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Climate Change Initiative - Atmospheric ECVs
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Science Questions

Quantifying emissions

Can we using global satellite observations provide a detailed inventory of the natural and anthropogenic sources of greenhouse
gases, which are the main drivers of the global warming?

Role of particles

The contribution of aerosols to radiative forcing remains highly uncertain to complex counterbalancing effects of different particle
types. Can we better characterise particles from space and help constraining their radiative effect?

Feedbacks and interactions

The atmosphere is a complex environment. Forcing due to climate change induce many feedbacks, as a result of interactions
involving a range of dynamical, chemical or microphysical processes. Can we, based on satelllite observations, track and identify
such feedbacks and contribute to a better understanding of the climate system?

Impact Can we maintain and improve the impact of our research on the international scene? (e.g. IPCC)
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Observational challenges

Understanding climate change requires long-term observations of high-quality, well-
characterised uncertainty, and high stability.

Key challenges

= How can we make sure that our observations reach the accuracy, precision and stability as defined by
GCOS?

= Do observations reach a sufficient level of internal and mutual (across-ECV) consistency?
= Are we able to extract all the needed variables from satellite data?
= Do we account properly enough for the 3-dimensional nature of the atmosphere?

= How can we improve the sampling of our satellite measurements, in particular the temporal sampling of the
diurnal cycle?

= Can we build and maintain efficient links between R&D and operational processing?
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Greenhouse gases (GHG) — m.

Buchwitz (IlUP-B)

esa

Focus: R&D to generate new XCO, and XCH, ECV
products from OCO-2, Sentinel-5 Precursor (S5P),
GOSAT-2 and TanSat

Past products from SCIAMACHY, GOSAT and IASI are
generated operationally within C3S

pheric Carbon Dioxide (CO;) from S Atmospheric Methane (CHa) from Satellites
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Remote sensing of methane leakage from natural gas
and petroleum systems revisited
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Aerosol properties — T. Popp (DLR)
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Focus: R&D to create consistent aerosol records

(SLSTR, AATSR, ATSR-2)

A mature algorithm qualified in previous phase is further
improved (reduced limitations, advanced uncertainties)

ATSR-2 1998
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Cloud properties — M. Stengel (DWD)

esa

Focus: R&D to transfer and improve developments
done for long-term datasets based on AVHRR-heritage
information to the enhanced sensors SEVIRI and
SLSTR making use of their enhanced temporal and
spatial resolution as well as spectral information.
Enhance consistency of cloud properties between GEO
and LEO sensors.

SEVIRIl example

SLSTR example
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Highlight:

Cloud_cci was able to reveal strong evidence for a
positive cloud — sea-ice feedback in the Arctic with
the capability to contribute to autumnal Arctic
amplification
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Philipp et al., J. Climate, 2020
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Water vapour — M. Hegglin (University of Reading) @esa
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Ozone (O;) — M. Van Roozendael (BIRA-IASB)

esa

Focus: R&D to improve ozone data products operationally
generated in C3S, with a focus on (1) adding new sensors
(S5P, Metop-C), (2) extend existing CDRs backward in time,
and (3) improve the accuracy of profile data products
Example: extension of GTO-ECV CDR to early 1980 (pre-
ozone-hole) by merging of European and NASA CDRs
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Links and inter-connections

» Radiative budget: connects all atmospheric ECVs, e.g. GHGs warm the planet while aerosols cool it. The
cooling induced by aerosols is itself adjusted due to cloud/aerosol interactions.

» Chemistry: aerosol and ozone concentrations are modulated by chemical reactions involving common
precursors (NO,, VOCs, CO, NH5;)

= Microphysics: water vapour, aerosol, clouds are directly linked through microphysical processes

» Retrieval: retrievals used for different ECVs have some common aspects. E.g. cloud masks
(aerosol/cloud/water vapour), or aerosol corrections used in trace gas retrievals (GHG, ozone).

= Earth system cycles: Energy budget/balance, Carbon and Water cycles connect many ECVs. All-CCI
consistency paper led by science leads of Aerosol, Water vapor and Cloud CCI projects.
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Priorities for CCl+ Phase-2

» Focus on generating ECV products relevant to the Paris Agreement, e.g. CO2 and CH4 from emission hot
spots (in support to NDC)

= Exploit and/or prepare the exploitation of new sensors such as the future atmospheric Sentinels (including
CO,-M) and the latest Geo sensors as part of advanced Geo-ring constellation (GOES16/17, MSG/MTG,
Kompsat, Himawari)

= Better use inter-sensor synergies to produce new value-added products (e.g. based on new multi-instrumented
platforms combining imagers and spectral measurements)

= Continue and further develop R&D to improve existing CDRs (accuracy, resolution, time-covering, sampling,
stability) against GCOS requirements and consolidate uncertainty propagation. This also implies the
development of innovative retrieval approaches (e.g. using machine learning)
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