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Abstract. Our incomplete understanding of clouds and their role in cloud-climate feedbacks leads to large uncertainties in

climate projections. Using causal inference as an unsupervised machine learning method, we aim at systematically analysing

and quantifying causal interdependencies and links between cloud properties and selected cloud-controlling factors. This can

be seen as a first step to better understand how these clouds react to changes in controlling factors as a consequence of climate

change and to investigate to which degree cloud-climate feedbacks simulated by global climate models are realistic. Here, we5

focus on marine stratocumulus (Sc) clouds off the coast of South America.

Our results are qualitatively consistent with the findings of previous studies on marine Sc clouds. In contrast to these studies

we are also able to quantify the causal effects, revealing that sea surface temperature, lower tropospheric stability, surface

sensible heat flux, and 10-m wind speed are the main drivers influencing the properties of marine Sc clouds. While the causal

links between these factors and the cloud properties total cloud cover, total cloud water path, and cloud optical depth show10

similar behaviour, the cloud effective radius remains largely unexplained, suggesting that the background aerosol might play an

important role. In contrast, the cloud top pressure is influenced by all cloud-controlling factors investigated, except the surface

sensible heat flux. Our findings help to quantify the complex relationships between the properties of marine Sc clouds and

relevant cloud-controlling factors.

1 Introduction15

As a key component of the hydrological cycle and the Earth’s radiation budget, clouds play an important role in both weather

and climate. Our incomplete understanding of clouds and their role in cloud-climate feedbacks leads to large uncertainties

in climate projections. To improve the representation of clouds in climate models, it is necessary to investigate and quantify

the processes that control clouds and their micro- and macrophysical properties. One approach is to quantify the influence of

cloud-controlling factors on these properties. As a first step, we focus on one region, the eastern Pacific Ocean west of South20

America, where mainly one cloud type is present, marine Sc clouds. The processes controlling marine stratocumulus clouds

are already well investigated, which allows a consistency check of the results obtained by applying an unsupervised machine

learning method in this study.
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Marine Sc clouds cover vast areas of the cooler regions of subtropical and mid-latitude oceans on the western side of

the continents, where their coverage can exceed 50% annually (Wood, 2012). These low-level clouds reflect incoming solar25

radiation, leading to a net cooling effect and contributing significantly to the radiation budget. These clouds form when warm,

moist air meets cold ocean surfaces, in the boundary layer, often capped by a temperature inversion stabilising the atmosphere.

At night, the cloud tops radiate heat into space, a cooling effect triggering vertical, turbulent mixing within the cloud and

helping keep them low and widespread. During the day, the sunlight weakens the inversion, reducing turbulence and leading

to cloud dissipation. The evolution of marine Sc clouds is driven by atmospheric dynamics, radiation, and oceanic processes,30

with sunlight and large-scale atmospheric processes influencing their life-time. Changes in their coverage or thickness can

significantly impact Earth’s energy balance, but their reaction to a warming climate remains uncertain.

Cloud controlling factors (CCFs) influence the formation, growth, and life-time of clouds (Stevens and Brenguier, 2009).

Key factors include temperature and humidity, which determine cloud formation once saturation is reached. Vertical air motion,

such as updrafts and subsidence, affects cloud formation and growth, with convective motion leading to cumulus type clouds,35

and descending air leading to dissipating clouds. Wind patterns also play a role, with strong winds shearing clouds and weak

winds allowing them to form. Atmospheric stability influences cloud formation, with unstable conditions favouring cumulus

and cumulonimbus clouds and stable stratification leading to stratocumulus and altocumulus clouds. Other factors include the

large-scale circulation, such as low- and high-pressure systems, radiation, topography, oceanic and land surface conditions, and

pollution/aerosols.40

Using causal inference (Runge et al., 2023a) as an unsupervised machine learning method we aim to systematically analyse

and quantify causal interdependencies and links between cloud properties and their CCFs by causal effect estimation. Causal

discovery aims to find and quantify causal interdependencies and dynamical links inside a system such as the Earth’s climate

(Runge et al., 2019). This approach goes beyond correlation-based measures by systematically excluding common drivers and

indirect links.45

This study employs causal inference to examine the links between cloud properties and CCFs, which impact cloud formation

and their temporal evolution. Causal graphs are estimated from time series data of cloud properties and CCFs from satellite and

reanalysis datasets, averaged over selected geographical regions and cloud regimes. Causal effect estimation is used to quantify

the strength of individual links in the resulting causal graphs. Section 2 details the satellite and reanalysis data used. Section 3

introduces the "causal inference" method in more detail. Section 4 presents the results. A summary, a discussion of the choice50

of free parameters for the causal discovery algorithm and an outlook are part of Section 5.

2 Data

In our study, we focus on the following CCFs: sea surface temperature (SST), vertical velocity at 700 hPa, lower tropospheric

stability (LTS), sea level pressure, water vapour path, sensible heat flux at the surface, 10-m wind speed. The LTS is calculated

by subtracting the potential temperature (θ) at 1000 hPa from the one at 700 hPa: LTS = θ700hPa−θ1000hPa. CCFs are obtained55

from daily values from satellite datasets provided by ESA CCI (Plummer et al., 2017) and the ERA5 reanalysis (Copernicus
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Table 1. Datasets and variables used.

Variable Dataset

Cloud properties

Total cloud fraction (clt), Total cloud water path (clwvi),

ESA CCI CloudCloud optical depth (cod), Cloud effective radius (reff),

Cloud top pressure (ctp)

Cloud-controlling factors

Sea surface temperature (tos) ESA CCI SST

Water vapour path (prw) ESA CCI Watervapour

Vertical velocity at 700 hPa (wap700), Lower tropospheric stability (LTS),

ERA5Sea-level pressure (psl), Sensible heat flux at the surface (hfss),

10-m horizontal wind speed (sfcWind)

Climate Change Service), see Table 1 and subsections below for details. As cloud properties, we consider total cloud cover,

total cloud water path (liquid + ice), cloud optical depth, cloud effective radius, and cloud top pressure, which are all taken

from the ESA CCI Cloud (Stengel et al., 2020) dataset (see below).

We use five years of daily data from 2003 to 2007. The data were reformatted to a common format for use with ESMValTool60

(Eyring et al., 2020; Righi et al., 2020; Lauer et al., 2020; Weigel et al., 2021), which provides downloading and reformatting

scripts (so-called “CMORizers”) for all data analysed in this study.

2.1 ESA CCI datasets

For this study, we use three datasets from the European Space Agency’s Climate Change Initiative (ESA CCI; e.g., Hollmann

et al., 2013) which are described below.65

2.1.1 ESA CCI Cloud

The version 3 cloud datasets of ESA CCI CLOUD used in this study are based on data retrieved from Advanced Very High

Resolution Radiometer (AVHRR) afternoon measurements (post meridiem – PM) aboard satellites of the National Oceanic and

Atmospheric Administration (NOAA) Polar Operational Environmental Satellite (POES) missions (Stengel et al., 2020). The

datasets contain a comprehensive set of cloud properties and radiative fluxes on a global grid covering the time period 198270

through 2016. Level 3U data (daily instantaneous data) from the ascending orbit are coarse-grained to a horizontal resolution

of 0.5◦ x 0.5◦. Variables used are total cloud fraction (clt), total cloud water path (liquid + ice, clwvi), cloud optical thickness

(cod), cloud particle effective radius (reff) and cloud-top pressure (ctp). The retrievals provide cloud-top pressure, cloud particle

effective radius and cloud optical thickness using measurements at visible, near-infrared and thermal infrared wavelengths. The

total cloud water path is calculated from cloud particle effective radius and cloud optical thickness.75
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2.1.2 ESA CCI SST

This ESA CCI dataset version 3.0 provides global sea surface temperature (SST) data in the period 1980 through 2021 derived

from three series of thermal infra-red sensors: the Advanced Very High Resolution Radiometers (AVHRRs), the Along-Track

Scanning Radiometers (ATSRs), and the Sea and Land Surface Temperature Radiometers (SLSTRs); and two microwave

sensors: the Advanced Microwave Scanning Radiometers (AMSR) (Embury et al., 2024). We use the Level 4 SST CCI analysis80

product which combines observations from all sensors to produce a global, gridded, gap-free estimate of daily mean SST (Good

and Embury).

2.1.3 ESA CCI Watervapour

In the ESA CCI Watervapour project the dataset CM SAF/CCI TCWV-global (COMBI) (Schröder et al.) was created. It

combines microwave and near-infrared imager-based TCWV values over the ice-free ocean as well as over land, coastal ocean,85

and sea ice. For this study, we use the water vapour path of the version 3.1 dataset with a spatial resolution of 0.5◦x0.5◦ and a

daily temporal resolution (daily means).

2.2 ERA5

The European Centre for Medium-Range Weather Forecasts (ECMWF) fifth-generation reanalysis ERA5 is based on four-

dimensional variational (4D-Var) data assimilation and uses Cycle 41r2 of the Integrated Forecasting System (IFS) (Dee et al.,90

2011). In this study, ERA5 data obtained from the Copernicus Climate Change Service Climate Data Store (CDS) (Copernicus

Climate Change Service) are used. The ERA5 dataset used here has a horizontal resolution of 0.25◦x0.25◦ grid. For more

details on the ERA5 dataset, we refer to (Hersbach et al., 2020). Here, we use daily means calculated from hourly data of

the variables vertical velocity at 700 hPa (wap700), sea-level pressure (psl), sensible heat flux at the surface (hfss) and 10-m

horizontal wind speed (sfcWind) and the lower tropospheric stability derived from the potential temperature (see above).95

2.3 Preprocessing of data

We focus in this analysis on the marine Sc region over the Southeast Pacific, which is defined as all ocean grid cells in the

geographical region 75◦- 95◦W, 10◦- 30◦S (Figure 1). The region is divided into 5◦× 5◦ grid boxes. Within each of these boxes,

clouds can be assumed to be in equilibrium with their large-scale environment at this horizontal scale (Klein et al., 1995). As

a basis for the PCMCI framework applied here (see Section 3), we pool the time series of all 16 5◦× 5◦ grid box averages100

over the Southeast Pacific west of South America (Figure 1). The PCMCI algorithm then calculates the causal links with the

information from all 16 grid boxes.

To remove the annual cycle as an obvious confounder in the PCMCI causal discovery analysis, anomalized time series are

needed. Therefore, we calculate a smoothed annual cycle from the mean daily data averaged over all 5 years and subtract it

from the original data. Afterwards, the data are detrended. This results in 12 individual time series per 5◦×5◦ box, 5 of the105
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Figure 1. Marine stratocumulus region over the Southeast Pacific analysed in this study divided into 16 5◦x5◦ boxes (75◦- 95◦W, 10◦- 30◦S)

different cloud properties and 7 of the individual cloud controlling factors (Figure 2). All time slices of the data where missing

values occur in any variable are dismissed while consistently handling time lags.

3 Method

For all causal inference analyses in this study (Runge et al., 2023a), the Python module TIGRAMITE (https://github.com/

jakobrunge/tigramite) is used. TIGRAMITE features a number of constraint-based causal discovery methods from the PCMCI110

framework to reconstruct causal time series graphs from discrete or continuously-valued time series through conditional inde-

pendence testing. Different algorithm variants and accompanying conditional independence tests allow to adapt the method to

different choices of assumptions. The quantification of (total, conditional, and mediated) causal effects based on the estimated

causal graphs is also integrated in TIGRAMITE.

3.1 Causal discovery115

Here, we apply the causal discovery method LPCMCI (Gerhardus and Runge, 2020), which can learn time series graphs (up to

the Markov equivalence class) under the standard assumptions of the Faithfulness and the Markov condition (Gerhardus and

Runge, 2020) in addition to causal stationarity. Specifically, LPCMCI can also detect the effect of unobserved confounders,

which cannot easily be ruled out in our case. LPCMCI iteratively applies conditional independence testing and logical orien-

tation rules. Like PCMCI+ (Runge, 2020), it first learns lagged parents in order to improve recall and achieve well-calibrated120

conditional independence tests; for more details, see Gerhardus and Runge (2020). LPCMCI seeks to learn a time series di-

rected partial ancestral graph, which captures the causal time-lagged as well as contemporaneous relationships among the

observed variables and can contain directed (→) and bidirected (↔) edges, as well as (partially) unoriented edges ◦→ and/or

◦-◦. Bidirected arrows imply the presence of unobserved confounding, while directed edges imply causal links (potentially

mediated via unobserved variables, and potentially with additional unobserved confounding). We apply robust partial corre-125
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Figure 2. Time series of the 12 deseasonalized and anomalized variables averaged over the 5◦× 5◦ boxes (see Figure 1). The x-axis gives the

days since 1 January 2003. From top to bottom: clt (%), clwvi (kg m−2), cod (1), reff (µm), ctp (hPa), tos (◦C), wap700 (Pa s−1), lts (K), slp

(Pa), prw (kg m−2), hfss (W m−2), and sfcWind (m s−1) (see 1 for variable definitions).

lation (RobustParCorr) as a conditional independence test, which is valid for variables related with linear dependencies, but

with potentially non-Gaussian noise distributions. RobustParCorr transforms the data to a normal distribution before a standard

partial correlation test. The partial correlation is then estimated with ordinary least squares (OLS) regression, and a test for

non-zero linear Pearson correlation on the residuals.
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To improve the statistical robustness, we combine LPCMCI with a bootstrap aggregation (Debeire et al., 2024) (also im-130

plemented in TIGRAMITE). The bootstrap approach is designed for time series causal discovery and preserves the temporal

dependencies and time lag structure. Furthermore, next to allowing for a quantification of edge confidence, an aggregation

(bagging) of the bootstrapped graphs by majority voting is given, which improves their precision. A value of boot_samples =

100 is chosen for this study.

As free parameters of LPCMCI we used: (1) pc_alpha = 0.05 defines the significance level of the conditional indepen-135

dence tests, (2) tau_max = 1 indicates the maximum considered time lag for the causal time series graph of one day, and (3)

n_preliminary_iterations = 3 determines the number of causal discovery iterations in LPCMCI (the more, the better, but we

chose 3 for computational efficiency). See Section ?? for a discussion of the choice of these free parameters. Additionally,

knowledge about existing or non-existing links can be specified via the definition of link_assumptions, but was not used in this

study.140

3.2 Causal effect estimation

Based on the estimated causal graph, we further employ causal effect mediation to quantify the strength of causal links. To

this end, we use the path method (?Runge et al., 2015), which requires knowledge of a directed time series graph without

bidirected or unoriented edges. While LPCMCI allows to detect bidirected edges, the resulting graphs did not contain any of

these. Furthermore, in our case all links got oriented. Assuming that the resulting directed links are not confounded, we can145

then use the path method on the resulting causal graphs. In the path method all dependencies are assumed to be linear and the

directed causal effect (path coefficient) of each link is estimated by regressing each variable on its parents. Total and mediated

causal effects of a node Xt−τ on a node Yt, potentially mediated through Mt−τ ′ can then be estimated as the sum over the

products of path coefficient along all causal paths from Xt−τ to Yt, potentially restricted to only those causal paths that pass

through Mt−τ ′ . Confidence intervals were estimated via a bootstrap procedure.150

4 Results

Applying LPCMCI, including the extension of the bootstrapping aggregation (Section 3.1) and the linear mediation model to

quantify the direct causal effects (Section 3.2) results in a rather convoluted graph (Figure 3). It shows all existing links in

the complex system of cloud controlling factors and cloud properties. For further analysis, we extract links showing the effect

of cloud controlling factors on cloud properties from this graph. The total (direct + mediated) effect is displayed in Figure 4,155

which shows the link strengths as absolute changes in the expected value of the cloud property caused by a perturbation of the

cloud controlling factor by one standard deviation. The effects are shown for the contemporaneous lag and the lag of one day.

The amplitudes or the standard deviations of each variable are shown in Table 2.

The results show a strong negative correlation between sea surface temperature and cloud cover, cloud total water path, and

cloud optical depth, which is consistent with previous research (e.g., Klein et al., 2018; Naud et al., 2023; Wood, 2012). This160

negative correlation can be attributed to the upward expansion and warming of the boundary layer that occurs as sea surface
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Figure 3. Full causal graph including estimated link strengths showing all links found between all cloud controlling factors and cloud

properties.

Table 2. Mean values and standard deviation (STD) of all variables.

Variable Mean STD

total cloud fraction 66.59 % 20.17 %

total water path 60.27 g m−2 25.82 g m−2

cloud optical depth 6.09 2.51

cloud effective radius 14.44 µm 3.09 µm

cloud top pressure 862.43 hPa 77.80 hPa

sea surface temperature 293.60 K 0.52 K

vertical velocity at 700 hPa 0.046 Pa s−1 0.039 Pa s−1

lower tropospheric stability 21.55 K 2.13 K

sea level pressure 1017.54 hPa 2.06 hPa

water vapour path 20.39 kg m−2 3.15 kg m−2

sensible heat flux at surface -11.79 W m−2 5.60 W m−2

surface wind speed 6.93 m s−1 1.80 m s−1
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Figure 4. Total (direct + mediated) causal effect of cloud controlling factors on cloud properties for each cloud property. From left to right:

clt (%), clwvi (g m−2), cod (1), reff (µm), and ctp (hPa). The top row shows the results for the contemporaneous lag, the bottom row for the

lag of one day.

temperature rises (Klein et al., 2018). This, in turn, inhibits cloud formation and reduces persistence, leading to a significant

decrease in cloud fraction. Specifically, our analysis reveals that a one-standard-deviation increase in sea surface temperature

(approximately 0.5 K; see Table 2) results in an absolute decrease in cloud fraction of 6% on the same day and 3% one day

later, as illustrated in Figure 4. In contrast to total cloud water path and cloud optical depth, cloud top pressure exhibits a slight165

increase with increasing SST.

A positive correlation is found between the vertical velocity at 700 hPa and total cloud fraction, consistent with established

knowledge. In environments characterized by strong subsidence, cloud fraction tends to be high because of a strong inversion

layer, which stabilizes the cloud layer (Klein et al., 2018). This relationship is more pronounced after a one-day lag, when an

increase in subsidence (measured by the vertical velocity at 700 hPa) by one standard deviation (approximately 0.039 Pa s−1)170
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leads to an absolute increase in total cloud fraction of more than 3%. As an additional effect, the cloud top pressure rises by

10 hPa on the same day and by 5 hPa one day later. However, the impact of changes in the subsidence on total water path

and cloud optical depth is complex. On the same day, increased subsidence leads to a reduction in both parameters, as the air

is more strongly warmed and dried. In contrast, after a one-day lag, the strengthening of the inversion layer associated with

subsidence results in an increase in cloud water content and, consequently, cloud optical depth. This suggests a nuanced role of175

the strength of the subsidence in modulating cloud properties, with both, fast (immediate) and slow (delayed) effects on cloud

properties.

The lower tropospheric stability also exerts a profound influence on all cloud properties (Figure 4). It is well established

that an increase in lower tropospheric stability, which is typically related to a stronger inversion, effectively traps moisture

within the marine boundary layer by reducing mixing, thereby leading to an increase in cloud cover (Klein et al., 2018). Our180

analysis reveals that this effect of an in increase in LTS is also pronounced on total cloud water path and cloud optical depth.

The impact is slightly more pronounced when allowing for a one-day lag, when an increase in lower tropospheric stability

of approximately 2 K results in absolute increases of cloud fraction by about 5%, total water path by nearly 0.004 g m−2,

and cloud optical depth by almost 0.5. Furthermore, the lower tropospheric stability exhibits the most significant effect on the

cloud effective radius, with an increase in LTS of one standard deviation leading to a decrease of 0.25 and 0.35 µm on the same185

day and after a one-day lag, respectively. In summary, lower tropospheric stability plays a crucial role in modulating Sc cloud

properties.

Sea-level pressure only shows a weak positive link to total cloud cover, the total water path and the cloud optical depth.

However, its impact on cloud top pressure is more notable, particularly after a one-day lag. Specifically, an increase in sea-

level pressure of approximately 2 hPa leads to a corresponding increase in cloud top pressure of around 6 hPa. This suggests190

that changes in sea-level pressure have a delayed effect on the vertical structure of clouds, with higher sea-level pressure

resulting in lower cloud tops (∼50 m).

Water vapour path has only small effects on cloud cover, cloud water path and cloud optical depth, which are found to be

slightly negative. Only for the cloud top pressure, we find a strong influence. Specifically, an increase in average atmospheric

humidity leads to a significant rise in cloud top heights, indicating that more humid conditions favour higher boundary layer195

clouds.

The sensible heat flux at the surface describes the transfer of heat between the Earth’s surface and the atmosphere driven by

turbulent air motion excluding heat transfer resulting from phase changes or water such as condensation or evaporation (Naud

et al., 2023). Figure 4 shows a strong negative total causal effect of hfss on cloud cover, cloud water path, and cloud optical

depth on the same day. This is expected because a positive sensible heat flux (warming) leads to a more unstable atmosphere,200

promoting cloud formation and growth. An increase in the sensible heat flux by 5.6 W m−2 results in an absolute decrease of

5% in cloud cover, a decrease of 0.003 g m−2 in cloud water path, and an almost 0.4 unit decrease in optical depth. The effects

on other cloud properties and the lagged impact after one day are significantly smaller.

The positive causal link between surface wind speed and cloud occurrence is most pronounced at a lag of one day. Increased

surface wind speed enhances surface-driven shear mixing, which in turn increases the latent heat flux and promotes cloud205
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formation (Naud et al., 2023). An increase in surface wind speed by one standard deviation (i.e. 1.8 m s−1) results in a 4%

increase in cloud cover, an increase of nearly 0.004 g m−2 in cloud water path, and an approximately 0.3 unit increase in cloud

optical depth. This is accompanied by a decrease of 4 hPa in cloud top pressure, which corresponds to higher cloud tops by

about 30 m.

The most important causal effects on cloud properties are related to sea surface temperature, lower tropospheric stability,210

sensible heat flux at the surface and surface wind speed. From all cloud-controlling factors considered in this study, only lower

tropospheric stability has a significant causal effect on the cloud effective radius. For the cloud top pressure also the vertical

velocity at 700 hPa has a strong influence.

5 Discussions and Conclusions

To gain a deeper understanding of the underlying mechanisms determining observed properties of marine Sc clouds, we applied215

causal inference techniques to discover causal relationships and subsequently quantified their effects.

The links found between cloud-controlling factors and cloud properties are in agreement with previous studies on marine Sc

clouds, lending credibility to our findings. In addition, we were able to quantify the causal effects on all five considered cloud

properties. Specifically, our analysis revealed that the main influences on cloud properties are exerted by changes in sea surface

temperature, lower tropospheric stability, sensible heat flux at the surface, and near-surface wind speed. In detail, the strength220

of the causal links to the three cloud properties, total cloud cover, total cloud water path and cloud optical depth, is of a similar

relative magnitude for each of these three cloud-controlling factors with small variations. There is a strong negative link on the

same day with sea surface temperature with a decrease of about 6% in cloud fraction, about 0.004 g m-2 in total water path and

about 0.4 in optical depth by an increase of approximately 0.5 K. The links with a time lag of one day are about half as strong.

Also, there is a strong negative link originated by the surface heat flux with a decrease on the same day of about 5% in cloud225

fraction, 0.003 g m−2 in total water path and 0.4 in optical depth by an increase of approximately 5.6 W m−2. With a time lag

of one day, however, these negative links are much smaller. In contrast, there is a strong positive link from lower tropospheric

stability and near-surface wind speed with these three cloud properties for both lags. An increase of lower tropospheric stability

by about 2 K leads after one day to an increase of about 5% in cloud fraction, 0.004 g m−2 in total water path and 0.5 in optical

depth. The causal links for the same day are slightly less strong. Similarly, for near-surface wind-speed, the links are stronger230

with a lag of one day than on the same day. An increase of near-surface wind speed of about 1.8 m s−1 leads to an increase

of about 4% in cloud fraction, about 0.004 g m−2 in total water path and about 0.3 in optical depth. On the same day, the

links are about half as strong. In contrast, cloud effective radius is only slightly affected by the lower tropospheric stability, an

increase of LTS by 2 K leads to a decrease in effective radius of about 0.25 and 0.35µm on the same day and with a lag of one

day, respectively. This means that effects on cloud effective radius remain largely unexplained by the cloud-controlling factors235

considered in this study. This suggests that the inclusion of other cloud-controlling factors such as e.g. the properties of the

background aerosol might be necessary to also account for relevant aerosol-cloud interactions. Cloud top pressure is also only
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weakly affected by the cloud-controlling factors investigated here. In contrast to effective radius, cloud top pressure is affected

by all different cloud-controlling factors apart from sensible heat flux at the surface.

One of the challenges in applying causal discovery is the choice of the free parameters. Specifically, these parameters240

include the significance level of the conditional independence tests (pc_alpha), the maximum considered time lag for the

causal graph (tau_max), and the number of iterations in the preliminary phase of LPCMCI (n_preliminary_iterations). We

conducted sensitivity tests to study the effect of varying these parameters.

Our results show that the number of preliminary iterations (n_preliminary_iterations) does not significantly impact the causal

graph, suggesting that the algorithm is rather robust to the specific setting of this parameter. However, the choice of maximum245

time lag (tau_max) does affect the results significantly. We chose tau_max = 1 as marine boundary layer clouds respond rather

rapidly to changes in their environment, typically within hours. As the satellite measurements of the cloud properties are taken

at the overpass times specific to the satellite, not all parameters are captured at the same time of the day. For this reason we

also consider links with a time lag of one day. To test the sensitivity, we varied the hyperparameter tau_max in the range of

[0, 1, 2]. When using tau_max = 0, several links are missing, e.g. no causal influence by the sensible heat flux on the surface250

on cloud properties is shown. This is expected because these links operate on longer time scales and makes tau_max = 0 an

inadequate choice. When estimating the causal graph for tau_max = 2, we obtain similar link structures as for tau_max = 1.

We also investigated the sensitivity of the results to the exact choice of the significance level of the conditional independence

tests (pc_alpha). Our results show that values of pc_alpha in [0.01, 0.05, 0.1] yield consistent results, with smaller significance

levels providing fewer links but stronger evidence. Nevertheless, the main causal links remain consistent across different values255

of pc_alpha. Therefore, we select a commonly used significance level of pc_alpha = 0.05 for our analysis.

A promising new application of the causal discovery techniques used in this paper is the regime-oriented causal model

evaluation. A process-oriented evaluation of climate models can be conducted by comparing the causal graphs derived from

e.g. satellite and reanalysis data or very detailed and high-resolution models with those generated from climate models used for

climate projections. For this, daily output of cloud properties and cloud-controlling factors from climate models are required260

to investigate the sensitivities of cloud properties to changes in cloud-controlling factors. It can then be quantitatively assessed

whether relevant processes are sufficiently realistic or if important processes are missing. A quantification of the links is

particularly relevant for investigating to which degree cloud-climate feedbacks of marine Sc clouds simulated by global climate

models are trustworthy.

Application of the causal discovery method to other cloud regimes, however, may pose some challenges. Clouds that are265

transported significantly by advection related e.g. to the large-scale atmospheric circulation or frontal systems cannot be re-

garded as stationary. In these cases, it would be necessary to develop a methodology that samples the time series of cloud

properties and cloud-controlling factors along the trajectories of the clouds. Application of this method would also become

much more complex if not impossible in case of a varying mixture of different cloud types. This applies in particular to coarse-

resolution grid boxes of many climate models in which different cloud types are frequently mixed during the course of one270

day. In this case, a method to distinguish between the different cloud type in a grid box would be needed.
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Code and data availability. The code is written in Python and will be available under Zenodo. The ESA CCI Cloud and ESA CCI SST data

are freely available at can be obtained from https://public.satproj.klima.dwd.de/data/ESA_Cloud_CCI/CLD_PRODUCTS/v3.0/L3U/ and

https://dap.ceda.ac.uk/neodc/eocis/data/global_and_regional/sea_surface_temperature/CDR_v3/Analysis/L4/v3.0.1/, respectively. For the ESA

CCI Watervapour data, a registration is needed before the data can be downloaded from https://wui.cmsaf.eu/safira/action/viewDoiDetails?275

acronym=COMBI_V001. ERA5 data are provided by the ECMWF at https://doi.org/10.24381/cds.adbb2d47, which requires registration.
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tory: https://doi.org/10.5281/zenodo.7747255 (Runge et al., 2019, 2023b).
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