced for analysis and change detection will be 

performed using Sentinel-2 datasets, the methodologies need to be updated. More attention will be given to 

develop an integrated and unified preprocessing step for both LC classification and LCC detection, thereby 

minimizing the processing steps for optical data analysis and generating composites. This approach will ensure a 

homogeneous preprocessing, reducing the computational burden and make the preprocessing step as well as 

subsequent processing robust for and coherent between both LC classification and change detection analyses. 

The feature design strategy will be updated to extract better features related to specific LC changes for each 

area, and this step will be integrated with the LC classification processing chain to generate common features for 

both analyses in a single step, thereby reducing computational requirements. The feature extraction and feature 

reduction techniques will be further enhanced to leverage the higher spatial and temporal resolution of Sentinel-

2. Additionally, time series reconstruction methods will be updated to handle the increased data volume and 

finer temporal resolution. A more robust and fast method for breakpoint detection will be implemented to 

efficiently process the larger datasets while maintaining or improving change detection accuracy. These updates 

will enable the processing chain to better handle the new data and areas, leading to more accurate and efficient 

change detection and trend analysis. 

5.2.1 Feature space design 

The development plan for the feature space design will involve creating region-specific feature spaces tailored 

to the unique characteristics of each region. This will be achieved using state-of-the-art methods to ensure the 

most effective change detection analysis [46], [47]. For instance, the feature space for change detection will 

incorporate spatial, temporal, and fine-grained features that capture the intricacies of each region landscape and 

changes over time. Pretrained deep learning architectures will be tested to extract detailed spatial and temporal 

features, leveraging their ability to learn complex patterns from large datasets [48], [49]. 

In addition, the feature reduction and fusion methods will be updated by employing advanced techniques, both 

deep learning and non-deep learning. For example, autoencoders and convolutional neural networks (CNNs) will 

be explored for deep learning-based feature reduction and fusion [50], [51]. Non-deep learning methods such as 

Principal Component Analysis (PCA), Independent Component Analysis (ICA), and newer approaches like Uniform 

Manifold Approximation and Projection (UMAP) [52], and Locality Preserving Projections (LPP) [53] will also be 

evaluated for their effectiveness in this context. 

The feature space design and dimension reduction will be an iterative process, involving continuous evaluation 

and refinement based on the results of preliminary analyses. By tailoring the feature space to each regions 

specific characteristics and utilizing cutting-edge techniques for feature extraction, reduction and fusion to 

enhance the representation of relevant changes, reducing noise, and capturing finer details that are critical for 

distinguishing variations in LCs. This comprehensive approach will ensure that the processing chain is robust and 

capable of handling the diverse and dynamic nature of the new areas introduced for analysis. 

5.2.2 Time series reconstruction and break point detector 

The upper envelope strategy for non-vegetation classes and a non-parametric regressor for vegetation classes 

developed in phase 1 shows limitations in computational time. Accordingly, experiments were conducted to 

understand if weekly time series reconstruction is a reliable time frequency. For Sentinel-2 data, with its frequent 

weekly acquisitions, this step can be omitted if sufficient data are available, thereby saving processing time and 

computational power. For periods with less frequent acquisitions, a different strategy will be implemented by 

considering the monthly, bi-monthly, and/or seasonal composites generated in the preprocessing stage (optical 
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pre-processing block in Figure 1). The generated composites for LC classification will be also used for the change 

detection process, providing a set of input data with efficient temporal availability across the years in common 

with LC classification.  

In phase2, other break point detectors such as the Bayesian Online Change Point Detection (BOCPD) method 

[54], known for its speed and efficiency, will be considered as alternatives to BFAST. Moreover, Change Point 

Detection based on Neural Networks (CPDNN) [55], [56], and Piecewise Linear Models with a specific parameters 

based on the area of the analysis will be explored to evaluate their capability and efficiency in detecting LCCs.   
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