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ESA CCI SM:  

over 45 years of satellite observed soil moisture! 
 

The ESA CCI soil moisture dataset (ESA CCI SM) has become a well-established 
dataset within the scientific climate community. Its long temporal coverage, 
currently spanning over 45 years (1978-2023, v09.1), and global spatial coverage 
have been identified by our users as the main features for choosing ESA CCI SM. 
The long temporal coverage is an essential prerequisite for robust trend 
assessments and the investigation of soil moisture drivers of hydrological and 
biogeochemical processes, while the spatial coverage has allowed for studies in 
previously data-poor regions, or regions where access to ground-based data is 
difficult, e.g., China, Iran, Africa and South America. 

 

Over 12’400 registrations as of April 2023 
 

Interest in the ESA CCI SM dataset from outside of the scientific community is also 
steadily growing, e.g., by the non-profit and private sectors. Topics such as disaster, 
energy, weather, and health are increasingly mentioned in user applications. With 
the acceptance of ESA CCI SM to the Copernicus Climate Data Store, including a 
product improvement with a shortened latency, allows for ESA CCI SM to be 
embedded in monitoring and operational services, e.g., for drought monitoring and 
flood forecasting.  

 

The overwhelming interest in the ESA CCI SM dataset shows that ESA CCI SM has 
come a long way and has made it a well-established dataset. Hopefully 
continuation of this dataset into the future will remain possible. Not only by 
financial support for the scientific development of ESA CCI SM and operational 
reprocessing, but also by the availability of continuous sensor data. 
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1 Introduction 

1.1 Purpose of the document 

The purpose of the CAR is the assessment of the ESA CCI SM time series for climate science. 
We highlight here the ESA CCI SM overview paper published in the CCI special issue in Remote 
Sensing of Environment: "Earth Observation of Essential Climate Variables". Dorigo et al. 
(2017) gives a comprehensive overview on the ESA CCI SM products. Not only their 
specifications and error characteristics, but also the wide range of Earth system applications 
currently using the data. Furthermore, we update new versions of the CAR against the most 
recent scientific literature that makes use of the ESA CCI SM dataset for the different 
applications. For this version of the CAR, more than 200 new studies (as of March 2024) citing 
the ESA CCI SM key publications since April 2023 have been reviewed. The outcome underlines 
soil moisture to be an essential climate variable and highlights the value of the established 
global long-term soil moisture time series based on satellite observations. Furthermore, the 
document provides a critical view on the potentials and limitations of the developed datasets 
for climate studies.  

1.2 Targeted audience 

This document targets the scientific science community as it demonstrates the value and 
application of the global remote sensing observation-based ESA CCI SM time series for climate 
science. Furthermore, it provides valuable insights in the potential and limitation of the ESA 
CCI SM time series for climate studies.  
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2 Executive Summary 

2.1 Introduction 

The European Space Agency’s (ESA) Climate Change Initiative (CCI) soil moisture (SM) program 
aimed and fulfilled the development of a publicly available surface soil moisture time series 
that covers more than 45 years (1978-2023, v09.1) and is solely based on remote sensing 
observations as primary input. In order to produce a soil moisture climate data record 
sufficiently long for climate research, various single sensor active and passive microwave soil 
moisture products are combined. Three separate products are available, a merged ACTIVE, a 
merged PASSIVE and a COMBINED active + passive product. The products, as well as the 
documents for the algorithm development (ATBD), the product specification (PSD), and the 
report on the final product validation (PVIR), are all publicly available to the user through the 
dedicated CCI soil moisture website: https://climate.esa.int/en/projects/soil-moisture/.  

The assessment of the ESA CCI SM time series for climate research is a central part within the 
ESA CCI SM project, as it allows for a critical evaluation of its suitability for climate applications. 
A search on Google scholar shows that the interest in satellite soil moisture products has 
increased over time. Updated from de Jeu and Dorigo (2016), Figure 1 (left) shows the number 
of Google scholar hits per year using SMAP, SMOS1, AMSR-E, ASCAT, ASAR, Sentinel-1, and 
ESA CCI in combination with “soil moisture” as a search term (as of March 2024, numbers for 
full years up to 2023). There is a long-term increase, with signs of levelling off for most 
products in the last two years. 

 
Figure 1 (left) Number of google scholar hits per year using the sensor name in combination with 
the term “soil moisture”, updated from: de Jeu and Dorigo (2016). (right) Number of registered 
ESA CCI SM users per month based on the TUW FTP server registrations (top panel, June 2012 to 
March 2023) and per quarter based on the CEDA users (bottom panel, June 2019 to March 2024). 

 

1 Note that the trend in the “SMOS + soil moisture” hits is likely overestimated since soil moisture is part of the acronym, but the results may 
include applications like VOD, AGB and ocean salinity, which cannot be easily separated in the search. 
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Figure 1 (right) shows the number of ESA CCI SM 
users per month from June 2012 to March 2023 
based on the TUW FTP server registrations (which 
was taken offline afterwards), and per quarter from 
June 2019 to March 2024 based on users obtaining 
the product from the ESA CCI open data portal 
through CEDA (numbers as noted in the QSRs). 
There is a steady increase over the years, with a 
flattening of the curve after around 2020, which 
may be due to more users obtaining the product 
through CEDA. With the start of the TUW FTP 
server registration downtime, CEDA shows a 
distinct increase in users. Also, peaks in registration 
with each new public data release are particularly 
visible for the pre-v05 releases. 

2.2 Investigating the ESA CCI SM user 
base 

Until April 2023, The ESA CCI SM ACTIVE, PASSIVE, 
and COMBINED products was available for 
download from the TUW FTP server after 
completion of a simple registration form1. As of 
April 2023, we counted over 12’400 registrations. 
Particularly for the pre-v05 releases, distinct peaks 
in user registration can be seen with each new data 
release, see Figure 1 (right). We also see a steady 
upward trend in monthly user registrations, with a 
flattening in recent years.   

Information gained from anonymised registration 
information gives insight into users’ backgrounds, 
as well as changes in user composition over time. 
Figure 2 (top) shows a subdivision of registered 
users by continent. Originally most users originated 
from Europe (v0.1), but as the dataset has become 
more known there is a strong increase in users 
from Asia and North America. In Asia, most users 
come from China and India, followed by Iran, Japan, 
and South Korea. In Europe most users are from 

 

1 The registration form was taken offline in spring 2023 and users are redirected to the ESA CCI open data portal, from where the data is 
available through CEDA without user registration. 
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Germany, followed by France, Italy, the Netherlands, and the UK.  

The main application area users indicate since the beginning of ESA CCI SM is climate, see 
Figure 2  (middle). There is a steady increase in users dealing with water, ecosystems 
applications and in particular agriculture. Since 2018, agriculture is as often mentioned as 
climate (except for 2022). Weather, energy and health sectors are lagging behind, but are also 
slowly growing. While the number of monthly registrations shows a flattening in recent years, 
there is an apparent decrease in the user declarations of application areas particularly for 
2022. 

This broadening of application areas is also found when analysing users based on organisation 
type. Though, research organisations and higher or secondary education are clearly the main 
users of the ESA CCI SM dataset, more and more, public bodies, private companies as well as 
non-profit organisations are using the data. This increase of organisations outside of scientific 
institutions indicates the broad acceptance and maturity of the dataset and assures a growing 
user base.  

2.2.1 Focus of research within the societal benefit areas 

The three main societal benefit areas (SBA) are Climate, Water and Agriculture (Figure 3). As 
seen above, there is an apparent decrease in the user declarations of societal benefit areas in 
2022, which is also visible here. The qualitative assessment of the user database shows that 
the usage and focus of research within these SBAs are wide and have different purpose, from 
status quo of occurrences to the development of models. The span of the usages covers many 
aspects, such as the exploration of the usability of Earth observation data in new fields. Some 
of ways the data is used include: 

• Development of long-time trends, forecasting & monitoring 

• Land evaluation, management, planning and assessments 

• Modelling and simulations, big data analytics 

The specific themes under each SBA also vary from infrastructure, temperature influences of 
fungi attacking wood elements to spatial epidemiology, climate -and crop simulation 
modelling and data analytics in agriculture. The mentioned themes show a glimpse of the 
span, which the ESA CCI SM data covers and the prospectively wide usage of the data. 

       
Figure 3 Temporal development of registered users of the three main SBAs. 
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2.2.2 Maturity increase of ESA CCI SM 

Over the years, the validation of ESA CCI SM as documented in the PVIR (Hirschi et al., 2023b, 
2024) has revealed a steady increase in the agreement of the product with in-situ 
measurements from ISMN (Dorigo et al., 2021). Figure 4 shows the (significantly positive, p < 
0.05) correlations of the different major ESA CCI SM releases (as represented by the evolution 
of the merging algorithm; see Gruber et al., 2019), as well as of ERA5-Land layer 1 compared 
to in-situ stations in the US (where station coverage is most dense) for different temporal 
subsets (i.e., 1999-2002, 2003-2006, 2007-2010, 2011-2014, 2015-2018 and 2019-2022, as 
well as 1999 up to the end of the individual time series). The ESA CCI SM versions show a 
general increase in performance with data releases, pointing to the increasing maturity of the 
product. This is particularly the case for the periods after 2006. Also, towards later periods, 
the overall correlations with in-situ measurements tend to increase due to the coverage with 
more satellites. Note that the reduction in the correlations of the 2019-2022 period is likely 
related to the reduction in coverage with in-situ stations for this most recent period. 

 
Figure 4 Correlation of the gridded soil moisture products as compared to in-situ station 
observations in 5 and 10 cm depth for the full year for the US. Subdivided in consecutive 4-year 
periods (1999-2002, 2003-2006, 2007-2010, 2011-2014, 2015-2018 and 2019-2022) as well as 
for the longest period data is available (1999-20.., end date would e.g. be 2010 for CCI v0.1, 
but is 2023 for e.g. CCI v09.1). Note that data is not masked for common data availability. 
Whiskers show the median and the IQR. Above indicated the number of stations correlations 
were calculated for that comply to the following criteria: at least 10% of the time-series is not 
NA, p-value < 0.05, and the calculated correlation is positive. And below indicated the number 
of years considered. In addition to the major releases of ESA CCI SM COMBINED, 
the ACTIVE and PASSIVE products are also shown in case of v09.1 (denoted v9.1act and 
v9.1pas). 

The ERA5-Land reanalysis shows more stable correlations over time, and overall better 
agreement with the in-situ data as compared to the ESA CCI SM releases, which is in line with 
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other product inter-comparison studies (e.g., Beck et al., 2021). Within ESA CCI SM, the 
PASSIVE and ACTIVE products often show lower skill compared to the COMBINED product, 
showing the benefit of the merging approach.  
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ESA CCI SM at a glance 

 
Motivation for using ESA CCI SM 

 Long temporal coverage 
 Large spatial coverage 
 Can function as an independent reference dataset 
 Constraining errors in models 
 Reduce uncertainties  

 

Limitations identified 

 Data gaps in time and space, especially prior to 1992 
 Changing data quality and coverage over time 
 No representation of root-zone soil moisture 
 Evaluation of absolute values not possible 
 Dependency on GLDAS-Noah as scaling reference 
 Too coarse spatial resolution  

 

Future directions and ongoing developments 

 Higher spatial resolution, either by including observations with higher native 
resolution (e.g., SAR, thermal infrared) or by downscaling  

 Filling of data gaps is currently being addressed with an additional gap-filled 
research version of the COMBINED product as of ESA CCI SM v08.1 

 Improved temporal sampling is achieved through the integration of daytime 
observations 

 Improved product accuracy 
 Improved blending methods 
 Improved temporal consistency has been partly addressed through a break-

adjustment (Preimesberger et al., 2021), which has been implemented in the 
v08.1 COMBINED product 

 Shorter latency times between data acquisition and data availability have been 
achieved with the inclusion of the product in the Copernicus Climate Data Store 

 Independency of LSMs is being investigated and has been integrated in a 
research product as of v09.1 by using L-band observations from SMOS and SMAP 
as new scaling reference 

 Creation of a root-zone soil moisture product is currently being addressed and 
will be included as a research product in v09.1 
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2.3 Motivation for use, limitations identified and future directions 

Table 5 of Dorigo et al. (2017), included in the Appendix as Table 1 - Table 6, gives an extensive 
overview of the use of ESA CCI SM for scientific studies. These tables also include the 
motivation for using the ESA CCI SM dataset, as well as the main limitations identified by the 
users. Here we provide a short overview. 

Long temporal and global spatial coverage of the dataset  

The main motivation identified by users for using ESA CCI SM is the long temporal and global 
spatial coverage of the dataset. Long temporal coverage is essential for robust trend and 
driver assessment, but also for use applications such as researching vegetation activity, 
investigating fire activity or the creation of a precipitation dataset, while global coverage 
allows investigations into areas where previously no observations were available. The long 
temporal and global spatial coverage also make ESA CCI SM a prime candidate to function as 
a global independent reference for land surface model and reanalysis evaluations. In addition, 
ESA CCI SM through assimilation has been shown to aid in constraining model errors, reduce 
uncertainties, and improve model predictions (Miralles et al., 2014b; Tramblay et al., 2014; 
e.g., Massari et al., 2015). These results show that further studies are clearly needed to assess 
the full potential of the ESA CCI SM dataset. Also, as documented in the PVIR, larger 
uncertainties remain regarding the representation of temporal trends, which display distinct 
and partly diverging global patterns among the ESA CCI SM COMBINED releases and the 
underlying ACTIVE and PASSIVE products, as well as compared to reanalysis and land-surface 
model products (Hirschi et al., 2023b; 2024; cf. also Section 3.1.1). 

Increase of available satellites and improved retrieval protocols will reduce data gaps  

The main limitation identified by users is the presence of data gaps, both in time and space, 
and the changing data quality over time. This complicates or sometimes even impedes the use 
of the dataset, and care needs to be taken to properly inform users of this caveat. The increase 
of available satellites (including FengYun 3E and 3F, and AMSR3 in the upcoming ESA CCI+ SM 
Phase), as well as the improvement of retrieval protocols and merging methodologies, will 
mostly solve for this in the future. Though it should be noted that the absence of suitable 
sensors in the early years, as well the physical limitations of the microwave signal in general, 
e.g., no retrieval under snow coverage or dense vegetation, will likely prove insurmountable 
(Dorigo et al., 2017). As an alternative, gap-filling can be achieved by statistical methods for 
data imputation (e.g., Bessenbacher et al., 2022). An additional gap-filled version of the 
product which adapts a 3D-smoothing algorithm (Garcia, 2010) and does not rely on ancillary 
data is being produced as a research product of ESA CCI SM as of v08.1 (Preimesberger et al., 
2024). 

SMOS and SMAP SM can eliminate the dependency on ancillary model data for scaling 

Currently, the merging procedure for the COMBINED product includes scaling against GLDAS-
Noah, however various users have expressed a need for a Land Surface Model (LSM) 
independent dataset. The passive microwave soil moisture data fusion project (Contract No: 
IPL-PSO/FF/vb/13.886 EXPRO+) has investigated the inclusion of SMOS soil moisture data in 
the ESA CCI SM dataset. The inclusion of SMOS into ESA CCI SM (v03.2) has shown to improve 
the quality of the dataset. In addition, SMOS soil moisture has the potential to serve as the 



 
Climate Assessment Report (CAR) 

Version 2 

Date 19-09-2024 

 

10 

reference soil moisture dataset for scaling purposes, thus solving the current dependence on 
a LSM reference. This has been investigated in the framework of the visiting scientist activity 
of Maria Piles (U. Valencia) taking place from 01/01/2017 to 13/11/2018 (Piles et al, 2018) 
Besides, the passive microwave soil moisture data fusion project recommended to further 
investigate the possibility to build a long-term record from Neural Networks, and to set up 
merging strategies that use multiple satellites and retrieval methods (van der Schalie et al., 
2016). Within the current ESA CCI+ activities, the impacts of replacing GLDAS-Noah as 
reference for the rescaling is investigated using L-band data from SMOS and SMAP as an 
alternative. Results show that the best trade-off could be using a merged L-band dataset as 
scaling reference to benefit from both SMAP (better spatial coverage) and SMOS (longer time 
series) advantages (Madelon et al., 2021). These developments have been integrated in ESA 
CCI SM by generating an L-band reference from the BTs-level merging of SMAP and SMOS and 
the corresponding research product will be distributed with ESA CCI SM v09.1. Such product 
covers the 2010-2023 period; the time backward-propagation of the L-band reference using 
L-band-like AMSRE data is under investigation from the previous research base of Rodríguez-
Fernández et al. (2016). 

ESA CCI SM included in the Copernicus Climate Data Store with improved latency 

The latency time between data acquisition and data availability has been identified as a 
limitation for embedding satellite derived soil moisture in operational services, for example 
drought monitoring and early warning systems. With the inclusion of ESA CCI SM in the 
Copernicus Climate Data Store, part of the Copernicus Climate Change Services (C3S; 
https://climate.copernicus.eu/), an operational product with an update frequency of 10 days 
is made available. The latest version of this near-real time operational product (v202212.0.0) 
is based on v07.1 of ESA CCI SM. The use of near-real-time Level 1 and Level 2 data streams in 
C3S is expected to have only a minor impact on the product quality with respect to ESA CCI 
SM, since for most datasets merged into C3S the NRT and off-line data streams are similar. 

Figure 5 Soil moisture anomalies (with respect to the 1997–2017 time period) in Italy during early 
August 2017.  

From: http://www.esa.int/Our_Activities/Observing_the_Earth/Italy_s_drought_seen_from_space 
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Such a reduced latency will enable new applications for ESA CCI SM. The near real-time soil 
moisture data (compiled by the ESA CCI SM project) has already been used to monitor drought 
in Italy during the exceptionally dry August 2017 (see Figure 5), with conditions similar to the 
2012 drought. Also, the near real-time availability allows for the integration in the European 
State of the Climate reports1 compiled by the C3S. 

A satellite observation-based root-zone soil moisture product 

As root zone soil moisture is important for e.g., long-term evapotranspiration and water 
supply, not surprisingly, a user request that frequently surfaces is a satellite observation-
based root-zone soil moisture product. But, as the penetration depth of the microwave 
signal is only a few centimetres at most, at first glance this does not seem feasible. However, 
a simplified approach using an exponential filter to derive a root-zone soil moisture product, 
such as the Soil Water Index method (Albergel et al., 2008; Wagner et al., 1999), has already 
proven useful (Brocca et al., 2012). Alternatively, the assimilation of satellite soil moisture 
into a land surface model has been shown to improve the root zone correlation with in-situ 
stations (e.g., Blyverket et al., 2019b). Such an assimilated root-zone product can be a good 
compromise between a solely observation based and model-based product. An ESA CCI+ soil 
moisture CCN1 Scientific Evolution study has been concluded with the goal to extend the 
ESA CCI surface soil moisture product with a global, long-term root-zone soil moisture 
dataset with daily and 0.25° resolution. The creation of an ESA CCI root-zone soil moisture 
product based on exponential filtering and using calibrated T-parameters for 4 different soil 
depth layers determined from in-situ time series (Pasik et al., 2023) is currently ongoing and 
will be included as a research product in v09.1. 

2.4 ESA CCI SM in scientific studies 

JAG special issue:  Advances in the Validation and Application of Remotely Sensed SM 

In 2015, the International Journal of Applied Earth Observation and Geoinformation published 
the special issue “Advances in the Validation and Application of Remotely Sensed Soil 
Moisture”, with guest editors Wouter Dorigo and Richard de Jeu. Though this special issue was 
on remotely sensed soil moisture in general, the ESA CCI SM dataset was featured in many of 
the articles. The special issue highlights the importance of satellite soil moisture for studies in 
previously data-poor regions, or regions where access to ground-based data is difficult, e.g., 
China, Iran, Africa and South America. Two clear user requests can be distilled from the JAG 
special issue. Firstly, continued efforts to enhance spatial resolution and reduce errors of the 
soil moisture retrievals. And secondly, in the context of a changing climate and with a rise of 
operational applications, a long-term and consistent soil moisture record. It was therefore 
concluded that it is essential to not only invest in advancing new technologies, put also to 
ensure continued satellite missions.  

 

1 https://climate.copernicus.eu/esotc/ 
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Scientific application of ESA CCI SM in different Earth system areas 

Table 5 of Dorigo et al. (2017), here included in a modified and extended form as Table 1 -
Table 6 in the Appendix, provides an overview on the use of ESA CCI SM in scientific 
applications based on peer-reviewed literature. Six Earth system application areas were 
identified as described in Section 3.1: Climate variability and change, Land atmosphere 
interactions, Global biogeochemical cycles and ecology, Hydrology and land surface 
modelling, Drought applications, (Hydro)meteorological applications. The tables list the main 
purpose of the studies, the main motivation for using the ESA CCI SM dataset, and the 
identified limitations. 

Originally, the tables were made up of scientific papers that correctly cite any of the early key 
publications on the dataset (i.e., Liu et al., 2011; Dorigo et al., 2012; Wagner et al., 2012a; 
Dorigo et al., 2015b; Liu et al., 2012) and were listed either in Scopus (http://scopus.com/) or 
Google Scholar (https://scholar.google.com). For the recent updates of the scientific 
applications, papers citing Dorigo et al. (2017), Gruber et al. (2019) and Preimesberger et al. 
(2021) are considered (see Publications under https://climate.esa.int/en/projects/soil-
moisture/). For the current version of the CAR, over 200 new publications that appeared since 
April 2023 were reviewed. 

The share of publications within each of these application areas are shown in Figure 6 (as of 
March 2024), together with the temporal evolution from 2018 to 2023. Overall, hydrology and 
land surface modelling, biogeochemical cycles and drought applications are the main areas in 
which ESA CCI SM is used, followed by land-atmosphere interactions and climate. Over time, 
particularly the hydrological and biogeochemical applications have grown most. Not shown 
here are the numerous studies that deal with algorithmic improvements such as downscaling, 
gap filling and validating the ESA CCI SM product. 

 
Figure 6 Share of the six main earth system applications of ESA CCI SM in scientific publications 
since 2018, and their temporal evolution in numbers of published papers. 

In the following pages we will feature for each topic one or more peer reviewed scientific 
studies for easy reference. For the complete, non-exhaustive overview on scientific studies 
using ESA CCI SM, please refer to Section 3 and the applications tables in the Appendix.  
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Climate variability and change 
 

The broad range of application areas and 
the growing number of publications (see 
also Appendix) highlights the acceptance of 
the dataset within the scientific 
community, as well as the maturity of the 
dataset. This acceptance is underscored by the contributions to the section on global 
soil moisture in the Bulletin of the American Meteorological Society (BAMS) State of the 
Climate reports. The BAMS State of the Climate reports are the yearly returning 
authoritative summaries of the global climate and are led by the US National Oceanic 
and Atmospheric Administration. The report features a global overview of recent and 
historical variations of climatological variables, and since 2010 includes soil moisture 
from the ESA CCI SM dataset for the chapter on global soil moisture (De Jeu et al., 2011; 
De Jeu et al., 2012; Dorigo et al., 2014; Dorigo et al., 2015a; Dorigo et al., 2016; Dorigo 
et al., 2017; Parinussa et al., 2013; Dorigo et al., 2018; Scanlon et al., 2019; 
Preimesberger et al., 2020; van der Schalie et al., 2021; van der Schalie et al., 2022; 
Stradiotti et al., 2023b). ESA CCI SM shows a strong similarity with related terrestrial 
water cycle components such as terrestrial water storage, precipitation, the self-
calibrating PDSI, and terrestrial evaporation. Here we show the global soil moisture 
anomalies for 2021 (left) and 2022 (right), see Figure 7. 

 
 

 
 
 

  
  

“ESA CCI SM featured in the BAMS 
State of the Climate reports for 

more than 10 consecutive years” 

Figure 7 Global soil moisture anomalies from the 1991-2020 baseline for 2021 (left), and 2022
(right). From: van der Schalie et al. (2022); Stradiotti et al. (2023b). 
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Land-atmosphere interactions 
 

Soil moisture plays an essential role in the partitioning of the fluxes of water and energy 
at the land surface, and as such, influences evapotranspiration and temperature. 
However, many studies on soil moisture-evapotranspiration and soil moisture-
temperature coupling are based on modelling results or use precipitation-based drought 
indices as a proxy for soil moisture as global long-term soil moisture measurements were 
not available. The ESA CCI SM dataset now, allows observation-based analysis, and has 
been used in various studies to evaluate the coupling diagnostics found in models 
(Miralles et al., 2014a; Hirschi et al., 2014; Casagrande et al., 2015). Moreover, the 
product (through data assimilation) helped to reconcile the debate on the spatial and 
temporal soil moisture effects on afternoon rainfall (Guillod et al., 2015; Taylor et al., 
2012). 

Dong and Crow (2019) re-addressed soil 
moisture-air temperature coupling strength 
based on C- and X-band remote-sensing soil 
moisture products from ESA CCI SM and from 
newer L-band products (SMOS, SMAP). In 
agreement with Hirschi et al. (2014), the older products demonstrated a significantly (at 
p=0.05 confidence) weaker correlation with number of hot days than the precipitation-
based proxy. The newer products however showed comparable (SMOS) or stronger 
(SMAP) correlations over global hotspot regions. These results suggest that the higher 
signal-to-noise ratio (SNR, i.e., the relative size of soil moisture signal and random 
observation error variances) of L-band remote sensing surface soil moisture results in 
an improved ability to quantify land-atmosphere coupling strengths (Figure 8). 

  

   

 

 

 

 

  

“Inclusion of L-band products in 
ESA CCI SM will be beneficial for 

quantifying land-atmosphere 
coupling strengths” 

Figure 8 Correlation coefficients of 1-month lagged soil moisture and number of hot days 
(NHD) correlations. Top: satellite soil moisture anomalies; bottom: correlations based on 
3-month standardized precipitation index (SPI). From: Dong and Crow (2019). 
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Global biogeochemical cycles and ecology 

 
As mentioned previously, the discrepancy in 
scales between local in-situ observations and 
satellite derived soil moisture complicates 
validation. Another approach to validating 
ESA CCI SM would be to show consistent behaviour between soil moisture and other 
climate and eco-system variables. For example, Nicolai-Shaw et al. (2017) showed how 
temperature, precipitation, evapotranspiration and vegetation co-vary with soil 
moisture drought during the peak of the growing season. In another study, Muñoz et al. 
(2014) showed that temporal variations in tree growth are largely driven by soil moisture 
variability. More recently, Martinez-Fernandez et al. (2019) analysed tree growth in 
Spain through satellite soil moisture monitoring. They found that ESA CCI SM is sensitive 
enough to track the phenology of Aleppo pine, with increasing influence of soil moisture 
with reduced water availability during the summer months (Figure 9).  

 

  

“Studies show a clear co-
variability between ESA CCI SM 

and ecosystem variables” 

Figure 9 Temporal evolution of the median R (blue bars and moving average) between the 
ESA CCI SM and tree growth and the percentage of significant (p < 0.05) cases (orange dots 
and moving average, black line) for daily data (top left) and daily moving window averages 
of 7 (top right), 15 (bottom left) and 30 (bottom right) days. Asterisks: data from the previous 
year. Gray line: significance threshold (p < 0.05). From: Martinez-Fernandez et al. (2019) 
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Hydrological and land surface modelling 
 

A novel use of satellite-based soil moisture was 
made by Brocca et al. (2014). In general, global 
estimates of rainfall are hampered by the lack of 
ground observations, and the difficulty of deriving 
the amount of rainfall that reaches the ground when using satellite observations. So, 
instead of using the common top-down approach, they applied a bottom-up approach, 
using variations in soil moisture to infer preceding rainfall amounts. This SM-derived 
rainfall product shows good correlations with the GPCC dataset (used as main 
benchmark in the study), especially over areas where soil moisture retrievals are 
expected to be accurate (Figure 10). The developed algorithm is termed SM2RAIN, and 
has now successfully been applied to the ESA CCI SM data set, to produce the first soil 
moisture derived rainfall dataset spanning 37 years (Ciabatta et al., 2018). The SM2RAIN 
product has already been used to quantify the space-time variability of rainfall, 
evaporation, runoff and water storage for the Upper Blue Nile river basin in Africa (Abera 
et al., 2017). 

 

 

Figure 10 Global Pearson correlation (left) and Root Mean Square Difference (right) 
maps obtained between GPCC-FDD 524 and the SM2RAIN-CCI rainfall data set for 5-day 
accumulated rainfall during the periods 1998-2001 (upper panel), 2002-2006 (middle 
panel) and 2007-2013 (lower panel). From: (Ciabatta et al., 2018)  

“SM2RAIN: a bottom-up 
approach to creating a novel 

precipitation dataset” 
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Drought applications 

 
Historically, precipitation and temperature 
have been used to develop drought monitoring 
indices, e.g., the standardized precipitation 
index (SPI) and the Palmer drought severity 
index (PDSI). These indices, however, are more indicative of meteorological drought 
rather than agricultural drought. ESA CCI SM now allows to directly monitor agricultural 
drought, and to develop soil moisture-based drought indices. An example is the 
Empirical Standardized Soil Moisture Index (ESSMI) developed by Carrão et al. (2016). 
With this index, they were able to accurately describe the severe and extreme drought 
intensities in north-eastern Brazil in 1993, 2012, and 2013 (see Figure 11). In addition, 
they found high correlations between ESSMI and maize, soybean, and wheat crop yields 
in Latin America.  

 
  

Figure 11 Time-series of yearly Empirical Standardized Soil Moisture Index (ESSMI) values 
computed for a region located in Bahia (northeast Brazil). No data values are masked out 
in white. From: Carrão et al. (2016) 

“Soil moisture-based drought 
indices using ESA CCI SM” 
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(Hydro)meteorological applications.  

 
To date not many studies have directly assimilated remotely sensed soil 
moisture into numerical weather prediction (NWP) and climate models 
to update their soil moisture fields. One example though is a study by 
Zhan et al. (2016). Figure 12 shows the root-mean-square-errors 
(RMSEs) of temperature and humidity forecasts obtained after 
assimilation of ESA CCI SM into NASAs United Weather Research and Forecast (NUWRF) 
model coupled with NASA Land Information System. Data assimilation of soil moisture 
is shown to reduce the bias of longer-term precipitation and short-term temperature 
forecasts.  

 

 

 

Figure 12 Root-mean-square-errors (RMSEs) of the forecasts of 2-m temperature (T2m) 
(top) and humidity (q2m) (bottom) from NUWRF assimilating or without assimilating CCI 
SM data over CONUS domain from April 1 - October 31, 2012. From: Zhan et al. (2016) 

“ESA CCI SM data 
assimilation into NWP and 

climate models” 
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3 ESA CCI Soil Moisture for improved Earth system understanding: state-of-
the art and future directions  

Wouter Dorigo1, Wolfgang Wagner1, Clement Albergel2, Franziska Albrecht3, Gianpaolo 
Balsamo4, Luca Brocca5, Daniel Chung1, Martin Ertl6, Matthias Forkel1, Alexander Gruber1, Eva 
Haas3, Paul Hamer7, Martin Hirschi8, Jaakko Ikonen9, Richard de Jeu10, Richard Kidd11, William 
Lahoz7, Yi Y. Liu12, Diego Miralles13,14, Thomas Mistelbauer11, Nadine Nicolai-Shaw8, Robert 
Parinussa10, Chiara Pratola15,16, Christoph Reimer1,11, Robin van der Schalie10, Sonia I. 
Seneviratne8, Tuomo Smolander9, Pascal Lecomte17 

(Published in the CCI special issue in Remote Sensing of Environment: "Earth Observation of 
Essential Climate Variables", figure numbers have been adjusted to match those in this 
document.) 

We include here modified Sections 4 - 6 of Dorigo et al. (2017). Section 3.1 (i.e., Section 4 of 
Dorigo et al., 2017) gives an overview of a wide variety of studies using the ESA CCI SM dataset. 
The section is subdivided into the following application areas (corresponding to those used in  
Table 1 - Table 6 of the Appendix): assessing climate variability and change (Section 3.1.1), 
land-atmosphere interactions (Section 3.1.2), global biogeochemical cycles and ecosystems 
(Section 3.1.3), hydrological and land surface modelling (Section 3.1.4), drought applications 
(Section 3.1.5), and meteorological applications (Section 3.1.6).  

Section 3.2 (i.e., Section 5 of Dorigo et al., 2017) gives a thorough overview of the research 
priorities for improving the ESA CCI SM dataset (and soil moisture climate data requirement 
in general). The main points considered are, higher spatial resolutions, the filling of data gaps, 
improvement of temporal sampling, product accuracy, blending methods, and temporal 
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consistence, shorter latency between data acquisition and data availability, the independence 
of LSMs, and the creation of a root-zone soil moisture product.  

Section 3.3 (i.e., Section 6 of Dorigo et al., 2017) gives the conclusion and outlook. The review 
shows the uniqueness of the ESA CCI SM product, in particular the global coverage and long 
period of temporal coverage. There is at this time really no other product available with these 
characteristics. However, users should also be aware of the limitations of the dataset, e.g., the 
varying dataset quality through space and time, and the occurrence of data gaps, which can 
make it difficult for users to integrate the data in their applications. Though it might be 
possible to overcome many of these limitations through improved science and data availability 
(e.g., with new sensors like SMOS and SMAP), some limitations might prove to be insuperable. 
It is therefore essential to always communicate clearly the dataset characteristics to all users.  

3.1 ESA CCI SM in Earth system applications  

A wide variety of studies have explored the potential of ESA CCI SM product for improving our 
understanding of Earth system processes. Even though the application fields are seemingly 
different, in all of them ESA CCI SM plays a central role in benchmarking, calibrating, or 
providing an alternative to the land surface hydrology in dedicated models. The following 
sections will provide an extensive synthesis of how ESA CCI SM has been used in the different 
application areas, the motivation of each study for using this product in particular, and the 
main drawbacks encountered when using the ESA CCI SM data. A synthesis of the limitations 
and the unexploited potential of the dataset is given in Section 5. For the original assessment, 
we reviewed all scientific papers that correctly cite any of the early key publications on the 
dataset (Dorigo et al., 2012; Liu et al., 2011; Dorigo et al., 2015b; Wagner et al., 2012b; Liu et 
al., 2012) and were listed either in Scopus (http://scopus.com/) or Google Scholar 
(https://scholar.google.com) as of June 22, 2017. For the recent update of the scientific 
applications, papers citing Dorigo et al. (2017) and Gruber et al. (2019) are considered (defined 
as to be cited compulsorily when using the ESA CCI SM product). 

3.1.1 Assessing climate variability and change 

As soil moisture is an integrative component of the Earth system, any large-scale variability or 
change in our climate should manifest itself in globally observed soil moisture patterns. In this 
role, ESA CCI SM has made a significant contribution to the body of evidence of natural and 
human-induced climate variability and change. Indicative for this, is the contribution of ESA 
CCI SM to the State of the Climate Reports that are issued every year by National Oceanic and 
Atmospheric Administration (e.g., Arndt et al., 2016).  Several studies have shown a clear 
relationship between major oceanic-atmospheric modes of variability in the climate system, 
e.g., El Niño Southern Oscillation (ENSO), and variations in ESA CCI SM (Bauer-Marschallinger 
et al., 2013; Miralles et al., 2014b; Nicolai-Shaw et al., 2016; Dorigo et al., 2016).. By applying 
enhanced statistical methods to the multi-decadal ESA CCI SM v0.1 dataset over Australia, 
(Bauer-Marschallinger et al., 2013) were able to disentangle the portion of soil moisture 
variability that is driven by the major climate oscillations affecting this continent, i.e., ENSO, 
the Indian Ocean Dipole and the Antarctic Oscillation, from other modes of short-term and 
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long-term variability. Miralles et al. (2014b) showed that inter-annual soil moisture variability 
as observed by ESA CCI SM COMBINED v02.2 largely drives the observed large-scale variability 
in continental evaporation. 

ESA CCI SM has been widely used to assess global trends in soil moisture, mostly in 
combination with LSMs. Based on ESA CCI SM v0.1, Dorigo et al. (2012) revealed that for the 
period 1988–2010 27% of the area covered by the dataset showed significant trends, of which 
almost three quarters were drying trends. A similar conclusion was drawn by Feng and Zhang 
(2015) based on ESA CCI SM COMBINED v02.1. The strong tendency towards drying was 
largely confirmed by trends computed for the same period from ERA-Interim and GLDAS-Noah 
(Dorigo et al., 2012), and ERA-Interim/Land and MERRA-Land (Albergel et al., 2013b), although 
the spatial trend patterns were not everywhere congruent between datasets. The agreement 
in trends between a newer version of ESA CCI SM (v02.2) and MERRA-Land were confirmed 
by Su et al. (2016). Note however that results from the PVIR (Hirschi et al., 2023b, 2024) show 
that global 1988–2010 trend patterns based on different versions of ESA CCI SM have 
undergone significant changes in magnitude and sign from these earlier to later product 
versions of the COMBINED product. Particularly, a large-scale tendency for more widespread 
positive trends in the northern mid-latitudes is visible with later product versions (most 
pronounced from v04.7 to v06.1). Also, the partly negative trends in Siberia (most pronounced 
in v04.7 and v05.2) partly turn into positive trends in the latest product versions (i.e., v07.1 to 
v09.1). Also, the original significant wetting trend in southern Africa disappears with the latest 
product releases, while Patagonia starts to experience wetting trends. Over Australia, the 
widespread drying trend present in v0.1 also mostly disappears and partly turns into a wetting 
trend in the later versions (v07.1 to v09.1). In addition to these changes of the soil moisture 
trends with product versions, trend patterns also diverge between the COMBINED (larger 
fractions of drying trends) and the underlying PASSIVE (mix of wetting and drying trends) and 
ACTIVE (large fraction of stronger wetting trends) products (Hirschi et al., 2023a). 

Trend analyses performed on a more regional scale, but for different time periods 
(e.g.,Rahmani et al., 2016; e.g., Wang et al., 2016; Li et al., 2015; Zheng et al., 2016; An et al., 
2016a) generally confirmed the results obtained at the global scale, while providing a more 
detailed view on the impact of local land management practices, e.g., irrigation, on observed 
trends (Qiu et al., 2016), and the impact of soil moisture trends on regional climate 
(Klingmüller et al., 2016). Feng (2016) assessed the drivers of trends in ESA CCI SM COMBINED 
v02.2 and concluded that at the global scale climate change is by far the most important driver 
of long-term changes in soil moisture, although at the regional level land cover and land use 
change may play a significant role. Similar conclusions were drawn by regional studies over 
China (Chen et al., 2017; Liu et al., 2015; Meng et al., 2018). Other studies analysed the 
variability and trends in ESA CCI SM in relation to other atmospheric variables and circulation 
patterns over Asia (Zhan et al., 2017; Shrivastava et al., 2016; Shrivastava et al., 2017). 
Nevertheless, given the limited data record length, the impact of low-frequency climate 
oscillations on trends should first be carefully addressed before any robust conclusion about 
the sign and magnitude of perpetual changes can be drawn (Miralles et al., 2014b). Likewise, 
the potential impact of dataset artefacts should be carefully quantified and corrected for (Su 
et al., 2016). 
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ESA CCI SM has been widely used as a reference for evaluating model states and trends in 
global and regional climate simulations. Different versions of ESA CCI SM COMBINED were 
used to systematically evaluate soil moisture states, trends, and dynamics of models 
participating in the latest Coupled Model Intercomparison Project (CMIP5(Du et al., 2016; 
Lauer et al., 2017; Yuan and Quiring, 2017; Huang et al., 2016). At the regional scale, various 
studies used ESA CCI SM COMBINED to assess the sensitivity to soil moisture of various 
processes in global and regional climate models (Pieczka et al., 2016; Unnikrishnan et al., 2017; 
Agrawal and Chakraborty, 2016)or to improve climate simulations by assimilating ESA CCI SM 
directly (Paxian et al., 2016). Even though most studies report positive experiences, the use of 
ESA CCI SM for climate model evaluations is primarily limited by discrepancies in surface layer 
thickness between models and satellite observations, the existence of spatial data gaps, and 
the fact that it does not provide an independent reference for evaluating absolute values. 
Despite these limitations, ESA CCI SM has been proposed (together with other land-based 
products) as an official reference for validating the land surface components of the CMIP6 
models (van den Hurk et al., 2016). 

3.1.2 Land-atmosphere interactions 

As soil moisture is essential in partitioning the fluxes of water and energy at the land surface, 
it can affect the dynamics of humidity and temperature in the planetary boundary layer. This 
control of soil moisture on evapotranspiration is important for the intensity and persistence 
of heatwaves, as the depletion of soil moisture and the resulting reduction in evaporative 
cooling may trigger an amplified increase in air temperature (Seneviratne et al., 2006a; Hirschi 
et al., 2011; Fischer et al., 2007; Miralles et al., 2014a).While many studies on soil moisture–
evapotranspiration and soil moisture–temperature coupling are based on modelling results or 
use precipitation-based drought indices as a proxy for soil moisture, ESA CCI SM enables 
analyses based on long-term observed soil moisture estimates (Miralles et al., 2014a; Hirschi 
et al., 2014; Casagrande et al., 2015). Therefore, ESA CCI SM in combination with other large-
scale observations has been widely used to evaluate the coupling diagnostics found in models 
(Zhou et al., 2016; Knist et al., 2017; Li et al., 2016; Catalano et al., 2016; Li et al., 2017). 

Limitations with respect to the depth of the soil moisture retrievals (i.e., reporting the content 
of moisture in the first few centimetres as opposed to the entire root depth affecting 
transpiration) have triggered some debate about the appropriateness of ESA CCI SM to 
investigate evapotranspiration dynamics and atmospheric feedbacks (Hirschi et al., 2014). 
Hirschi et al. (2014) showed that the strength of the relationship between soil moisture and 
temperature extremes appears underestimated with ESA CCI SM compared to estimates 
based on the Standardized Precipitation Index (SPI; McKee et al., 1993; Stagge et al., 2015), 
which seems to be related to an underestimation of the temporal dynamics and of large 
dry/wet anomalies within ESA CCI SM. This effect is enhanced under extreme dry conditions 
and may lead to a decoupling of the surface layer from deeper layers and from atmospheric 
fluxes (and resulting temperatures). Thus, the added value of root-zone soil moisture is likely 
more important for applications dealing with extreme conditions, while for mean 
climatological applications the information content in the surface layer appears adequate. The 
assimilation of remote sensing surface soil moisture into a land surface model (e.g., De Lannoy 
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and Reichle, 2016; Albergel et al., 2017) provides a possible alternative here. In fact, root zone 
soil moisture estimates by the satellite-based Global Land Evaporation Amsterdam Model 
(GLEAM; Miralles et al., 2011) have been improved by the assimilation of ESA CCI SM, while 
the overall quality of evaporation estimates remains similar after assimilation (Martens et al., 
2017). Also, the assimilation of ESA CCI SM COMBINED v02.1 helped interpreting global land 
evaporation patterns and multi-annual variability in response to the El Niño Southern 
Oscillation (Miralles et al., 2014b).The obvious link between soil moisture and evaporation has 
motivated several studies to use ESA CCI SM COMBINED (v0.1 and v02.1) to attribute trends 
observed for evaporation (Rigden and Salvucci, 2017; Zeng et al., 2014). 

Soil moisture also affects precipitation through evapotranspiration. Yet, the effect of soil 
moisture on precipitation is much more debated than for air temperature. Studies report both 
positive or negative feedbacks, and even no feedback. Using a precursor of ESA CCI SM, Taylor 
et al. (2012) identified a spatially negative feedback of soil moisture on convective 
precipitation regarding the location, i.e., that afternoon rain is more likely over relatively dry 
soils due to mesoscale circulation effects. Guillod et al. (2015) revisited the soil moisture effect 
on precipitation using GLEAM root-zone soil moisture with ESA CCI SM COMBINED v02.1 
assimilated, and showed that spatial and temporal correlations with opposite signs may 
coexist within the same region: precipitation events take place preferentially during wet 
periods (moisture recycling), but within the area have a preference to fall over comparatively 
drier patches (local, spatially negative feedbacks). 

A more indirect but potentially strong soil moisture – atmosphere feedback was found 
by Klingmüller et al. (2016), who were able to link an observed positive trend in Aerosol 
Optical Depth (AOD) in the Middle East to a negative trend in ESA CCI SM COMBINED v02.1. 
As lower soil moisture translates into enhanced dust emissions, their results suggested that 
increasing temperature and decreasing relative humidity in the last decade have promoted 
soil drying, leading to increased dust emissions and AOD. Also Xi and Sokolik (2015) found 
significant correlations between the variability in AOD and soil moisture. These changes in 
atmospheric composition again may have considerable impact on radiative forcing and 
precipitation initiation (Ramanathan et al., 2001) and as such impact the energy and water 
cycles in the area. 

3.1.3 Global biogeochemical cycles and ecosystems 

Soil moisture is a regulator for various processes in terrestrial ecosystems such as plant 
phenology, photosynthesis, biomass allocation, turnover, and mortality, and the accumulation 
and decomposition of carbon in soils (Carvalhais et al., 2014; Reichstein et al., 2013; 
Richardson et al., 2013; Nemani et al., 2003). Low soil moisture during drought reduces 
photosynthesis, enhances ecosystem disturbances such as insect infestations or fires, and thus 
causes plant mortality and accumulation of dead biomass in litter and soils (Allen et al., 2010; 
McDowell et al., 2011; Thurner et al., 2016). The release of carbon from soils to the 
atmosphere through respiration is also controlled by soil moisture (Reichstein and Beer, 
2008). Consequently, soil moisture is a strong control on variations in the global carbon cycle 
(van der Molen et al., 2011; Ahlström et al., 2013; Poulter et al., 2014).  
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Despite the importance of soil moisture for the global carbon cycle, satellite-derived soil 
moisture data are currently under-explored in carbon cycle and ecosystem research. Because 
long-term soil moisture observations were lacking until recently, most studies on the effects 
of soil moisture on vegetation relied on precipitation estimates (Poulter et al., 2013; Du et al., 
2013), indirect drought indices (Ji and Peters, 2003; Hogg et al., 2013), or soil moisture 
estimates from land surface models (Forkel et al., 2015; Rahmani et al., 2016). More recently, 
studies used ESA CCI SM to assess impacts of water availability and droughts on plant 
phenology and productivity based on satellite-derived vegetation indices and variables such 
as the NDVI or the Leaf Area Index (LAI), or directly of vegetation productivity (Murray-
Tortarolo et al., 2016). For example, Szczypta et al. (2014) used ESA CCI SM v0.1, modelled soil 
moisture, and LAI over the Euro-Mediterranean zone to evaluate two land surface models and 
to predict LAI anomalies over cropland. LAI was predictable from ESA CCI SM in large 
homogeneous cropland regions, e.g., in Southern Russia (Szczypta et al., 2014). Strong positive 
relationships between ESA CCI SM COMBINED and NDVI and/or LAI were also found for 
Australia (Chen et al., 2014; v0.1; Liu et al., 2017c; v02.1) for croplands in North China (Wang 
et al., 2016; v0.1; Wang et al., 2017; v02.1) and the Ukraine (Ghazaryan et al., 2016; v02.1), 
for East Africa (McNally et al., 2016; Wu et al., 2016; v02.0), and Senegal (Cissé et al., 2016; 
v0.1). Generally, many regions with positive (greening) or negative (browning) trends in NDVI 
show also positive and negative trends in ESA CCI SM v0.1, respectively (Dorigo et al., 2012). 
This co-occurrence of soil moisture and NDVI trends reflects the strong water control on 
vegetation phenology and productivity. Interestingly, soil moisture from ESA CCI SM v0.1 was 
also correlated with NDVI in some boreal forests, which are primarily temperature-controlled 
(Barichivich et al., 2014). In these regions, soil moisture and vegetation productivity were 
controlled by variations in the accumulation and thawing of winter snow packs (Barichivich et 
al., 2014). However, some water-limited regions showed negative ESA CCI SM v0.1 soil 
moisture trends with no corresponding trend in NDVI (Dorigo et al., 2012). In these cases, the 
positive relation between surface soil moisture and vegetation is likely modified by vegetation 
type and vegetation density (Feng, 2016; McNally et al., 2016). For example, densely 
vegetated areas in East Africa show stronger correlations between ESA CCI SM COMBINED 
v02.1 soil moisture and NDVI than sparsely vegetated areas (McNally et al., 2016). Regional 
differences in the response of ecosystems to soil moisture variability have also been attributed 
to differences in water use efficiency (Li et al., 2017). Novel data-driven approaches enable 
quantification of the share of ESA CCI SM in controlling NDVI variability as opposed to other 
water and climate drivers (Papagiannopoulou et al., 2017a; Papagiannopoulou et al., 2017b). 
Figure 13 shows the correlation between the latest ESA CCI SM COMBINED (v03.2) product 
and NDVI GIMMS 3G (Tucker et al., 2005) with a lag time of soil moisture preceding NDVI of 
16 days. In most regions and especially in water-limited areas such as the Sahel, there is a 
strong and direct response of NDVI to soil moisture. On the other hand, correlations are 
negative in many temperate regions. This is likely because NDVI is highest in summer months 
when soil moisture decreases. This demonstrates that vegetation productivity in temperate 
regions is primarily temperature-controlled and strongly affected by human activities through 
agriculture or forest management (Papagiannopoulou et al., 2017a; Forkel et al., 2015).  

Apart from the analysis of relations with vegetation indices, the ESA CCI SM datasets have 
been used in other ecosystem studies. For example, Muñoz et al. (2014) investigated tree ring 
chronologies of conifers in the Andeans in conjunction with soil moisture variability from ESA 



 
Climate Assessment Report (CAR) 

Version 2 

Date 19-09-2024 

 

25 

CCI SM v0.1. The study revealed a previously unobserved relation between tree growth and 
summer soil moisture Muñoz et al. (2014). While most studies have looked at the impact of 
soil moisture on vegetation, only very few studies have assessed the opposite, i.e., the impact 
of vegetation on soil moisture. One such example is the study of Jiao et al. (2016) who looked 
at the impact of large-scale reforestation on soil moisture in China. Indirect links between soil 
moisture and ecosystem dynamics have been the studies of Madani et al. (2016), who used 
ESA CCI SM COMBINED v0.1 as one of the predictors of Emu migrations in Australia and 
of Tang et al. (2017) who assessed the impact of wind farms on ESA CCI SM COMBINED v02.2 
and vegetation productivity. 

Furthermore, ESA CCI SM v0.1 and vegetation data were used to evaluate ecosystem models 
(Szczypta et al., 2014; Traore et al., 2014; Willeit and Ganopolski, 2016; Sato et al., 2016). 
Thereby, the results of Traore et al. (2014) demonstrate that a model that best performs for 
soil moisture does not necessarily best perform for plant productivity. This demonstrates the 
need to jointly use soil moisture and vegetation or carbon cycle observations to improve 
global ecosystem/carbon cycle models (Kaminski et al., 2013; Scholze et al., 2016). The use of 
the ESA CCI SM in such an analysis could potentially constrain model uncertainties regarding 
the long-term hydrological control on vegetation productivity and ecosystem respiration 
(Detmers et al., 2015; Scholze et al., 2017). However, a major source of uncertainty about the 
future terrestrial carbon cycle is related to how global ecosystem models represent carbon 
turnover, vegetation dynamics, and disturbances such as fires (Friend et al., 2014). It was 
previously shown that variations in satellite-derived soil moisture are related to extreme fire 
events in boreal forests (Bartsch et al., 2009; Forkel et al., 2012). Consequently, the ESA CCI 
SM COMBINED dataset has been used together with climate, vegetation, and socio-economic 
data to assess controls on fire activity globally and to identify appropriate model physics 
structures for global fire models (Ichoku et al., 2016; Forkel et al., 2017). Because of the role 
of soil moisture on microbial activity, ESA CCI SM v0.1 has been used as one of the forcings to 
simulate global atmospheric methane uptake by soils (Murguia-Flores et al., 2018). 

Figure 13 Mean Pearson correlation coefficient R between ESA CCI soil moisture v03.2 and GIMMS 
NDVI3g for the period 1991 to 2013 for a lag time of soil moisture preceding NDVI by 16 days. 
White areas indicate pixels for which correlations are not significant (p>0.05). 
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3.1.4 Hydrological and land surface modelling 

As soil moisture drives processes like runoff, flooding, evaporation, infiltration, and ground 
water recharge, it is important that hydrological models accurately map soil moisture states. 
The potential of using ESA CCI SM to validate surface soil moisture fields in state-of-the-art 
LSMs, reanalysis products, and large-scale hydrological models has been largely recognized 
(Szczypta et al., 2014; Loew et al., 2013; Fang et al., 2016; Spennemann et al., 2015; Mao et 
al., 2017; Lai et al., 2016; Okada et al., 2015; Ghosh et al., 2016; Rakovec et al., 2016; Parr et 
al., 2015; Mueller and Zhang, 2016; Mishra et al., 2014). Schellekens et al. (2016) exploited 
the long-term availability of ESA CCI SM COMBINED v02.2 to validate according to the 
standardised International Land Model Benchmarking (ILAMB) protocol the soil moisture 
fields of ten global hydrological and land surface models, all forced with the same 
meteorological forcing dataset for the period 1979–2012. New insights in the model 
representation of hydrological processes like infiltration have been offered by comparing the 
memory length (Chen et al., 2016; Lauer et al., 2017) and the frequency domains (Polcher et 
al., 2016) between LSMs and remote sensing products, including ESA CCI SM COMBINED 
v02.3. Crow et al. (2015)utilized ESA CCI SM v0.1 to estimate the error covariance matrix for 
an ensemble of LSM simulations of surface soil moisture in order to optimally merge them. 
The authors claim that the long period covered by the ESA CCI SM product is essential for 
removing sampling error in these estimates. Similarly, as for climate model evaluations, the 
use of ESA CCI SM for hydrological model evaluations is hampered by discrepancies in surface 
layer thickness between models and satellite observations, the existence of spatial data gaps, 
heterogeneity of data properties over time, and the dependency of the absolute values in an 
LSM (Table 4). 

Satellite soil moisture data can bring important benefits in runoff modelling and forecasting 
both through an improved initialization of rainfall-runoff models and through data 
assimilation techniques that allow for updating the soil moisture states. Several studies have 
shown the positive impact on flood and runoff prediction through assimilation of single sensor 
Level 2 products used in ESA CCI SM, e.g., obtained from ASCAT (Brocca et al., 2010), AMSR-E 
(Sahoo et al., 2013), and SMOS (Lievens et al., 2015). Wanders et al. (2014) and Alvarez-
Garreton et al. (2015) showed the improved skill of runoff predictions when jointly 
assimilating multiple soil moisture products (SMOS, ASCAT and AMSR-E), resulting mainly 
from improved temporal sampling. Long-term homogeneous soil moisture products like ESA 
CCI SM become important in flood modelling studies that require a multi-year period for the 
calibration and validation of model parameters. Assimilating the ESA CCI SM COMBINED v02.2 
product over the Upper Niger River basin improved runoff predictions even though the 
simulation of the rainfall-runoff model was already good (Massari et al., 2015). Tramblay et 
al. (2014) used ESA CCI SM v0.1 to better constrain model parameters, and hence reduce 
uncertainties, of a parsimonious hydrological model in the Mono River basin (Africa), with the 
goal to evaluate the impact of climate change on extreme events. Further studies are clearly 
needed to assess the full potential of ESA CCI SM product for runoff modelling and forecasting. 
For example, even a simple model based only on persistence allows for the prediction of soil 
moisture (Nicolai-Shaw et al., 2016), and exploiting this characteristic could contribute to 
improved early warning systems. At the local scale, Dahigamuwa et al. (2016) used ESA CCI 
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SM v0.1 in combination with vegetation cover to improve the prediction of landslide 
occurrence. 

ESA CCI SM products have been used for improving the quantification of the different 
components of the hydrological cycle, i.e., evaporation (Allam et al., 2016; Martens et al., 
2017; Miralles et al., 2014b), groundwater storage (Asoka et al., 2017), and rainfall (Ciabatta 
et al., 2016; Bhuiyan et al., 2017a; Bhuiyan et al., 2017b). Soil moisture contains information 
on antecedent precipitation. This principle is being exploited by the SM2RAIN method (Brocca 
et al., 2014; Brocca et al., 2013), which uses an inversion of the soil-water balance equation 
to obtain a simple analytical relationship for estimating precipitation accumulations from the 
knowledge of a soil moisture time-series. The method has been tested on a wide range of 
Level 2 satellite soil moisture products and ESA CCI SM COMBINED v02.2 (Brocca et al., 2014; 
Ciabatta et al., 2016). SM2RAIN realistically reproduces daily precipitation amounts when 
compared to gauge observations and in certain regions may even outperform direct satellite-
based estimates of precipitation, even though its performance hinges on the quality of the soil 
moisture product used as input (Brocca et al., 2014; Ciabatta et al., 2016). Its application to 
ESA CCI SM COMBINED provides an independent global climatology of precipitation from 1979 
onwards. Abera et al. (2017) used the SM2RAIN precipitation product from ESA CCI SM 
(Ciabatta et al., 2016; Ciabatta et al., 2018) to quantify the space-time variability of rainfall, 
evaporation, runoff and water storage for the Upper Blue Nile river basin in Africa. 

Heimhuber et al. (2017) used ESA CCI SM (version unknown) in a statistical framework to 
predict the dynamics in surface water in south-eastern Australia. ESA CCI SM has also been 
used to map large-scale irrigation, which is largely unquantified on a global scale and, 
consequently, not included in most large scale hydrological and/or land surface models (Qiu 
et al., 2016). By comparing modelled and satellite soil moisture data, irrigated areas can be 
detected when satellite data and modelled data (the latter do not include irrigation) show 
different temporal dynamics. Kumar et al. (2015) used satellite soil moisture observations 
from ESA CCI SM COMBINED v02.1, ASCAT, AMSR-E, SMOS, and WindSat for detecting 
irrigation over the United States. Similarly, Qiu et al. (2016) detected irrigated areas in China 
by evaluating the differences in trends between ESA CCI SM COMBINED v02.1 and 
precipitation. Liu et al. (2015) used ESA CCI SM v0.1 to support the attribution of negative 
trends in soil moisture in Northern China to agricultural intensification. 

3.1.5 Drought applications 

Soil moisture droughts, also referred to as agricultural droughts, may be driven by a lack of 
precipitation and/or increased evapotranspiration (Seneviratne et al., 2012). In addition to 
natural variability, human land modification and water management can contribute to 
agricultural drought (Liu et al., 2015; Van Loon et al., 2016). Prior to the availability of global 
satellite-based soil moisture datasets, precipitation and temperature gridded datasets were 
favoured for developing drought monitoring indices. Well-known examples, although 
primarily indicative of meteorological drought rather than agricultural drought, are the SPI 
and the Palmer Drought Severity Index (PDSI; Palmer, 1965). ESA CCI SM has been repeatedly 
used to evaluate the performance of such indices (van der Schrier et al., 2013; Liu et al., 
2017b). 
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ESA CCI SM can be used to directly monitor agricultural drought, or help to set up alternative 
drought indicators. For example, Carrão et al. (2016) and (Rahmani et al., 2016) used ESA CCI 
SM COMBINED (v02.0 and v02.1, respectively) to develop a drought index comparable to SPI 
but based on actual soil moisture observations instead of precipitation, naming them the 
Empirical Standardized Soil Moisture Index (ESSMI) and Standardized Soil Moisture Index (SSI), 
respectively. Carrão et al. (2016) found high correlations between ESSMI and maize, soybean, 
and wheat crop yields in Latin America and with this index could accurately describe the 
severe and extreme drought intensities in north-eastern Brazil in 1993, 2012, and 2013. Based 
on SSI, (Rahmani et al., 2016) were able to identify a severe drought event that started in 
December 2012 in the northern part of Iran. The Enhanced Combined Drought Index (ECDI) 
proposed by Enenkel et al. (2016b) combines ESA CCI SM COMBINED v02.2 with satellite-
derived observations of rainfall, land surface temperature and NDVI for the detection of 
drought events, and has been successfully used to detect large-scale drought events in 
Ethiopia between the years 1992–2014. 

McNally et al. (2016) specifically evaluated the use of ESA CCI SM COMBINED v02.2 for 
agricultural drought and food security monitoring in East Africa, and found that ESA CCI SM is 
a valuable addition to a ‘convergence of evidence’ framework for drought monitoring. Like 
Dorigo et al. (2015b) they emphasize that users should be aware of the spatial and temporal 
differences in data quality caused for example by significant data gaps prior to 1992, the lack 
of overlap between sensors, or difficulties with soil moisture retrievals over certain terrains 
such as heavily vegetated areas. Post 1992, McNally et al. (2016) generally found good 
agreement between ESA CCI SM and other soil moisture products as well as with NDVI in East 
Africa. Yuan et al. (2015a) assessed the skill of ESA CCI SM v02.1 in capturing short-term soil 
moisture droughts over China. They found that the PASSIVE and COMBINED products have 
better drought detection skills over the sparsely vegetated regions in north-western China 
while ACTIVE worked best in the more densely vegetated areas of eastern China. 

At the global scale, (Miralles et al., 2014b) identified the effect of El Niño-driven droughts in 
soil moisture, NDVI and evaporation, using GLEAM and ESA CCI SM COMBINED v02.1. This in 
combination with the high persistence of soil moisture (Seneviratne et al., 2006b; Nicolai-
Shaw et al., 2016) makes the ESA CCI SM dataset valuable for the monitoring and prediction 
of drought events. Hence, various versions of ESA CCI SM COMBINED have been used as a 
piece of evidence for probabilistic drought monitoring and forecasting in India (Padhee et al., 
2017; Asoka and Mishra, 2015), Spain (Linés et al., 2017), and the United States (Yan et al., 
2017). Recently, ESA CCI SM COMBINED v02.2 was used to validate the predictions of process-
based drought forecasting models applied in Sub-Saharan Africa (McNally et al., 2017) and 
India (Shah and Mishra, 2016). 

3.1.6 (Hydro)meteorological applications 

Numerical Weather Prediction (NWP) involves the use of computer models of the Earth 
system to simulate how the state of the Earth system is likely to evolve over a period of a few 
hours up to 1–2 weeks ahead. It also considers longer timescales (seasonal and climate) 
through the notion of seamless prediction (Palmer et al., 2008). A number of studies provide 
strong support for the notion that high skill in short- and medium-range forecasts of air 
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temperature and humidity over land requires proper initialization of soil moisture (Beljaars et 
al., 1996; Drusch and Viterbo, 2007; van den Hurk et al., 2010; Douville et al., 2000). There is 
evidence also of a similar impact from soil moisture on seasonal forecasts (Koster et al., 2004; 
Koster et al., 2011; Weisheimer et al., 2011; Dirmeyer and Halder, 2017). 

Remotely sensed soil moisture datasets like ESA CCI SM can serve NWP by offering a long-
term, consistent, and independent reference against which NWP output fields can be 
evaluated. This may eventually improve meteorological forecasts through a better 
representation of the land surface and of the fluxes between the land surface and the 
atmosphere in the NWP (see Section 3.1.2). For example, Arnault et al. (2016) used ESA CCI 
SM (version unknown) to evaluate soil moisture predicted with a Weather Research and 
Forecast (WRF)-Hydro Coupled Modeling System for West Africa. Recently, ECMWF made an 
offline development in its Land Surface Model HTESSEL (Balsamo et al., 2009; Balsamo et al., 
2015), making it possible to add extra layers of soil as well as changing their thickness (Mueller 
et al., 2016). An experiment was run which increases the number of soil layers from four to 
nine and reduces the thickness of the upper soil layer from seven (0–7 cm) to one (0–1) 
centimetre. One of the rationales for having this thin topsoil layer is having a surface layer that 
is closer to the depth sampled by existing satellite observations and thus allowing for a better 
assimilation of these observations. Soil moisture from the first layer of two offline 
experiments, forced by ERA-Interim reanalysis, and considering either a 1 cm depth (GE8F) or 
a 7 cm depth (GA89) layer was compared to the ESA CCI SM COMBINED v02.2 over the period 
1979–2014. Correlations were computed for absolute soil moisture and anomaly time series 
from a 35-day moving average (Dorigo et al., 2015b). We illustrate differences in correlation 
between the two experiments in Figure 14. The red colours illustrate that in most areas using 
a 1 cm instead of a 7 cm surface layer depth leads to a better match with the ESA CCI SM 
COMBINED dataset. Positive differences frequently reach values higher than 0.2, particularly 
for correlations on anomaly time series, which shows that a thinner model layer better mimics 
satellite-observed surface soil moisture variations, as was expected. 

Figure 14 Differences in correlations of absolute soil moisture values (left) and anomalies (right) 
differences between ESA CCI SM COMBINED v02.2 and soil moisture from the first layer of soil of 
two offline experiments over 1979-2014. Experiment GE8F has a first layer of soil of 1 cm depth (0-
1cm), GA89 of 7 cm depth (0-7cm). Differences are only shown for pixels that provide significant 
correlations (p<0.05) for both experiments. Pixels where these conditions are not met have been 
left blank. 
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Few studies have assimilated remotely sensed soil moisture directly into NWPs and climate 
models to update their soil moisture fields. Even though this mostly leads to a significant 
improvement of the model's soil moisture fields, its impact on the meteorological forecast 
itself, e.g., on 2 m air (T2 m) temperature (Bisselink et al., 2011), screen temperature or 
relative humidity predictions (Dharssi et al., 2011; Scipal et al., 2008; de Rosnay et al., 2013), 
is typically limited in areas with dense coverage of the ground-based meteorological observing 
network and difficult to evaluate in poorly observed areas. We are only aware of one study 
that assimilated ESA CCI SM (version unknown) directly into an NWP to update its soil moisture 
field (Zhan et al., 2016). This study showed that assimilating ESA CCI SM into the NASA Unified 
WRF model coupled with NASA Land Information System could decrease the RMSEs of near-
surface air temperature and humidity for certain forecasts and decrease the biases of NUWRF 
model longer term rainfall forecasts more significantly than those of the shorter-term 
forecasts. 

3.2 Closing the gap between Earth system research requirements and 
observations 

Our overview of product characteristics in Section 3  (of Dorigo et al., 2017) shows that the 
ESA CCI SM products are able to overcome several of the drawbacks that single-sensor 
products have with respect to their applicability in a climate context, particularly concerning 
the dataset length and revisit times. Even though ESA CCI SM is approaching the requirements 
outlined in the 2015 GCOS Status Report our analysis also shows that these characteristics 
vary significantly through space and time. Thus, it is often not meaningful to capture certain 
dataset characteristics in a single statistical number. Besides, the GCOS requirements present 
only a high-level consensus view on what is required to meet the increasing and more varied 
needs for climate data and information (GCOS-200, 2016). Therefore, our review of validation 
and application studies is crucial for identifying more specific requirements and the degree to 
which these are currently met by ESA CCI SM. It reveals that not all applications have the same 
requirements: for example, while for flood forecasting a high observation density appears to 
be of ultimate importance, this may be less crucial when studying long-term global trends in 
mean soil moisture. Based on our review we see the following research priorities for improving 
ESA CCI SM and soil moisture CDRs in general. 

3.2.1 Higher spatial resolutions 

Higher spatial resolutions are required to serve more regional applications, e.g., to map the 
impact of irrigation on local water budgets or to assess the impacts of local soil moisture 
variability on atmospheric instability (Taylor et al., 2013).Higher spatial resolutions of ESA CCI 
SM can be either achieved by including observations with higher native resolution (e.g., SAR, 
thermal infrared) or by applying appropriate downscaling techniques to the coarse scale 
observations (Peng et al., 2016; An et al., 2016b). As part of ESA CCI+ soil moisture, CCN4 
currently addresses the creation of an interpolated medium resolution (0.1°) soil moisture 
product, as well as a regional high-resolution (1 km scale) product from Sentinel data to serve 
these needs for higher spatial resolutions. 
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3.2.2 Filling data gaps and improved temporal sampling  

Many users and applications have difficulties in dealing with intermittent data. A way to 
address this would be the creation of gap-filled time series, which would improve the nominal 
observation density. At the same time, increasing the actual (real) observation density prior 
to 2002 to a daily resolution would be required to have a significant impact on data 
assimilation, e.g., in hydrological models or land surface reanalyses (Alvarez-Garreton et al., 
2015). This may be partly overcome by improved blending approaches, although data density 
will remain insufficient in the earliest periods due to a lack of appropriate satellites. Sub-daily 
resolutions would be necessary to capture the high-frequency components of the soil 
moisture signal which in the temporal domain are driven mainly by precipitation and the 
diurnal cycle of solar radiation (Dorigo et al., 2013). A denser temporal sampling is also crucial 
to better quantify land-atmosphere interactions, e.g., soil moisture controls on convective 
precipitation (Taylor et al., 2012; Guillod et al., 2014). Fortunately, the current constellation 
of coarse-scale microwave satellites is capable of providing measurements several times per 
day (SMOS and SMAP at around 6:00 am and pm, ASCAT at 9:30 am and pm, and AMSR2 at 
1:30 am and pm), which are however currently merged at daily resolution to make up for the 
varying accuracy of the different retrieval times. At the same time, due to physical limitations 
of microwave remote sensing in providing useful information below snow/ice cover, under 
frozen conditions, or underneath dense vegetation, spatial data gaps will remain an issue also 
in the future. As an alternative, gap-filling can be achieved by statistical methods for data 
imputation (e.g., Bessenbacher et al., 2022; Bessenbacher et al., 2023). An additional gap-
filled version of the COMBINED product is being produced as of v08.1 as a research product 
of ESA CCI SM (Preimesberger et al., 2024). Such product covers the period 1991-2022, which 
is considered a good trade-off between a sufficient input data density to obtain a robust filling, 
and a fitting temporal coverage to support climate applications. The algorithm used is an 
adaptation of the framework given in Garcia (2010), which does not rely on any ancillary 
information and as such allows to maintain the properties of the observational data set. The 
filling interpolates information in the time and space domains, to generate a product with the 
same spatial and temporal resolution of the original COMBINED, and where original 
observations are preserved. 

3.2.3 Improved product accuracy  

Section 3 (of Dorigo et al., 2017) showed that there is still considerable room for reducing 
errors. Especially for Level 2 products from scatterometers a lot could still be gained by an 
improved modelling of vegetation effects and sub-surface scattering effects in dry soils 
(Morrison, 2013; Liu et al., 2016; Wagner et al., 2013). Passive microwave Level 2 products 
would benefit from an improved modelling of the effect of diurnal temperature variations on 
soil moisture retrievals (Parinussa et al., 2016) and a better quantification of the actual soil 
depths sampled by the different microwave frequencies (Wilheit, 1978). Both the active and 
passive Level 2 products would profit from an improved characterisation of the sub-daily 
behaviour of soil and canopy moisture and the application of de-noising methods (Su et al., 
2015). These improved Level 2 products would in turn contribute to reduced errors in the ESA 
CCI SM products. Not only product errors themselves need to be improved, but also their 
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characterisation in space and time and their communication to the users. As suggested earlier, 
providing a single error estimate for the entire dataset is impractical and insufficient. 
Applications based on data assimilation only profit maximally if the product errors are 
accurately and dynamically characterised at the level of individual observations (Lahoz and 
Schneider, 2014). 

3.2.4 Improved blending methods 

Some studies observed a reduced skill of COMBINED with respect to the ACTIVE or PASSIVE 
products (Yuan et al., 2015a; Szczypta et al., 2014; Chakravorty et al., 2016). Even though this 
issue has been largely resolved for the reported study areas in the later versions (Figure 15), 
there remain some areas where ACTIVE and PASSIVE outperform COMBINED. This is especially 
evident in the region north of the Black Sea and in some scattered areas in central and south-
east Asia (dark red areas in Figure 15). In some cases, the scaling of the remote sensing 
products against a LSM-based climatology could remove some of the observed signal, for 
instance in the presence of irrigation, which is not accurately (or even explicitly) accounted 
for in LSMs. More in general, active and passive sensors might retain complementary 
information which could be devaluated by their merging. However, the merging scheme 
applied as of ESA CCI SM v08.1 is geared towards maximizing the signal-to-noise ratio in the 
final product by making use of an error characterization of the input products, leading to 
statistical merging optimality (Gruber et al., 2019). By property of the method, the merged 
time series will retain a better performance regardless of the quality of the inputs (Gruber et 
al., 2017), provided that their uncertainty is sufficiently well characterized. At ESA CCI SM 
v08.1, the uncertainty characterization scheme was reviewed to account for time-variant 
sources of errors, which leads to an improved uncertainty representation in the merged 
products and to an overall improved merging (Stradiotti et al., 2023a).  

 
Figure 15 Differences in correlation between ERA5 and ESA CCI SM v08.1 COMBINED on the 
one hand, and ERA5 and the best performing ESA CCI SM v08.1 product (either COMBINED, 
ACTIVE, or PASSIVE) on the other. Differences close or equal to zero indicate that COMBINED 
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merges the input products without a substantial loss in skill, while negative values indicate 
that either ACTIVE or PASSIVE outperforms COMBINED. 

3.2.5 Improved temporal consistency 

For climate change applications it is of utmost importance that the trend signal contained in 
the ESA CCI SM products have a geophysical meaning and are not introduced, e.g., by changes 
in sensor constellation. Assessing, and possibly correcting for such potential artefacts should 
therefore receive high priority in future product releases (Su et al., 2016). However, despite 
the potential detection and correction of more obvious inhomogeneities like changes in the 
mean or variance, more intricate inhomogeneities, e.g., changes in data quality and 
spatiotemporal coverage, may be easily overlooked. Yet, these may have considerable impact 
on several applications, e.g., the attribution of the frequency of extreme events (Loew et al., 
2013; Yuan et al., 2015a; Padhee et al., 2017) or the assessment of mean global trends (Dorigo 
et al., 2012). Long-term missions with consistent specifications, e.g., as provided by the ERS 
and MetOp satellites, are crucial for supporting homogenisation and intercalibration efforts 
As of v08.1 of ESA CCI SM, a break-adjustment using the methodology set out in 
Preimesberger et al. (2021) has been implemented for the COMBINED product to correct for 
structural breaks in the time series. The method yields longer homogeneous time series 
(Figure 16) which generate regional improvements in the correlation of the product with 
reanalysis data  (Hirschi et al., 2022), and are better suited for long-term trend analysis. 

 
Figure 16 Longest homogenous period in ESA CCI SM v07.1 (COMBINED) before adjustment 
(right) and after adjustment (left). 

3.2.6 Shorter latency times between data acquisition and data availability  

Short latency times are required for embedding the ESA CCI SM product in operational 
services. While monitoring services, e.g., drought monitors, would already profit from a 
latency of several days, operational flood forecasting and the initialization of boundary 
conditions in NWP models require a near-real-time availability of the product. Enenkel et al. 
(2016a) demonstrated the feasibility of producing an ESA CCI SM near-real-time dataset, 
although they also showed that such a service is constrained by the latency and quality of 
available Level 2 products. Operational production and updating of the dataset with an update 
frequency of 10 days is now taking place within the Climate Data Store of the Copernicus 
Climate Change Services (C3S; https://climate.copernicus.eu/). ESA CCI SM v05.2 is the 
current basis for the latest product version (v202012.0.0) of this service. 
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3.2.7 Independency of LSMs  

To optimally serve model benchmarking activities, especially regarding the assessment of 
biases, the ESA CCI SM COMBINED product should become entirely independent of any LSM. 
Even though the current scaling against the GLDAS-Noah reference LSM hardly affects trends 
and temporal dynamics in the product, it does make the ESA CCI SM COMBINED dataset 
impractical for assessing model biases. Globally available L-band observations from SMOS and 
SMAP may be considered as an alternative scaling reference in the future. As part of ESA CCI+, 
the impacts of replacing GLDAS-Noah with L-band data from SMOS and/or SMAP as a scaling 
reference are currently being investigated. Results indicate that the best trade-off could be 
using a merged L-band dataset as new reference to benefit from both SMAP (better spatial 
coverage) and SMOS (longer time series) advantages (Madelon et al., 2021). A corresponding 
research product has been developed by generating an L-band reference from the BTs-level 
merging of SMAP and SMOS with the idea that biases can be better removed before the 
retrieval model is applied. For this purpose, a single set of brightness temperatures is 
estimated from all viewing angles of SMOS by taking SMAP as a reference, from which the SM 
is then retrieved. This research product covers the 2010-2023 period and will be distributed 
with ESA CCI SM v09.1. The time backward-propagation of the L-band reference using L-band-
like AMSRE data is under investigation from the previous research base of Rodríguez-
Fernández et al. (2016). 

3.2.8 Creation of a root-zone soil moisture product 

Root-zone soil moisture is required for a complete assessment of land-atmosphere 
interactions, for better linking soil moisture variability to ecosystem and agricultural drought 
dynamics, and for hydrological modelling. Although this is seemingly unattainable without the 
intervention of an LSM to propagate surface soil moisture observations to the root-zone, 
simplified approaches such as the Soil Water Index method (Wagner et al., 1999; Albergel et 
al., 2008) may already be useful (Brocca et al., 2012). An ESA CCI+ soil moisture CCN1 Scientific 
Evolution study has been concluded with the goal to complement the ESA CCI surface soil 
moisture product with a global, long-term root-zone soil moisture dataset with daily and 0.25° 
resolution. The creation of an ESA CCI root-zone soil moisture product based on exponential 
filtering and using optimal values of the T-parameter determined from in-situ time series is 
currently ongoing. Such product will be part of the ESA CCI SM products suite as of v09, 
covering the period 1991-2023. The RZSM estimates will also be provided with an adapted 
uncertainty characterization scheme that accounts for the model uncertainty component  
(Pasik et al., 2023). 

One should be aware that user requirements on satellite soil moisture will continue to change, 
reflecting advances in Earth system research and evolving societal needs. As regards climate 
applications, the latest GCOS Implementation Plan (GCOS-200, 2016) already addresses a 
couple of the new top-level requirements identified in this study, including improvements in 
the spatial resolution and the need to provide subsidiary variables to better characterise the 
quality of the surface soil moisture data. The required subsidiary variables are the freeze/thaw 
status, surface inundation, VOD and root-zone soil moisture. Freeze/thaw status and surface 
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inundation are needed to flag environmental conditions when the retrieval of soil moisture 
data from microwave measurements is not possible due to fundamental physical reasons 
(Zwieback et al., 2015).  

Even with consolidated user requirements for soil moisture CDRs, the main challenge remains 
to determine to what degree these requirements are actually met by long-term products like 
ESA CCI SM. This requires standardised strategies based on commonly agreed reference 
datasets, methodologies, and metrics. Some examples of potential methods were adopted in 
this study but these need to be further elaborated. Apart from statistical approaches like the 
triple collocation, all other evaluation methods to some degree suffer from a general data 
sparsity in several regions of the world, e.g., the tropical forests or the sub-arctic. In these 
regions, there is not only a lack of in-situ soil moisture stations (Ochsner et al., 2013) but also 
of meteorological monitoring stations. Thus, also the precipitation and LSM products used in 
various evaluation approaches have larger uncertainties here. For example, Albergel et al. 
(2013a) showed that the trends in two reanalysis datasets widely diverged in these areas. 
Therefore, to date, data-rich areas dominate in the evaluation process. One of the main 
priorities of the international community should therefore be to establish in-situ networks in 
data-poor regions and guarantee the continuation of existing long-term monitoring sites to 
assess stability and trends over a wide range of land surface conditions. A good starting point 
may be offered by the globally well-distributed and error-characterised SMAP core validation 
sites (Colliander et al., 2017).  

3.3 Conclusion and outlook 

In this study, we provided a comprehensive overview of the specifications of the ESA CCI SM 
product suite and the Earth system applications that have made use of these datasets either 
to benchmark or to improve current process understanding as captured in state-of-the-art 
models. The strong user interest in the soil moisture CDRs is reflected by the wide variety of 
science communities who have exploited the potential of these products. The main motivation 
for using the ESA CCI SM products over existing single-sensor products is its unique long period 
of coverage, which makes it potentially suitable to assessing long-term variability and change, 
although users should confirm data homogeneity for their region of application. 

ESA CCI SM products have already led to numerous publications, which were used in this study 
to review the capabilities and shortcomings of the products for Earth system applications and 
provide valuable information for shaping the priorities of new product releases. Yet, the full 
potential of ESA CCI SM remains underexploited. This is partly due to the complexity and 
limitations of the data, e.g., the varying dataset quality through space and time, and the 
occurrence of data gaps, which makes it difficult for users to integrate the data in their 
applications. Such limitations can be partly addressed by continuing efforts to improve Level 
2 retrievals and merging methodologies, and through the introduction of new, high-quality 
sensors like SMAP in the merged products. However, it will not be possible to mitigate all 
issues related to the creation of an entirely homogeneous dataset from 1978 onwards. These 
issues relate to the absence of suitable sensors in the early decades and the physical 
limitations of the microwave signal in general. Thus, to exploit the full potential of the ESA CCI 
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SM datasets, future efforts should not only focus on algorithmic improvements but also on 
clearly communicating the dataset characteristics to expert and non-expert users alike. 

Finally, the acceptance of the ESA CI SM products by a broad user community and integration 
into operational applications strongly hinges on its long-term sustainability. For the coming 
years, ESA will continue to support the scientific development of ESA CCI SM within the ESA 
CCI+ Phase 1 activities. At the same time, operational reprocessing, software maintenance, 
and near-real-time updating based on ESA CCI SM v05.2 is taking place within the Copernicus 
Climate Change Services. However, a successful continuation of ESA CCI SM also requires 
sustenance of the input missions. Currently, the risk of failing missions is relatively low: From 
the active microwave side two almost identical MetOp-A and MetOp-B ASCAT scatterometers 
are currently operated by EUMETSAT, while MetOp-C ASCAT will be launched in 2018 to 
replace MetOp-A (Lin et al., 2017) From that time, MetOp-A will remain in orbit to serve as 
backup in case of failure of one of the other MetOp satellites. Continuation beyond the current 
MetOp program will be provided by the approved MetOp Second Generation (MetOp-SG) 
program, which will start in 2021/22 and has the goal to provide continuation of C-band 
scatterometer and other systematic observations for another 21 years, i.e., at least until 2042. 
Also for the passive microwave part there is currently a redundancy of suitable missions: 
AMSR2 C-band observations, ASMR2, GPM GMI, and Fengyun 1B X-band radiometers, and of 
course the dedicated L-band missions SMOS and SMAP. In case of failure of one of these 
missions, there is enough potential backup to reduce the impact of satellite failure on the 
short to mid-term. More worrying is the long-term continuation of L-band and C-band 
radiometer missions, since neither SMOS, nor SMAP nor AMSR2 has confirmed continuation. 
Nevertheless, the planned Water Cycle Observation Mission (WCOM) of the Chinese Academy 
of Sciences has the potential to bridge the looming gap in L- and C-band observation time 
series from 2020 onwards (Shi et al., 2016). Yet, a strong commitment of space agencies 
worldwide to provide continuation of single sensor missions and ESA CCI SM is needed to 
bolster the acceptance of satellite-derived soil moisture by a large user community in general.
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Appendix: Summary tables of applications and user feedback 

Table 1: Applications of ESA CCI SM for understanding climate variability and change. Modified 
and extended from Dorigo et al. (2017) 

Climate variability and change 

Main purpose References Motivation for 
using ESA CCI SM 

Limitations identified 

Long-term 
trends and 
dynamics in soil 
moisture  

Dorigo et al. (2012); Wang et al. (2016); Qiu 
et al. (2016); Albergel et al. (2013b); Su et 
al. (2016); Rahmani et al. (2016); Zheng et 
al. (2016); Feng and Zhang (2015); Li et al. 
(2015); Zohaib et al. (2017); Carvalho-Santos 
et al. (2018); Dong et al. (2018); Jia et al. 
(2018); Lou et al. (2018); Gu et al. (2019b); 
Gu et al. (2019c); Pan et al. (2019); Deng et 
al. (2020); Zhang and Jia (2020a); Ma et al. 
(2020); Spennemann et al. (2020); Zhuang 
et al. (2020); Yao et al. (2021b); Fatkhuroyan 
et al. (2021); Wang et al. (2022d); Cai et al. 
(2022); Zhu et al. (2023); Peng et al. 
(2023a); Hirschi et al. (2023a) 

Long-term 
coverage needed 
for robust trend 
assessment 

No global coverage; no 
representation of root-
zone; data quality changes 
over time 

Assessment of 
drivers of soil 
moisture trends 
and variability 

Feng (2016); Liu et al. (2015); Zhan et al. 
(2017); Chen et al. (2017); Meng et al. 
(2018); Wang et al. (2018c); Peng et al. 
(2019a); Liu et al. (2021a); Ayehu et al. 
(2020); Peng et al. (2023b); Prasad et al. 
(2023) 

Long-term 
coverage for 
robust driver 
assessment 

Data gaps in time and space 

Soil moisture as 
driver of multi-
annual 
variability in 
land evaporation 

Miralles et al. (2014b); Zheng et al. (2022); 
Zhao et al. (2023b) 

Independent 
evidence of long-
term trends and 
variability in 
modelled soil 
moisture, 
constraining errors 
in water balance 
model  

Not mentioned 

Impact of ocean 
atmosphere 
system on soil 
moisture 
variability 

Bauer-Marschallinger et al. (2013); Miralles 
et al. (2014b); Nicolai-Shaw et al. (2016); 
Jimma et al. (2023); Talib et al. (2023); Kabli 
et al. (2024) 

Long-term dataset 
required for 
assessing low 
impact of 
frequency climate 
oscillations 

Data periods with reduced 
spatial coverage 
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Climate variability and change 

Main purpose References Motivation for 
using ESA CCI SM 

Limitations identified 

Soil moisture as 
indicator of 
global climate 
variability and 
change 

De Jeu et al. (2012); Parinussa et al. (2013); 
Dorigo et al. (2014); Dorigo et al. (2015a); 
Dorigo et al. (2016); De Jeu et al. (2011); 
Dorigo et al. (2017); Martinez-Espinosa et al. 
(2021); van der Schalie et al. (2021); 
Preimesberger et al. (2020); Scanlon et al. 
(2019); Dorigo et al. (2018); Guan et al. 
(2023); Wu et al. (2023); van der Schalie et 
al. (2022); Stradiotti et al. (2023b); 
Schumacher et al. (2024) 

Assess actual soil 
moisture condition 
with respect to 
historical context 

Lack of global coverage 
hampers assessment of 
mean global and 
hemispherical trends  

Impact of soil 
moisture on 
trends in 
atmospheric 
composition 
(e.g., aerosols) 

Klingmüller et al. (2016); Kokkalis et al. 
(2018) 

Long-term 
coverage required 
for robust trend 
and driver 
assessment 

Not mentioned 

Validation of 
ESMs and 
climate models 
(mean fields, 
spatial patterns, 
temporal 
variability, 
trends)   

Pieczka et al. (2016); Du et al. (2016); Lauer 
et al. (2017); Huang et al. (2016); Yuan and 
Quiring (2017); van den Hurk et al. (2016); 
Agrawal and Chakraborty (2016); Nitta et al. 
(2017); Ruosteenoja et al. (2018); Wehrli et 
al. (2019); Bai et al. (2018); Kuhlbrodt et al. 
(2018); Gu et al. (2019b); Koukoula et al. 
(2019); Breuer et al. (2020); Hagan et al. 
(2020); Lin et al. (2020); Wang et al. 
(2020a); Guglielmo et al. (2021b); Muller et 
al. (2021); Humphrey et al. (2021); Wang et 
al. (2022a); Hohenegger et al. (2023); Feng 
et al. (2023d); Rigden et al. (2024) 

Potential for 
assessing long-
term climatology, 
variability, and 
trends 

Layer thickness not 
consistent among models 
and satellite observations; 
ESA CCI SM uncertainties 
are larger than the RMSE of 
many of the models; data 
gaps due to frozen soils, 
snow, and dense 
vegetation. 

Validation and 
sensitivity 
analysis of 
regional climate 
models   

Pieczka et al. (2016); Unnikrishnan et al. 
(2017); Fonseca et al. (2019); Huang et al. 
(2020); Saharwardi et al. (2021) 

Potential for 
assessing long-
term climatology, 
variability, and 
trends 

Evaluation of absolute 
values not possible; 
discrepancy in layer 
thickness represented. 

Assimilation in 
regional climate 
model 

Paxian et al. (2016) Not mentioned Not mentioned 
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Climate variability and change 

Main purpose References Motivation for 
using ESA CCI SM 

Limitations identified 

Variability of 
precipitation 
and soil 
moisture during 
South Asian 
Monsoon 

Shrivastava et al. (2017); Shrivastava et al. 
(2016)  

Convergence of 
evidence together 
with reanalysis soil 
moisture and 
precipitation, 
robust assessment 
of inter-annual 
variability 

Temporal data gaps during 
monsoon season 
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Table 2 Applications of ESA CCI SM for understanding land atmosphere interactions. 
Modified and extended from Dorigo et al. (2017). 

Land atmosphere interactions 

Main purpose References 
Motivation for 

using ESA CCI SM 
Limitations identified 

Improved 
understanding of 
soil moisture 
feedbacks on 
precipitation 

Ford et al. (2018); Wang et al. (2018d); 
Yang et al. (2018); Guillod et al. (2014); 
Guillod et al. (2015, indirectly through 
assimilation of ESA CCI SM into GLEAM); 
Dolores et al. (2019); Holgate et al. (2019); 
Ling et al. (2019); Yuan et al. (2020); Baker 
et al. (2021); Talib et al. (2021); Maurya et 
al. (2021); Maity et al. (2021); Dong et al. 
(2022b); Talib et al. (2022); Ullah et al. 
(2023); Klein et al. (2023); Hu et al. (2023); 
Ford et al. (2023) 

Constraining errors 
in water balance 
model over long 
period 

Not mentioned 

Feedback of 
(concurrent and 
antecedent) soil 
moisture on 
Tibetan, Indian 
and African 
monsoon intensity 

KanthaRao and Rakesh (2017); Hunt and 
Turner (2017); Zhou et al. (2016); 
Ndomeni et al. (2018); Varikoden and 
Revadekar (2018); Lodh (2020) 

Long-term dataset 
for robust statistics 

Dataset not suitable due to 
large data gaps in winter 

Identifying role of 
soil moisture on 
temperature 
variability and 
heatwaves 

Miralles et al. (2014a); Hirschi et al. 
(2014); Casagrande et al. (2015); Dong 
and Crow (2018, 2019); Chen et al. (2019); 
Schumacher et al. (2019); Seo et al. 
(2020); Wu et al. (2021); Pyrina et al. 
(2021); Muzylev (2023); Aadhar and 
Mishra (2023); Mardian et al. (2023b); Al-
Yaari et al. (2023); Yu et al. (2023b); Dong 
et al. (2023); Daramola et al. (2024) 

Constraining errors 
in water balance 
model over long 
period by data 
assimilation; long 
period provides 
robust coupling 
statistics 

No representation of root-
zone soil moisture; lacking 
information about exact 
sampling depth 

Observation-based 
land-atmosphere 
coupling (to 
evaluate coupling 
of LSM products 
and ESM 
ensembles) 

Knist et al. (2017); Li et al. (2016); 
Catalano et al. (2016); Albergel et al. 
(2017); Lei et al. (2018); Al-Yaari et al. 
(2019) 

Independent 
reference for long 
period. 

Spatial data gaps; seasonal 
variation in spatial 
coverage 
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Land atmosphere interactions 

Main purpose References 
Motivation for 

using ESA CCI SM 
Limitations identified 

Improved 
modelling of land 
evaporation; 
(statistical) 
estimation of 
surface turbulent 
fluxes 

Martens et al. (2017); Miralles et al. 
(2014b); Park et al. (2017); Alemohammad 
et al. (2017); Jimenez et al. (2018); El 
Masri et al. (2019); Yao et al. (2019); Cui 
et al. (2020a); Cui et al. (2021b); Zhang et 
al. (2021c); Cui et al. (2021a); 
Abdolghafoorian and Dirmeyer (2022); 
Dong et al. (2022a); Feng et al. (2023b); 
Zhang et al. (2023e) 

Constraining errors 
in water balance 
model over long 
period by data 
assimilation 

Negative impact in very dry 
areas and areas where 
quality of precipitation is 
high 

Explaining trends 
in 
evapotranspiration 

Rigden and Salvucci (2017); Zeng et al. 
(2014); Xiao et al. (2020) 

Long-term 
availability for 
trend assessment 

Not mentioned 

Soil moisture and 
latent heat flux / 
evapotranspiration 
coupling 

Lei et al. (2018); Denissen et al. (2020); 
Denissen et al. (2021) 

  

Impact of soil 
moisture (among 
other drivers) on 
dust aerosol 
dynamics 

Klingmüller et al. (2016); Xi and Sokolik 
(2015); Kokkalis et al. (2018); Nabavi et al. 
(2018); Vandenbussche et al. (2020); Xi 
(2021); Yu and Ginoux (2021); Xi (2023); 
Liaskoni et al. (2023); Xi et al. (2023) 

Long-term 
coverage required 
for robust trend 
and driver 
assessment 

Not mentioned 
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Table 3 Applications of ESA CCI SM for understanding global biogeochemical cycles and 
ecology. Modified and extended from Dorigo et al. (2017). 

Global biogeochemical cycles and ecology 

Main purpose References Motivation for 
using ESA CCI SM 

Limitations identified 

Evaluation and 
calibration of 
global vegetation 
models 

Szczypta et al. (2014); Traore et al. (2014); 
Sato et al. (2016); Willeit and Ganopolski 
(2016); Su et al. (2021); Yu et al. (2023a) 

Long-term 
coverage for 
robust statistics 

Poor performance for some 
mountain ranges; No data 
available for densely 
vegetated areas; seasonal 
variation in spatial coverage 

Impact of soil 
moisture dynamics 
on vegetation / 
crop productivity 
and yields 

Muñoz et al. (2014); Chen et al. (2014); 
Papagiannopoulou et al. (2017a); 
Barichivich et al. (2014); Szczypta et al. 
(2014); McNally et al. (2016); Ghazaryan 
et al. (2016); Wu et al. (2016); Cissé et al. 
(2016); Nicolai-Shaw et al. (2017); Liu et 
al. (2017c); Da et al. (2017); Wang et al. 
(2018a); Momen et al. (2017); Bassiouni 
et al. (2018); Boke-Olen et al. (2018); 
Gichenje and Godinho (2018); Liu et al. 
(2018a); Shan et al. (2018); Champagne et 
al. (2019); Li et al. (2019); Martinez-
Fernandez et al. (2019); Tesfamichael and 
Shiferaw (2019); Wang et al. (2019b); 
Nilsson et al. (2020); Ugbaje and Bishop 
(2020); Bhimala et al. (2020); Bontempo 
et al. (2020); Bouras et al. (2020); Byrne 
et al. (2020a); Correa-Diaz et al. (2020); 
Halubok and Yang (2020); Lavergne et al. 
(2020a); Liu et al. (2020a); Modanesi et 
al. (2020); Olano et al. (2020); Orth et al. 
(2020); Rigden et al. (2020); Somkuti et al. 
(2020); Tao et al. (2020); 
Papagiannopoulou et al. (2017b); Zhang 
and Jia (2020b); Zhou et al. (2020); Zhu et 
al. (2020b); Gonsamo et al. (2021); 
Gonzalez-Zamora et al. (2021); Liu et al. 
(2021d); Bouras et al. (2021); Vogel et al. 
(2021); Correa-Díaz et al. (2021); He et al. 
(2021); Famiglietti et al. (2021); Ermitão 
et al. (2021); Anghileri et al. (2022); 
Salakpi et al. (2022b); Proctor et al. 
(2022); Venkatesh et al. (2022a); Rigden 
et al. (2022); Maas et al. (2022); Harris et 
al. (2022); Heijmans et al. (2022); 
Venkatesh et al. (2022b); Maina et al. 
(2022); Li et al. (2022a); Zhang et al. 
(2023b); Bueechi et al. (2023); Yang et al. 
(2023); Klein et al. (2023); Zhao et al. 
(2023a); Wang et al. (2024); Li et al. 

Long-term 
coverage for 
robust assessment 
of drivers  

Poor data quality and data 
gaps for densely vegetated 
areas, frozen conditions, 
and mountain areas; 
temporal data gaps 
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Global biogeochemical cycles and ecology 

Main purpose References Motivation for 
using ESA CCI SM 

Limitations identified 

(2024); Amantai et al. (2024); Tian et al. 
(2024) 

Validation of dry 
season intensity 
indicator 

Murray-Tortarolo et al. (2016) Long-term dataset 
required for robust 
evaluation 

Not mentioned 

Impact of large-
scale re-vegetation 
on soil moisture 

Jiao et al. (2016) Long-term 
coverage allows for 
trend assessment 

Not mentioned  

Connecting trends 
in soil moisture 
and vegetation 
productivity  

Dorigo et al. (2012); Feng (2016); Jin and 
Wang (2018); Wang et al. (2018a); 
Fakharizadehshirazi et al. (2019); Ribeiro 
et al. (2021); Saby et al. (2021); Zheng et 
al. (2021); D'Adamo et al. (2021); Yang et 
al. (2021b); Jiao et al. (2021b) 

Long-term 
coverage required 
for trend 
assessment 

Spatial data gaps, ESA CCI 
SM has trend removed 
before 1987 

Assessing 
ecosystem water 
use efficiency 

Li et al. (2017); Qi et al. (2019) Long-term data 
availability for 
robust statistics 

Reduced quality over 
densely vegetated areas; 
high uncertainty for earlier 
periods 

Improved crop 
modelling 

Wang et al. (2016); Sakai et al. (2016); 
Wang et al. (2017); Park et al. (2017); 
Petropoulos et al. (2018); Salakpi et al. 
(2022a); Zhou et al. (2022); Cheng et al. 
(2023); Boas et al. (2023); Xing et al. 
(2023) 

Complementarity 
of active and 
passive microwave 
soil moisture for 
different land 
cover types; 
assessment of 
long-term links 
between soil 
moisture and 
vegetation 

Poor performance along 
coasts; differences in spatial 
scale; representativeness 
for fragmented landscapes; 
impact of irrigation; 
spatiotemporal data gaps  

Assessing effects 
on stomatal 
conductance 

Lavergne et al. (2020b) Not mentioned Not mentioned 

Assessing drivers 
of fire activity; 
modelling 
particulate 
emission from fires  

Ichoku et al. (2016); Forkel et al. (2017); 
Fan et al. (2018); Kiely et al. (2019); Kiely 
et al. (2020); Sungmin et al. (2020); Lu 
and Wei (2021); Bai et al. (2021); Yu and 
Ginoux (2022); Bai et al. (2022); Mukunga 
et al. (2023); Ryoo and Park (2023) 

Long-term 
availability is 
essential for 
assessing dynamics 
and drivers of 
infrequent fire 
activity  

No coverage for dense 
vegetation, temporal gaps 
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Global biogeochemical cycles and ecology 

Main purpose References Motivation for 
using ESA CCI SM 

Limitations identified 

Coupling between 
the terrestrial 
carbon and water 
cycles 

Kostic et al. (2021); Gentine et al. (2019); 
Menichetti et al. (2020); Liu et al. (2022c); 
Gong et al. (2023) 

Not mentioned Not mentioned 

Potential for 
constraining 
terrestrial carbon 
cycle simulations 
by data 
assimilation 

Kaminski et al. (2013); Scholze et al. 
(2017) 

Long-term data 
availability  

Accurate description of 
random error for each 
observation; Does not 
provide estimate of root-
zone soil moisture 

Assessment of 
satellite-observed 
carbon fluxes 

Detmers et al. (2015); Byrne et al. (2020b) Long-term 
availability 

Not mentioned 

Assessing drivers 
of riverine export 
of dissolved black 
carbon 

Jones et al. (2019) Not mentioned Not mentioned 

Soil moisture as 
driver of animal 
species migration; 
soil moisture for 
locating breeding 
areas; relations 
with vertebrate 
diversity 
distribution 

Madani et al. (2016); Gomez et al. (2018); 
Cornelissen et al. (2019); Leite et al. 
(2019); Gomez et al. (2020); Salako et al. 
(2023) 

 

Long-term dataset 
required for robust 
pattern 
assessment 

Coarse resolution 

Impact of wind 
farms on 
environmental 
conditions for 
vegetation growth 

Tang et al. (2017) Long-term 
availability 

Not mentioned 

Soil moisture as 
driver of NH3 

emissions 

Hickman et al. (2018) Not mentioned Not mentioned 

Use of soil 
moisture for 
disease-related 
applications 

Campbell et al. (2020) Not mentioned Not mentioned 
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Global biogeochemical cycles and ecology 

Main purpose References Motivation for 
using ESA CCI SM 

Limitations identified 

Variation in soil 
rock fragment 
content 

Lai et al. (2022) Not mentioned Not mentioned 
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Table 4 Applications of ESA CCI SM for hydrology and land surface modelling. Modified and 
extended from Dorigo et al. (2017). 

Hydrology and land surface modelling 

Main purpose References 
Motivation for 

using ESA CCI SM 
Limitations identified 

Evaluating model 
states in 
hydrological 
models and LSMs 
(including land 
data assimilation 
systems); 
evaluation of SM 
derived from 
statistical models 

Loew et al. (2013); Fang et al. (2016); Du 
et al. (2016); Spennemann et al. (2015); 
Schellekens et al. (2016); Szczypta et al. 
(2014); Lauer et al. (2017); Mao et al. 
(2017); Lai et al. (2016); Rakovec et al. 
(2016); Okada et al. (2015); Ghosh et al. 
(2016); Mishra et al. (2014); Mueller and 
Zhang (2016); Nitta et al. (2017); Parr et 
al. (2015); Albergel et al. (2018a); 
Albergel et al. (2018b); Bai et al. (2018); 
Breil et al. (2018); Gelati et al. (2018); 
Guimberteau et al. (2018); Khan et al. 
(2018); Mishra et al. (2018); Niroula et 
al. (2018); Pomeon et al. (2018a); 
Pomeon et al. (2018b); Sawada (2018); 
Yin et al. (2018); Zhang et al. (2018a); 
Zhao and Yang (2018); Naz et al. (2019); 
Odusanya et al. (2019); Wang et al. 
(2019a); Zhang et al. (2019c); Shrestha 
et al. (2020); Dembele et al. (2020c); 
Dembele et al. (2020a); Jung et al. 
(2020); Kim et al. (2020); Liu et al. 
(2020c); Meng et al. (2020); Sawada 
(2020); Thatch et al. (2020); Wang and Li 
(2020); Xie et al. (2020); Zhu et al. 
(2020a); Almendra-Martin et al. (2021b); 
Ankur et al. (2021); Dukic and Eric 
(2021); Dukic et al. (2021); Eeckman et 
al. (2021); Han et al. (2021); Jia et al. 
(2021); Liu et al. (2021b); Liu et al. 
(2021e); Lv et al. (2021); Seiler et al. 
(2021); Zhu et al. (2021); Sungmin and 
Orth (2021); Zhang et al. (2022b); 
Tangdamrongsub et al. (2021); Zhou et 
al. (2021b); Boussetta et al. (2021); 
Hughes and Farinosi (2021); O'Neill et al. 
(2021); Zhang et al. (2021b); Bennour et 
al. (2022); Huang et al. (2022); Cui and 
Wang (2022); Wu et al. (2022a); Ji et al. 
(2023a); Zhang et al. (2023d); Joseph 
and Ghosh (2023); Feng et al. (2023c); 
Zhang et al. (2023c); Hoch et al. (2023); 
Naz et al. (2023); Chevuturi et al. (2023); 
Pimentel et al. (2023); Belleflamme et al. 
(2023); Quichimbo et al. (2023); Ji et al. 
(2023b); Huang et al. (2023); Van 

Robust statistics 
based on long 
comparison 
period 

Not suited for validating 
absolute values (bias, 
root-mean-square-
difference); discrepancy 
between model and 
observation layer depths; 
different dataset 
characteristics for 
different periods 
(variance, data gaps); 
spatiotemporal data gaps.  
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Hydrology and land surface modelling 

Main purpose References 
Motivation for 

using ESA CCI SM 
Limitations identified 

Oorschot et al. (2023); Scherrer et al. 
(2023); Kalyanam and Chandrasekar 
(2024); Magotra et al. (2024) 

Evaluating model 
processes in 
hydrological 
models and LSMs 
(e.g., dry down) 

Chen et al. (2016); Raoult et al. (2021); 
Ghajarnia et al. (2021); Baker et al. 
(2021); Raoult et al. (2022); Feng et al. 
(2023a); Zhou et al. (2023) 

More realistic dry 
down 
characteristics 
than LSM-based 
soil moisture 

Only few dry downs 
identifiable 

Assimilated to 
constrain coupled 
LSM and 
hydrological 
simulations; 
usage in land data 
assimilation 
systems 

Albergel et al. (2017); Liu et al. (2018b); 
Pinnington et al. (2018); Raoult et al. 
(2018); Yan et al. (2018); Blyverket et al. 
(2019b); Kumar et al. (2019); Nair and 
Indu (2019); Naz et al. (2020); Yang et al. 
(2021a); Pal and Maity (2021); Huang et 
al. (2021); Seo and Dirmeyer (2022); Kivi 
et al. (2023); Heyvaert et al. (2023); Yin 
et al. (2023b); Pradhan et al. (2023) 

Long-term 
availability 

No impact on deeper soil 
layers 

Used to estimate 
the error 
covariance matrix 
of an ensemble of 
LSM simulations 
in order to 
optimally merge 
them. 

Crow et al. (2015) Long data record 
length essential 
for reducing 
sampling errors 

large temporal variations 
in temporal frequency, 
actual spatial resolution, 
and accuracy; dependency 
on GLDAS-Noah as scaling 
reference; differences in 
vertical measurement 
support between models 
and observations  

Persistence and 
prediction of soil 
moisture 
anomalies 

Nicolai-Shaw et al. (2016); Allen and 
Anderson (2018); Klingmuller and 
Lelieveld (2021); Piles et al. (2022); 
Salcedo-Sanz et al. (2022); Tesfamichael 
et al. (2023) 

Long-term 
dataset required 
for robust 
statistics 

Exact vertical 
measurement support 
unknown 
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Hydrology and land surface modelling 

Main purpose References 
Motivation for 

using ESA CCI SM 
Limitations identified 

Improving runoff 
predictions and 
flood (risk) 
analysis and 
modelling 

Tramblay et al. (2014); Massari et al. 
(2015); Kim et al. (2018); Massari et al. 
(2018); El Khalki et al. (2018); Zhong et 
al. (2019); Ganguli et al. (2020); Li and 
Willems (2019); Benkirane et al. (2020); 
El Khalki et al. (2020a); El Khalki et al. 
(2020b); Saouabe et al. (2020); Sapkota 
and Meier (2020); De Santis et al. 
(2021); Camici et al. (2022); Prakash and 
Mishra (2023); Wang et al. (2023b); 
Macharia et al. (2023); Eini et al. (2023); 
Sharma and Mujumdar (2024) 

Not specified Data gaps in space and 
time needed to be filled 

Calibrating 
hydrological 
models 

Kundu et al. (2017); Demirel et al. 
(2019); Koppa et al. (2019); Dembele et 
al. (2020b); Koppa and Gebremichael 
(2020); Sanz-Ramos et al. (2020) 

Not specified Only few model 
parameters sensitive to 
surface soil moisture 

Improved water 
budget modelling 

Allam et al. (2016); Abera et al. (2017); 
de Figueiredo et al. (2021); Mehrnegar 
et al. (2021); Saxe et al. (2021); 
Guglielmo et al. (2021a); Trautmann et 
al. (2022); Eini et al. (2023); Blank et al. 
(2023); Tabarmayeh et al. (2023); 
Trautmann et al. (2023); Guo et al. 
(2023) 

Long-term 
availability for 
more robust 
statistics 

Vertical measurement 
support too shallow to 
provide indication of 
changes in soil and ground 
water storage 

Computing 
changes in 
groundwater 
storage 

Asoka et al. (2017) Long-term 
availability for 
trends 
assessment 

Not mentioned 

Modelling and 
understanding 
surface water 
dynamics 

Heimhuber et al. (2017); Gu et al. 
(2019a); Khazaei et al. (2019); Kwon et 
al. (2020); Liang et al. (2020) 

Long-term 
availability for 
more robust 
statistics 

Not mentioned 

Assessing 
irrigation 

Qiu et al. (2016); Kumar et al. (2015); 
Zhang et al. (2018b); Paciolla et al. 
(2020); Zhang et al. (2022a); Zappa et al. 
(2022); Fan et al. (2022) 

Long-term data 
required for 
trend-based 
method of Qiu et 
al. (2015) 

Coarse spatial resolution 
for detecting fine scale 
irrigation 

Assessing the 
impact of 
agricultural 
intensification on 
soil moisture  

Liu et al. (2015) Long-term data 
coverage needed 
for long-term 
impacts 

Spatial gaps 
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Hydrology and land surface modelling 

Main purpose References 
Motivation for 

using ESA CCI SM 
Limitations identified 

Trigger of 
landslides 

Dahigamuwa et al. (2016); Dahigamuwa 
et al. (2018); Zhuo et al. (2019); Zhao et 
al. (2021a) 

Long-term 
availability 

Limited temporal coverage 

Improving 
satellite rainfall 
retrievals 

Bhuiyan et al. (2017a); Bhuiyan et al. 
(2017b); Qiu et al. (2016); Kumar et al. 
(2015) 

Data record spans 
multiple satellite 
precipitation 
missions 

Not mentioned 

Computing 
cumulative 
precipitation 
amounts 

Ciabatta et al. (2016); Liu et al. (2015); 
Ciabatta et al. (2018); Massari et al. 
(2019); Miao et al. (2023); He et al. 
(2023) 

Long data record 
needed for 
generation of 
long-term 
precipitation 
dataset 

Too low signal-to-noise 
ratio in some areas; spatial 
and temporal data gaps 

Validating soil 
moisture 
products derived 
from precipitation 

Das and Maity (2015); Dahigamuwa et 
al. (2016); Ramsauer et al. (2021) 

Long-term 
availability for 
robust statistics 

 

Not mentioned 

Evaluating soil 
moisture 
products derived 
from other 
satellite 
platforms; use of 
ESA CCI SM as 
input for derived 
products 
(including gap-
filled and 
downscaled 
derivatives) 

Leng et al. (2017); De Zan and Gomba 
(2018); Pablos et al. (2018); Zhou et al. 
(2018); Cui et al. (2020b); Fan et al. 
(2020); Koley and Jeganathan (2020); 
Kovacevic et al. (2020); Li et al. (2020); 
Liu et al. (2020d); Liu et al. (2020e); 
Llamas et al. (2020); Yin et al. (2020); 
Zeng et al. (2020); Abowarda et al. 
(2021); Almendra-Martin et al. (2021a); 
Cui et al. (2021c); Grillakis et al. (2021); 
Guevara et al. (2021); Jin et al. (2021); 
Kang et al. (2021); Preimesberger et al. 
(2021); Yao et al. (2021a); Zhang et al. 
(2021d); Warner et al. (2021); Zhao et al. 
(2021b); Liu et al. (2021c); Hu et al. 
(2022); Wang et al. (2022c); Li et al. 
(2022c); Li et al. (2022b); Wang et al. 
(2022b); Skulovich and Gentine (2023); 
Deng et al. (2023); Ning et al. (2023); 
Mehrnegar et al. (2023); Madelon et al. 
(2023); Liu et al. (2023b); Zhang et al. 
(2023a); Arias et al. (2023); Cheng et al. 
(2023); Dong et al. (2024); Shen et al. 
(2023); Yin et al. (2023a); Yao et al. 
(2023); Ramsauer and Marzahn (2023); 
Liu et al. (2023a) 

Long-term 
availability for 
robust statistics 

 

Not mentioned 
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Hydrology and land surface modelling 

Main purpose References 
Motivation for 

using ESA CCI SM 
Limitations identified 

Evaluating in-situ 
networks 

Ford et al. (2020) Long-term 
availability 

 

 
  



 
Climate Assessment Report (CAR) 

Version 2 

Date 19-09-2024 

 

51 

Table 5 Usage of ESA CCI SM for drought applications. Modified and extended from Dorigo et 
al. (2017). 

Drought applications 

Main purpose References 
Motivation for 

using ESA CCI SM 
Limitations identified 

Validation and 
evaluation of 
drought indices 

Liu et al. (2017b); Liu et al. (2017a); van 
der Schrier et al. (2013); Zhao et al. 
(2018); Zhu et al. (2018); Blyverket et al. 
(2019a); Ni et al. (2019); Angearu et al. 
(2020); Afshar et al. (2021); Li and Huang 
(2021); Liu et al. (2021b); Niaz et al. 
(2021); Araneda-Cabrera et al. (2021); 
Zhao and Wang (2021); Faiz et al. (2022); 
Lee et al. (2022); Afshar et al. (2022); 
Mardian et al. (2023a); Wang et al. 
(2023a)  

Lon-term dataset 
required for 
robust 
assessment 

Reduced temporal 
coverage before 1991 

Development of 
new drought 
monitoring index 

Carrão et al. (2016); Enenkel et al. 
(2016b); Rahmani et al. (2016); Wang et 
al. (2018b); Prakash (2018); Zhang et al. 
(2019a); Sadri et al. (2020); Kumar et al. 
(2021); Tian et al. (2022a) 

Long-term 
dataset required 
for robust 
computation of 
normal soil 
moisture 
distributions  

Variable data availability in 
time; reduced data quality 
over densely vegetated 
areas; not available in 
near-real-time 

Detection of 
agricultural 
droughts 

Yuan et al. (2015a); Liu et al. (2015); 
Padhee et al. (2017); Ma et al. (2017); 
Zampieri et al. (2018); Oertel et al. 
(2018); Ford and Quiring (2019); Pandey 
and Srivastava (2019); Peng et al. 
(2019b); Zhang et al. (2019b); 
Strohmeier et al. (2020); Sun et al. 
(2020); Tramblay et al. (2020); Liu et al. 
(2021f); Ma et al. (2021); van Hateren et 
al. (2021); Zhang et al. (2021a); Zhou et 
al. (2021a); Rezaei (2021); Vreugdenhil 
et al. (2022); Liu et al. (2022b); Tian et al. 
(2022b); Greimeister-Pfeil et al. (2022); 
Ming et al. (2023); Sun et al. (2023); 
Leeper et al. (2023); Salakpi et al. (2023) 

Long-term 
dataset required 
for robust long-
term statistics 

Because of temporal data 
gaps extreme events may 
not be captured; reduced 
skill of COMBINED 
compared to ACTIVE in 
densely vegetated areas 

Identification of 
flash droughts 

Liu et al. (2020b); Liu et al. (2022a) Long temporal 
coverage 

Not mentioned 
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Drought applications 

Main purpose References 
Motivation for 

using ESA CCI SM 
Limitations identified 

Probabilistic and 
statistical drought 
forecasting and 
monitoring 

Yan et al. (2017); Asoka and Mishra 
(2015); Park et al. (2018); Samantaray et 
al. (2019); Linés et al. (2017) 

Long-term 
dataset required 
for robust 
computation of 
normal soil 
moisture 
distributions  

Coarse resolution; data 
gaps 

Drought events 
composites 
analysis 

Nicolai-Shaw et al. (2017) Long-term 
observations-
based dataset 
(more than two 
decades) 

Lack of data in some key 
regions, lack of root-zone 
data (particularly in forest 
regions), uncertainties in 
early part of product 

Soil moisture for 
integrated 
drought 
monitoring  

McNally et al. (2016); Rahmani et al. 
(2016); Enenkel et al. (2016b); Da et al. 
(2017); Wang et al. (2018a); Jin et al. 
(2017); Martinez-Fernandez et al. 
(2017); Liu et al. (2019); Agutu et al. 
(2020); Turco et al. (2020); Cammalleri 
et al. (2017); Buitink et al. (2021); Jiao et 
al. (2021a); Al Hasan et al. (2021); Salvia 
et al. (2021); Baik et al. (2021); Wu et al. 
(2022b); Hobeichi et al. (2022); Li et al. 
(2023); Yatheendradas et al. (2023); 
Kumar and Chu (2024) 

Long-term 
dataset required 
for robust long-
term statistics 

Poor spatio-temporal 
coverage prior to 1992 

Evaluation of 
drought 
forecasting 
systems  

McNally et al. (2017); Shah and Mishra 
(2016); Yuan et al. (2015b); Kang and 
Sridhar (2021) 

Long-term 
availability for 
robust evaluation. 
Sensitivity to 
wetlands (which 
are not 
represented 
LSMs).  

Poor spatio-temporal 
coverage prior to 1992; 
differences in 
representative depth 

Soil moisture 
index for drought 
insurance 
applications 

Enenkel et al. (2018); Osgood et al. 
(2018); Enenkel et al. (2019); Vroege et 
al. (2021) 

Long-term 
availability; 
independency 
from weather 
conditions 
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Table 6 Usage of ESA CCI SM for (hydro)meteorological applications. Modified and extended 
from Dorigo et al. (2017). 

(Hydro)meteorological applications 

Main purpose References 
Motivation for 

using ESA CCI SM 
Limitations identified 

NWP model 
evaluation 

Arnault et al. (2016); Osuri et al. (2020); 
Massoud et al. (2023) 

Not mentioned Discrepancy in scale 

Supporting NWP 
land surface 
scheme 
improvements 

Section 4.6 of Dorigo et al. (2017) Long-term 
dataset required 
for robust 
evaluation of land 
surface scheme 

Spatial data gaps for 
densely vegetated areas 

Spatial 
representativenes
s of soil moisture 

Nicolai-Shaw et al. (2015) More spatial 
coverage than in-
situ data, 
observation-
based (unlike land 
model output) 

Issues in topographically 
complex terrain and areas 
with dense vegetation 

Assimilation into 
NWP model 

Zhan et al. (2016) Reducing 
uncertainties in 
temperature and 
humidity  

Not mentioned 

Weather risk 
assessment and 
insurance (beside 
droughts, see 
Table 5) 

Wang et al. (2020b); Vroege and Finger 
(2020); Eltazarov et al. (2023) 

Not mentioned Not mentioned 
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