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Anthropogenic Water Use (CCI-AWU) 

1. Introduction 

1.1. The CCI-AWU project 

The closure of the Earth’s water cycle (as well as the energy balance and the carbon cycles) through satellite 

Earth Observation (EO) represents one of the outstanding scientific challenges highlighted by the Global 

Climate Observing System (GCOS). Required standards of accuracy are fixed to 5% and annual timescale. To 

this end, a suite of essential climate variables (ECvs) has been defined to understand the evolution of 

climate and to assess the potential derived risks. However, if targets at annual timescale can generally be 

reached, larger uncertainties are observed for sub-annual and sub-continental time and spatial scales, 

respectively (Dorigo et al., 2021; Rodell et al., 2015). In this context, the development of an ECV that 

includes the information on anthropogenic water use (AWU) can help in advancing the proper closure of 

the water cycle at higher spatial and temporal scales. In the ESA Climate Change Initiative Anthropogenic 

Water Use (CCI-AWU) precursor project, AWU is more specifically intended as agricultural water allocated 

for irrigation, which represents the largest anthropogenic water use, thus making irrigation being the most 

impactful human activity on the hydrological cycle. FAO (2016) estimated that irrigation, worldwide, 

accounts for more than 70% of water withdrawn from surface (i.e., rivers, lakes) and subsurface (i.e., 

groundwater) water sources and these estimates are expected to increase in the near future due to an 

increase in population and in food production, especially over arid and semi-arid regions (McDermid et al., 

2023). In this context, the main data source identified by GCOS for tracking AWU is from FAO’s AQUASTAT. 

However, AQUASTAT provides survey-based irrigation estimates which do not meet the GCOS 

requirements, i.e., data are provided on a 5-years interval instead of yearly and are available every 2-3 

years. 

The overarching objective of Climate Change Initiative – Anthropogenic Water Use (CCI-AWU) precursor 

project is to derive long-term (i.e., at least twenty years) AWU time series for selected regions using several 

approaches exploiting remote sensing observations, as a proof-of-concept of the feasibility towards a 

proper AWU ECV product. 

The CCI-AWU project involves a consortium led by CNR-IRPI and comprises the following organisations: 

1. Vienna University of Technology (TU Wien), hereinafter TUWIEN;  

2. KULeuven, Department of Earth and Environmental Sciences, Division Soil and Water 

Management (KATHOLIEKE UNIVERSITEIT LEUVEN), hereinafter KULeuven;  

3. University of Perugia (UNIVERSITY OF PERUGIA), hereinafter UNIPG 

4. Politecnico di Milano (POLITECNICO DI MILANO), department of Civil and Environmental 

Engineering, hereinafter POLIMI 

 

1.2. Scope of this report 

The purpose of this document is the description of each retrieval algorithm used to derive the 

Anthropogenic Water Use products from input satellite data, i.e., the Algorithm Theoretical Basis Document 

(ATBD). The ATBD includes: 1) all input satellite and ancillary data, 2) the retrieval algorithms used, and 3) 

a general overview of the processing chain for retrieval of the data products. 

 



 

4000142449/23/I-NB 

  Page 6 

______________________________________________________________________________________ 

 

Anthropogenic Water Use (CCI-AWU) 

1.3. Applicable Documents 

● Proposal. 

● Deliverable D2. Report explaining the criteria for selecting the test regions. 
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Anthropogenic Water Use (CCI-AWU) 

2. ATBD SM-based inversion approach 

The method relies on the inversion of the soil water balance for estimating irrigation water use; it is an 

evolution of the SM2RAIN algorithm (Brocca et al., 2014) originally born to retrieve rainfall rates by inverting 

the soil moisture signal, i.e., by using the soil as a natural rain gauge. Over agricultural areas the total 

amount of water entering the soil (the actual algorithm output) is determined by the sum of rainfall and 

irrigation rates. Hence, by removing rainfall rates from the algorithm output, it is possible to estimate the 

amount of water applied for irrigation. The method was tested in previous applications exploiting coarse 

resolution (Brocca et al., 2018; Jalilvand et al., 2019), high-resolution (Dari et al., 2020; 2022; 2023; 2024), 

and in-situ (Filippucci et al., 2020) soil moisture data. In the framework of the European Space Agency (ESA) 

Irrigation+ project (https://esairrigationplus.org/), the SM-based inversion approach was implemented 

over selected test sites to produce the first-ever regional data sets of irrigation water use retrieved from 

satellite (Dari et al., 2023). The method was later implemented over the main agricultural areas falling 

within the Mediterranean basin in the ESA 4DMED-Hydrology project (https://www.4dmed-

hydrology.org/). In a recent study, Dari et al. (2024) proved the feasibility of building an operational system 

based on the SM-based inversion approach for the management of agricultural water by leveraging satellite 

observations. 

The soil water balance equation can be expressed as follows: 

𝑛𝑍 𝑑𝑆(𝑡)/𝑑𝑡 = 𝑖(𝑡) + 𝑟(𝑡) − 𝑔(𝑡) − 𝑠𝑟(𝑡) − 𝑒(𝑡)      (1) 

In which 𝑛 [-] is the soil porosity, 𝑍 [mm] is the soil layer depth, 𝑑𝑆(𝑡)/𝑑𝑡 [-] is the variation of relative soil 

moisture, 𝑆(𝑡), in time, 𝑡 [day], 𝑖(𝑡) [mm/day] is the irrigation rate, 𝑟(𝑡) [mm/day] is the rainfall rate, 𝑔(𝑡) 

[mm/day] is the drainage, 𝑠𝑟(𝑡) [mm/day] is the surface runoff, and 𝑒(𝑡) [mm/day] is the actual 

evapotranspiration rate. The components of the soil water balance considered in the SM-based inversion 

approach are shown in Figure 2.1. 

 

 

Figure 2.1. Components of the soil water balance considered in the SM-based inversion approach. 

Eq. (1) can be reformulated as follows: 

𝑊𝑖𝑛 (𝑡) = 𝑍 ∗ 𝑑𝑆(𝑡)/𝑑𝑡 + 𝑔(𝑡) + 𝑠𝑟(𝑡) + 𝑒(𝑡)        (2) 

https://esairrigationplus.org/
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In which 𝑊𝑖𝑛 (𝑡) [mm/day] indicates the total amount of water entering the soil, i.e. 𝑊𝑖𝑛(𝑡)  = 𝑖(𝑡) +

𝑟(𝑡) and 𝑍 ∗= 𝑛𝑍 [mm] is the water capacity of the soil layer. The surface runoff is assumed to be negligible 

(Brocca et al., 2015) and the drainage term is linked with soil moisture through the following potential law 

(Brocca et al., 2014): 

𝑔(𝑡) = 𝑎𝑆(𝑡)𝑏             (3) 

In which 𝑎 [mm] and 𝑏 [-] indicate drainage parameters. The actual evapotranspiration term is expressed 

as the potential evapotranspiration rate, 𝑝𝑒(𝑡), limited by the available water content: 

𝑒(𝑡) = 𝐹𝑆(𝑡)𝑝𝑒(𝑡)           (4) 

Where 𝐹 [-] is a scaling factor (Dari et al., 2023). Hence, Eq. (2) can be written as follows: 

𝑊𝑖𝑛 (𝑡) = 𝑍 ∗ 𝑑𝑆(𝑡)/𝑑𝑡 + 𝑎𝑆(𝑡)𝑏  + 𝐹𝑆(𝑡)𝑝𝑒(𝑡)      (5) 

With 𝑍 ∗ , 𝑎, 𝑏, and 𝐹 parameters to be calibrated. According to the strategy presented in Dari et al. (2024), 

the algorithm parameters are calibrated against rainfall (i.e., by optimising the method performances in 

properly reproducing rainfall amounts) by masking out days with rainfall rate < 1 mm during the irrigation 

seasons (hence, potential irrigation days). In such periods, the left term on Eq. (5) is supposed to be 

determined by rainfall only. Once the algorithm parameters are calibrated, irrigation estimates are 

produced during the irrigation season. In this case, both rainfall and irrigation rates can be involved in 

determining the left term of Eq. (5) and irrigation amounts can be derived by removing rainfall rates from 

the total output, 𝑖(𝑡)  =  𝑊𝑖𝑛(𝑡) − 𝑟(𝑡). Eventual negative irrigation rates are set equal to zero (Jalilvand 

et al., 2019); in order to discard negligible irrigation estimates due to random errors, a threshold value for 

the ratio between weekly estimated irrigation and weekly rainfall equal to 0.2 is adopted. 

Irrigation and rainfed seasons over the different study sites, useful to delineate the calibration periods, are 

determined on the basis of indications derived by Portmann et al. (2008) and ancillary information. 

Estimates of irrigation water use are produced during irrigation seasons and over areas equipped for 

irrigation. Such information is derived from the latest version of the global map of Areas Equipped for 

Irrigation (AEI) referring to the year 2015 (Mehta et al., 2022); only pixels with AEI higher than 5% are 

considered. Table 2.1 summarises the irrigation seasons considered for each study area, hence, the periods 

in which irrigation estimates are available. 

Table 2.1. Irrigation seasons considered for each study area. 

 Adopted irrigation season 

Murray-Darling basin (Australia) September-April 

CONUS May-September 

India November-June: Rabi (November-March) + Zaid (April-June) 

Ebro basin (Spain) April-October 
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It is noteworthy that Kragh et al. (2023) reported irrigation occurring over Northwestern India during the 

monsoon season as well. Such a phenomenon interests areas characterised by arid or semi-arid climate. 

Hence, the development of a second version of the data set over India in which the temporal mask is not 

applied to areas falling in arid or semi-arid zones is under evaluation.  

For all the selected study sites, five soil moisture products are tested: Advanced SCATterometer (ASCAT), 

Level 2 Soil Moisture Ocean Salinity (SMOS L2), Level 2 Soil Moisture Active Passive (SMAP L2), and Climate 

Change Initiative (CCI) Combined (CCI COMBINED) and Passive (CCI PASSIVE) data sets. The Global Land 

Evaporation Amsterdam Model (GLEAM) v3.7b (Martens et al., 2017) is used as a source for potential 

evapotranspiration data, while the ERA5 (European ReAnalysis v5) (Hersbach et al. 2020) lowest model level 

forecasts are considered for rainfall rates. Simulations leveraging different soil moisture products cover 

different periods because of the temporal coverage of each sensor. However, for all the simulations half of 

the total time series has been used for the calibration of the algorithm parameters; the irrigation estimates 

cover the whole period of data availability. Note that the overlapping of calibration and validation periods 

during the first half of the time series does not affect the reliability of the results in terms of irrigation 

estimates because of the complementarity between rainfed and irrigation seasons. Figure 2.2 provides an 

overview of the experiments carried out. 

 

Figure 2.2. Length of irrigation time series available for the considered soil moisture products. The fielded portion of 

the bar represents the calibration period. 
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3. ATBD SM-based delta 

3.1. Introduction 
Monthly irrigation datasets with a duration of 17 and 20 years were produced for the study areas CONUS, 

India, Ebro basin (Spain), and Murray-Darling basin (Australia) using the SM-DELTA algorithm. This 

document presents the algorithm, the data used, the masks used, and the characteristics of the irrigation 

datasets generated. The flowchart in Figure 3.1 shows the steps involved in obtaining these datasets. First, 

soil moisture (SM) and evapotranspiration (ET) datasets were selected and collected, then six irrigation 

datasets were generated with a combination of three SM products and two ET products. Then, spatial and 

temporal masks are applied to mask any irrigation signal where and when we know there shouldn't be any. 

The final six long-term irrigation datasets (17 years and 20 years) are obtained, and can then be validated 

with in situ irrigation data. 

 

Figure 3.1.: Flowchart of the SM-DELTA approach for generating six long-term irrigation datasets using satellite and 

model soil moisture, evapotranspiration products, and spatio-temporal masks, validated against in situ irrigation 

data. 
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3.2. The SM-DELTA approach 

 

3.2.1. Classic approach (only SM) 

The SM-DELTA approach was introduced by Zaussinger et al. (2019) and first aimed to estimate irrigation 

by analyzing differences between satellite soil moisture change (ΔSMsat) and modeled soil moisture change 

(ΔSMmod). This method is based on the idea that the change in ΔSMmod is only due to precipitation, whereas 

the change in ΔSMsat is due to both precipitation and irrigation. Eq. (1) and Eq. (2) describe this principle. 

The soil water balance equation for SMsat is as follows: 

𝑍 ⋅
𝑑𝑆𝑀𝑠𝑎𝑡

𝑑𝑡
= 𝑃(𝑡) + 𝐼(𝑡) − 𝐸𝑇(𝑡) − 𝑅(𝑡) −  𝛥𝑆𝑟𝑒𝑠𝑡        (1) 

And for modeled SM: 

𝑍 ⋅
𝑑𝑆𝑀𝑚𝑜𝑑

𝑑𝑡
= 𝑃(𝑡) − 𝐸𝑇(𝑡) − 𝑅(𝑡) −  𝛥𝑆𝑟𝑒𝑠𝑡         (2) 

Where P (mm) is precipitation, I (mm) is irrigation, ET (mm) is evapotranspiration, ΔSrest (m3 m-3) is the water 

storage changes below the surface layer including drainage, R (mm) is the runoff, and t is the number of 

days between two observations. Z is the soil depth used to convert SM to water column and is set at 5 cm 

to represent the soil depth detected by the sensor as in Zaussinger et al. (2019) and Zappa et al. (2020, 

2022b, 2024) 

Considering that P, ET, ΔSrest, and R are identical in Eq. (1) and Eq. (2), I can be computed as follow: 

𝐼(𝑡) = 𝑍 ⋅
𝑑𝑆𝑀𝑠𝑎𝑡

𝑑𝑡
− 𝑍 ⋅

𝑑𝑆𝑀𝑚𝑜𝑑

𝑑𝑡
           (3) 

In addition, to avoid false irrigation signals due to noise in the SMsat, irrigation is only triggered if the 

following condition is met. 

𝑆𝑀𝑡
𝑠𝑎𝑡− 𝑆𝑀𝑡−1

𝑠𝑎𝑡

𝑆𝑀𝑡−1
𝑠𝑎𝑡 ≥ 0.12             (4) 

3.2.2. SM-DELTA approach including ET 

Zappa et al (2022b, 2024) proposed to include ET in the SM-DELTA algorithm. Indeed, Eq. (3) is only correct 

if P, ET, ΔSrest, and R are identitic between ETw/irrig (including the irrigation signal) and ETw/o_irrig (not including 

the irrigation signal). However, ET, particularly, can differ considerably between irrigated and rainfed fields 

(Brombacher et al., 2022; van Eekelen et al., 2015). If not accounted for, differences between irrigated and 

rainfed ET can lead to underestimations of irrigation (Zappa et al., 2022b; Kragh et al., 2023). 

To take into account the difference in ET between an irrigated and a non-irrigated pixel, Eq. (3) has been 

modified as follows: 

   (5) 
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With ETw/irrig (mm) the ET data theoretically including irrigation, and ETw/o_irrig (mm) ET data theoretically not 

including the irrigation signal. 

3.3. Data used 

Modeled soil moisture (SMmod) 

The ERA5-Land reanalysis product was used for SMmod (SM without irrigation signal). ERA5-Land, produced 

by the Copernicus Climate Change Service (C3S) of the European Centre for Medium-Range Weather 

Forecasts (ECMWF), provides a multitude of variables related to water and energy cycles over land since 

1978 at a spatial resolution of 9 km and an hourly time step (Muñoz-Sabater et al., 2021). ERA5-Land has 

been selected as SMmod because, being mainly forced by meteorological forecasts, it contains minimal 

signals of human activity such as irrigation. In this study, SMmod data from ERA5-Land were regridded to the 

ESA CCI grid (0.25°) using bilinear interpolation and resampled to a daily scale. 

 

Satellite soil moisture (SMsat) 

The three ESA Climate Change Initiative (CCI) products (Dorigo et al., 2017) are used for SMsat: CCI ACTIVE 

(merge three radar satellites, data available since 1991), CCI PASSIVE (merge 12 radiometer satellites, data 

available since 1978) and CCI COMBINED (merge CCI ACTIVE and CCI PASSIVE satellites, data available since 

1978). These datasets have a 0.25° grid resolution and were selected because they offer the highest 

temporal resolution (greater than SMOS, SMAP, and ASCAT) in the four study areas, providing a temporal 

frequency greater than 3 days, which is essential to ensure good performance with the SM-DELTA approach 

(Zappa et al., 2022b). The SMsat data were rescaled to the ERA5-Land SMmod data using the so-called “mean-

standard” method (as recommended in Escorihuela & Quintana-Seguí (2016), and applied in numerous 

previous work such as Zaussinger et al. (2019), Massari et al. (2015)). 

 

Evapotranspiration not accounting for irrigation (ETw/o_irrig) 

We selected two ET products that theoretically contain no irrigation signal (ETw/o_irrig). One is derived from 

NOAH-MP simulations (Niu et al., 2011) using ERA5 forecasts for meteorological forcing only, thus excluding 

observations that may contain irrigation signals. NOAH-MP data are only available for the CONUS and the 

Murray-Darling basin, and only since 2010. To cover a period starting from 2003 and to cover the study area 

India and Ebro basin, we used the ET data simulated by ERA5-Land. Indeed, an analysis (not shown) carried 

out on CONUS and MURRAY showed that ERA5-Land ET generally follows very similar dynamics to ET 

simulated by NOAH-MP. 

 

Evapotranspiration accounting for irrigation (ETw/irrig) 

We selected two ET products that theoretically take into account irrigation (ETw/irrig). One ETw/irrig product is 

Simplified Surface Energy Balance operational (SSEBop; Senay et al., 2018) using a simplified surface energy 

balance approach based on “wet” and “dry” reference pixels. Wet pixels represent areas with maximum ET 

(typically over well-watered vegetation), while dry pixels represent minimal ET (typically over bare soil or 

stressed vegetation). The temperature difference between these wet and dry reference pixels allows 

SSEBop to scale evapotranspiration across different landscapes based on surface temperature data. 
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The other ETw/irrig product is FLUXCOM (remote sensing only version). FLUXCOM is a machine-learning-

based model trained on ET data from flux tower, and using remote sensing data as predictors, mainly from 

MODIS for variables like vegetation indices and surface temperature. The ET data from FLUXCOM is derived 

from a set of 36 different machine-learning model outputs. 

These two products were selected from a cross-comparison of 6 ET products (GLEAM v3, MOD16, 

FLUXCOM, FLUXCOM_CRUNCEP_V8, SSEBop, ERA5-Land) based on their ability: 

1) To produce more ET than NOAH-MP (the latter being ETw/o_irrig) during irrigated seasons on irrigated 

pixels. 

2) To provide temporal dynamics of ET on irrigated pixels consistent with what might be expected during 

the irrigation season on irrigated pixels.  

3) To generate larger quantities of ET on irrigated pixels during irrigation seasons than on surrounding non-

irrigated pixels. 

4) To provide quantities of ET consistent with precipitation quantities (no several orders of magnitude 

higher or lower than annual precipitation). 

Figure 3.2 shows the seasonal cycles of 7 ET products, including NOAH-MP (dotted black line, representing 

ETw/o_irrig), FLUXCOM (purple line, representing ETw/irrig), and SSEBop (red line, representing ETw/irrig) for the 

highly irrigated California Valley. The precipitation is shown in blue. We can see that only FLUXCOM and 

SSEBop show ET dynamics consistent with the irrigation season occurring from May to October. On the 

other hand, the ET modeled by NOAH-MP decreases from the beginning of the irrigation season. 

 

 

Figure 3.2: Seasonal cycle of seven different ET products and precipitation (blue shaded area) over California Valley. 
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Table 3.1: Summary of SM and ET products, data availability, and characteristics. 

Product 
Irrigation 

signal 

Data 

availability 
Description 

Original resolution 

(resampled to 0.25°) 

ERA5-Land SM No 1978-2023 Reanalysis 9 km 

CCI COMBINED SM Yes 1978-2023 
Merges active and passive 

satellite data 
0.25° 

CCI PASSIVE SM Yes 1978-2023 
Merges 12 passive satellite 

radiometer data 
0.25° 

CCI ACTIVE SM Yes 1991-2023 
Merges 3 active satellite 

radar data 
0.25° 

NOAH-MP ET No 2010-2023 Model simulation 0.25° 

ERA5-Land ET No 1978-2023 Reanalysis 9 km 

SSEBop ET Yes 2003-2023 Energy balance model 1 km 

FLUXCOM ET Yes 2003-2020 Machine learning model 0.0833° 

3.4. Spatial and temporal masks 

3.4.1. Spatial masks 

In order to avoid false irrigation signals in areas where irrigation is not expected, we applied spatial masks. 

Indeed, the behavior of SMsat, SMmod, ETw/irrig, and ETw/o_irrig can differ on land covers different from 

"agricultural and irrigated pixel" and therefore can generate irrigation even though it is known that no 

irrigation has been applied here. 

The mask we used is derived from the Global Map of Areas equipped for irrigation (GMIA) (Figure 3.3; 

Siebert et al., 2015). We spatially resampled the GMIA data (originally at 300 m resolution) to the 0.25° ESA 

CCI grid, and kept only the pixels with more than 5% of their surface area equipped for irrigation. 

 

Figure 3.3: Percentage of land area equipped for irrigation across the CONUS (GMIA dataset, Siebert et al., 2015). 
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3.4.2. Temporal masks 

We applied a temporal mask to eliminate any potential false irrigation signals during periods when no 

irrigation takes place. The masks were applied to match the irrigation seasons. For CONUS, the irrigation 

season runs from May to September, for the Ebro basin from April to October, and for the Murray-Darling 

basin from September to April. For India, we applied different temporal masks according to the type of 

Köppen climate classification. The months corresponding to the monsoon season (July to October) have 

been masked for pixels belonging to climatic classes different than Hot Desert (BWh) and Hot Semi-Arid 

(BSh) (Figure 3.4), to avoid false irrigation signals in humid areas where little irrigation is applied during the 

monsoon season due to high rainfall. We did not apply a temporal mask to pixels belonging to climatic 

classes Hot Desert and Hot Semi-Ari to account for the fact that on these pixels significant amounts of 

irrigation are applied to meet plant needs even during the monsoon season. 

 

Figure 3.4: Hot desert (BWh) and hot semi-arid (BSh) Köppen climate zones in India where no temporal mask is 

applied to allow irrigation even during the monsoon season (July–October). 
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3.5. Description of irrigation datasets 

Table 3.2: Summary of irrigation datasets produced with the SM-DELTA approach: study areas, data periods, spatial 

and temporal masks 

Study area Data period Available datasets Spatial mask Temporal mask 

CONUS 

2003-2022 

(SSEBOP), 

2003-2020 

(FLUXCOM) 

6 datasets: 

CCI COMBINED, CCI 

PASSIVE, CCI ACTIVE 

(combined with 

SSEBOP, FLUXCOM) 

More than 5% of 

pixels equipped for 

irrigation (GMIA) 

May to September 

Ebro 

2003-2022 

(SSEBOP), 

2003-2020 

(FLUXCOM) 

6 datasets: 

CCI COMBINED, CCI 

PASSIVE, CCI ACTIVE 

(combined with 

SSEBOP, FLUXCOM) 

April to October 

Murray-Darling 

2003-2022 

(SSEBOP), 

2003-2020 

(FLUXCOM) 

6 datasets: 

CCI COMBINED, CCI 

PASSIVE, CCI ACTIVE 

(combined with 

SSEBOP, FLUXCOM) 

September to April 

India 2003-2020 

3 datasets 

CCI COMBINED, CCI 

PASSIVE, CCI ACTIVE 

(combined with 

FLUXCOM) 

Variable depending 

on Köppen climate 

class 
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4. ATBD Flux-based approach 

4.1. Introduction 

The FLUX-BASED irrigation retrieval approach leverages the difference between evapotranspiration (ET) 

obtained by closing the water balance (ETFLUX-BASED) and an ET value that theoretically excludes irrigation 

signals (ETw/o_irrig). ETFLUX-BASED is computed at the watershed scale as the residual of precipitation (P) minus 

the Total Water Storage Anomaly (TWSA) and discharge (Q). Numerous studies have demonstrated the 

effectiveness of ETFLUX-BASED in estimating evapotranspiration at the watershed level (see Güntner, 2008; 

Ramillien et al., 2006; Rodell et al., 2015). ETFLUX-BASED uses TWSA, which accounts for all water fluxes, 

including both natural climatic processes—such as precipitation, soil moisture, ice, snow, and runoff—as 

well as human influences on the hydrological cycle—such as irrigation, reservoir management, and 

groundwater extraction (Rodell et al., 2015). TWSA is thus expected to contain irrigation-related signals 

within its measurements. 

Several studies suggest that ETFLUX-BASED indeed includes irrigation signals. For instance, Pascolini-Campbell 

et al. (2020) computed ETFLUX-BASED over large basins in the CONUS region, observing that ETFLUX-BASED was 

higher during the irrigation season in heavily irrigated areas (such as California’s Central Valley) than in ET 

products derived from land surface models. Pascolini-Campbell et al. (2021) compared ETFLUX-BASED across 

several small irrigated watersheds in the western United States and found a correlation between annual 

ETFLUX-BASED values and the proportion of irrigated land within these basins. Given that ETFLUX-BASED 

theoretically contains an irrigation signal, it can be used to compute irrigation at the watershed scale (IFLUX-

BASED) by calculating the difference between ETFLUX-BASED and a modeled ETw/o_irrig. Note that the irrigation 

signal retrieved by this method represents theoretically only the water consumed and transpired by plants, 

excluding any excess water that may have been applied and subsequently drained. 

The flowchart in Figure 4.1 illustrates the steps involved in obtaining IFLUX-BASED. First, the datasets required 

to calculate ETFLUX-BASED are collected, including TWSA, P, Q, watershed boundaries, and ETw/o_irrig. These 

datasets are then preprocessed to obtain monthly values at the watershed scale. ETFLUX-BASED is then 

computed by closing the water balance, and IFLUX-BASED is derived by subtracting ETw/o_irrig from ETFLUX-BASED. 
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Figure 4.1: Flowchart of the FLUX-BASED approach for estimating irrigation, from data acquisition and preprocessing 

to calculation of ETFLUX-BASED and IFLUX-BASED, with validation against ISM-DELTA. 

4.2. FLUX-BASED algorithm 

IFLUX-BASED is defined as the difference between ETFLUX-BASED and ETw/o_irrig. The core component of the algorithm 

is calculating ETFLUX-BASED using a water balance approach, as follows: 

𝐸𝑇𝐹𝐿𝑈𝑋−𝐵𝐴𝑆𝐸𝐷 = 𝑃 − 𝑄 −
𝑑𝑇𝑊𝑆𝐴

𝑑𝑡
         (1) 

where P (mm) is precipitation, Q (mm) is the runoff at the basin outlet minus the runoff at the basin inlet, 

and dTWSA/dt (mm) represents the change in total water storage derived from GRACE TWS data (Ramillien 

et al., 2006). 
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IFLUX-BASED can then be calculated as: 

𝐼𝐹𝐿𝑈𝑋−𝐵𝐴𝑆𝐸𝐷 = 𝐸𝑇𝐹𝐿𝑈𝑋−𝐵𝐴𝑆𝐸𝐷 − 𝐸𝑇𝑤/𝑜_𝑖𝑟𝑟𝑖𝑔         (2) 

where ETw/o_irrig (mm) represents ET that theoretically excludes irrigation signals, derived from a 

combination of ET simulated with the NOAH-MP model (Niu et al., 2011) driven solely by ERA5 forecast 

data as forcing inputs, and ERA5-Land (Muñoz-Sabater et al., 2021) ET data. 

4.3. Data and preprocessing 

Total Water Storage (TWSA) 

Total Water Storage data from the GRACE (2002-2017) and GRACE-FO (since 2018) missions were processed 

by the German Research Centre for Geosciences (GFZ) group as part of the Global Gravity-based 

Groundwater Product project (G3P; https://www.g3p.eu). These data are provided at GRACE mascon 

resolution with a spatial resolution of 0.5° for the period from 2004 to the present. This mascon resolution 

improves upon previous spherical harmonic solutions by reducing leakage errors (Watkins et al., 2015; 

Wiese et al., 2016). Due to technical and maintenance issues, and the transition between GRACE and 

GRACE-FO, data are missing ponctually for some months, and from November 2017 to May 2018. We 

applied a linear interpolation to fill these gaps. 

GRACE TWSA data are provided monthly, but their intervals are not strictly uniform, potentially introducing 

interference from adjacent monthly signals and high-frequency noise artifacts (Landerer et al., 2010). To 

address this, we applied a centered finite difference method to compute dTWSA/dt (Landerer et al., 2010) 

by computing TWSA by differencing values from the preceding and following months, then dividing by 2. 

This method has been validated in similar studies (Landerer et al., 2010; Swann & Koven, 2017). 

Precipitation 

Precipitation data were obtained from the European Centre for Medium-Range Weather Forecasts 

(ECMWF) ERA5 reanalysis, and downloaded from the ECMWF Meteorological Archival and Retrieval Syste 

(MARS) platform. This dataset spans from January 1990 to March 2023 with daily temporal resolution and 

was resampled to the ESA CCI SM grid with a spatial resolution of 0.25°. Daily precipitation values were 

then aggregated to produce monthly precipitation data for each grid cell. 

Discharge 

River discharge data were obtained from the Global Flood Awareness System ERA5 (GloFAS-ERA5; 

http://www.globalfloods.eu/) dataset, a global daily reanalysis of river discharge (Harrigan et al., 2020). 

With a spatial resolution of 0.1°, GloFAS-ERA5 combines runoff from the H-TESSEL-ERA5 land surface model 

with a channel routing model (LISFLOOD), and the simulation outputs are calibrated against discharge 

observations from 1,287 catchments worldwide (see Figure 4.2 for the station locations). 

https://g3p-xxxxx.com/
https://g3p-xxxxx.com/
http://www.globalfloods.eu/
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Figure 4.2: Locations of the 1,287 discharge stations used in GloFAS-ERA5, along with their Kling-Gupta Efficiency 

Skill Score (KGESS) values calculated between GloFAS-ERA5 and in situ station data (figure from Harrigan et al., 

2020). 

To obtain watershed-scale discharge, we developed a tool to select GloFAS-ERA5 grid cells representing the 

watershed outlet and, where applicable, the inlet. Discharge is calculated as the difference between flow 

at the outlet and inlet, with monthly summation applied. 

Basin boundaries 

We used basin boundaries from the HydroBASINS database (Lehner and Grill, 2013), a global dataset of 

hydrographic sub-basins at multiple hierarchical levels. HydroBASINS delineates watersheds from large 

river basins to smaller sub-catchments. We selected level 7 catchments to ensure basin size compatibility 

with irrigated areas. In the FLUX-BASED algorithm, monthly TWSA, P, and Q are computed for each basin. 

ETw/o_irrig 

The ETw/o_irrig dataset represents ET without irrigation signals. It was derived by combining ET data from 

NOAH-MP (driven only by ERA5 forecasts, without observations) and ERA5-Land reanalysis. An analysis (not 

shown) showed that ET dynamics in NOAH-MP align closely with ERA5-Land, validating ERA5-Land as a 

substitute. Therefore, ERA5-Land data were used for years before 2010, for which NOAH-MP data are 

unavailable. 
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4.4. Illustration of the FLUX-BASED approach applied on an 

irrigated catchment 

 

Figure 4.3: Illustration of the FLUX-BASED algorithm applied to an irrigated catchment in California. (a) Watershed 

boundaries on satellite imagery; (b) maps of mean discharge distribution from GloFAS-ERA5 with the watershed 

boundaries in red; (c) seasonal ET cycle comparing ETFLUX-BASED with ET from MODIS and GLEAM ; (d) monthly time 

series of precipitation (P), discharge (Q), and dTWSA/dt; (e) ET time series of ETFLUX-BASED, MODIS, and GLEAM; (f) 

same as (e) but smoothed (3 months) ETFLUX-BASED. 

 

Figure 4.3 illustrates the application of the FLUX-BASED algorithm in an irrigated watershed in California 

(approx. 28,000 km²). In panel (a), watershed boundaries are shown on satellite imagery. Panel (b) displays 

mean discharge patterns across the region, derived from GloFAS-ERA5. Panel (c) presents the seasonal ET 

cycle, comparing ETFLUX-BASED with MODIS (MOD16) and GLEAM (Martens et al., 2017) ET. We can see that 

ETFLUX-BASED peaks during irrigation seasons, indicating irrigation-driven water use. Panel (d) shows monthly 

time series for P, Q, and dTWSA/dt. Panel (e) shows time series data for ETFLUX-BASED, MODIS, and GLEAM. 

Panel (f) presents smoothed (3 months) time series for ET estimates, where ETFLUX-BASED remains elevated 

during irrigation in comparison to GLEAM and MODIS, highlighting the algorithm’s potential sensitivity to 

irrigation signals. 
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5. ATBD Model-observation integration 

5.1. Introduction 

AWU plays a critical role in the terrestrial water cycle, accounting for 84-90% of the global freshwater 

consumption (McDermid et al., 2023). Despite this importance, this human influence on land water 

distribution is often poorly parameterized in regional and large-scale land surface models. One challenge is 

that the capability to simulate irrigation relies on input irrigated area maps, which are frequently outdated 

or static. An example is given by the Global Rainfed Irrigated and Paddy Croplands dataset referring to the 

year 2005 (GRIPC; Salmon et al., 2015) which was used in recent studies to derive irrigation estimates 

through land surface modelling (Modanesi et al., 2022; Busschaert et al., 2023; De Lannoy et al., 2024). 

Another issue is that irrigation parameterization often depends on spatially uniform, user-defined 

parameters, limiting the model's ability to estimate reliable irrigation quantities.  

In the proposal stage, a coarse-scale data assimilation framework was proposed where first observation-

based forcings (ERA5 re-analysis) are used to steer long-term hindcasts, and next SM retrievals would be 

assimilated without or with minimal bias correction. However, an analysis of the differences between 

model- and satellite-based SSM (Section 5.2) revealed a complexity in the bias patterns that prevented a 

good prospect for a traditional DA application, and DA filters to update soil moisture have limitations as 

described in Busschaert et al. (2024). Therefore, the SSM retrievals are not directly assimilated but 

contrasted to the model to detect irrigation instead to provide microwave-based irrigation maps. The latter 

could constrain modeled irrigation estimates in future work. In addition, two important irrigation modeling 

advances are achieved: (i) activation of tiles within coarse-scale pixels (not the entire pixel is irrigated), and 

(ii) ensemble irrigation estimates are produced.  

In this context, the ATBD discusses: (1) the capability of coarse resolution satellite soil moisture products 

to provide information on irrigated areas which can be used as input into LSMs; (2) the estimation of long-

term irrigation datasets via an irrigation module activated within a LSM, using various deterministic runs to 

test different parameterizations; and (3) the quantification of long-term irrigation estimates through 

ensemble perturbation runs, which also provide irrigation uncertainty estimates. Section 5.2 - Irrigation 

Detection - discusses item (1), while Section 5.3 - Irrigation Quantification - covers items (2) and (3). 

5.2. Irrigation detection 

Two independent approaches were explored to detect irrigation by comparing SMOS surface soil moisture 

(SSM) satellite retrievals with Noah-MP estimated SSM. They are introduced below. 

5.2.1 Approach 1: relative bias 

Differences between SMOS SSM (version 700, see Deliverable 2 for details) and Noah-MP SSM are 

evaluated over CONUS for the period January 2010 - March 2023. The model grid resolution is 0.25°. It is 

important to note that qualitative SMOS satellite retrievals are not available throughout the study domain. 

Figure 5.1a shows large masked areas due to, for example, topographically complex terrain (primarily in the 

west) and dense vegetation (primarily in the east). Any approach that is developed to assess irrigation with 

SMOS retrievals will therefore not work over these areas. However, grid cells that are characterised by a 

large crop land fraction tend to have observations available, which is evident from comparing the two 

panels of Figure 5.1 (an important exception is the southern Mississippi basin). 
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Figure 5.1: (a) Number of available SMOS observations during the study period. (b) MODIS-based cropland fraction. 

Figure 5.2: (a) Landsat-based irrigated fraction, subdivided in five distinct classes. (b) Bias between Noah-MP 

estimated SSM and SMOS SSM retrievals (vertical axis), stratified per month (horizontal axis) and Landsat irrigated 

fraction (colour). The boxplots consist of grid cells, visualised in the map above. Only pixels with a nonzero cropland 

fraction are included. (c) As (b), but the bias for each pixel is relative to the bias in January. 
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A systematic bias between Noah-MP SSM estimates and SMOS SSM retrievals exists year-round, with Noah-

MP SSM slightly more wet than SMOS SSM on average. This bias is stratified in Figure 5.2a based on two 

factors: the twelve months of the year and the Landsat-based irrigated fraction. We find that the wet bias 

of the model w.r.t. the satellite observations is most pronounced for grid cells with little irrigation for each 

month. As the irrigation increases, the bias becomes smaller or even negative (indicating that the model 

estimate is less wet or even drier than the satellite observation). A second observation is that for grid cells 

with limited irrigation, the variation of the bias throughout the year is much less pronounced than for the 

strongly irrigated pixels. By plotting the bias relative to that in January in Figure 5.2b, we find that this 

relative bias is near zero or slightly negative for pixels with little irrigation: it doesn’t change much 

throughout the year. For grid cells with a lot of irrigation on the other hand, the relative bias increases, 

reaches a maximum in summer, and then decreases again. This indicates that the difference between the 

satellite-observed SSM retrieval and the model-based SSM estimates increases the most for such grid cells 

in the dry seasons. This may seem counterintuitive - one would expect the bias to decrease for the irrigated 

areas, as the model dries out but the satellite observations do not - but could be a result of a spurious 

vegetation-based signal into monthly climatological SMOS SSM anomalies (Crow and Feldman, 2025). 

As an example, we show maps of the relative bias for the months of April (Figure 5.3a) and July (Figure 

5.3b). Based on the observations discussed above, blue areas on the map suggest that irrigation is likely 

(positive relative bias), while red areas suggest that irrigation is not likely (negative relative bias). Known 

irrigation hotspots, such as the Mississippi basin and crop lands in California, Washington and Idaho are 

retrieved. However, other areas such as eastern Nebraska are missing. This area is captured in the map of 

July relative bias, although using this map to estimate the irrigated fraction would likely also result in many 

false positives, for example in Illinois, which has many non-irrigated crop lands but is blue in Figure 5.2.3b. 

Both maps correctly highlight crop lands in northern states such as Minnesota as non-irrigated. 

Figure 5.3: (a) Bias in April relative to that in January. (b) Bias in July relative to that in January.  

Grid cells with no SMOS observations are masked (white). 

Based on the findings discussed above, the following simple rule was formulated to estimate the irrigated 

fraction of a grid cell: 

 

Figure 5.4 shows the map with the estimated irrigated fraction based on the relative bias approach. 
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Figure 5.4: Map of the estimated irrigated fraction based on the relative bias approach. 

Grid cells with no SMOS observations are masked (white). 

5.2.2 Approach 2: multiresolution analysis to detect irrigation 

The multiresolution analysis irrigation detection method (MAID) is based on the evidence that irrigated and 

non irrigated lands are characterised by different soil moisture spectra. In particular, irrigation applications 

are able to change the classical signal seasonality (e.g., alternance of humid and dry periods) and this has 

reflections on a large range of scales – from the daily to the multiannual scale. 

Classical Fourier transformation of the signals provides a way to extract their frequency signal components 

but is limited by the loss of the time information, that is, we can only see the frequency components of the 

signal but we are not able to understand when these frequencies characterise the signal in time. Wavelet 

analysis has been introduced to solve this issue: it provides a transformation of a signal in the frequency 

and time domain. This transformation is not done at no cost. When a signal is transformed in the wavelet 

domain it loses temporal resolution at large frequencies and loose frequency resolution at smaller time 

steps. For further details of the wavelet analysis the reader is referred to Daubechies, I., (1992). In practice 

while Fourier transformation preserves precisely all the frequency of the transformed signal, the wavelet 

provides an approximation of the frequencies at different times. This is called Heisenberg's indeterminacy 

principle, and is the concept used in quantum mechanics stating that there is a limit to the precision with 

which certain pairs of physical properties, such as time and frequency, can be simultaneously known. 

MAID was applied to two different experiments each one consisting of a comparison of two signals: 1) to 

Noha-MP surface soil moisture simulations with and without irrigation (to observe changes in wavelet 

power spectra) and 2) to Noha-MP and SMOS surface soil moisture to detect irrigated pixels. 

Figure 5.5a shows an example of the time series of soil moisture aggregated at the weekly scale obtained 

by running the Noah-MP model with irrigation activated (irrigation fraction equal to 87%) and irrigation non 

activated. It can be seen that the soil moisture time series is significantly different. While spotting that this 

pixel is irrigated in a synthetic experiment like this one is straightforward, when comparing modelled soil 

moisture with irrigation not activated against satellite soil moisture observations the noise contained in the 

satellite signal, the contribution of irrigation on the total soil moisture signal and the inherent bias between 

the two can make the identification of a pixel irrigated or not irrigated extremely challenging (Zaussingher 

et al. 2019)  
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Figure 5.5 :(a) NOAH-MP weekly surface soil moisture time series comparison between simulations with no irrigation 

and the same pixel with an irrigation fraction of 87%. (b) same as (a) but compared against SMOS weekly aggregated 

surface soil moisture observations. The pixel is located in an area characterized by an arid climate with an Aridity 

Index (AI) equal 3.45.( Lon, Lat) = (-122.125, 39.625). 

Figure 5.6 shows the wavelet power spectra of Noah-MP with no irrigation (Figure 5.6a), with irrigation 

(Figure 5.6b) and SMOS soil moisture time series (Figure 5.6c) for the same pixel of Figure 5.5, located in a 

semi-arid region. Figure 5.6a displays a strong power around the 1 year period due to the strong seasonality 

of the soil moisture typical of this area. Moderate power values are also present at sub-yearly time scales 

starting from smaller time scales and due to alternance of precipitation and hot periods. A very low power 

at 6 month scale can be also observed around 0.5 year denoting that the variance of the signal due to 

climatic factors has a low power at this frequency. Figure 5.6b and c show the same wavelet power spectra 

of before, however, notable differences can be seen in them: 1) a stronger power at small scales (below 

0.125 years, i.e., less than a month) although this can be challenging to distinguish from noise in satellite 

observations; and 2) a much clear power increase at 6 monthly scale especially for the SMOS soil moisture. 
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(a) Noah-MP soil moisture with no irrigation  

 
(b) Noah-MP soil moisture with irrigation  

 
(c) SMOS soil moisture 

 
Figure 5.6: Wavelet power spectra comparison (a) NOAH-MP weekly surface soil moisture time series with no 

irrigation, (b) same as (a) with an irrigation fraction of 87%. (c) SMOS weekly aggregated surface soil moisture. The 

pixel is located in an area characterized by an arid climate with an Aridity Index (AI) equal 3.45.( Lon, Lat) = (-

122.125, 39.625). 
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The differences in Figure 5.6 are more visible if we average the power spectrum in time so that obtaining 

the global power spectrum – the power averaged along the time dimension. The resulting spectra are then 

equivalent to the Fourier transformation of the signal (see Figure 5.7). 

 

(a) Noah-MP soil moisture with irrigation averaged global power 

 

(b) SMOS soil moisture averaged global power 

Figure 5.7: Wavelet global power spectra comparison (a) NOAH-MP weekly surface soil moisture time series with no 

irrigation vs Noah-MP weekly surface soil moisture time series with irrigation (same pixel above), (b) NOAH-MP 

weekly surface soil moisture time series with no irrigation vs SMOS weekly aggregated surface soil moisture global 

power spectra. It can be seen a bias in the power at the scale around one year which is then the most significant to 

consider for irrigation detection. 
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Figures 5.7a and b show that the “non-irrigated” soil moisture time series are characterised by a stronger 

power at the yearly time scale and an increase of power at the 6 month scales that in the case of SMOS soil 

moisture is beyond the significance level (obtained with red-noise assumption, see Torrence and Compo 

for further details). In other words it is observed a redistribution of the power of the signal across the scales 

that determines a bias in the global power and which is not impacted by noise which instead modifies the 

power of smaller scales. Of course this bias tends to vary with the specific climate and level of irrigation so 

it is not straightforward to understand the level of bias discriminating between irrigated and non irrigated 

pixels. Figure 5.8 displays the bias in the global wavelet power spectra as a function of irrigation fraction 

and aridity index. It can be seen that it tends to increase specifically for water limited regions while for 

energy limited regions this bias does not show substantial changes. When noise is added to the simulations 

(not shown) containing irrigation – to reproduce the realistic satellite soil moisture signal – a similar trend 

is observed but the values of the bias tend to increase. 

Figure 5.8: Bias in the global wavelet power spectra between Noah-MP with irrigation and Noah-MP with no irrigation 

as a function of irrigation fraction and aridity index calculated over the crop pixels in the CONUS.  

Another powerful tool to analyse the signal in the frequency domain is the wavelet coherence (Grinsted et 

al. 2004 ). The wavelet coherence is used to examine the relationship between two time series in the time-

frequency domain. It provides a measure of the localized coherence (or similarity) between two signals at 

different scales and times, similar to a localized correlation coefficient. As it was done with the classical 

wavelet transform we can extract the power spectra of the wavelet coherence and its global version (i.e., 

the average in time of the spectra in the frequency and time domain) for irrigated and non irrigated soil 

moisture time series. The rationale is that two similar signals (both containing irrigation or no irrigation) 

shall have high correlation (and so high coherence) while two different signals (one irrigated and one not 

irrigated) shall yield a drop in coherence. Since noise is expected to impact the signal coherence, it is useful 

to focus on scales above five months. At the same time, to avoid the influence of edge effects on the 

transformation scales (see cone of influence in Figure 5.6) above 18 months can be neglected. Figure 5.9 

provides an example of this drop of coherence for pixels simulated with an irrigation fraction of 10% (a) and 

87% (b). 
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(a) 

 
(b) 

 
(c) 

Figure 5.9: Global wavelet coherence power spectra between surface soil moisture simulations from Noah-MP with 

no irrigation and: a) surface soil moisture simulations from Noah-MP on a pixel with irrigation fraction equal to 10%; 

b) same as a) but for a pixel with irrigation fraction equal to 87%; (c) SMOS on the same pixels of (a) and (b) . It can 

be noted the effect of noise in m3/m3 added to the signal impacts the coherence only for scales below 5-6 months. 

When, on the same pixels, we plot the coherence between SMOS and Noah-MP with no irrigation (Figure 

5.2.9c) we found a similar pattern obtained in panels a and b. Note however that the irrigation fraction map 
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is only an indication of irrigated areas for a specific year and does not guarantee these values are truly 

representative of the real irrigation dynamics so the panel c must be interpreted only qualitatively. 

As in the case of bias, the drop in coherence can be highly dependent on irrigation amount and climate. 

Figure 5.10 displays the drop in mean coherence obtained for Noah-MP with irrigation activated vs 

irrigation non activated as a function of irrigation fraction and aridity index. It can be seen that coherence 

tends to decrease with irrigation fraction and arid conditions while for energy limited regions this drop is 

more nuanced or not noticeable. Note that cold energy limited regions do not show presence of irrigation 

fraction larger than 90%. 

 

Figure 5.10: Mean coherence distribution between Noah-MP with irrigation activated and irrigation non activated as 

a function of irrigation fraction and aridity index calculated over the crop pixels in the CONUS. 

Based on the discussion above we trained a Random Forest Model to classify between irrigated pixels using 

Noah-MP simulations with irrigation activated and irrigation non activated. That is: 

1. We assumed that if the irrigation fraction in the pixel is less than 20% then the pixel can be 

considered non irrigated – and irrigated otherwise. 

2. For each pixel we aggregate the data at a weekly time scale and perform the wavelet 

transformation and coherence analysis of Noah-MP surface soil moisture simulations with irrigation 

activated and non activated and extracted the bias and mean coherence around 5-18 month time 

scales as in Figure 5.7 and Figure 5.9. For each pixel we also calculated the aridity index. To include 

the potential effect of noise in the simulations that shall represent the “satellite” observations 

(Noah-MP with irrigation activated) we added a random noise component with a zero mean and a 

standard deviation of 0.04 m3/m3 prior to the aggregation and wavelet analysis.  

3. We trained a Random Forest Model classifier on 80% of the pixels using as predictors AI, Bias and 

Mean coherence above. We tested it over 20% of the remaining sample. Since, the most critical 

settings in the Random forest classifiers are the number of trees in the forest (Nest) and the number 

of features considered for splitting at each node (max_features), we employed a grid search 
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procedure using the GridSearchCV function from the scikit-learn library (\url{https://scikit-

learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html}). Specifically, 

we varied Nest between 100 and 2000 in steps of 100 and let the number of samples required to 

split a node to vary between 2 and 10 in steps of 2 (max_features). The grid search yields Nest=1000 

trees and max_features= 2. 

4. We applied the calibrated classifier to the SMOS soil moisture retrieval time series (after filling them 

with a max gap of five days) and aggregated it on a weekly time step. Time series resulting in more 

than 30% of data gaps were initially excluded from the analysis. This limited the number of pixels 

to those in southern latitudes because SMOS is heavily masked in relatively cold regions. 

5. We quantified the goodness of the classification via Receiver Operating Characteristic (ROC) curve. 

ROC provides valuable insights into the performance of a binary classification model. The ROC curve 

is created by plotting the true positive ratio (TPR) against the false positive ratio (FPR) at various 

threshold settings. Each point on the curve represents a different decision threshold for the 

classifier. The curve starts at $(0,0)$ and ends at $(1,1)$ (the diagonal line). The diagonal line 

represents a random classifier (no discrimination ability). Any model below this line is worse than 

random guessing. Normally a metric for quantifying how good is the classification across all 

thresholds is the Area Under the Curve (AUC). AUC = 0.5 denotes that the model has no 

discrimination ability (equivalent to random guessing) while values above suggest the model can 

discriminate between irrigated and non irrigated areas with AUC>0.9 denoting excellent model 

performance. We also used other metrics which are reported in the validation report. 

5.3. Irrigation quantification 

5.3.1 The Noah-MP Land Surface Model 

The LSM selected for this study is the Noah-MP (Niu et al., 2011) LSM, which is able to dynamically simulate 

vegetation and provides soil moisture estimates for four layers up to 2 m (i.e., 0-10, 10-40, 40-100 and 100-

200 cm depth). In particular, the Noah-MP version 4.0.1 embedded within the NASA Land Information 

System (LIS; Kumar et al., 2006; Peters-Lidard et al., 2007) framework is selected, and coupled to a sprinkler 

irrigation scheme (Ozdogan et al., 2010). 

The irrigation module simulates sprinkler systems by adding water as additional rainfall; however, it does 

not alter other processes, such as vapor fluxes, which would be necessary to represent more efficient drip 

irrigation systems. The additional water is applied over a four-hour period during the day, from 6:00 am to 

10:00 am local time. Irrigation locations are determined based on irrigated cropland derived from a land 

cover map and a static map of pixel-based irrigated land fraction. The timing of irrigation is driven by both 

the growing season and the root-zone soil moisture availability. By default, the growing season is derived 

from climatological monthly greenness vegetation fraction (GVF) maps, provided as model inputs. The 

threshold defining the growing/non-growing season is computed based on the minimum and maximum 

values of GVF (GVFmin and GVFmax) as follows:  

𝐺𝑉𝐹𝑖𝑟𝑟 = 𝐺𝑉𝐹𝑚𝑖𝑛 + 0.4 ∗ (𝐺𝑉𝐹𝑚𝑎𝑥 − 𝐺𝑉𝐹𝑚𝑖𝑛) (1) 

During the growing season, irrigation is applied when the root-zone moisture availability (MA) falls below 

a user-defined threshold (Thirr hereafter). MA is defined as follows: 

𝑀𝐴 =
𝜃−𝜃𝑊𝑃

𝜃𝐹𝐶−𝜃𝑊𝑃
 (2) 
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where θWP is the water content at wilting point, θFC at field capacity and θ is the actual water content. In 

previous works a value of Thirr=0.45 was selected (Modanesi et al., 2022; Busschaert et al., 2023; De Lannoy 

et al., 2024). The irrigation amount is determined by the water needed to restore root-zone soil moisture 

to field capacity. An important factor influencing the irrigation amount is the maximum rooting depth, 

which is associated with a default crop type. The root-zone is therefore defined as follows: 

𝑅𝑍 = 𝑅𝑍𝑚𝑎𝑥 ∗ 𝐺𝑉𝐹 (3) 

where GVF is the GVF derived from the climatological GVF maps and RZmax is the maximum rooting depth.  

For the experiments described at Section 5.3.2 and 5.3.3, the Noah-MP LSM was run at 0.25° degree spatial 

resolution, on the CCI soil moisture spatial grid, and at 15 minutes time scale. Outputs are provided at a 

daily average resolution. Input data include the land cover, obtained from NASA’s Moderate Resolution 

Imaging Spectroradiometer (MODIS; Friedl et al. 2002) and the Harmonized World Soil Database (HWSD; 

Nachtergaele et al. 2010), used to derive soil texture information. The widely-used GRIPC map is updated 

using a Landsat-derived irrigation map (Teluguntla et al., 2023) and adapted to the LIS-required format. The 

Landsat irrigation fraction map represents the percentage of irrigated areas at pixel-scale. Crop type is set 

to a generic type with a maximum rooting depth of 1 m, while GVF data (Gutman and Ignatov, 1998) were 

derived from five years (1985–1989) of normalized difference vegetation index (NDVI) data from AVHRR 

(Miller et al., 2006). Meteorological forcings are extracted from the lowest model level forecasts of the 

European Centre for Medium-Range Weather Forecasts’ fifth-generation atmospheric reanalysis (ERA5; 

Hersbach et al., 2020). ERA5 forecasts do not incorporate radar or gauge-based precipitation data over 

Europe, limiting the model’s capacity to account for anthropogenic effects. 

The model runs with the default LIS options except for the runoff and groundwater option, which is set to 

free drainage (Yang and Dickinson, 1996). The vegetation is dynamically simulated using the maximum 

vegetation fraction (option 5) and based on a simple vegetation scheme (Dickinson et al., 1998). 

5.3.2 Deterministic experiments 

This section describes the deterministic experiments conducted to optimise the parameterization of a 

sprinkler irrigation scheme incorporated into the Noah-MP LSM. By varying the scheme parameters, we 

aim at identifying the optimal configuration for subsequent ensemble runs. Specifically, the experiments 

examined the effects of two key variables: the growing season (defining the period during which irrigation 

is allowed) and the irrigation threshold parameter (Thirr) applied to MA (see equation 2). 

To test the effect of the growing season on irrigation quantification, three approaches are tested:  

(1) The first approach is the default method used in the Noah-MP v4.0.1 model within the LIS 

framework. This method relies on monthly climatological GVF maps, applying a threshold to GVF 

as defined in Equation 1. This approach does not incorporate data on dynamic vegetation simulated 

by the model. However, given the limitations identified in Noah-MP’s dynamic vegetation 

capabilities (Modanesi et al., 2021; 2022), this method remains valuable for investigation. 

(2) The second approach allows irrigation over the entire year (year-round irrigation). This method is 

valuable for exploring potential applications of irrigation during winter months, particularly in drier 

regions or areas impacted by drought. It is especially relevant given that the climatological GVF 

maps (Miller et al., 2006) may be outdated and may not accurately capture the presence of winter 

crops. 

https://journals.ametsoc.org/view/journals/hydr/24/7/JHM-D-22-0141.1.xml#bib24
https://journals.ametsoc.org/view/journals/hydr/24/7/JHM-D-22-0141.1.xml#bib42
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(3) The third and final approach, developed by Modanesi et al. (2022) and applied here to Noah-MP 

v4.0.1, defines the growing season based on a user-specified threshold of the simulated Leaf Area 

Index (LAI > 1). The LAI values are then converted to GVF following the methodology outlined by 

Fang et al. (2018): 

𝐺𝑉𝐹 =  1 − 𝑒 −𝑏∗𝐿𝐴𝐼 (4) 

where b [-] is an empirical parameter that depends on plant canopy (Fang et al., 2018; Norman et 

al., 1995). 

To evaluate the effects of the Thirr applied to MA, the default climatological GVF growing season is selected 

and four different Thirr values are tested: 0.35, 0.45, 0.55, and 0.65. For the year-round growing season 

approach, Thirr=0.45 and Thirr=0.65 are tested while for the dynamic vegetation-based growing season, only 

Thirr=0.45 is selected.  

An additional experiment is conducted to evaluate a tiling land cover option that incorporates different land 

cover type percentages within the same grid cell (at a 25 km spatial resolution). In this configuration, LIS 

divides each grid cell into tiles based on the land cover map, allowing for simulation of subgrid-scale 

heterogeneity. When MA falls below Thirr , the irrigation scheme checks if the current tile is classified as 

cropland (or other potentially irrigated types, such as grassland). If the ratio of irrigated area to total crop 

coverage within the grid cell is less than one, the irrigation requirement for each tile is reduced 

proportionally. Conversely, if this ratio exceeds one, the irrigation requirement is scaled up accordingly, with 

additional water applied to grasslands or other non-cropland types, excluding forests, bare soil, and urban 

tiles (Ozdogan et al., 2010). This option, which is more computationally expensive, is applied to the 

climatological GVF growing season and to a Thirr=0.45.  

A summary of the eight deterministic experiments conducted is presented in Table 5.1. 

EXPERIMENTS (Time span January 2010- December 2022) 

LSM IRRIGATION 
SCHEME 

FORCING GROWING 
SEASON 

TILING Thirr 

Noah-
MPv.4.0.1 (Niu 

et al., 2011) 

Sprinkler 
Irrigation 
scheme 

(Ozdogan et al., 
2010) 

ERA 5 
(Hersbach  et 

al., 2020) 

default 
climatological 

GVF 

not applied 0.35 

not applied 0.45 

not applied 0.55 

not applied 0.65 

applied 0.45 

Year-round 
irrigation 

not applied 0.45 

not applied 0.65 
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Based on 
dynamic 

vegetation 
(when LAI>1; 
Modanesi et 

al., 2022) 

not applied 0.45 

Table 5.1: provides an overview of all deterministic runs conducted, detailing the various growing season 

options, Thirr values, and the tiling option. 

 

5.3.3 Ensemble runs 

Following a similar setup as described in section 5.3.2, the Noah-MPv4.0.1 model was run in ensemble 

mode. Given the evaluation of the deterministic runs, the default climatological GVF option was selected 

to define the growing season, and the Thirr was set to 0.45. The simulation is run without tiling (NO TILING), 

using the dominant land cover type for the grid cell. 

The ensemble of land model trajectories is composed of 24 ensemble members for which selected 

meteorological input forcings are perturbed (rainfall, incident longwave and shortwave radiation) as in 

Modanesi et al. (2022). The ensemble runs provide an estimation of the irrigation uncertainty, where the 

ensemble standard deviation (or ensemble spread) is calculated for each day t (𝜎𝑡  [mm/day]). The 

temporally average ensemble standard spread (𝜎mean) can be defined for each location as follows. 

𝜎𝑚𝑒𝑎𝑛  = √
1

𝑁2 ∗ ∑ 𝜎²𝑖
𝑁
𝑖=1  (5) 

where N is the number of days with irrigation (i.e. with 𝜎²i > 0). The coefficient of variation (CV) can then 

be calculated for each location by dividing the 𝜎mean by the mean irrigation rate (calculated over the N 

irrigated days).  

Because the daily gridded irrigation estimates are aggregated per state and over a full year, for an 

evaluation against FRIS data for 2013 and 2018, a corresponding spatial estimate of the uncertainty was 

also produced. The uncertainty for each state is defined as follows. 

𝜎𝑚𝑒𝑎𝑛  = √∑ 𝐴𝑝
2 𝑃

𝑝=1 ∗ (
1

𝑃
∗ ∑ 𝜎²𝑝

𝑃
𝑝=1 ) (6) 

with P, the number of irrigated pixels in the region (state), Ap the area of each individual pixel p, and 𝜎²p the 

sum of the daily ensemble variances for the pixel p (for the year 2013 or 2018).  

 

Note that the deterministic and ensemble simulations with the default Noah-MP setup produce irrigation 

estimates for the input irrigation fraction per pixel. A closer analysis of the time series showed that the 

consequent use of a fractional irrigation value as proxy rainfall input to the entire coarse model pixel causes 

that the soil moisture does not return to field capacity and a new irrigation event is triggered. This 

shortcoming of the Noah-MP model will be circumvented in a new iteration of results. 
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