

# ESA Cloud\_cci+

# **Climate Assessment Report**



Issue 1 Revision 0

25/09/2023

Deliverable No.: D-5.1

ESRIN/Contract No.: 4000128637/20/I-NB

Science lead: Dr. Martin Stengel

Deutscher Wetterdienst martin.stengel@dwd.de

Technical Officer: Michael Eisinger

European Space Agency michael.eisinger@esa.int





| Doc:   |   |           |   | Cloud_cci+_D5.1_CAR_v1.0.docx |
|--------|---|-----------|---|-------------------------------|
| Date:  |   |           |   | 25/09/2023                    |
| Issue: | 1 | Revision: | 0 | Page 2                        |

## **Document Change Record**

| Document,<br>Version | Date       | Changes         | Originator |
|----------------------|------------|-----------------|------------|
| v1.0<br>submitted    | 25/09/2023 | Initial Version | M. Stengel |
| v1.0                 | 25/09/2023 | Issued Version  | M. Stengel |

# **Purpose**

The purpose of this document is to demonstrate how Cloud\_cci+ data can be used in climate science applications. This is done on an exemplary basis by (a) summarizing the results of the two User Case Studies conducted in Cloud\_cci+ Phase I and (b) reporting the additional developments done for a simplistic satellite simulator and selected comparisons between ERA-5 and SLSTR data.



| Doc:   |   |           |   | Cloud_cci+_D5.1_CAR_v1.0.docx |
|--------|---|-----------|---|-------------------------------|
| Date:  |   |           |   | 25/09/2023                    |
| Issue: | 1 | Revision: | 0 | Page 3                        |

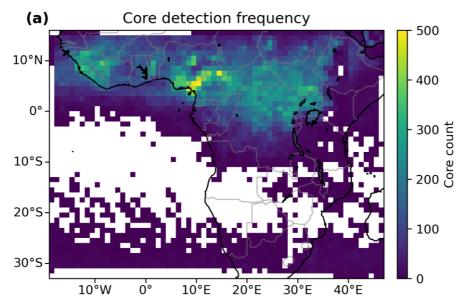
# Contents

|      | SER CASE STUDY I - A LAGRANGIAN PERSPECTIVE ON THE LIFECYCLE AND CLO<br>ATIVE EFFECT OF DEEP CONVECTIVE CLOUDS OVER AFRICA |     |
|------|----------------------------------------------------------------------------------------------------------------------------|-----|
| 1.1  | Scope                                                                                                                      | 4   |
| 1.2  | Summary                                                                                                                    | 4   |
|      | SER CASE STUDY II - DESIGNING A 'SUNNY VACATION MAP' BASED ON SATELL RVATIONS ON CLOUDS AND RADIATION                      |     |
| 2.1  | Scope                                                                                                                      | 7   |
| 2.2  | Data basis                                                                                                                 | 7   |
| 2.3  | Approach                                                                                                                   | 7   |
| 2.4  | Summary of results                                                                                                         | 7   |
| 3 S  | IMPLIFIED SIMULATOR                                                                                                        | 9   |
|      | Background                                                                                                                 |     |
| 3.2  | Adaptation in Cloud_cci+ Phase I                                                                                           | .10 |
| 3.3  | Summary of results                                                                                                         | .10 |
| 4 D  | EFINITIONS, ACRONYMS, ABBREVIATIONS                                                                                        | .14 |
| DEEE | DENCES.                                                                                                                    | 16  |

|       | Doc:   |   |           |   | Cloud_cci+_D5.1_CAR_v1.0.docx |
|-------|--------|---|-----------|---|-------------------------------|
| cloud | Date:  |   |           |   | 25/09/2023                    |
| cci   | Issue: | 1 | Revision: | 0 | Page 4                        |

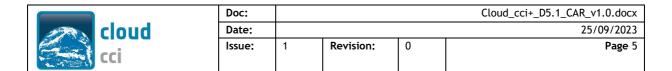
# 1 User Case Study I - A Lagrangian Perspective on the Lifecycle and Cloud Radiative Effect of Deep Convective Clouds Over Africa

The report in this section is a brief summary of Jones et al. (2023).


## 1.1 Scope

In this study cloud and radiative flux properties from the Cloud\_cci+ SEVIRI dataset was utilized. In a 4 month period, deep convective systems (DCCs) are identified, tracked and their life cycle investigated with respect to the top-of-atmosphere cloud radiative effect of their anvil clouds. Their cumulative effects are analysed and put in relation of the (a) initiation time of the DCCs, (b) their lifetime, and (c) the number of core a DCC has.

#### 1.2 Summary


Figure 1-1 shows the frequency of detected convective cores. Figure 1-2 shows the net cloud radiative effect and its components for three selected cases:

- a) A rather short-lived DCC which is initiated in the afternoon and which dissipates in the early evening. This DCC has a negative cumulative radiative effect (cooling)
- b) A DCC that exists almost 24 hours into the morning of the next day. This DCC has a positive cloud radiative effect (warming)
- c) A clustered DCC that had multiple cores and lived several days. The cumulative cloud radiative effect of this system is very close to zero.



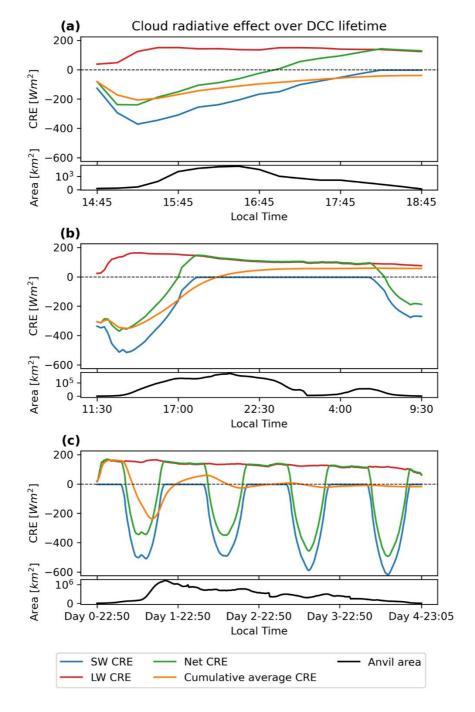
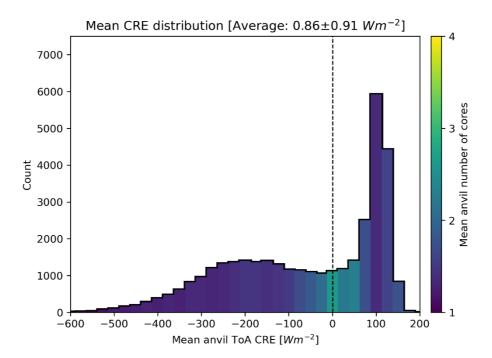

**Figure 1-1** Number of detected cores (a) and average hour of core detection (b) by 1x1° grid box. Grid boxes in (b) with a standard deviation greater than 6 hours are single-hatched, and greater than 12 hours cross-hatched. Figure and caption taken from Jones et al. (2023).

Figure 1-3 shows the histogram over the mean cloud radiative effect of all track DCCs in the 4 month period. It depicts that there is a bimodal distribution with the first mode peaking around -200 Wm<sup>-2</sup> (cooling) composed of the short-lived single-core DCCs. The second mode peaking around 100 Wm<sup>-2</sup> (warming) is composed of the longer-living DCCs. However, the mean cloud radiative of the clustered multi-core DCC is around 0 Wm<sup>-2</sup>. And interestingly, the mean cloud radiative effects over all DCCs is



also close to zero, despite the two modes. The later confirms the common assumption that Tropical DCCs have a nearly neutral effects on the top of atmosphere radiative budget.


More information on this study can be found in Jones et al. (2023).



**Figure 1-2** Anvil net, LW, and SW CRE, accumulated mean CRE over anvil lifetime and anvil area for (a) an isolated, short-lived (4-hour) DCC, (b)a moderately clustered, 1-day long DCC, and (c) a large, clustered, 4-day long DCC. All times are the local solar time, to the nearest 5 minute interval. Figure and caption taken from **Jones et al.** (2023).



| Doc:   |   |           |   | Cloud_cci+_D5.1_CAR_v1.0.docx |
|--------|---|-----------|---|-------------------------------|
| Date:  |   |           |   | 25/09/2023                    |
| Issue: | 1 | Revision: | 0 | Page 6                        |



**Figure 1-3** The distribution of lifetime anvil CRE for all observed anvils. The mean number of cores per anvil in each bin is indicated by the colour scale. The vertical dashed line shows the integrated mean CRE over all anvils, weighted by the anvil areas (0.86±0.91 Wm<sup>-2</sup>). Figure and caption taken from **Jones et al. (2023)**.



| Doc:   |   |           |   | Cloud_cci+_D5.1_CAR_v1.0.docx |
|--------|---|-----------|---|-------------------------------|
| Date:  |   |           |   | 25/09/2023                    |
| Issue: | 1 | Revision: | 0 | Page 7                        |

# 2 User Case Study II - Designing a 'Sunny Vacation Map' based on Satellite Observations on Clouds and Radiation

The report in this section is a summary of RUCS2.

#### 2.1 Scope

This study highlights a specific aspect of how long-term satellite observations of cloud and radiation properties facilitate real-life applications. Having more than three decades of those observations available provides a very sound basis for a statistical analysis of not only the occurrence of sunny days (more or less the inverse of cloud fraction), but also how these are clustered.

In this report the determination of sunny days is described and how sunny periods are defined as function of the sunny day sequences. Global maps of the likelihood of sunny periods are shown, stratified by season, and discussed.

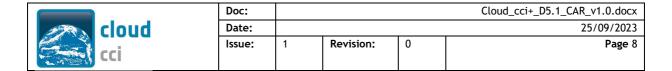
In addition, two pairs of European cities were selected to compare the general likelihood of sunny periods and elaborate on the temporal evolution of this information throughout the whole time series.

This study is considered as teaser for a potential operational application.

#### 2.2 Data basis

Basis of our analysis is the Cloud\_cci AVHRR-PMv3 dataset (Stengel et al., 2020), compiled within ESA's Cloud Climate Change Initiative (Cloud\_cci) Phase 2. It is a global dataset on clouds and radiation covering the period of 1982 to 2016, which results in a long-term data record of 35 years - long enough to consider it a climatology.

Cloud and radiation properties were retrieved from passive remote sensing measurements recorded by the Advanced Very High Resolution Radiometer (AVHRR) - in particular by those flying on afternoon (PM) polar orbiting satellites of the National Oceanic and Atmospheric Administration (NOAA). They encircle the Earth from pole to pole about a dozen times per day, gathering information from all around the globe. PM satellites are those satellites that have an equator crossing time in the afternoon (local solar time). See Fehler! Verweisquelle konnte nicht gefunden werden. for an overview of all satellites included and their respective equator crossing times.


#### 2.3 Approach

The likelihood of a sunny period is here defined as the probability to get at least "x" days of sunshine within a total amount of "n" days of vacation, which might be one of the most valuable information for a holiday maker.

Sunny days are days for which the ratio of obtained to possible shortwave radiation being bigger than 0.85 (and for "cloudy" being smaller than 0.85).

## 2.4 Summary of results

As an example result, Figure 2-1 illustrates the results of our global analysis, the global "sunny vacation map" of sunny periods: It gives the likelihood to get at least 5 sunny days within 7 days of vacation lying ahead, spatially resolved on global scale (albeit slightly coarser than possible, see above) and depending on the time of the year. Oceanic regions are masked out as the typical holiday resort is on land, unless it is a sailing trip or cruise. The map reveals that, globally seen, the whole range of possible probabilities for sunny periods is covered, ranging from nearly 0% in e.g. the inner tropics near the equator to almost 100% in desert regions like the Sahara. Primarily, the probability for sunny periods varies with latitude. It is generally large (more than 60% in the mean) in the subtropics, where large-scale subsidence typically supresses the formation of clouds. It is rather small



(less than 20% in the mean) in the outer tropics, where strong insolation triggers intense cloud formation. And it is moderate (between 10 to 40%) in the mid-latitudes, where highs and lows frequently alternate, usually bringing a diverse mix of sun and clouds.

More information on this User Case Study can be found in RUCS2.

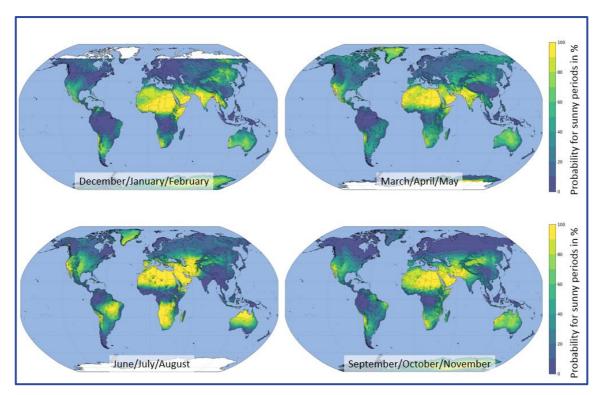



Figure 2-1 Global "sunny vacation map" of sunny periods



| Doc:   |   |           |   | Cloud_cci+_D5.1_CAR_v1.0.docx |
|--------|---|-----------|---|-------------------------------|
| Date:  |   |           |   | 25/09/2023                    |
| Issue: | 1 | Revision: | 0 | Page 9                        |

## 3 Simplified Simulator

### 3.1 Background

## 3.1.1 Simplistic cloud simulator for ERA-Interim

A full and peer-reviewed description of the simplistic cloud simulator is given in Stengel et al. (2018). The purpose of the SIMplistic cloud simulator For ERA-Interim (SIMFERA) developed in the framework of ESA Cloud\_cci is to evaluate the cloud parameterization used in ECMWF models, although SIMFERA is assumed to be applicable to other model data too. In general SIMFERA consists of three modules: (1) downscaler, which converts the model grid box mean profiles into sub-grid profiles considering the mismatch in spatial scale between that of a model and that of a satellite pixel; (2) pseudoretrieval, which emulates the pixel-scale cloud parameters based on the sub-grid profiles; and (3) statistical aggregation, which builds the diagnostic output that is comparable to the observational dataset (i.e. temporal averages and histograms, see below).

#### The general features are:

- SIMFERA uses the three-dimensional (3D) model fields as input (see details below). The simplistic approach in offline mode has the advantage of short computation time (e.g. 33 years of reanalysis data processed in less than 2 days on a HPC system).
- Unlike sophisticated simulators, which are using modelled radiances and brightness temperatures to retrieve cloud optical parameters based on radiative transfer calculations (e.g., COT and CER following Nakajima-King method), SIMFERA stays very close to the original model fields. For instance, it uses the ERA-Interim CER parameterization (Martin et al. 1994, Sun and Rikus 1999, Sun 2001) along with the original 3D variables to convert the model state into comparable synthetic observations. Details are given in Stengel et al. (2017c).
- No satellite overpass is taken into account as ERA-Interim is only available in discrete temporal resolution of several hours. However, day and night conditions are considered for the calculation of cloud optical parameters (i.e. COT, CER, CWP) that are only available during daytime observations since they are based on visible measurements.
- SIMFERA provides 2 options about how liquid and ice clouds occurring in the same model grid box are treated during the simulations (in the sub-column procedure): mixed phase (i.e. mixed phase clouds if both water/ice contents exists) or no-mixed phase (i.e. considering liquid and ice clouds separately).
- SIMFERA can be used for other model output evaluation after small modifications since there are not instrument/algorithm specifications implemented.

#### Input:

The simulator reads 6-hourly (00, 06, 12, 18 UTC) gridded estimates of 3D meteorological upper air parameters on 60 model levels including the following profiles: liquid water content "LWC" [kg/kg], ice water content "IWC" [kg/kg], cloud cover "CC" (0-1), temperature "T" [K], and specific humidity "Q" [kg/kg].

Additionally, the ERA-Interim file comprises for each grid box two-dimensional (2D) arrays of surface geopotential "Z"  $[m^2/s^2]$  an logarithm of surface pressure "LNSP" [Pa].

The latter two parameters are required for the computation of vertical pressure and geopotential profiles by using the provided "A" and "B" coefficients on model levels along with T and Q profiles.

#### Output:

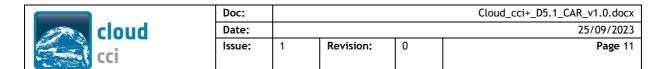
Grid box monthly means are computed averaging first over all sub-columns per grid box and then averaging over all diagnostic time steps per month. Histograms are based on sub-column values because the downscaled results mimic the spatial resolution of a satellite footprint.

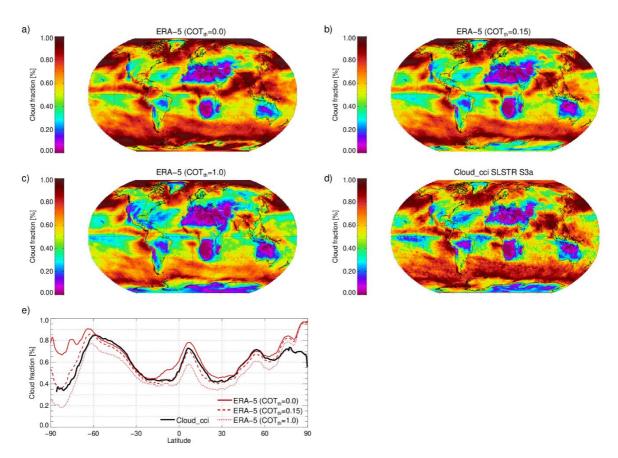


| Doc:   |   |           |   | Cloud_cci+_D5.1_CAR_v1.0.docx |
|--------|---|-----------|---|-------------------------------|
| Date:  |   |           |   | 25/09/2023                    |
| Issue: | 1 | Revision: | 0 | Page 10                       |
|        |   |           |   |                               |

SIMFERA provides the following monthly mean products: total, high-, mid-, and low-level CFC (0-1), CPH (0-1), LWP and IWP [g/m²],CTP [hPa], CTH [km], and CTT [K], COT and CER [micron] for liquid and ice phase, 2D joint cloud property histograms following the ISCCP classification relating the simulated height and optical thickness of the clouds, and 1D histograms for CTP, CTT, CWP, COT, and CER with the cloud phase as additional dimension.

#### 3.2 Adaptation in Cloud\_cci+ Phase I


The following developments were done in Cloud\_cci+ Phase I.

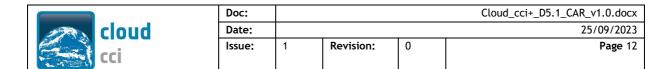

- Replacing ERA-Interim by ERA-5 as input, including increasing horizontal resolution from 1.0° to 0.5° and increasing the vertical resolution from 60 model levels to 137 model levels
- Increasing number of sub-columns in the simulator from 20 to 40 (approx.. representing ~1km spatial resolution)
- · Applying SIMFERA to the entire year of 2019
- Aggregating to 0.5 L3C products (comparable to Cloud\_cci+ SLSTR L3C)
- Porting the entire source code and processing environment to new ECMWF computer facilities (ATOS)

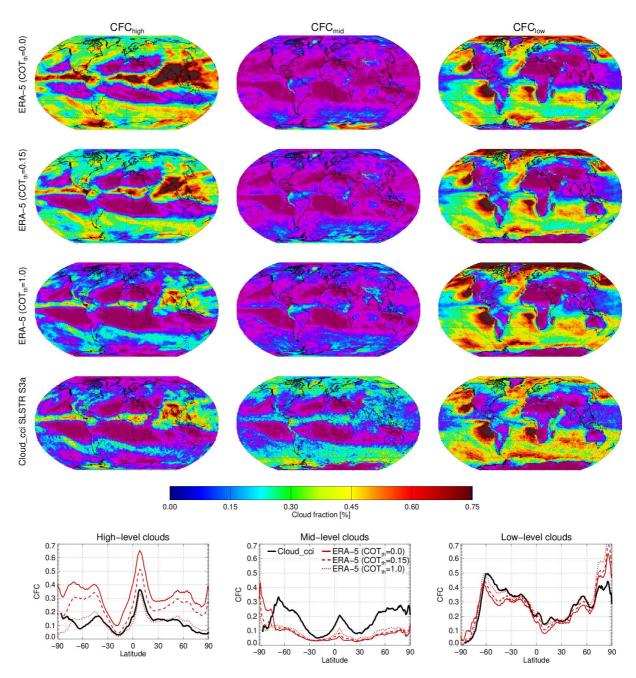
These tasks were not only done to update SIMFERA but also to adapt it to the SLSTR data processed in Cloud\_cci+ Phase I. In the next section the results of a brief comparison between SIMFERA and SLSTR S3a data for 2019 are shown.

## 3.3 Summary of results

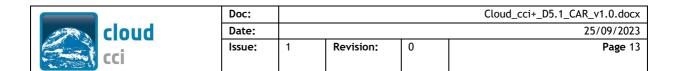
The SLSTR data referred to in this subsection are the Cloud\_cci+ Phase I SLSTR S3a data version 3, for July 2019. Fehler! Verweisquelle konnte nicht gefunden werden. shows maps and zonal means of monthly mean cloud fraction from SLSTR and ERA-5 SIMFERA results, and the latter for three different COT thresholds. Generally ERA-5 shows good agreements with SLSTR between 60S and 60N with only small sensitivity to the applied COT threshold. In the high latitudesERA-5 has much more cloudiness than SLSTR when all clouds are considered. However, removing the thinnest clouds clearly increases the agreement in the Southern high latitudes. In the Northern high latitudes however, the ERA-5 cloud fraction shows only small change in these scenarios.

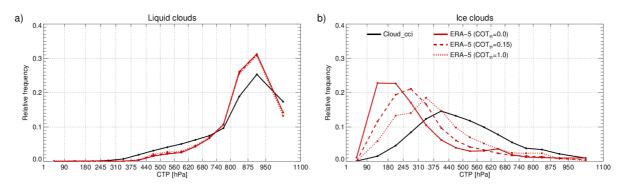




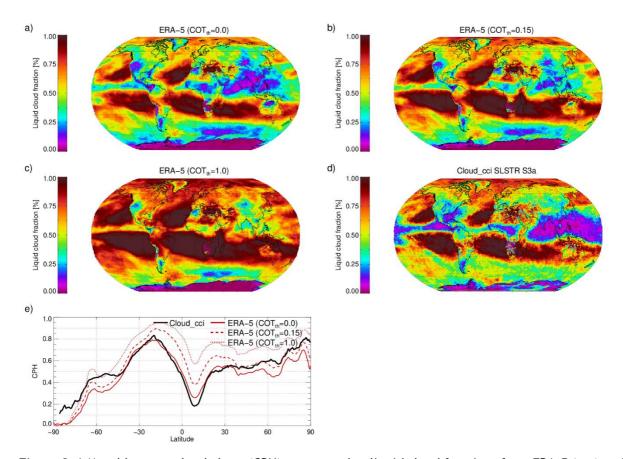


**Figure 3-1** Monthly mean cloud fraction (CFC) from ERA-5 (a-c) and Cloud\_cci+ v3 SLSTR S3a (d) for July 2019, where the ERA-5 cloud fraction was produced by SIMFERA for three optical thickness thresholds (COT<sub>th</sub> = 0.0, 0.15, 1.0). Panel (e) is the zonal mean plot of CFC for all four sets. The uncertainty in Cloud\_cci is mainly due to missing optically very thin clouds.

In Figure 3-2 the cloud fraction for low-, mid and high-level clouds are compared. The fraction of high-level clouds is much higher in ERA-5 than in SLSTR, which could point to a deficit in ERA-5 and/or to a lack of sensitivity to thin high-level clouds in SLSTR data. Removing cloud-top layers with an optical thickness below 1 brings the ERA-5 high-level cloud fraction down to SLSTR. For mid- and low-level clouds we generally see smaller values in ERA-5 compared to SLSTR, which is more pronounced for mid-level clouds.


Figure 3-3 depicts the relative frequency of cloud top pressure for SLSTR and ERA-5 stratified by cloud phase. While for liquid clouds the agreement between ERA-5 and SLSTR is reasonably (for all COT threshold), for ice clouds ERA-5 has clearly more high clouds (and less mid-level and low-level clouds) than SLSTR even when cloud top layers up to an optical thickness of 1 are removed from ERA-5. This confirms the findings for the cloud layer fractions above.


As last example, Figure 3-4 shows maps and zonal mean plots of monthly mean liquid cloud fraction. Between 50S and 50N the cloud phase agrees reasonably well, when no clouds layers are removed from ERA-5. Towards the higher latitudes, we find that ERA-5 has less liquid clouds than SLSTR, relatively speaking. Removing thin cloud top layers leads to generally increasing the liquid cloud fraction in ERA-5 by partly more than 20%.






**Figure 3-2** Monthly mean cloud fraction from ERA-5 (rows 1-3) and Cloud\_cci+ v3 SLSTR S3a (row 4) for high-level (CFC<sub>high</sub>, left column), mid-level (CFC<sub>mid</sub>, middle column) and low-level clouds (CFC<sub>low</sub>, right column) for July 2019. The ERA-5 cloud fraction was produced by SIMFERA for three optical thickness thresholds (COT<sub>th</sub> = 0.0, 0.15, 1.0; rows 1 to 3, respectively). Bottom row: zonal mean plots for CFC<sub>high</sub>, CFC<sub>mid</sub> and CFC<sub>low</sub>.





**Figure 3-3** Global, relative frequency histograms of observed Cloud\_cci cloud-top pressure (CTP) compared to ERA-5 CTP after applying SIMFERA with three COT thresholds  $COT_{th}$  (0.0, 0.15 and 1.00) - separated in liquid (a) and ice clouds (b) - for July 2019.



**Figure 3-4** Monthly mean cloud phase (CPH), presented as liquid cloud fraction, from ERA-5 (a-c) and Cloud\_cci+ v3 SLSTR S3a (d), where the ERA-5 liquid cloud fraction was produced by SIMFERA for three top-down optical thickness thresholds (COT<sub>th</sub> = 0.0, 0.15, 1.0), at which the phase was collected from ERA-5 profiles. (e) Zonal mean plot of CPH for all four sets.



| Doc:   |   |           |   | Cloud_cci+_D5.1_CAR_v1.0.docx |
|--------|---|-----------|---|-------------------------------|
| Date:  |   |           |   | 25/09/2023                    |
| Issue: | 1 | Revision: | 0 | Page 14                       |

# 4 Definitions, Acronyms, Abbreviations

| AATSR    | Advanced Along Track Scanning Radiometer                                |  |  |  |
|----------|-------------------------------------------------------------------------|--|--|--|
| ATBD     | Algorithm Theoretical Basis Document                                    |  |  |  |
| ATSR     | Along-Track Scanning Radiometer                                         |  |  |  |
| AVHRR    | Advanced Very High Resolution Radiometer                                |  |  |  |
| CEDA     | British Atmospheric Data Centre                                         |  |  |  |
| BRDF     | Bidirectional Reflectance Distribution Function                         |  |  |  |
| CALIPSO  | Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations      |  |  |  |
| CFMIP    | Cloud Feedback Model Intercomparison Project                            |  |  |  |
| СМ       | Configuration Management                                                |  |  |  |
| CMIP     | Climate Model Intercomparison Project                                   |  |  |  |
| CM SAF   | EUMETSAT Satellite Application Facility on Climate Monitoring           |  |  |  |
| COSP     | CFMIP Observational Simulator Package                                   |  |  |  |
| DARDAR   |                                                                         |  |  |  |
| DISORT   | Discrete Ordinates Radiative Transfer                                   |  |  |  |
| DWD      | Deutscher Wetterdienst                                                  |  |  |  |
| EC-EARTH | Earth system climate modelling version of the ECMWF model               |  |  |  |
| ECMWF    | European Centre for Medium Range Weather Forecast                       |  |  |  |
| ECSS     | European Cooperation for Space Standardization                          |  |  |  |
| ECV      | Essential Climate Variable                                              |  |  |  |
| EO       | Earth Observation                                                       |  |  |  |
| EOS      | Earth Observing System                                                  |  |  |  |
| ESA      | European Space Agency                                                   |  |  |  |
| EUMETSAT | European Organization for the Exploitation of Meteorological Satellites |  |  |  |
| FCDR     | Fundamental Climate Data Record                                         |  |  |  |
| GCM      | Global Circulation Model                                                |  |  |  |
| GCOS     | Global Climate Observing System                                         |  |  |  |
| GERB     | Geostationary Earth Observation Budget Instrument                       |  |  |  |
| GEWEX    | Global Energy and Water Cycle Experiment                                |  |  |  |
| GRAPE    | Global Retrieval of ATSR cloud Parameters and Evaluation                |  |  |  |
| GSICS    | Global Space-based Inter-Calibration System                             |  |  |  |
| GTS      | Global Telecommunication System                                         |  |  |  |
| IPCC     | International Panel on Climate Change                                   |  |  |  |
| IR       | Infrared                                                                |  |  |  |
| K        | Kelvin                                                                  |  |  |  |
| MODIS    | Moderate Resolution Imaging Spectroradiometer                           |  |  |  |
| MSG      | Meteosat Second Generation                                              |  |  |  |
| MTG      | Meteosat Third Generation                                               |  |  |  |
| NASA     | National Aeronautics and Space Administration                           |  |  |  |
| NERC     | Natural Environment Research Council                                    |  |  |  |
| CEDA     | NERC Earth Observation Data Centre                                      |  |  |  |
| NetCDF   | Network Common Data Form                                                |  |  |  |



| Doc:   |   |           |   | Cloud_cci+_D5.1_CAR_v1.0.docx |
|--------|---|-----------|---|-------------------------------|
| Date:  |   |           |   | 25/09/2023                    |
| Issue: | 1 | Revision: | 0 | Page 15                       |

| NIR      | Near Infrared                                                                               |  |  |  |
|----------|---------------------------------------------------------------------------------------------|--|--|--|
| NOAA     | National Oceanic & Atmospheric Administration                                               |  |  |  |
| NWP      | Numerical Weather Prediction                                                                |  |  |  |
| OE       | Optimal Estimation                                                                          |  |  |  |
| OLR      | Outgoing Longwave Radiation                                                                 |  |  |  |
| ORAC     | Oxford RAL Aerosol and Cloud                                                                |  |  |  |
| UO       | University of Oxford                                                                        |  |  |  |
| PUG      | Product User Guide                                                                          |  |  |  |
| PVP      | Product Validation Plan                                                                     |  |  |  |
| PVIR     | Product Validation and Intercomparison Report                                               |  |  |  |
| RAL      | Rutherford Appleton Laboratory                                                              |  |  |  |
| RTM      | Radiative Transfer Model                                                                    |  |  |  |
| RTTOV    | Radiative Transfer for TOVS                                                                 |  |  |  |
| SAF      | Satellite Application Facility                                                              |  |  |  |
| SCOPE-CM | Sustained and Coordinated Processing of Environmental Satellite Data for Climate Monitoring |  |  |  |
| SEVIRI   | Spinning Enhanced Visible and Infrared Imager                                               |  |  |  |
| SLSTR    | Sea and Land Surface Temperature Radiometer                                                 |  |  |  |
| SOW      | Statement Of Work                                                                           |  |  |  |
| SST      | Sea Surface temperature                                                                     |  |  |  |
| SVR      | System verification Report                                                                  |  |  |  |
| TCDR     | Thematic Climate Data Record                                                                |  |  |  |
| TIR      | Thermal Infrared                                                                            |  |  |  |
| TR       | Technical Requirement                                                                       |  |  |  |
| WCRP     | World Climate Research Program                                                              |  |  |  |
| WMO      | World Meteorology Organisation                                                              |  |  |  |



| Doc:   |   |           |   | Cloud_cci+_D5.1_CAR_v1.0.docx |
|--------|---|-----------|---|-------------------------------|
| Date:  |   |           |   | 25/09/2023                    |
| Issue: | 1 | Revision: | 0 | Page 16                       |

#### References

Jones W., Stengel M. Stier, P., A Lagrangian Perspective on the Lifecycle and Cloud Radiative Effect of Deep Convective Clouds Over Africa, 2023, in preparation

RUCS, 2020: ESA Cloud\_cci+ Report on User Case Study 2: Designing a "Sunny Vacation Map" based on Satellite Observations on Clouds and Radiation, Issue: Issue 1 Revision 0, Released: 17.03.2021

Stengel, M., Schlundt, C., Stapelberg, S., Sus, O., Eliasson, S., Willén, U., and Meirink, J. F.: Comparing ERA-Interim clouds with satellite observations using a simplified satellite simulator, Atmos. Chem. Phys., 18, 17601-17614, https://doi.org/10.5194/acp-18-17601-2018, 2018.

Stengel, M., Stapelberg, S., Sus, O., Finkensieper, S., Würzler, B., Philipp, D., Hollmann, R., Poulsen, C., Christensen, M., and McGarragh, G.: Cloud\_cci Advanced Very High Resolution Radiometer post meridiem (AVHRR-PM) dataset version 3: 35-year climatology of global cloud and radiation properties, Earth Syst. Sci. Data, 12, 41-60, https://doi.org/10.5194/essd-12-41-2020, 2020.

Stengel, M., Meirink, J. F., & Eliasson, S. (2023). On the temperature dependence of the cloud ice particle effective radius—A satellite perspective. Geophysical Research Letters, 50, e2022GL102521. https://doi.org/10.1029/2022GL102521