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1 Introduction 

Above-ground	biomass	density	(AGB,	units:	Mg	ha-1)	is	defined	by	the	Global	Carbon	Observing	
System	(GCOS)	as	one	of	54	Essential	Climate	Variables	(ECV).	For	climate	science	communities,	
AGB	is	a	pivotal	variable	of	the	Earth	System,	as	it	impacts	the	surface	energy	budget,	the	land	
surface	 water	 balance,	 the	 atmospheric	 concentration	 of	 greenhouse	 gases	 and	 a	 range	 of	
ecosystem	services.	The	requirement	is	for	AGB	to	be	provided	wall-to-wall	over	the	entire	globe	
for	all	major	woody	biomes,	with	a	spatial	resolution	between	500	m	and	1	km	(based	on	satellite	
observations	 of	 100-200	m	 spatial	 resolution),	 a	 relative	 error	 of	 less	 than	 20%	where	 AGB	
exceeds	50	Mg	ha-1	and	a	fixed	error	of	10	Mg	ha-1	where	the	AGB	is	below	that	limit.		
	
The	 increased	availability	of	 remote	sensing	 imagery	during	 the	 last	20	years	has	allowed	 the	
generation	of	several	wall-to-wall	datasets	of	AGB.	The	uncertainty	in	magnitude	and	distribution	
of	AGB	prior	to	the	Climate	Change	Initiative	(CCI)	Biomass	project	is	illustrated	in	(Figure	1-1),	
where	each	line	represents	latitudinal	averages	of	AGB	estimated	with	remote	sensing	data.	While	
the	 overall	 trends	 in	 the	 AGB	 spatial	 distribution	 are	 consistent	 across	 the	 AGB	 datasets,	 the	
variability	of	AGB	among	these	datasets	is,	on	average,	more	than	100%	(precision	figures	here	
excluded).	While	it	is	acknowledged	that	remote	sensing	is	the	only	tool	that	can	provide	global	
spatially	explicit	estimates	of	AGB,	the	large	discrepancies	observed	in	Figure	1-1	are	because	AGB	
can	 only	 be	 inferred	 from	 observations	 since	 remote	 sensing	 instruments	 do	 not	 have	 the	
capability	to	measure	the	organic	mass	stored	in	vegetation.	Yet,	as	remote	sensing	observations	
and	 in	 situ	 observations	 increase	 and	 improve	 the	 characterization	 of	 “biomass”,	 there	 are	
substantial	margins	to	improve	the	accuracy	of	the	estimates.	
	

	
Figure 1-1: Latitudinal averages of AGB estimates from the GlobBiomass dataset (Santoro et al. (2021), Saatchi 
et al. (2011), Baccini et al. (2012), Avitabile et al. (2016) and GEOCARBON dataset, Hu et al. (2016), Thurner et 

al. (2014), Liu et al. (2015) and Kindermann et al. (2008). 

	
The	objectives	of	the	CCI	Biomass	project	are	to	generate	global	maps	of	AGB	using	a	variety	of	
Earth	 Observation	 (EO)	 datasets	 and	 state-of-the-art	 models	 for	 several	 epochs	 and	 assess	
biomass	changes	between	epochs	(annual	and	decadal	changes).	The	maps	should	be	spatially	and	
temporally	consistent;	in	addition,	they	need	to	be	consistent	with	other	thematic	data	layers	that	
are	produced	in	the	framework	of	the	CCI	Programme	(e.g.,	Fire,	Land	Cover,	Snow	etc.).	
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The	scope	of	this	document	is	to	present	the	algorithms	that	generate	the	AGB	products	and	the	
corresponding	maps	of	AGB	changes.	This	Algorithm	Theoretical	Basis	Document	(ATBD)	relies	
on	 indications	 in	 the	Users	Requirements	Document	 (URD)	 [RD-1],	 the	Product	 Specifications	
Document	(PSD)	[RD-2]	and	the	Data	Access	Requirements	Document	(DARD)	[RD-3].	In	addition,	
it	elaborates	on	major	inputs	from	the	earlier	Product	Validation	and	Algorithm	Selection	(PVASR)	
documents	[RD-4],	which	investigated	potential	ways	to	improve	the	biomass	estimated	with	the	
algorithms	described	in	this	ATBD.		
	
While	 the	 ATBD	 describes	 the	 data	 and	 algorithms	 used	 to	 generate	 the	 global	 biomass	 and	
biomass	 change	 products	 as	 specified	 above,	 the	 End-to-End	 ECV	Uncertainty	 Budget	 (E3UB)	
document	describes	the	procedures	implemented	to	quantify	the	precision	of	the	AGB	estimates	
[RD-5].	An	estimate	of	the	bias	of	the	maps,	assessed	with	inventory	plot	data	and	a	modelling	
framework,	 is	 provided	 in	 the	 Product	 Validation	 and	 Intercomparison	Report	 (PVIR)	 [RD-8].	
Future	advances	that	may	potentially	be	implemented	in	revisions	of	this	ATBD	are	described	in	
the	Algorithm	Development	Plan	(ADP)	[RD-6].	
	
During	Year	1	of	CCI	Biomass	(Phase	1),	methods	were	developed	that	led	to	the	generation	of	a	
first	version	of	a	global	AGB	product	for	the	year	2017.	During	Year	2,	these	methods	were	refined	
by	 considering	 the	 assessment	 of	 the	AGB	map	 of	 2017	 and	 alternative	 algorithmic	 advances	
documented	in	the	PVASR	and	in	the	ADP	of	Year	1.	The	ATBD	was	updated	in	Year	2	to	document	
the	algorithms	implemented	to	generate	AGB	estimates	for	the	epochs	2010,	2017	and	2018.	The	
focus	of	Year	2	was	to	generate	a	first	set	of	three	AGB	maps.	These	were	generated	independently	
of	 each	 other	 to	 gather	 understanding	 on	 global	 AGB	mapping	 in	 several	 epochs.	 The	 overall	
spatial	 distribution	was	well	 captured,	 although	 the	AGB	 estimates	were	 affected	by	different	
biases	and	errors	that	were	particularly	noticeable	in	the	densely	forested	tropics	[RD-8].	As	a	
first	approach	to	quantifying	AGB	changes	at	yearly	and	almost	decadal	scale,	difference	maps	
were	also	generated.	Large	scale	errors	were	apparent	when	comparing	the	2010	dataset	with	the	
other	two	datasets.	The	different	set	of	EO	data	available	for	2010	compared	to	2017	and	2018	
explained	 these	 discrepancies.	 Based	 on	 these	 conclusions,	 the	 work	 undertaken	 in	 Year	 3	
consisted	of	improving	the	accuracy	of	each	of	the	three	individual	maps	of	AGB	and	allowed	a	
first	assessment	of	AGB	change	between	epochs.	At	the	end	of	Phase	1	of	the	CCI	Biomass	project,	
the	 accuracy	 of	 the	 individual	 maps	 was	 improved	 but	 correction	 methods	 to	 overcome	
systematic	discrepancies	between	the	maps	did	not	perform	sufficiently	well	to	guarantee	correct	
estimates	of	AGB	changes.	During	the	first	year	of	Phase	2	of	the	CCI	Biomass	project,	the	retrieval	
algorithms	were	further	developed	to	reduce	biases	and	improve	the	inter-annual	consistency	of	
the	AGB	estimates	and	provide	reliable	values	for	AGB	changes	on	annual	and	decadal	time	scales.	
Biases	were	addressed	with	a	novel	training	of	the	function	relating	height	to	AGB	and	by	using	a	
much	wider	dataset	of	spaceborne	LiDAR	observations.	Verification	of	the	AGB	maps	produced	
with	this	algorithm	showed	that	the	modifications	to	the	CORE	algorithm	removed	some	of	the	
largest	biases	but	also	introduced	some	errors.	During	year	2	of	Phase	2,	the	CORE	algorithm	was	
improved	with	more	extensive	datasets	of	LiDAR	observations	and	subnational	statistics	of	AGB,	
which	 supported	 the	 calibration	 of	 one	 of	 the	 structural	 functions	 integrated	 in	 the	 retrieval	
model.	In	addition,	the	temporal	adjustment	of	AGB	estimates	was	introduced	to	avoid	unnatural	
year-to-year	fluctuations	due	to	the	weak-to-moderate	sensitivity	of	the	SAR	observations	to	AGB.	
Verification	of	the	AGB	estimates	confirmed	that	the	algorithm	improvements	are	of	benefit	but	
still	some	issues	related	to	both	data	and	models	need	to	be	solved.	In	this	report,	we	document	
recent	advances	of	the	CORE	retrieval	algorithm	intended	to	further	reduce	biases	and	improve	
the	consistency	of	the	AGB	estimates	on	a	decadal	scale.	
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Section	 2	 provides	 the	 background	 of	 this	 ATBD,	 describing	 the	 strategy	 that	 underpins	 the	
algorithms	implemented	in	CCI	Biomass	to	estimate	AGB.		The	ATBD	also	describes	the	datasets	
(EO	and	auxiliary)	used	to	estimate	AGB	(Section	3);	the	AGB	retrieval	methods	used	to	generate	
global	maps	of	AGB	(Section	4);	and	the	methods	used	to	quantify	AGB	changes	across	epochs	
(Section	5).	Correction	of	AGB	biases	 is	addressed	 in	Section	6.	An	assessment	of	 the	retrieval	
algorithm	and	the	biomass	change	algorithm	is	presented	in	Section	7.		

2  Background 

2.1  Theory behind algorithms for global biomass retrieval 
Thanks	 to	 the	 increasing	 amount	 of	 spaceborne	 EO	 data,	 methods	 and	 models	 that	 allow	
estimation	of	forest	variables	are	being	developed	with	the	aim	of	achieving	a	quantitative	global	
description	of	forest	biomass.	Below,	we	briefly	outline	strengths	and	weaknesses	of	algorithms	
published	in	scientific	journals	that	led	to	the	generation	of	a	global	dataset	of	a	forest	variable	
from	EO	observations	up	to	the	start	of	the	CCI	Biomass	project	in	2018.	This	list	is	not	meant	as	
an	evaluation	of	 the	data	product	but	 rather	 to	 state	where	past	 experiences	 can	be	of	use	 in	
enhancing	or	designing	AGB	retrieval	algorithms	based	on	current	EO	data.	
	
The	availability	of	global	and	repeated	observations,	first	by	the	MODIS	sensors	and	more	recently	
by	Landsat	sensors,	fostered	the	estimation	of	global	raster	datasets	of	canopy	height	(Lefsky	et	
al.,	2010;	Simard	et	al.,	2011)	and	AGB	(Saatchi	et	al.,	2011;	Baccini	et	al.,	2012;	Hu	et	al.,	2016),	
the	latter	being	the	first	to	utilise	the	Ice,	Cloud	and	land	Elevation	(ICESat)	GLAS	waveform	data	
to	calibrate	biomass	prediction	models.	Relationships	between	ICESat	GLAS	waveform	metrics	
were	established	with	respect	to	in	situ	observations,	where	available,	and	ICESat	GLAS	metrics	
were	related	to	observations	by	optical	sensors	(MODIS	or	Landsat)	at	pixels	corresponding	to	
the	 ICESat	 GLAS	 footprints.	 Canopy	 height	 and	AGB	were	 then	 extrapolated	 to	 the	 remaining	
pixels	 of	 the	 optical	 datasets	 to	 obtain	 wall-to-wall	 datasets.	 Even	 though	 these	 methods	
implement	 some	 measurements	 of	 canopy	 height	 and	 AGB	 (where	 used),	 they	 nonetheless	
assume	 that	 the	 estimation	 of	 canopy	 height	 does	 not	 require	 predictors	 other	 than	MODIS-
derived	 observables,	 which	 is	 questionable	 since	 MODIS	 observables	 are	 not	 a	 direct	
measurement	 of	 a	 forest	 structural	 parameter.	 In	 addition,	 they	 rely	 on	 a	 dataset	 of	 in	 situ	
measurements	 to	establish	the	 functional	dependency	between	“true”	and	Light	Detection	and	
Ranging	(LiDAR)-based	height.	Since	such	datasets	are	not	available	globally,	there	is	a	risk	that	
the	 quality	 of	 the	 estimates	 is	 not	 consistent,	 being	 more	 prone	 to	 errors	 in	 regions	 under-
represented	in	the	database	of	in	situ	measurements.		
	
To	reduce	errors	in	individual	maps	of	AGB,	Avitabile	et	al.,	(2016)	proposed	a	technique	to	fuse	
maps	 based	 on	 the	 level	 of	 agreement	 of	 each	map	 with	 reference	 AGB	measurements.	 This	
approach,	applied	to	two	pan-tropical	maps	(Saatchi	et	al.,	2011;	Baccini	et	al.,	2012),	generated	a	
new	map	that	was	then	combined	with	a	map	of	AGB	for	the	boreal	and	temperate	zones	(Thurner	
et	al.,	2014)	to	obtain	a	global	map	referred	to	as	the	GEO-CARBON	map.	The	strength	of	such	an	
approach	was,	in	our	opinion,	also	its	weakness,	in	the	sense	that	the	method	was	insufficiently	
constrained	in	regions	where	reference	datasets	(in	situ,	laser-based)	were	unavailable.	Having	
entered	 an	 epoch	 that	 can	 be	 considered	 data-rich	 in	 terms	 of	 spaceborne	 observations,	 the	
demand	on	reference	datasets	has	also	increased	and,	accordingly,	their	availability.	Hence,	effort	
should	be	spent	on	developing	retrieval	algorithms	that	integrate	reference	and	EO	data,	rather	
than	attempting	to	fuse	estimates	from	different	sources	that	may	ultimately	lead	to	aggregation	
of	errors	rather	than	provide	a	high-quality	result.		
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Compared	to	optical	observations,	data	acquired	in	the	microwave	part	of	the	spectrum	contains	
more	information	on	forest	structure	because	of	the	weaker	attenuation	of	microwaves	by	the	
canopy	 (passive	 sensors)	 or	 the	 deeper	 penetration	 of	 microwaves	 into	 the	 canopy	 (active	
sensors).	 Hence,	 it	 can	 be	 reasonably	 assumed	 that	 an	 estimation	 based	 on	 microwave	 data	
(Synthetic	Aperture	Radar;	SAR-based	observations,	brightness	temperatures)	will	improve	the	
accuracy	of	biomass-related	variables.	Furthermore,	the	more	frequent	sampling	of	the	Earth	by	
spaceborne	 LiDAR,	 including	 those	 that	 are	 recent	 (ICESat-2	 and	Global	 Ecosystem	Dynamics	
Investigation;	GEDI)	or	proposed	(e.g.,	the	Multi-footprint	Observation	Lidar	and	Imager;	MOLI)	
allow	a	larger	proportion	of	the	estimated	AGB	to	be	explained	in	terms	of	the	waveform-based	
measurements,	thus	in	principle	leading	to	a	more	accurate	set	of	biomass	estimates.		
	
At	coarser	resolutions,	attention	must	be	paid	to	the	Vegetation	Optical	Depth	(VOD)	observable	
from	passive	microwave	observations.	 X-band	VOD	has	been	used	 to	 generate	yearly	maps	of	
forest	AGB	and	carbon	over	a	period	of	20	years	(Liu	et	al.,	2015)	at	25	km	spatial	resolution.	L-
band	 VOD	 from	 Soil	 Moisture	 and	 Ocean	 Salinity	 (SMOS)	 has	 been	 evaluated	 for	 African	
landscapes	and	shown	to	be	closely	related	to	AGB	(Rodriguez	et	al.,	2018;	Fan	et	al.,2019).	The	
relationship	between	VOD	and	AGB	is	explained	in	terms	of	increased	attenuation	that	causes	the	
VOD	to	increase	with	AGB.	The	retrieval	algorithms	proposed	by	Liu	et	al.	(2015)	and	Rodriguez	
et	al.	(2018)	use	empirical	functions	to	link	VOD	and	AGB	and	are	trained	with	AGB	estimates	from	
other	AGB	maps.	This	approach	can	be	justified	by	considering	that	at	the	spatial	resolution	of	the	
passive	microwave	data	(0.25°),	a	“global”	unique	trend	may	characterize	the	dependence	of	VOD	
on	biomass.	This	assumption,	however,	can	easily	be	challenged	by	noting	that	VOD	experiences	
seasonality	and	depends	on	the	structural	and	dielectric	properties	of	a	forest.	Hence,	using	an	
AGB	map	as	a	surrogate	training	set	to	generate	a	global	map	of	AGB	may	introduce	errors	by	
distorting	trends	corresponding	to	regions	that	have	not	been	mapped	correctly	in	the	reference	
dataset.	
	
A	common	feature	of	the	algorithms	listed	above	is	that	most	emphasise	data	from	a	single	sensor	
rather	 than	 considering	 how	 to	 exploit	 the	 information	 content	 in	 multiple	 datasets,	 partly	
because	 of	 data	 availability	 when	 the	 investigations	 were	 undertaken.	 Although	 not	 further	
addressed	 in	 this	 document,	 EO	 datasets	 have	 also	 been	 used	 to	 generate	 national,	 regional,	
continental,	 and	 biome-specific	 datasets.	 Unlike	 global	 endeavours,	 the	 retrievals	 were	 built	
around	 the	 availability	 of	 reference	 data	 and/or	 multiple	 EO	 datasets;	 in	 addition,	 retrieval	
models	 could	 be	 regionalized	 by	 introducing	 location-specific	 information	 on	 vegetation	
properties,	climate,	etc.		
	
Entering	a	data-rich	epoch,	these	more	local	approaches	may	be	transferable	to	the	global	scale.	
Any	algorithm	that	aims	to	estimate	AGB	should	consider	exploiting	complementary	information	
from	multiple	sensors	and	exploit	the	biomass-related	part	of	the	signal.	In	addition,	the	uneven	
distribution	of	high-quality	reference	measurements	used	to	train	retrieval	algorithms	should	be	
accounted	for	by	designing	the	training	procedure	so	that	it	is	unaffected	by	such	a	deficiency.	The	
world’s	forests	are	not	measured	evenly	in	space,	which	is	likely	to	be	a	major	source	of	estimation	
bias	 at	 global	 level,	 and	 it	 is	 unlikely	 that	 a	 single	model	 realization	 (i.e.,	 a	 single	 set	 of	 non-
adaptive	model	parameters)	can	be	applied	globally.	Using	an	AGB	map	as	reference	dataset	could	
be	 considered	 an	 alternative,	 if	 the	AGB	 estimates	 are	 correctly	 estimated.	 This	may	 apply	 to	
LiDAR-based	maps,	 which,	 however,	 have	 limited	 spatial	 extent.	 The	 use	 of	 wall-to-wall	 AGB	
datasets	 is	 discouraged	because	of	 local	 and	 regional	 biases	 (Mitchard	 et	 al.,	 2013;	Rodriguez	
Veiga	et	al.,	2017)	that	can	propagate	to	the	new	set	of	AGB	estimates.	
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The	 GlobBiomass	 project	 (https://globbiomass.org)	 attempted	 to	 implement	 the	 strategy	
outlined	in	the	last	paragraph	and	overcome	some	of	the	issues	listed	above	by:	(i)	selecting	a	
well-known	 modelling	 framework;	 (ii)	 using	 an	 adaptive	 approach	 to	 estimating	 the	 model	
parameters	in	space	and	time;	and	(iii)	removing	the	requirement	of	in	situ	data	for	training	(the	
model	is	self-calibrating).	Point	(i)	was	justified	by	the	fact	that	numerous	physics-based	retrieval	
models	already	exist	and,	in	contrast	to	machine	learning	algorithms,	are	transparent.	Point	(ii)	is	
because	EO	signals	change	in	space	and	time,	whereas	retrieval	models	typically	do	not	account	
for	 such	 variability.	 Point	 (iii)	 was	 possibly	 the	 most	 innovative	 aspect	 of	 an	 algorithm	 for	
estimating	AGB	because	it	aimed	to	minimise	the	impact	of	reference	data	on	the	retrieval.	Making	
a	retrieval	algorithm	independent	of	reference	data	allows	a	truly	independent	validation	of	the	
retrieval	with	in	situ	data.	On	the	other	hand,	it	requires	profound	knowledge	of	the	EO	data	to	
avoid	macroscopic	errors	being	introduced.	
	
The	GlobBiomass	 retrieval	 algorithm	used	 state-of-the-art	 retrieval	 algorithms	with	 a	 specific	
focus	on	implementing	the	three	criteria	set	out	in	the	previous	paragraph.	However,	the	design	
of	the	algorithm	was	substantially	affected	by	the	EO	data	available	for	generating	a	global	map	of	
forest	AGB,	in	this	case,	for	the	epoch	2010.	This	was	a	fundamental	factor	in	how	the	algorithm	
was	 designed,	 in	 the	 sense	 that	 it	was	 built	 around	 globally	 available	 EO	 datasets	 containing	
information	on	biomass.		

2.2  The GlobBiomass biomass dataset 
The	 objective	 of	 the	 GlobBiomass	 project	 was	 to	 generate	 a	 global	 dataset	 of	 forest	 AGB	
representative	of	the	year	2010	epoch,	satisfying	the	requirements	that	the	error	was	at	most	30%	
and	the	spatial	resolution	below	500	m.	From	a	design	point	of	view,	global	coverage	was	more	
important	than	the	requirement	on	estimation	error	because	the	EO	data	that	could	support	the	
generation	of	a	global	dataset	of	AGB	was	sub-optimal.	Biomass	itself	cannot	be	sensed	by	any	
instrument	but	only	inferred	with	mathematical	models,	from	observations	that	relate	to	biomass.	
Such	observations	for	2010	consisted	of	wall-to-wall	surface	reflectance	datasets	acquired	by	high	
and	moderate	resolution	sensors	(Landsat,	MODIS,	MERIS)	and	SAR	backscatter	datasets	acquired	
by	high-to-coarse	resolution	sensors	at	short	wavelengths	(C-	and	L-band).	In	addition,	footprints	
of	laser	waveforms	were	available	but	with	too	sparse	spatial	sampling	for	direct	ingestion	in	a	
biomass	retrieval	scheme.	It	is	important	to	note	that	the	selection	of	input	EO	data	had	a	major	
impact	on	 the	estimation	 results,	 regardless	of	how	advanced	 the	algorithmic	 implementation	
may	have	been.	
	

	
Figure 2-1: The GlobBiomass AGB dataset (Santoro et al., 2021). 
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Figure	 2-1	 shows	 the	 GlobBiomass	 dataset	 of	 forest	 AGB.	 Validation	 of	 the	 GlobBiomass	 AGB	
estimates	 (Santoro	 et	 al.,	 2021)	 indicated	 the	 overall	 reliability	 of	 the	 data	 product	 when	
comparing	with	AGB	derived	 from	 inventory	measurements	at	 sample	plots.	While	 the	spatial	
distribution	of	AGB	appears	to	be	captured,	positive	biases	in	the	low	biomass	range	(50-100	Mg	
ha-1)	 and	 negative	 biases	 in	 the	 high	 biomass	 range	 (>	 250	Mg	 ha-1)	 occurred,	 although	 non-
systematically.	 Examination	 of	 the	 spatial	 distribution	 of	 the	 biases	 revealed	 that	 these	were	
caused	by	one	or	more	of	the	factors	listed	below	(Santoro	et	al.,	2021).		
	

• A	 too	 conservative	 constraint	 on	 the	 maximum	 biomass	 for	 a	 given	 area,	 causing	
underestimation	in	the	high	biomass	range.	

• A	 too	 generic	 definition	 of	 the	 forest	 transmissivity	 term	 in	 the	 models	 relating	 SAR	
backscatter	to	growing	stock	volume	(GSV),	causing	overestimation	of	biomass	in	the	low-
moderate	biomass	range.	

• Lack	of	sensitivity	of	the	SAR	backscatter	to	biomass	towards	the	upper	range	of	biomass.	
• Artefacts	in	EO	data	(Shimada	and	Ohtaki,	2010),	requiring	strong	image	filtering	which	

cancelled	out	subtle	variations	of	the	SAR	backscatter.	
• Uncorrected	effects	of	sloping	terrain	on	the	SAR	backscatter	(Shimada	and	Ohtaki,	2010),	

causing	severe	under/overestimation	of	biomass	for	slopes	tilted	towards/away	from	the	
look	direction	of	the	radar.	

• Incorrect	representation	of	scattering	mechanisms	in	specific	vegetation	types	where	the	
models	used	to	link	SAR	backscatter	and	biomass	were	not	correctly	parameterized	(e.g.,	
mangroves,	flooded	forest).	

• Coarse	representation	of	the	conversion	from	GSV	to	AGB,	causing	unwanted	local	biases.	
	
While	the	weak	sensitivity	of	the	SAR	backscatter	to	AGB	cannot	be	compensated	for,	all	other	
causes	of	biases	can	in	theory	be	handled:		

• Wider	knowledge	of	 the	biomass	distribution	globally	allows	better	characterization	of	
the	biomass	spatial	patterns	and	hence	more	realistic	constraint	in	the	retrieval	models.		

• Access	to	unprocessed	EO	data	would	allow	avoidance	of	artefacts.	
• More	 precise	 knowledge	 of	 vegetation	 spatial	 patterns	 globally	 would	 allow	 better	

characterization	 of	 models	 and	 model	 parameters	 that	 describe	 the	 functional	
dependence	of	biomass	on	EO	observables.	

• Wider	 knowledge	 of	 wood	 density,	 biomass	 allocation	 to	 the	 tree	 components	 and	
allometry	 linking	 forest	 variables	 could	 feed	 back	 directly	 to	 the	 retrieval	models	 and	
improve	 the	 capability	 to	 adapt	 to	 the	 local	 relationship	 between	 biomass	 and	 EO	
observables.	

	
The	validation	exercise	and	thorough	assessment	of	the	GlobBiomass	product	also	provided	some	
lessons	that	are	of	utmost	importance	when	designing	a	global	biomass	retrieval	algorithm	that	
can	potentially	clarify	how	uncertain	the	biomass	pool	is	globally	(see	Figure	1-1)	and	overcome	
issues	in	GlobBiomass	and	other	endeavours	aiming	to	characterize	the	world’s	forest	biomass.	
	

1. Retrieval	of	biomass	requires	multiple	data	sources,	 including	EO	data	not	particularly	
suited	to	retrieving	biomass.	

2. Height	information	can	substantially	improve	the	estimates	of	biomass	where	the	other	
EO	observables	do	not	exhibit	sensitivity	to	biomass.		

3. Retrieval	 of	 biomass	 does	 not	 necessarily	 require	 reference	 biomass	 data	 (e.g.,	 in	 situ	
observations	of	biomass)	for	training.	
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4. Retrieval	should	be	based	on	multiple	estimates,	i.e.,	multiple	models.	Each	model	should	
allow	 adaptation	 of	 its	 parameters	 to	 cope	 with	 spatial	 variability	 in	 the	 functional	
relationship	between	EO	data	and	biomass.		

	
Points	1	and	3	represent	two	pillars	of	the	GlobBiomass	retrieval	algorithm.	Point	2	was	given	less	
importance	 in	 the	 GlobBiomass	 algorithm	 than	 in	 other	 approaches,	 mostly	 because	 of	 the	
potentially	 large	 error	 introduced	by	 extrapolating	 relationships	 between	height	 and	biomass	
developed	at	sample	points	using	raster	datasets	only	partially	sensitive	to	biomass.	Nonetheless,	
the	integration	of	height	information	from	spaceborne	LiDAR	instruments	is	mandatory	to	better	
characterize	the	relationship	between	biomass-related	variables	in	the	retrieval	models.	Point	4	
was	only	touched	on	in	GlobBiomass	by	pursuing	separate	retrievals	with	C-	and	L-band	data	and	
merging	 them;	 this	 needs	 further	 development	 by	 exploiting	 other	 approaches	 that	 can	
compensate	for	deficiencies	in	the	biomass	estimates	obtained	with	the	GlobBiomass	approach.	

2.3 Moving from the GlobBiomass to the CCI Biomass CORE algorithm 
The	global	biomass	retrieval	algorithm	implemented	in	CCI	Biomass	followed	the	same	rationale	
as	underpinned	the	development	of	the	GlobBiomass	retrieval	algorithm.	However,	it	expands	and	
improves	 the	 GlobBiomass	 algorithm	 to:	 (i)	 better	 represent	 some	 vegetation-specific	
relationships	between	EO	observables	and	biomass;	(ii)	account	for	new	EO	datasets	not	available	
at	the	time	of	the	GlobBiomass	project;	and	(iii)	compensate	for	systematic	errors	revealed	by	the	
assessment	of	the	GlobBiomass	dataset.	The	current	version	of	the	CORE	algorithm	furthermore	
expands	on	the	experience	of	previous	CCI	Biomass	project	years.	In	the	process	of	improving	the	
CORE	algorithm,	changes	are	applied	that	account	for	evidence	from	assessment	of	the	AGB	maps	
of	previous	years	described	in	the	PVIR	[RD-8])	and	the	PVASR	[RD-4].	
	
A	further	development	regards	the	inter-annual	consistency	of	AGB	estimates,	which	is	needed	to	
estimate	AGB	changes.	Since	the	pool	of	EO	observations	used	to	estimate	AGB	is	not	the	same	
throughout	 the	 time	 interval	 envisaged	 by	 the	 CCI	 Biomass	 project	 (2005-2022),	 retrieval	
algorithms	need	to	ensure	that	such	diversity	is	compensated	for	to	ensure	temporal	consistency	
of	the	estimates	across	two	decades.	

3 Datasets and additional material 

This	 section	describes	 the	EO	datasets	used	 to	 generate	 the	AGB	and	AGB	change	maps	 to	be	
included	in	the	Climate	Research	Data	Package	(CRDP)	for	the	current	project	year.	
	
Current	CRDP:	version	6	(v6)	
Years:	2007,	2010,	2015-2016,	2017,	2018,	2019,	2020,	2021	and	2022	
	
For	2015-2022,	the	EO	dataset	consists	of	ALOS-2	PALSAR-2	and	Sentinel-1	observations	of	SAR	
backscatter.	 Wall-to-wall	 coverage	 by	 other	 SAR	 datasets	 was	 not	 accessible	 and	 passive	
microwave	observations	did	not	match	the	requirement	of	the	recommended	spatial	resolution	
of	AGB	datasets	by	GCOS.	Optical	data	were	not	considered	because	they	were	unlikely	to	provide	
a	 substantial	 contribution	 to	 the	 retrieval,	 given	 global	 coverage	 by	 active	 microwave	 data.	
Microwaves	penetrate	the	forest	canopy	to	a	certain	extent	so	that	the	backscatter	recorded	by	
radar	sensors	is	sensitive	to	forest	structural	parameters	and,	therefore,	to	AGB.	Following	the	
same	reasoning,	the	retrieval	of	AGB	for	the	years	2007	and	2010	was	based	on	ALOS-1	PALSAR-
1	and	Envisat	ASAR	datasets.		
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Spaceborne	LiDAR	observations	from	the	ICESat	(2003-2009),	ICESat-2	(2018-ongoing)	and	GEDI	
(2019-ongoing)	missions	are	an	additional	source	of	observations.	LiDAR	observations	capture	
vegetation	structural	features.	However,	their	sampling	is	still	too	coarse	to	use	them	for	wall-to-
wall	estimates	of	forest	variables.	Spaceborne	LiDAR	observations	are,	therefore,	used	here	in	the	
process	of	calibrating	models	rather	than	as	predictors	of	AGB.	We	use	height	and	canopy	density	
metrics	because	 these	are	directly	 related	 to	 the	original	observations.	LiDAR-based	values	of	
AGB,	as	in	Level	4	GEDI	data	products,	are	not	ingested	in	the	retrieval	algorithm	because	they	are	
themselves	an	estimate	and	not	a	true	measurement	of	biomass.	
	
The	EO	datasets	used	to	generate	or	used	in	producing	the	global	maps	of	AGB	are	summarized	in	
Table	3-1.	Each	set	of	EO	observations	is	then	described	in	individual	sections	below.	
	
Table 3-1: Remote sensing data sources, epochs covered and use. 

Sensor	 Epoch	 Use	
ALOS-2	PALSAR-2	 2015-2022	 Predictor	
Sentinel-1	(A	and	B)	 2015-2022	 Predictor	
ALOS-1	PALSAR-1	 2007	and	2010	 Predictor	
Envisat	ASAR	 2007	and	2010	 Predictor	
ICESat	GLAS	 All	epochs	 Calibration	
ICESat-2	 All	epochs	 Calibration	
GEDI	 All	epochs	 Calibration	
	
The	CORE	algorithm	also	utilises	several	raster	datasets	to	support	the	prediction	of	AGB.	These	
datasets	are	used	either	to	support	the	calibration	of	modules	of	the	retrieval	algorithm	or	as	a	
mask	 to	 select	 EO	 observations	 in	 the	 process	 of	 self-calibration	 of	 the	 algorithm.	 Table	 3-2	
summarises	 the	 additional	 datasets	 and	 a	 short	 description	 of	 their	 use	 in	 the	 context	 of	 this	
project.		
	
Table 3-2: Additional datasets, type and use in the CORE retrieval algorithm. 

Dataset	 Type	 Use	
Digital	Elevation	Model	 Surface	elevation	 Pre-processing	of	SAR	data	
Landsat	 canopy	 density	
and	density	change	

Vegetation	cover	density	 Calibration	of	retrieval	model	

MODIS	 Vegetation	
Continuous	Fields	

Vegetation	cover	density	 Mask	

CCI	Land	Cover		 Land	cover		 Mask	(specific	classes)	
Copernicus	 Global	 Land	
Operations	

Land	cover		 Mask	(specific	classes)	

FAO	 Global	 Ecological	
Zones	

Ecoregions	map	 Stratification	

Ecoregions	of	the	World	 Ecoregions	map	 Stratification	
	
Each	of	the	datasets	in	Table	3-2	is	described	in	individual	Sections.	Note	that	inter-dependency	
between	some	auxiliary	datasets	exist;	details	are	provided	in	the	individual	sections.		

3.1 Sentinel-1 (C-band, wavelength 5.6 cm) 
Sentinel-1	(S1)	is	a	spaceborne	mission	operated	by	the	European	Commission	in	the	Copernicus	
framework	and	consists	of	two	identical	units	(1A	and	1B)	flying	C-band	SARs.	Sentinel-1A	was	
launched	on	April	3,	2014,	and	became	operational	in	October	2014;	after	a	ramp-up	phase,	the	
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satellite	began	routine	observations	in	2016.	Sentinel-1B	was	launched	on	February	25,	2016,	and	
became	operational	at	the	beginning	of	2017.	Each	unit	has	a	12-day	repeat-pass	interval,	which	
halves	to	6	days	when	both	units	are	operating.	While	the	Sentinel-1A	mission	is	still	operating;	a	
malfunction	on	Sentinel-1B	stopped	acquisitions	at	the	end	of	2021.	
	
Each	unit	can	acquire	data	at	single	and	dual	polarization	(HH+HV	or	VV+VH)	in	several	modes.	
Over	 land,	 the	 Interferometric	 Wide	 Swath	 (IWS)	 was	 selected.	 Using	 the	 TOPSAR	 scanning	
technique,	IWS	achieves	a	spatial	resolution	of	approximately	20	m	in	range	and	5	m	in	azimuth,	
covering	a	swath	of	approximately	250	km.	For	remote	regions,	primarily	the	interior	of	polar	
regions	 and	 along	 their	 coastlines,	 S1	 is	 operated	 in	 the	 Extended	Wide	 Swath	 (EWS)	mode.	
Thanks	to	the	ScanSAR	observing	technique,	data	acquired	in	EWS	cover	a	swath	of	more	than	
400	km	with	a	spatial	resolution	of	approximately	100	m.	Although	Sentinel-1	can	also	acquire	
using	other	modes,	these	are	of	marginal	interest	for	the	scope	of	this	document.	Figure	3-1	shows	
a	 typical	 observation	 scenario	 of	 the	 Sentinel-1	 constellation	with	 two	 satellites	 in	 operation.	
Since	Russia	 and	 parts	 of	 Canada	 are	 covered	 by	 Sentinel-1B,	 these	 regions	were	 not	 imaged	
during	2022.	
	

	
Figure 3-1: Observation geometry of the Sentinel-1 mission last accessed on 9 February 2019 

(https://sentinel.esa.int/web/sentinel/missions/sentinel-1/observation-scenario). 

	
Data	acquisition	by	Sentinel-1	in	the	IWS	mode	follows	a	predefined	observation	scenario	with	
different	levels	of	priority.	The	highest	priority	is	given	to	acquisitions	over	Europe,	where	each	
unit	acquires	along	both	ascending	and	descending	paths	(Figure	3-1).	The	second	level	of	priority	
is	given	to	areas	prone	to	disasters	due	to	tectonics,	volcano	eruptions	and	earthquakes,	as	well	
as	 to	 polar	 and	 ice-covered	 regions.	 The	 third	 is	 given	 to	 areas	 of	 environmental	 importance	
(vegetation,	 e.g.,	 wall-to-wall	 coverage	 of	 the	 tropical	 land	 surface).	 Sentinel-1	 operations	
originally	aimed	at	achieving	global	coverage	every	12	days	with	each	unit.	However,	the	duty	
cycle	 of	 each	 unit	 allowed	 global	 coverage	 every	 12	 days	 only	 when	 both	 satellites	 were	 in	
operation.	With	the	loss	of	Sentinel-1B,	global	coverages	are	not	achieved.	The	EWS	mode	is	not	
used	as	a	complement	to	IWS	but	should	rather	be	seen	as	an	independent	acquisition	mode	with	
specific	 requirements,	 i.e.,	 frequent	 coverage	 and	moderate	 resolution.	 EWS	 primarily	 targets	
polar	regions,	with	some	limited	extension	over	northern	regions.	
	
The	acquisitions	in	IWS	mode	are	programmed	to	give	minimal	overlap	of	swaths	from	adjacent	
orbital	 tracks	 at	 the	 Equator.	 The	 overlap	 increases	 towards	 the	 poles	 so	 the	 number	 of	
observations	within	a	repeat-pass	cycle	of	12	days	for	a	given	point	on	the	ground	increases.	For	
regions	 observed	 with	 both	 units	 along	 both	 ascending	 and	 descending	 paths,	 one	 or	 more	

https://sentinel.esa.int/web/sentinel/missions/sentinel-1/observation-scenario
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observations	per	day	were	possible.	In	contrast,	the	swath	overlap	of	adjacent	orbital	tracks	in	
EWS	mode	is	large,	leading	to	a	very	high	number	of	observations	within	the	12-day	repeat-pass	
cycle	of	one	unit	(several	observations	daily	are	possible	at	the	highest	latitudes).	
	
It	was	shown	with	Envisat	ASAR	data	that	the	retrieval	of	biomass	benefits	from	a	dense	stack	of	
observations	 of	 C-band	 backscatter	 (Santoro	 et	 al.,	 2011;	 Santoro	 et	 al.,	 2013;	 Santoro	 et	 al.,	
2015a).	 However,	 not	 all	 observations	 in	 a	 data	 stack	 were	 found	 to	 contribute	 to	 the	 final	
estimate	of	biomass.	The	largest	contribution	came	from	images	acquired	under	dry	and	frozen	
conditions	in	the	boreal	and	temperate	zone	(Santoro	et	al.,	2011).	More	generally,	data	acquired	
under	 dry	 conditions	 appeared	 to	 be	more	 suitable	 than	 data	 acquired	 under	wet	 conditions	
(Santoro	et	al.,	2015a).	In	addition,	in	Santoro	et	al.	(2011)	it	was	concluded	that	having	at	least	
20	images	available	with	a	backscatter	contrast	between	unvegetated	terrain	and	dense	forest	
conditions	of	more	than	0.5	dB	allows	systematic	biases	in	the	retrieved	biomass	to	be	reduced.	
Roughly	one	third	of	the	C-band	backscatter	observations	investigated	in	Santoro	et	al.	(2011)	
fulfilled	this	requirement.		
	
Following	 these	 indications,	 retrieval	 based	 on	 Sentinel-1	 images	 is	 feasible	 thanks	 to	 the	
repeated	acquisitions,	 particularly	 from	 the	 start	 of	 routine	operations	by	both	units	 in	2017.	
However,	the	retrieval	does	not	require	the	entire	archive	of	data.	For	regions	with	almost	daily	
observations,	 the	 IWS	dataset	acquired	after	2016	was	pruned	 to	exclude	observations	with	a	
correlation	 close	 to	 1.	 An	 analysis	 of	 the	 Sentinel-1	 data	 archives	 in	 terms	 of	 geographical	
distribution	of	the	imagery	at	continental	scale	revealed	that,	between	2017	and	2021,	the	image	
data	 pool	 was	 extremely	 redundant	 over	 Europe.	 In	 addition,	 for	 the	 purpose	 of	 retrieving	
biomass,	 imagery	acquired	north	of	75°N	and	south	of	56°N	was	unnecessary	because	it	 is	not	
covered	with	woody	vegetation.		
	
To	demonstrate	the	wall-to-wall	mapping	capability	of	Sentinel-1,	we	show	the	data	coverage	by	
Sentinel-1	for	2017	in	Figure	3-2	after	pruning	redundant	data.	The	pool	of	images	achieved	global	
coverage	 of	 all	 forests	 except	 for	 a	 gap	 in	 northwest	 Canada.	 A	 more	 detailed	 search	 of	 the	
Sentinel-1	archives	revealed	that	for	this	region	there	were	hardly	any	acquisitions	in	IWS	mode,	
whereas	several	acquisitions	were	available	in	the	EWS	mode.	EWS	data	were	therefore	used	to	
fill	gaps.	Similar	EWS	imagery	was	used	to	fill	two	gaps	smaller	than	an	IWS	scene	(i.e.,	250	x	250	
km2).	This	gap-filling	strategy	had	no	effect	on	the	biomass	estimates	obtained	from	Sentinel-1	
data	since	Sentinel-1	imagery	was	processed	to	a	pixel	size	of	150	m.		
	

	
Figure 3-2: Coverage of the 2017 Sentinel-1 IWS dataset selected to support the estimation of biomass 

(courtesy J. Kellndorfer, EBD). 



 

Ref CCI Biomass Algorithm Theoretical Basis 
Document 

 Issue Page Date 
6.0 25 19.12.2024 

	

This document is the property of the CCI-Biomass partnership, no part of it shall be reproduced or transmitted 
without the express prior written authorization of Aberystwyth University and Gamma Remote Sensing AG. 

	
For	 2015	 and	 2016,	 about	 220,000	 scenes	 acquired	 by	 Sentinel-1	 A	 were	 selected	 for	 pre-
processing.	Approximately,	250,000	scenes	were	selected	for	pre-processing	for	2017.	For	2018	
to	2021,	the	numbers	increased	to	about	300,000	because	in	2017	the	1B	unit	started	delivering	
images	only	in	April.	For	2022,	the	number	of	Sentinel-1	images	decreased	to	about	200,000	due	
to	the	end	of	operations	of	the	1B	unit.	Figure	3-3	shows	a	comparison	in	terms	of	coverage	for	
the	 years	 2021	 and	 2022.	While	 in	 2021	 the	 coverage	was	 almost	 global,	 in	 2022	 large	 gaps	
occurred	 over	 Russia,	 South	 America	 and	 Africa.	 The	 search	 was	 undertaken	 on	 the	 data	
repository	of	the	Alaska	Satellite	Facility	(ASF)	because	it	mirrors	European	data	holdings	while	
providing	speedier	and	more	reliable	access	to	the	data.	

	
	

	
Figure 3-3: Mosaics of Sentinel-1 backscatter images (VH-polarization) based on data acquired in 2021 (top) and 
2022 (bottom). 

The	 Sentinel-1	 IWS	 data	 pool	 consisted	 of	 individual	 images,	 each	 covering	 an	 area	 of	
approximately	 250	 km	 ×	 250	 km,	 in	 the	 acquisition	 geometry	 of	 the	 Sentinel-1	 radar.	 Pre-
processing	generated	a	stack	of	terrain	geocoded,	radiometrically	calibrated,	speckle-filtered	and	
co-registered	 Sentinel-1	 observations	 provided	 in	Ground	Range	Detected	 (GRD)	 format.	 GRD	
images	 consist	 of	 ground-range	 projected	 images	 of	 the	 SAR	 backscatter	 intensity.	 The	 pixel	
spacing	of	a	GRD	image	acquired	in	the	IWS	mode	is	10	m	in	both	ground	range	and	azimuth.	Given	
that	the	spatial	resolution	of	the	IWS	mode	in	the	azimuth	direction	is	about	14	m	and	the	GRD	
data	has	been	multi-looked	by	factor	5	in	range	to	a	ground	range	resolution	of	~18	m	(Torres	et	
al.,	 2012),	 the	 images	 in	 GRD	 format	 are	 slightly	 oversampled.	 For	 the	 EWS	mode,	 the	 same	
reasoning	was	applied.	Compared	to	the	IWS	mode,	the	pixel	spacing	of	an	EWS	image	in	GRD	
format	is	50	m	in	both	range	and	azimuth,	thus	oversampled	as	for	IWS	data.	Although	Single	Look	
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Complex	(SLC)	images	retain	the	original	spatial	resolution	of	the	data,	data	in	GRD	format	were	
used	for	several	reasons:		
	
1)	SLC	images	allow	the	generation	of	interferometric	variables,	such	as	coherence,	and	it	has	been	
shown	 that	 estimation	 of	 biomass	 from	 C-band	 coherence	 is	 more	 accurate	 than	 from	 SAR	
backscatter	(Santoro	et	al.,	2002;	Santoro	et	al.,	2018),	but	it	is	unlikely	that	the	6-	and	12-day	
repeat-pass	intervals	of	the	Sentinel-1	constellation	will	allow	coherence	to	be	preserved	in	all	
vegetated	regions	on	Earth.	The	effort	of	processing	SLC	data	to	coherence	globally	is	therefore	
likely	to	be	of	little	value	to	this	project.	
	
2)	 A	 single	 GRD	 scene	 in	 IWS	 mode	 covers	 an	 area	 of	 250	 x	 250	 km2,	 corresponding	 to	
approximately	1.6	GB	of	data.	The	corresponding	SLC	image	consists	of	approximately	8	GB.	Since	
SLC	data	are	strongly	affected	by	speckle,	multi-looking	(i.e.,	spatial	averaging)	is	required.	For	a	
minimal	improvement	in	terms	of	radiometric	resolution,	the	effort	of	accessing	and	managing	
images	in	SLC	format	instead	of	GRD	format	is	unjustified.		
	
3)	 Based	 on	 previous	 experience	 when	 using	 GRD	 data	 for	 large-scale	 land	 mapping	 and	
monitoring	(Santoro	et	al.,	2017),	the	quality	of	the	data	in	GRD	format	was	sufficient	to	support	
the	retrieval	of	biomass.	
	
The	SAR	pre-processing	chain	is	shown	in	Figure	3-4.	Before	implementing	the	pre-processing	
chain,	 the	 output	 pixel	 spacing	 of	 the	 Sentinel-1	 image	data	was	 analysed.	 The	 option	 of	 pre-
processing	to	preserve	the	spatial	resolution	of	the	data	was	discarded	because	of	the	extremely	
large	amount	of	data	to	be	handled	throughout	the	biomass	retrieval	phase.	Since	each	image	file	
consists	of	roughly	1	GB,	we	would	have	faced	a	total	output	of	250-300	TB	of	backscatter	data	
per	year	to	be	used	for	biomass	retrieval.	In	addition,	one	would	need	to	account	for	the	size	of	
the	 auxiliary	 data	 files	 that	 support	 the	 retrieval,	 such	 as	maps	 of	 layover/shadow	 and	 local	
incidence	angle.	In	the	end,	it	was	decided	to	spatially	average	the	GRD	data	files	to	a	pixel	size	
that	would	preserve	spatial	details,	while	effectively	removing	speckle.	It	was	also	considered	that	
the	purpose	of	the	Sentinel-1	dataset	was	to	support	the	estimation	of	biomass	in	the	context	of	
CCI	Biomass	(i.e.,	for	a	community	of	users	that	does	not	require	high	spatial	resolution	products).	
Finally,	it	was	considered	that	such	a	dataset	should	be	compatible	with	other	datasets	of	C-band	
backscatter	measurements,	namely	from	Envisat	ASAR.	It	was,	therefore,	decided	to	process	the	
Sentinel-1	data	 to	 the	same	geometry	as	 the	moderate	resolution	ASAR	dataset	 (i.e.,	 to	a	pixel	
spacing	of	150	m).	Ultimately,	the	benefit	of	working	with	“clean”	SAR	backscatter	observations	
appeared	to	be	more	important	than	preserving	high	spatial	resolution,	even	though	a	numerical	
analysis	was	not	undertaken.		
	
The	 commercial	 software	 package	 by	 GAMMA	 Remote	 Sensing	 was	 used	 to	 pre-process	 the	
Sentinel-1	 data.	 Import	 of	 Sentinel-1	 SAR	 images	 into	 the	 GAMMA	 Software	 consisted	 of	
reformatting	the	SAR	dataset	to	the	GAMMA	Software	structure	(image	dataset	and	metadata	in	
the	image	parameter	file)	(Wegmüller	et	al.,	2016).	In	addition,	calibration	and	noise	reduction	
were	 applied	 using	 the	 calibration	 gain	 and	 the	 noise	 factors	 reported	 in	 the	 original	 image	
metadata	 and	 auxiliary	 data	 files.	 Precise	 orbit	 information	was	 used	 to	 replace	 state	 vectors	
provided	in	the	original	metadata	of	each	image	(https://qc.sentinel1.eo.esa.int/aux_poeorb/).		
 

https://qc.sentinel1.eo.esa.int/aux_poeorb/


 

Ref CCI Biomass Algorithm Theoretical Basis 
Document 

 Issue Page Date 
6.0 27 19.12.2024 

	

This document is the property of the CCI-Biomass partnership, no part of it shall be reproduced or transmitted 
without the express prior written authorization of Aberystwyth University and Gamma Remote Sensing AG. 

	
Figure 3-4: Flowchart of the Sentinel-1 data pre-processing 

	
Multi-looking	consisted	of	boxcar	averaging	of	the	backscatter	of	contiguous	pixels	in	an	averaging	
window	of	15	×	15	pixels	to	achieve	a	multi-looked	intensity	(MLI)	image	with	a	pixel	spacing	of	
150	m	in	both	range	and	azimuth.	Because	of	the	strong	averaging,	no	additional	speckle	filter	was	
applied.	To	estimate	the	level	of	residual	speckle	noise,	the	Equivalent	Number	of	Looks	(ENL)	
(Oliver	and	Quegan,	1998)	was	computed.	
	
𝑬𝑵𝑳 = 𝝁𝟐

𝝈𝟐
	 	 	 	 	 	 	 	 	 	 	(3-1)	

	
The	computation	of	the	ENL	as	in	Equation	(3-1)	was	implemented	by	drawing	a	polygon	that	
included	an	area	characterized	by	a	homogeneous	distribution	of	features	(e.g.,	a	dense	forest,	a	
field)	and	computing	the	mean	and	variance	of	the	SAR	backscatter	within	it.	This	operation	was	
repeated	for	several	polygons	spread	over	the	SAR	image	to	obtain	a	histogram	of	values	to	better	
quantify	the	ENL	and	avoid	having	an	estimate	based	on	one	or	a	small	number	of	polygons	that	
could	 be	 biased	 because	 of	 how	 these	 were	 selected.	 The	 computation	 of	 the	 ENL	 was	 not	
attempted	for	all	Sentinel-1	images.	Since	it	could	be	reasonably	assumed	that	ENL	should	not	
depend	on	seasonality	or	the	specific	land	cover	type,	we	randomly	selected	a	small	number	of	
images	from	the	data	stack	of	2017,	then	created	polygons	and	finally	computed	the	ENL	for	each	
polygon	and	image.	This	“global”	set	of	ENL	values	is	displayed	in	Figure	3-5;	the	median	was	162	
and	the	span	was	[90,	375]	with	most	values	being	between	100	and	250.	The	error	statistics	
derived	from	this	analysis	are	further	discussed	in	the	E3UB	document	of	the	CCI	Biomass	project	
[RD-5].	
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Figure 3-5: Estimates of ENL for 35 polygons distributed over five Sentinel-1 VV-polarized images randomly 

selected in boreal, temperate, and tropical environments. 

	
Since	Sentinel-1	images	were	obtained	in	radar	geometry,	they	needed	to	be	transformed	into	the	
output	map	geometry.	For	CCI	Biomass,	the	geographical	coordinate	system	with	a	pixel	spacing	
of	0.0013888°,	corresponding	to	150	m	at	the	Equator,	was	adopted.	The	transformation	of	a	SAR	
image	from	radar	to	map	geometry	was	implemented	in	the	form	of	a	geocoding	look-up	table	
(LUT;	Wegmüller,	1999).	The	LUT	reflected	the	output	geometry	(map	projection	in	this	case);	at	
each	pixel,	the	LUT	contained	the	corresponding	x	and	y	coordinates	in	the	SAR	image.	The	LUT	
was	created	with	the	aid	of	orbital	parameters	and	SAR	image	processing	parameters	(e.g.,	slant-
to-ground	 range	 polynomials,	 image	 start	 time	 etc.),	 and	 elevation	 information	 in	 a	 Digital	
Elevation	Model	(DEM).	For	the	Sentinel-1	data	acquired	in	2017	and	2018,	we	used	a	global	3	
arc-seconds	 DEM	 (i.e.,	 roughly	 90	m	 at	 the	 Equator).	 For	 all	 other	 years,	 the	 newly	 available	
Copernicus	 DEM	with	 1	 arc-second	 resolution	 was	 used.	 Together	 with	 the	 LUT,	 data	 layers	
directly	related	to	the	elevation	reported	in	the	DEM	were	also	generated	(i.e.,	the	image	of	the	
local	incidence	angle,	the	image	of	the	pixel	area	and	an	image	flagging	the	occurrence	of	layover	
or	shadow).	As	the	precise	orbits	were	used,	there	was	no	need	to	refine	the	geocoding	LUT.	The	
co-registration	error	between	the	DEM	and	a	small	number	of	geocoded	Sentinel-1	images	was	
estimated	by	means	of	the	cross-correlation	technique	described	in	Wegmüller	et	al.,	(2002).	The	
standard	deviation	of	the	co-registration	error	was	below	1/10th	of	the	output	pixel	size	(i.e.,	less	
than	15	m).	Again,	given	the	impossibility	of	evaluating	the	co-registration	between	DEM	and	SAR	
imagery	for	the	entire	Sentinel-1	data	pool,	we	assume	that	the	statistics	derived	here	for	a	small	
sample	of	 images	apply	to	the	entire	image	dataset.	This	should	be	reasonable	considering	the	
high	precision	and	stability	of	the	Sentinel-1	orbital	parameters.	
	
To	 compensate	 for	 distortions	 of	 the	 SAR	 backscatter	 due	 to	 sloping	 terrain	 (foreshortening,	
shadow,	and	layover),	a	normalization	factor	was	computed.	This	accounted	for	the	true	size	of	
the	pixel	instead	of	the	size	of	the	pixel	on	a	flat	terrain	as	assumed	when	generating	the	GRD	data	
product	(Frey	et	al.,	2013).	The	area	of	each	pixel	in	an	image	was	estimated	using	the	DEM	and	
the	 orbital	 parameters	 in	 the	 SAR	 image	 metadata,	 together	 with	 the	 geocoding	 LUT.	 The	
normalization	 procedure	 estimated	 both	 the	 true	 pixel	 area	 and	 the	 area	 of	 the	 pixel	 on	 the	
ellipsoid	(i.e.,	for	a	flat	surface);	from	this,	a	precise	normalization	factor	was	obtained.	This	factor	
was	applied	to	each	SAR	backscatter	image	to	obtain	the	corresponding	image	of	backscattered	
intensity	 with	 reduced	 slope-induced	 distortions.	 This	 step	 was	 performed	 in	 the	 original	
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Sentinel-1	radar	geometry.	In	addition,	the	σ0	measurement	was	converted	to	γ0	(i.e.,	σ0	divided	
by	the	cosine	of	the	local	incidence	angle).		
	
The	SAR	backscatter	image	MLI	normalized	for	pixel	area	was	finally	terrain	geocoded	with	the	
geocoding	LUT.		
	
The	pre-processing	sequence	outlined	in	Figure	3-4	was	repeated	for	each	Sentinel-1	image	part	
of	the	data	pool.	To	obtain	the	stack	of	co-registered	observations	of	the	SAR	backscatter,	each	
image	was	tiled	to	a	pre-defined	1°	×	1°	grid.	Each	tile	consisted	of	720	×	720	pixels.		
	
Figure	3-6	shows	the	number	of	Sentinel-1	backscatter	observations	per	pixel	for	the	year	2017.	
The	density	of	observations	was	highest	over	Europe,	even	if	we	only	selected	data	from	one	unit.	
In	accordance	with	the	observation	priorities	of	Sentinel-1,	outside	Europe	hazard-prone	areas	
were	imaged	more	frequently	than	other	areas.	As	a	minimum,	dual-polarized	observations	every	
12	days	were	available,	resulting	in	approximately	30	observations	per	polarization	(VV	and	VH	
or,	primarily	 in	polar	regions,	HH	and	HV	polarization,	 i.e.,	60	observations	per	pixel).	For	 the	
2018	dataset,	 the	 density	map	 showed	 the	 same	 spatial	 patterns	 as	 Figure	 3-6	 albeit	with	 an	
overall	larger	number	of	acquisitions	per	pixel	due	to	the	routine	operations	of	both	units.	
	

	
Figure 3-6: Number of observations per pixel for the Sentinel-1 2017 dataset. 

	
To	obtain	an	overall	 impression	of	the	quality	of	the	pre-processed	data,	a	mosaic	of	the	2017	
Sentinel-1	dataset	represented	as	a	false	colour	composite	of	temporally	averaged	backscatter	is	
displayed	in	Figure	3-7.	As	there	were	many	observations	per	pixel,	the	mosaic	clearly	reveals	the	
features	of	the	land	surfaces	and	highlights	that	thematic	applications	based	on	Sentinel-1	time	
series	 are	 possible	 globally.	 The	 image	 in	 Figure	 3-7	 also	 shows	 that	 the	 distortions	 in	 SAR	
backscatter	due	to	sloping	terrain	have	been	largely	minimized.	
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Figure 3-7: False colour composite of the Sentinel-1 2017 dataset. Red: temporally averaged co-polarized 

backscatter; green: temporally averaged cross-polarized backscatter; blue: ratio of the temporally averaged 
cross-polarized and co-polarized backscatter. Pixel size: 150 m × 150 m. 

	
The	 individual	 Sentinel-1	 images	 are,	 however,	 not	 free	 from	errors;	 in	particular,	 images	 are	
occasionally	affected	both	by	radiometric	errors	introduced	when	the	Sentinel-1	raw	data	were	
processed	to	GRD	format	(high	backscatter)	and	residual	slope-induced	effects	corresponding	to	
errors	 in	 the	 elevation	 datasets	 forming	 the	 global	 DEM.	 Uncompensated	 Radio	 Frequency	
Interference	(RFI)	affected	the	measurements	locally,	along	the	coast	of	the	Baltic	Sea.	In	addition,	
seams	corresponding	to	the	swath	overlap	were	detected	in	some	regions	(southeast	China	and	
southwest	US)	which	were	due	to	incorrect	representation	of	the	noise	in	the	metadata	provided	
with	the	image	data.	A	detailed	presentation	of	errors	affecting	the	Sentinel-1	backscatter	dataset	
is	given	in	the	E3UB	document	[RD-5].		
	
The	high	density	of	observations	by	Sentinel-1	and	the	high	resolution	of	the	data	implies	long	
processing	times	to	generate	biomass	estimates.	Although	the	strength	of	the	biomass	retrieval	
with	 multi-temporal	 C-band	 backscatter	 data	 is	 the	 possibility	 to	 maximize	 the	 information	
content	 on	 biomass	 in	 the	 signal	 by	 filtering	 out	 the	 component	 related	 to	 noise	 and	
environmental	conditions,	the	individual	backscatter	observations	are	not	uncorrelated	in	time,	
especially	 over	 short	 periods	 of	 time.	 For	 this	 reason,	 we	 investigated	 the	 correlation	 of	
observations	acquired	within	the	same	month.	This	exercise	was	undertaken	at	global	scale.	For	
each	 1°	´	 1°	 grid	 cell	 and	 for	 each	month	 of	 the	 year,	 the	 correlation	 coefficient	 (Pearson’s)	
between	backscatter	observations	from	the	same	orbital	track	was	computed.	Calculations	were	
undertaken	separately	for	the	VH-	and	the	VV-polarization.	In	Figure	3-8,	we	display	the	mean	
values	 of	 all	 correlation	 coefficients	 computed	 for	 each	 grid	 cell	 and	 for	 VH-polarization.	 The	
results	described	below,	however,	were	not	affected	by	the	polarization.	The	correlation	between	
observations	within	one	month	was	everywhere	very	high	(>	0.8)	except	for	the	dense	and	intact	
tropics	(Amazon	and	Congo	rainforest).	These	regions	are	characterized	by	a	very	small	range	of	
backscatter	values	and	therefore	residual	noise	dominates	the	value	of	the	correlation	coefficient.	
The	histogram	in	Figure	3-9	confirms	the	visual	interpretation	of	the	map	in	Figure	3-8;	90%	of	
the	correlation	coefficient	values	were	larger	than	0.66	and	75%	of	the	values	were	larger	than	
0.81.		
	
These	results	support	our	assumption	that	reducing	the	Sentinel-1	dataset	to	temporal	averages	
would	not	result	 in	a	 loss	of	 information	about	the	estimation	of	biomass.	Eventually,	monthly	
averages	were	selected	because	of	the	12-day	repeat-pass	of	each	Sentinel-1	unit.	On	one	hand,	
shorter	time	scales	(e.g.,	weekly,	or	bi-weekly)	would	have	only	marginally	reduced	the	amount	
of	data	and	data	with	strong	correlation	would	have	been	maintained.	Longer	time	scales	would	
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have	 reduced	 the	 seasonal	 signal	 in	 the	 backscatter	 data.	 It	 is	 indeed	 the	 seasonality	 of	 the	
backscatter	that	allows	improvement	of	the	retrieval	accuracy	with	respect	to	a	retrieval	based	
on	a	single	image.	For	example,	in	Santoro	et	al.	(2011),	it	was	shown	that	images	acquired	under	
frozen	 conditions	 in	winter	 in	 the	 boreal	 zone	 performed	 better	 than	 images	 acquired	 under	
unfrozen	conditions;	nonetheless,	these	also	contributed	to	reducing	the	retrieval	error	compared	
to	an	estimate	based	on	winter-time	data	only.	
	
	

	
Figure 3-8: Map of the average correlation coefficient for Sentinel-1 backscatter observations (year 2020, VH-
polarization) acquired in the same month. 

	

	
	

Figure 3-9: Histogram of the correlation coefficients for Sentinel-1 observations (year 2020, VH-polarization) 
acquired within the same month and grouped for the same orbital track.  

	
The	temporal	averaging	reduced	the	overall	amount	of	data	by	a	factor	of	2	in	regions	with	sparse	
Sentinel-1	 coverage,	 and	 up	 to	 5-6	 in	 regions	 with	 frequent	 coverage.	 In	 terms	 of	 ENL,	 the	
improvement	was	small	because	the	images	that	were	averaged	in	time	were	strongly	correlated.	
To	obtain	some	global	statistics	of	ENL,	we	worked	at	the	level	of	a	1°	´	1°	grid	cell	and	for	each	
grid	 cell,	 we	 computed	 the	 90th	 percentile	 of	 the	 canopy	 cover	 from	 the	 MODIS	 Vegetation	
Continuous	Fields	dataset.	It	was	assumed	that	surfaces	with	a	very	dense	canopy	cover	represent	
the	most	homogeneous	type	of	land	surface	required	to	estimate	the	ENL.	The	ENL	for	a	given	grid	
cell	was	 then	 computed	with	Equation	 (3-1)	by	 selecting	Sentinel-1	pixels	 corresponding	 to	 a	
canopy	cover	larger	than	the	predefined	threshold.	This	operation	was	repeated	for	each	of	the	
12	 monthly	 Sentinel-1	 datasets	 and	 for	 each	 polarization.	 Since	 canopy	 cover	 is	 sparser	 at	
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northern	and	southern	latitudes,	our	definition	of	the	ENL	estimate	might	have	reproduced	some	
geographic	trends.	Low	thresholds	imply	large	variability	of	the	backscatter	and	therefore	an	ENL	
estimate	that	is	smaller	than	values	obtained	in	dense	tropical	forest.	For	this	reason,	we	further	
restricted	our	computation	 to	grid	cells	with	a	VCF	 threshold	of	95%,	corresponding	 to	 intact	
tropical	forest	regions	and	high-stock	boreal	forests.		
	
Figure	3-10	shows	an	example	of	histograms	of	ENL	for	the	Sentinel-1	VV-	and	VH-polarized	July	
2020	monthly	average.	The	histograms	have	similar	shape	but	peaks	at	somewhat	different	levels.	
The	histograms	did	not	change	regardless	of	the	month.	The	long	tail	of	the	histograms	agrees	
with	the	more	local	results	shown	in	Figure	3-5	and	is	probably	related	to	the	degree	of	“scatterer	
homogeneity”	in	a	grid	cell.	Taking	the	mean	value	of	the	histograms	in	Figure	3-10	resulted	in	a	
global	ENL	of	150	for	both	the	VV-	and	the	VH-polarization.	For	simplicity,	these	numbers	are	used	
in	 the	CCI	Biomass	CORE	algorithm	to	quantify	 the	precision	of	 the	Sentinel-1	 images	used	as	
predictors.	 The	 implications	 of	 the	 ENL	 on	 the	 precision	 of	 the	 biomass	 estimates	 is	 further	
discussed	in	[RD-5].	Comparison	with	the	results	based	on	a	single	image	in	Figure	3-5	and	with	
the	preliminary	estimate	of	165	indicates	that	averaging	only	marginally	improved	the	precision	
of	the	SAR	backscatter	measurements.	This	is	a	consequence	of	the	small	number	of	Sentinel-1	
backscatter	values	used	to	form	a	monthly	average	and	their	strong	correlation	within	one	month.		
	

	
	

Figure 3-10: Histograms of the ENL estimates for the Sentinel-1 July 2020 monthly average. 

3.2 ALOS-2 PALSAR-2 (L-band, wavelength 23 cm) 
The	ALOS-2	mission	started	on	May	24th,	2014,	and	carries	an	L-band	SAR	(PALSAR-2	instrument)	
with	 slightly	 better	 performance	 than	 its	 predecessor,	 ALOS-1	 PALSAR-1.	 ALOS-2	 PALSAR-2	
operates	in	a	high-resolution	acquisition	mode	(25	m,	Fine	Beam,	FB)	and	a	moderate	resolution	
mode	(50	m,	Wide	Beam,	WB).	Each	year	global	and	repeated	acquisitions	are	scheduled	during	
seasons	 that	are	known	 to	maximize	 the	 information	content	of	 the	backscattered	signal	with	
respect	to	land	surface	properties.	In	both	modes,	PALSAR-2	acquires	data	in	single	polarization	
(HH)	 and	 dual	 polarization	 (HH	 and	 HV,	 or	 VV	 and	 VH	 over	 Japan),	 covering	 swaths	 of	
approximately	70	km	in	FB	mode	and	250	km	in	WB	mode.		
	
Because	of	the	data	policy	applied	by	JAXA	to	ALOS-2	data,	only	a	limited	number	of	images	can	
normally	 be	 obtained	 free	 of	 charge,	 which	 hinders	 global	 applications.	 Up	 to	 v3	 of	 the	 CCI	
Biomass	CRDP,	global	coverages	of	ALOS-2	PALSAR-2	data	could	only	be	obtained	in	the	form	of	
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yearly	backscatter	mosaics	for	the	FB	mode	and	per-cycle	mosaics	(46	days)	for	the	WB	mode.	
The	latter	could	be	accessed	thanks	to	the	involvement	of	CCI	Biomass	team	members	in	JAXA’s	
Kyoto	 and	 Carbon	 Initiative	 (KC)	 (https://www.eorc.jaxa.jp/ALOS/en/kyoto/kyoto_link.htm).	
The	WB	mode	mosaics	 are	 also	 referred	 to	 as	 ScanSAR	mosaics,	 ScanSAR	 being	 the	 imaging	
technique	used	for	covering	the	large	swath	of	250	km.	The	WB	mode	is,	however,	operated	at	
regional	level,	primarily	across	the	tropics,	thus	not	allowing	annual	global	coverages.	In	support	
of	the	CCI	Biomass	project,	JAXA	provided	access	to	all	individual	observations	of	ALOS-2	in	Fine-
Beam	dual-polarization	(HH&HV)	mode.	The	data	are	provided	in	the	form	of	ca.	3-degree	long	
subsets	of	ALOS-2	orbits	 in	detected	 format,	 i.e.,	backscatter	only,	and	slant	range	geometry,	a	
format	referred	to	as	“KC	strip”	because	such	data	are	prepared	uniquely	for	members	of	the	KC	
Initiative,	aiming	at	mapping	and	monitoring	forests	and	wetlands	with	L-band	data.	These	data	
are	used	in	the	mapping	of	AGB	starting	with	v4	of	the	CCI	Biomass	products.	
	
The	ALOS-2	PALSAR-2	dataset	used	by	the	current	version	of	CCI	Biomass	CORE	algorithm	thus	
consists	of		
o Yearly	mosaics	of	HH	and	HV	polarized	backscatter	acquired	in	Fine	Beam	Dual	(FBD)	mode,	

years	2015-	2022		
o Per-cycle	mosaics	of	HH-	and	HV-polarized	backscatter	acquired	in	WB	mode	between	2015	

and	2022		
o Individual	observations	of	ALOS-2	HH	and	HV	polarized	backscatter	acquired	in	FBD	mode,	

2015-	2022	(referred	to	as	KC	strip	data)	
	
The	mosaics	were	produced	by	JAXA	(Shimada	and	Ohtaki,	2010;	Shimada	et	al.,	2014).	Each	FBD	
mosaic	covers	the	entire	globe	and	has	been	generated	primarily	with	ALOS-2	FBD	data	acquired	
between	May	and	October	of	a	given	year.	However,	to	achieve	global	land	coverage,	gaps	had	to	
be	filled	with	data	acquired	in	winter	throughout	the	northern	hemisphere,	and	locally	also	with	
data	from	other	years.	The	annual	FBD	mosaics	(HV-polarization)	for	2015-2017	are	shown	in	
Figure	3-11.	Both,	 the	FBD	and	WB	mosaics,	 initially	produced	by	 JAXA	 exhibited	 geolocation	
errors	locally	and	were	thus	reprocessed	in	2022.	For	a	description	of	these	errors,	the	reader	is	
referred	 to	 the	 ATBD	 of	 the	 CCI	 Biomass	 v3	 data	 products	 available	 at	
https://climate.esa.int/en/projects/biomass/key-documents/	 (last	 accessed	 on	 25	 January	
2023).	 For	 the	 CRDP	 based	 on	 this	 version	 of	 the	 ATBD,	 we	 use	 v2.1	 of	 the	 ALOS-2	 mosaic	
products.	
	
The	ScanSAR	data	are	primarily	acquired	over	the	tropics	and	therefore	the	mosaics	for	each	cycle	
cover	only	part	of	the	Earth’s	land	surface.	An	example	for	a	ScanSAR	mosaic	covering	the	Amazon	
basin	is	shown	in	Figure	3-12.	In	total,	ScanSAR	data	acquired	between	2015	and	2022	in	120	
cycles	have	been	released.	
	

https://www.eorc.jaxa.jp/ALOS/en/kyoto/kyoto_link.htm
https://climate.esa.int/en/projects/biomass/key-documents/
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Figure 3-11: ALOS-2 FBD mosaics, HV-polarization, for the years 2015 (top), 2016 (middle) and 2017 (bottom). 
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Figure 3-12: ALOS-2 ScanSAR mosaic generated from HV polarization imagery acquired in April 2018 over the 

Amazon Basin. 

Each	of	the	mosaics	is	provided	in	the	form	of	1°x1°	tiles	and	includes	the	HH	and	HV	backscatter	
(VV	and	VH	over	Japan)	as	well	as:	
• The	local	incidence	angle	with	respect	to	the	orientation	of	the	pixel,	derived	from	the	DEM	

used	by	JAXA	for	the	pre-processing	(3-arcsec	Shuttle	Radar	Topography	Mission	(SRTM)	or	
1-arcsec	ASTER	DEM),	as	well	as	layover/shadow	masks.	

• The	date	of	acquisition	of	the	image.	
• An	indication	of	whether	the	pixel	is	land	or	water.	
	
The	FBD	data	were	processed	 to	γ0	 (i.e.,	σ0	divided	by	 the	cosine	of	 the	 local	 incidence	angle)	
(Shimada,	 2010)	 and	 resampled	 to	 a	 pixel	 size	 of	 1/4000th	 of	 a	 degree	 in	 both	 latitude	 and	
longitude,	 corresponding	 to	 roughly	 25	 m	 at	 the	 Equator.	 The	 ScanSAR	 data	 were	 instead	
processed	to	a	pixel	size	of	1/2000th	of	a	degree,	i.e.,	roughly	50	m	at	the	Equator.	
	
The	ALOS-2	FBD	and	ScanSAR	datasets	were	geocoded,	orthorectified	and	calibrated	by	JAXA.	The	
mosaics	were	also	compensated	for	variations	in	the	pixel	scattering	area	due	to	topography	and	
for	the	dependence	of	backscatter	on	the	local	incidence	angle	(Shimada	&	Ohtaki,	2010).		
	
To	reduce	the	speckle	in	the	ALOS-2	PALSAR-2	imagery	processed	by	JAXA	to	a	resolution	higher	
than	the	target	resolution	for	the	mapping	of	biomass,	all	images	were	aggregated	to	the	pixel	size	
of	 100	m	 (0.00088888°).	 A	 first	 estimate	 of	 the	 ENL	 of	 the	 imagery	was	 assessed	 for	 several	
homogenous	forest	patches,	identified	by	means	of	visual	image	interpretation.	We	found	the	ENL	
to	be	of	the	order	of	70	to	80.		
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For	 the	ALOS-2	KC	 strip	data,	 a	pre-processing	 chain	was	 implemented	based	on	 the	GAMMA	
software	(Figure	3-13).	Pre-processing	aimed	at	producing	fully	calibrated	and	terrain-corrected	
backscatter	data	at	000088888°	resolution	(EPSG:4326),	i.e.,	the	target	resolution	of	CCI	Biomass	
products.	The	processing	comprises	compensation	for	the	Noise	Equivalent	Sigma	Zero	(NESZ)	
based	 on	 range	 gradients	 of	 backscatter	 identified	 over	 smooth	water	 surfaces	 (Figure	 3-14),	
topographic	 corrections	 according	 to	 Frey	 et	 al.	 (2013),	 and	 a	 verification	 of	 the	 geocoding	
accuracy	for	each	individual	scene	(on	average	a	few	tenths	of	the	pixel	size).	Examples	of	annual	
composites	(produced	for	illustration	purposes	only)	for	the	years	2019	and	2020	are	shown	in	
Figure	 3-15,	 together	with	maps	 depicting	 the	 number	 of	 individual	 backscatter	 observations	
available	from	the	KC	strip	datasets	annually.	
	

	
Figure 3-13: Processing workflow for the ALOS-2 KC strip data. 



 

Ref CCI Biomass Algorithm Theoretical Basis 
Document 

 Issue Page Date 
6.0 37 19.12.2024 

	

This document is the property of the CCI-Biomass partnership, no part of it shall be reproduced or transmitted 
without the express prior written authorization of Aberystwyth University and Gamma Remote Sensing AG. 

	
 

Figure 3-14: Noise floor of ALOS-2 Fine-Beam HV polarization backscatter imagery as observed in several 
images acquired over smooth water surfaces. 

	
Figure 3-15: Annual mean L-HV backscatter calculated from all ALOS-2 Fine Beam dual-polarization KC strip data 
acquired in 2019 (top left) and 2020 (bottom left).  

	
The	 ALOS-2	 PALSAR-2	 backscatter	 data	 exhibit	 significant	 striping,	 particularly	 in	 areas	with	
continuous	forest	cover,	such	as	the	Amazon	or	Congo	Basin.	The	striping,	which	is	clearly	visible	
in	 the	 mosaics	 over	 continuous	 tropical	 rainforest	 (e.g.,	 Figure	 3-12),	 is	 associated	 with	 the	
incidence	 angle	 dependence	 of	 backscatter	 as	 well	 as	 uncertainties	 in	 the	 calibration	 of	 the	
backscatter	imagery.	In	the	tropics,	the	striping	is	more	apparent	than	elsewhere	because	of	the	
continuous	 forest	 cover	 and	 the	 low	 sensitivity	 of	 backscatter	 to	 forest	 density	 or	 biomass.	
Methods	aiming	at	reducing	the	incidence	angle	dependence	need	to	consider	that	locally	it	differs	
between	 land	cover	classes	 that	might	be	considered	opaque	 isotropic	volume	scatterers	 (e.g.,	
dense	tropical	forest)	and	sparse	vegetation	classes	with	increasingly	non-isotropic	properties.	A	
semi-empirical	 method	 aiming	 at	 adaptive	 normalization	 of	 backscatter	 with	 respect	 to	 the	
incidence	angle	was	presented	in	Hoekman	&	Reiche	(2015).	However,	the	approach	was	mostly	
valid	when	using	radar	imagery	to	map	land	cover	classes.	The	implementation	when	aiming	at	

L-HV Mean Backscatter 2019 

L-HV Mean Backscatter 2020 

Number of Observations 2019 

Number of Observations 2020 
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retrieval	of	a	continuous	forest	variable	such	as	biomass	(i.e.,	when	the	normalization	approach	
should	adapt	to	the	forest	variable	of	interest	itself)	is	not	clear	and	requires	further	investigation.		
	
As	an	interim	approach,	we	opted	to	minimize	the	striping	effects	observed	over	dense	tropical	
rainforest	 using	 an	 empirical	 normalization	 approach	 in	which	 trends	of	 the	backscatter	 over	
closed	 tropical	 forest	 canopies	 (as	 indicated	 by	 a	 Landsat	 canopy	 density	map	 in	 the	 Easting	
direction,	i.e.,	roughly	the	range	dimension	in	the	SAR	imaging	geometry)	were	compensated	by:	

1) Identification	of	trends	in	L-HV	backscatter	using	a	line-by-line	moving	window	median	
filter	of	100	pixels	window	length,	

2) Normalization	of	the	ALOS-2	PALSAR-2	backscatter	by	subtracting	line-by-line	the	median	
trend	 from	 the	 actual	 observations	 and	 adding	 the	 residuals	 back	 to	 the	 average	
backscatter	observed	over	closed	tropical	forest	canopies.	

The	normalization	leads	to	more	consistent	backscatter	mosaics	over	the	tropics	(Figure	3-16)	in	
which	incidence	angle	dependent	trends	were	mostly	removed.	A	drawback	of	the	normalization	
is,	however,	that	smaller	scale	variability	in	backscatter	is	smoothed	out	(i.e.,	some	spatial	detail	
over	closed	tropical	forest	canopies,	which	may	or	may	not	be	associated	with	different	biomass	
levels,	is	lost).		
	
	

	
Figure 3-16: ALOS-2 L-HV mosaic before (left) and after (right) normalization. 

For	 both	 FBD	 and	 ScanSAR	 datasets,	 the	 ENL	 was	 computed	 in	 a	 more	 systematic	 manner	
following	the	approach	applied	to	the	Sentinel-1	data.	The	box	plot	in	Figure	3-17	shows	that	the	
ENLs	for	the	ALOS-2	PALSAR-2	datasets	were	lower	because	of	the	smaller	multi-look	factors	and	
the	lower	radiometric	quality.	For	the	FBD	dataset,	the	median	value	of	the	ENL	was	47	(HH-pol.)	
and	 50	 (HV-pol.)	 whereas	 for	 the	 ScanSAR	 data	 we	 obtained	 a	 value	 of	 19	 regardless	 of	 the	
polarization.	The	impact	of	these	estimates	of	the	ENL	on	the	precision	of	the	AGB	obtained	from	
the	ALOS-2	data	is	discussed	in	the	E3UB	report	[RD-5].	
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Figure 3-17: Box plots representing the distribution of the ENL estimates from 1° ´ 1° grid cells per SAR sensor, 
mode and polarization. Each box shows the median value (central mark), the interquartile range (edges of the 
box), the most extreme data points not considered outliers (whiskers) and the outliers (plus markers). 

3.3 Envisat ASAR (C-band, wavelength 5.6 cm) 
During	the	Envisat	mission	(2002-2012),	the	ASAR	instrument	operated	over	land	in	four	modes.	
Image	 Mode	 and	 Alternating	 Polarization	 Mode	 (spatial	 resolution	 <	 30	 m,	 swath	 width	
approximately	100	km)	provided	frequent	monitoring,	but	with	spatial	coverage	too	sparse	for	
global	 applications.	The	150	m	resolution	Wide	Swath	Mode	 (WSM)	had	a	405	km	swath	and	
provided	multiple	observations	of	a	target	during	the	repeat-pass	cycle	(35	days	until	October	
2010,	30	days	 thereafter).	For	example,	at	60°N,	observations	every	 three	days	were	possible,	
albeit	 at	 incidence	 angles	 between	 18°	 and	 43°.	 From	 the	 high-resolution	 modes,	 ESA	 also	
generated	Image	Mode	Medium	(IMM)	and	Alternating	Polarization	Medium	(APM)	datasets	at	
the	same	resolution	as	the	WSM	(Desnos	et	al.,	2000),	filling	some	of	the	gaps	in	the	WSM	coverage.	
The	Global	Monitoring	 (GMM)	mode,	which	was	 operated	 as	 a	 background	mission	when	 the	
instrument	was	not	meeting	other	requests,	also	had	a	405	km	swath	but	with	1	km	resolution.	
From	the	10	years	of	acquisitions,	the	ASAR	archive	contains	acquisitions	in	one	specific	mode	for	
virtually	anywhere	on	Earth.		
Figure	 3-18	 shows	 the	 number	 of	 ASAR	 observations	 over	 land	 for	 acquisitions	 at	moderate	
resolution	(150m)	and	at	coarse	resolution	(1,000)	m	for	each	year	between	2009	and	2011.	We	
omit	all	other	years	because	of	similar	spatial	patterns.	Near-global,	dense	datasets	of	backscatter	
were	obtained	 in	GMM.	 In	 contrast,	 the	acquisition	patterns	 for	modes	operating	at	moderate	
spatial	 resolution	was	 patchy,	 achieving	 higher	 frequency	 in	 polar	 regions,	 Europe,	 and	 other	
regions	of	interest	to	research	communities	providing	inputs	to	the	acquisition	plans	by	ASAR.	
Aggregating	all	ASAR	acquisitions	led	to	global	coverage	except	for	some	islands	in	Oceania	and	
isolated	islands	in	the	southern	hemisphere.	
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(a)	 (b)	

	 	
(c)	 (d)	

	 	
(e)	 (f)	

Figure 3-18: Map of ASAR acquisitions at 150 m (WSM and IMM combined) and 1,000 m (GMM) per 1°×1° grid-
cell for each year between 2009 and 2011. The colour bar has been constrained between 0 and 30 observations 
to increase the image contrast in regions of poor coverage. 

All	ASAR	data	acquired	in	IMM,	WSM	and	GMM	over	land	were	pre-processed	in	past	research	
projects	by	Gamma	Remote	Sensing	to	 form	stacks	of	co-registered	 images	of	SAR	backscatter	
(Santoro	 et	 al.,	 2015a	 and	 2015c).	 The	 pre-processing	 sequence	 implemented	 for	 the	 ASAR	
dataset	followed	the	same	strategy	applied	to	process	the	Sentinel-1	data.	The	ASAR	data	were	
pre-processed	 to	 obtain	 calibrated	 and	 speckle-filtered	 images	 with	 sub-pixel	 co-registration	
accuracy,	arranged	in	a	structure	that	allows	easy	access	and	management	(Figure	3-19)	(Santoro	
et	al.,	2011;	Santoro	et	al.,	2015a).	A	global	tiling	grid	tied	to	the	geographic	reference	system	and	
having	its	origin	at	90°	N,	180°	W,	with	tiles	of	relatively	small	size	was	used.	The	IMM	and	WSM	
images	(spatial	resolution	approximately	150m×150m	and	pixel	size	75m×75m)	were	geocoded	
to	 a	 pixel	 size	 of	 1/720th	 of	 a	 degree	 in	 latitude	 and	 longitude	 and	 tiled	 into	 1°×1°	 tiles	 (i.e.,	
720×720	pixels).	The	same	tiling	grid	was	used	for	the	pre-processing	of	the	Sentinel-1	data.	The	
GMM	 images	 (spatial	 resolution	 approximately	 1	 km×1	 km	 and	pixel	 size	 500m×500m)	were	
instead	geocoded	to	a	pixel	size	of	1/100th	of	a	degree	in	latitude	and	longitude	and	tiled	into	2°×2°	
tiles	(i.e.,	200×200	pixels).	
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Figure 3-19: Flowchart of ASAR pre-processing. 

	
The	ASAR	dataset	consisted	of	images	of	backscattered	intensity	(β0)	in	ground	range	geometry.	
Each	image	was	first	calibrated	to	s0	using	factors	provided	by	ESA	in	the	image	metadata.	Orbital	
state	 vectors	 were	 improved	 or	 extended	 using	 DORIS	 Precise	 Orbit	 State	 Vectors	
(https://earth.esa.int/web/guest/data-access/browse-data-products/-/article/doris-precise-
orbit-state-vectors-1502,	last	accessed	on	2	October	2024).	At	this	stage,	the	coverage	of	the	ASAR	
image	was	 checked	 against	 a	 coarse	 resolution	map	 of	 landmasses;	 images	 acquired	 over	 the	
ocean	were	discarded.	Each	remaining	image	was	multi-looked,	 i.e.,	spatially	averaged,	using	a	
2×2	window	to	obtain	a	pixel	size	closer	to	the	original	spatial	resolution.	A	gamma	MAP	filter	
(Lopes	et	al.,	1990)	was	applied	to	obtain	an	estimate	of	the	local	average	backscatter,	which	was	
later	used	as	a	weight	in	multi-channel	speckle	filtering.		
	
Each	ASAR	image	was	geocoded	to	the	geographic	projection	using	the	look-up	table	procedure	
described	 for	 geocoding	 Sentinel-1	 images	 (Santoro	 et	 al.,	 2015c).	 In	 addition	 to	 the	 LUT	
generation,	 we	 applied	 cross-correlation	 techniques	 to	 compensate	 for	 offsets	 between	 the	
geometry	described	in	the	LUT	and	the	true	geometry.	This	step	was	necessary	for	ASAR	data	even	
after	 the	 correction	 for	precise	 orbits.	Offsets	were	 estimated	between	 the	 SAR	 image	 and	 an	
image	of	the	SAR	backscatter	simulated	from	the	DEM.	The	map	of	offsets	in	range	and	azimuth	
direction	was	then	modelled	with	a	four-coefficient	polynomial;	the	resulting	2-D	model	of	offsets	
was	finally	applied	to	the	LUT	to	obtain	a	refined	version,	which	was	eventually	used	to	terrain	
geocode	the	SAR	image.	For	 images	covering	mostly	 flat	 terrain	and	characterized	by	poor	co-
registration	with	the	simulated	SAR	image	from	the	DEM,	e.g.,	corresponding	to	predominantly	
flat	regions,	the	geocoding	was	refined	by	co-registering	the	geocoded	SAR	image	with	a	mosaic	
of	well	geocoded	ASAR	images	(Santoro	et	al.,	2011).	This	ensured	that	all	images	were	geocoded	
with	sub-pixel	accuracy.	
	

https://earth.esa.int/web/guest/data-access/browse-data-products/-/article/doris-precise-orbit-state-vectors-1502
https://earth.esa.int/web/guest/data-access/browse-data-products/-/article/doris-precise-orbit-state-vectors-1502
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The	ASAR	backscatter	 images	and	the	corresponding	 images	of	 local	 incidence	angle	and	pixel	
area	were	tiled	to	the	predefined	grid	to	obtain	a	multi-year	data	stack	of	observations	of	ASAR	
backscatter	with	 corresponding	 local	 incidence	 angles	 and	 pixel	 area.	 For	 each	 tile,	 a	 slightly	
modified	version	of	the	multi-channel	filtering	approach	in	Quegan&	Yu	(2001)	was	eventually	
applied	to	the	stack	of	backscatter	images.	It	should	be	noted	that	this	filter	could	not	be	applied	
before,	e.g.,	in	the	radar	geometry,	because	the	stack	of	backscatter	observations	originated	from	
images	 acquired	 along	 multiple	 orbital	 tracks	 both	 along	 ascending	 and	 descending	 orbits.	
Differently	than	in	Quegan&	Yu	(2001),	where	the	local	estimates	of	the	backscattering	coefficient	
were	obtained	by	means	of	a	moving	average	applied	to	the	intensity	images,	here	we	used	the	
gamma	 MAP	 filtered	 images	 as	 local	 estimates	 of	 the	 backscattering	 coefficient.	 It	 is	 here	
remarked	 that	 that	 gamma	MAP	 filtered	 images	were	 obtained	 in	 the	 radar	 geometry	 (5	 ×	 5	
window)	so	that	the	number	of	looks	of	the	filtered	images	was	not	affected	by	the	different	size	
of	the	pixel	for	different	latitudes.		
	
As	shown	in	Figure	3-18,	full	global	coverage	with	ASAR	data	could	be	obtained	only	by	merging	
the	GMM	with	the	IMM	and	WSM	datasets.	Since	the	number	of	observations	from	the	GMM	was	
much	larger	than	those	acquired	at	moderate	resolution,	it	made	sense	to	achieve	the	full	global	
coverage	at	1,000	m	spatial	 resolution	by	 complementing	 the	GMM	pool	of	 observations	with	
WSM	and	IMM	observations	multi-looked	from	150	m	to	1,000	m.	While	the	correct	procedure	to	
obtain	a	data	stack	at	coarse	resolution	would	have	required	multi-looking	each	image	acquired	
in	IMM	and	WSM	to	1	km	and	then	terrain	geocoding	to	1,000	m,	we	decided	to	simply	multi-look	
and	resample	the	already	geocoded	WSM	and	IMM	images	to	avoid	substantial	pre-processing	
that	could	not	be	accommodated	at	the	time	of	the	ASAR	image	processing.	As	a	result,	the	multi-
channel	filtered	geocoded	WSM	and	IMM	images	and	the	corresponding	images	of	incidence	angle	
and	pixel	area	were	multi-looked	with	factor	7×7	and	resampled	to	the	0.01°-pixel	size	of	the	GMM	
images	using	bi-cubic	interpolation.		
	
This	merged	 dataset	was	 used	 in	 the	 GlobBiomass	 project	 as	 a	 predictor	 in	 the	 BIOMASAR-C	
algorithm	to	guarantee	wall-to-wall	coverage	and	increase	the	reliability	of	the	biomass	estimates.	
The	drawback	was	loss	of	spatial	detail	and	approximations	in	regions	with	patchy	landscapes.	
Although	we	could	not	explicitly	assess	 the	 impact	of	 spatial	 resolution	on	 the	AGB	estimates,	
visual	assessments	of	the	GlobBiomass	map	for	2010	and	version	1	of	the	CCI	Biomass	CRDP	in	
regions	 where	 the	 contribution	 of	 C-band	 was	 strong	 (e.g.,	 tundra	 regions	 of	 Central	 Asia)	
indicated	higher	quality	and	level	of	detail	in	the	latter.		
	
For	this	reason,	we	reconsidered	the	use	of	ASAR	data	in	the	context	of	CCI	Biomass	to	map	AGB	
around	2010.	Although	the	coverage	at	150	m	was	not	optimal	for	unbiased	estimates	of	AGB	in	
large	 parts	 of	 the	 world,	 the	 1,000	 m	 dataset	 would	 probably	 have	 decreased	 the	 effective	
resolution	of	the	map	product,	introducing	local	biases	due	to	the	rescaling	from	1,000	m	to	the	
target	pixel	size	of	the	CCI	Biomass	maps	of	100	m.		
	
Regardless	of	the	final	spatial	resolution,	slope-induced	distortions	need	to	be	accounted	for	to	
avoid	artefacts	in	the	AGB	maps	due	to	too	low	or	too	high	backscatter.	Because	of	the	moderate-
to-coarse	 spatial	 resolution,	 the	 procedure	 proposed	 by	 Frey	 et	 al.	 (2013)	 and	 applied	 to	 the	
Sentinel-1	 data	 could	 be	 relaxed.	 The	 terrain	 geocoded	 backscatter	 was	 normalized	 by	
compensating	 for	 the	 effective	 pixel	 scattering	 area	 and	 local	 incidence	 angle	 as	 follows	
(Wiesmann	et	al.;	2004;	Ulander,	1996;	Castel	et	al.,	2001):	
	
𝛾# = 𝜎# $"#$%

$&#'()
𝑐𝑜𝑠𝜃%&'()	 	 	 	 	 	 	 	 (3-2)	
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In	Equation	(3-2),	qloc	represents	the	local	incidence	angle.	Aslope	and	Aflat	represent	the	true	pixel	
area	 and	 the	 local	 pixel	 area	 for	 theoretically	 flat	 terrain	 respectively.	The	 images	of	 the	 area	
normalization	factor	(Aflat/Aslope)	and	the	local	incidence	angle	were	obtained	from	the	DEM	and	
orbital	 information	 (Wegmüller,	 1999).	 The	 exponent	 n	 expresses	 the	 variation	 of	 scattering	
mechanisms	due	to	the	presence	of	a	volume	on	sloping	terrain,	so	is	related	to	the	optical	depth	
of	the	vegetation.	For	C-band	co-polarized	data,	it	can	be	assumed	to	be	equal	to	1	(Ulander,	1996;	
Castel	 et	 al.,	 2001).	 Hence,	 the	 compensation	 corrects	 for	 the	 effect	 of	 terrain	 slopes	 on	 the	
backscatter	but	not	for	object-specific	modulations	of	the	backscatter	due	to	slope	and	orientation	
(e.g.,	the	effect	of	slope	and	orientation	of	trees	on	the	backscatter).	It	is	noted	that	n=1	was	also	
applied	when	correcting	the	Sentinel-1	data	for	slope-induced	terrain	and	by	JAXA	in	their	mosaic	
processing	 sequence.	 Again,	 the	 two-step	 approach	 proposed	 by	 Hoekman&Reiche	 (2015)	
according	 to	 which	 the	 correction	 of	 slope-induced	 effects	 is	 tuned	 with	 land-cover	 based	
empirical	functions	is	not	considered	to	be	feasible	in	this	context	as	it	would	require	the	biomass	
to	be	known	a	priori	to	select	the	appropriate	correcting	function.	
	
One	major	issue	with	the	ASAR	ScanSAR	data	(GMM	and	WSM)	is	the	sub-optimal	inter-calibration	
of	 the	 swaths	 forming	 an	 image.	 This	 results	 in	 an	 offset	 of	 the	 backscatter	 across	 the	 seam	
between	two	adjacent	swaths,	typically	of	the	order	of	a	few	tenths	of	a	dB.	This	issue	is	critical	in	
environments	where	the	backscatter	difference	between	unvegetated	terrain	and	dense	forest	is	
1-2	dB.	Figure	3-20	 shows	an	example	 for	 an	ASAR	GM1	 image	 covering	 the	 rainforest	of	 the	
Brazilian	 Amazon.	 The	 area	 covered	 by	 the	 image	 corresponds	 to	 very	 dense	 tropical	 forest	
(percent	tree	cover	from	the	MODIS	Vegetation	Continuous	Fields	dataset	>	80%).	The	panel	on	
the	 left	shows	a	clear	offset	of	 the	backscatter	along	a	diagonal	 line,	which	corresponds	to	the	
seam	between	adjacent	swaths	of	the	ASAR	image.	A	profile	of	the	backscatter	values	along	the	
dashed	line	drawn	on	the	ASAR	image	shows	the	clear	offset	at	the	swath	intersection.	
	
Since	the	calibration	of	the	ASAR	data	cannot	be	reversed,	the	only	procedure	to	avoid	radiometric	
offsets	becoming	biomass	offsets	is	to	apply	a	crude	1-D	moving	median	filter	(length:	11	pixels)	
on	 each	 line	 of	 a	 geocoded	 image	 prior	 to	 biomass	 retrieval.	 The	 filtering	 is	 limited	 to	 dense	
tropical	rainforest	and	moist	forests	where	such	offsets	would	lead	to	offsets	of	100	Mg	ha-1	or	
more.	Currently,	the	filter	is	applied	to	pixels	labelled	as	tropical	wet	and	tropical	moist	by	the	
FAO	GEZ	dataset.	Figure	3-21	shows	the	result	of	filtering.	The	strong	median	filter	reduces	seams	
but	also	small-scale	features,	thus	limiting	the	possibility	to	resolve	small	variations	of	biomass.	
This	was	of	minor	 importance	compared	to	producing	a	map	with	artefacts,	given	that	C-band	
should	not	be	able	to	estimate	biomass	with	high	accuracy	in	high	biomass	tropical	forest.		
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Figure 3-20: Illustration of backscatter offset along the seam between two adjacent swaths of an ASAR GM1 
image covering dense tropical forest in the Amazon (left panel). The profile of the backscatter along the dashed 
line superimposed to the ASAR image is showed in the panel on the right hand-side. 

	
Figure 3-21: Example of the ASAR GM1 used in Figure 3-20 before and after filtering with a moving median filter. 

3.4 ALOS-1 PALSAR-1 
The	 ALOS-1	mission	 operated	 between	 2006	 and	 2011	with	 the	 PALSAR-1	 radar	 instrument	
onboard.	Coverages	were	achieved	both	at	high	resolution	in	the	Fine	Beam	mode	(FB,	25	m)	and	
at	moderate	resolution	with	the	Wide	Beam	mode	(WB,	100	m).	Each	year	global	and	repeated	
acquisitions	 were	 scheduled	 during	 seasons	 that	 were	 known	 to	 maximize	 the	 information	
content	of	the	backscattered	signal	with	respect	to	land	surface	properties.	In	FB	mode,	PALSAR-
1	could	acquire	data	in	single	polarization	(HH)	and	dual	polarization	(HH	and	HV),	covering	a	
swath	of	approximately	70	km.	In	the	WB	mode,	data	could	be	acquired	only	in	HH-polarization	
but	covering	a	swath	of	approximately	250	km.		
	
Until	2022,	the	data	policy	applied	by	JAXA	to	ALOS-1	and	ALOS-2	data	allowed	a	limited	number	
of	images	to	be	obtained	free	of	charge,	which	hindered	global	applications.	As	for	ALOS-2,	global	
coverages	 of	 ALOS-1	 PALSAR-1	 data	 could	 therefore	 only	 be	 obtained	 in	 the	 form	 of	 yearly	
backscatter	mosaics	for	the	FB	mode	and	per-cycle	mosaics	(46	days)	for	the	WB	mode.	Starting	
with	v4,	access	to	the	archive	of	ALOS-1	PALSAR-1	images	was	possible.	
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For	the	processing	of	the	data	until	CRDP	v3,	it	is	referred	to	previous	versions	of	this	document.	
Beginning	 with	 v4	 of	 the	 CCI	 Biomass	 CRDP,	 the	 release	 of	 all	 available	 ALOS-1	 PALSAR	
observations	acquired	in	FB	single-	and	dual-polarization	modes	by	JAXA	to	the	public	in	Level	
2.2	format	allowed	the	multi-temporal	coverage	acquired	by	ALOS	PALSAR	to	be	explored	(Figure	
3-22).	The	data	comprises	fully	calibrated,	terrain-corrected,	and	geocoded	backscatter	images	in	
UTM	projection	with	12.5	m	resolution.	Since	already	fully	pre-processed,	post-processing	of	the	
data	 for	 CCI	Biomass	was	 limited	 to	 reprojection	 to	 the	 geographic	 coordinate	 system	 (EPSG:	
4326)	 and	 aggregation	 to	 the	 target	 resolution	 of	 0.00088888°.	 The	 ENL	 of	 the	 backscatter	
imagery	was	estimated	to	be	of	the	order	of	80.	
	
(a)	

	
(b)	

	
 

Figure 3-22: ALOS-1 PALSAR-1 HV backscatter mosaic produced from images acquired in 2010 and released by 
JAXA in Level 2.2. format. 
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3.5 Spaceborne LiDAR 
3.5.1 ICESat	GLAS	
	
Although	 primarily	 designed	 for	 altimetry,	 between	 2003	 and	 2009	 the	 Geoscience	 Laser	
Altimeter	System	(GLAS)	on	board	ICESat	collected	 information	about	the	vertical	structure	of	
forests	in	ca.	65	m	large	footprints	collected	every	170	m	along	track.	The	distance	between	tracks	
was	of	the	order	of	tens	of	km	and	increased	towards	the	equator.	When	forest	cover	lay	within	a	
footprint,	the	returned	signal	reflected	the	vertical	distribution	of	matter,	with	the	density,	shape	
and	reflectivity	of	leaves,	needles,	and	branches	in	each	layer	of	the	forest	canopy	determining	the	
strength	of	the	reflected	signal	from	the	respective	layer.	An	example	of	the	vertical	distribution	
of	energy	returned	 from	a	 forest	 (the	“waveform”)	 is	shown	 in	Figure	3-23.	Depending	on	the	
height	and	structure	of	the	forest,	the	waveform	will	exhibit	a	different	extent	and	shape	as	well	
as	a	different	number	of	peaks.	The	beginning	and	end	of	the	waveform	are	determined	based	on	
a	threshold	defined	relative	to	the	noise	floor.	The	height	of	the	first	(from	the	top	of	the	canopy)	
and	 last	 (from	 the	 forest	 floor)	 returns	 was	 defined	 as	 the	 heights	 where	 the	 signal	 energy	
exceeded	4.5	times	the	mean	noise	level	(Los	et	al.,	2012).	Their	difference	is	referred	to	as	the	
waveform	length.	
	

	
Figure 3-23: An ICESat GLAS waveform showing the vertical distribution of returned energy from a forest (from 

Los et al., 2012). 

	
In	CCI	Biomass,	we	use	the	dataset	prepared	in	the	GlobBiomass	project	(Santoro	et	al.,	2021).	We	
used	 the	GLA14	product	 (version	34),	which	provides	altimetry	data	 for	 land	surfaces	only	 to	
which	 geodetic,	 instrument	 and	 atmospheric	 corrections	 have	 already	 been	 applied.	 For	 each	
footprint,	up	to	six	Gaussians	were	used	to	model	the	raw	waveform,	as	described	in	Hofton	et	al.	
(2000).		
	
The	 GLAS	 data	 were	 used	 to	 estimate	 canopy	 density	 (CD)	 estimated	 as	 the	 ratio	 of	 energy	
received	from	the	canopy	(returns	above	the	ground	peak)	to	the	total	energy	received	and	the	
height	(h)	as	the	distance	between	the	ground	peak	and	signal	beginning	(RH100)	(Figure	3-24).	
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Figure 3-24: An ICESat GLAS waveform, showing the waveform metrics used to calculate RH100 & CD (Hilbert 

&Schmullius, 2012) 

	
Forest	height	was	computed	following	the	approaches	in	Simard	et	al.	(2011)	and	Los	et	al.	(2012),	
which	 calculated	 RH100	 globally	 and	 defined	 a	 set	 of	 filters	 to	 discard	 footprints	 affected	 by	
topography	and	various	noise	sources	in	the	waveforms.	The	remaining	GLAS	database	contained	
estimates	of	RH100	for	ca.	26.5	million	footprints.	
	
Figure	3-25	shows	the	spatial	coverage	of	canopy	height	and	canopy	density	expressed	as	average	
values	from	the	footprint-level	data	in	0.125°	large	grid	cells.	Because	of	the	rather	small	number	
of	 footprints	 retained	 after	 filtering,	we	 created	 one	 single	 layer	 for	 each	metric	 from	 all	 the	
footprint	 level	data.	The	number	of	 footprint-level	observations	used	 to	 compute	 the	grid	 cell	
average	values	is	also	shown	in	Figure	3-25.	Because	of	the	large	distance	between	the	orbital	
tracks	and	the	strong	filtering	applied	to	the	GLA14	dataset,	the	coverage	was	not	complete.	The	
density	of	observations	presented	some	spatial	variability;	larger	gaps	corresponding	to	forests	
occurred	in	South	China	and	the	southernmost	regions	of	South	America,	Africa	and	Australia.	
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Figure 3-25: Maps of canopy density, canopy height (RH100) and corresponding number of GLAS footprints 
within each grid cell. For the display, the original heights were averaged to a pixel size of 0.125°. 

3.5.2 ICESat-2	
	
Unlike	the	GLAS	sensor,	the	Advanced	Topographic	Laser	Altimeter	System	(ATLAS)	onboard	the	
ICESat-2	satellite	uses	photon	counting	to	retrieve	elevation.	ATLAS	sends	pulses	of	laser	light	to	
the	ground,	collects	photons	reflected	by	the	surface	underneath	and	times	each	photon	return.	
With	 a	 frequency	of	 10,000	pulses	per	 second,	ATLAS	achieves	 a	much	denser	portrait	 of	 the	
surface	compared	to	the	40	pulses	used	by	GLAS.	Consecutive	shots	are	separated	by	70	cm,	which	
reduces	the	ambiguity	of	the	surface	vs.	vegetation	reflections	and	the	impact	of	topography	on	
the	reflected	signal	(Neuenschwander	and	Pitts,	2019).	Together	with	very	accurate	timing	of	the	
photons,	 these	two	features	enable	accurate	mapping	of	 the	Earth’s	 topography.	 In	addition,	 it	
enables	profiling	of	vegetation,	even	though	the	measurement	technique	is	strongly	affected	by	
the	power	recorded	by	the	instrument.	ATLAS	splits	the	laser	into	six	beams	arranged	as	three	
pairs	of	beams	approximately	3.3	km	apart	(Figure	3-26)	(Markus	et	al.,	2017).	Each	pair	consists	
of	a	strong	and	weak	energy	beam	(4:1	ratio).	Combination	of	the	strong	and	weak	beam	returns	
allows	 better	 characterization	 of	 surface	 topography	 (Neuenschwander	 and	 Pitts,	 2019).	
However,	 for	 vegetation	 studies,	 it	 is	 advised	 to	 avoid	measurements	 corresponding	 to	weak	
beams	because	of	the	partly	undetected	vegetation	layering	in	the	returned	signals.	
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Figure 3-26: Configuration of the ICESat-2 observations (Neuenschwander and Pitts, 2019). 

	
For	land	and	vegetation,	a	specific	product	has	been	developed	(ATL08)	(Neuenschwander	and	
Pitts,	2019)	that	contains	geophysical	parameters	related	to	vegetation	and	terrain	heights.	The	
ATL08	algorithm	estimates	 the	 ground	 surface	 and	 top	of	 canopy	 surface	 elevations	 from	 the	
photons,	from	which	several	parameters	of	relative	height	are	computed.	From	an	investigation	
in	boreal	forests,	it	was	understood	that	the	RH98	(relative	height,	98	percentile)	corresponds	to	
canopy	 height	 and	 that	 seasonal	 conditions	 (e.g.,	 snow	 on	 the	 ground)	 influence	 the	 height	
estimates.	In	addition,	the	properties	of	the	canopy	height	retrieved	in	the	dense	tropics	may	be	
erroneous,	in	particular	when	using	data	from	the	weak	beam,	because	of	the	very	small	number	
of	 photons	 recorded	 from	 the	 forest	 floor	 (Neuenschwander	 and	Pitts,	 2019).	Also,	 persistent	
cloud	cover	hinders	the	acquisition	of	a	sufficient	number	of	photons	to	pass	the	set	of	quality	
filters	implemented	in	the	data	processing	algorithms.	
	
The	ATL08	product	provides	 the	parameters	with	a	100	m	step	size	along	the	 flight	direction.	
Currently	 version	 6	 of	 the	 product	 is	 available	 from	 the	 National	 Snow	 and	 Ice	 Data	 Center	
(NSIDC)	(https://nsidc.org/data/atl08	,	last	access	on	02	October	2024)	in	the	form	of	strips	of	
photons	collected	along	one	orbit.	ICESat-2	data	have	been	available	since	14	October	2018.	To	
obtain	 segments	 from	 the	 original	 photon	 data,	 the	 original	 files	 are	 reformatted	 with	 the	
pysl4land	Tool,	 a	 set	of	Python	 tools	 to	process	 spaceborne	 lidar	 (GEDI	and	 ICESat2)	 for	 land	
(pySL4Land)	applications	 (https://github.com/remotesensinginfo/pysl4land,	 last	access	on	02	
October	2024).	Herewith,	the	original	photons	are	grouped	into	segments	of	100	m	length	and	25	
m	width.	
	
For	this	version	of	the	ATBD,	ICESat-2	files	covering	the	years	2019-2022	were	used.	Data	were	
grouped	on	an	annual	basis	 and	 treated	 separately.	 It	 is	 foreseen	 to	extend	 the	 time	 series	of	
observations	 in	 the	next	versions	of	 the	document	 to	 reinforce	 the	 statistics	derived	 from	 the	
individual	measurements.	 From	 the	 segment-wise	 data,	we	 generated	maps	 of	 canopy	 height	
(RH98)	 with	 several	 grid	 spacings	 depending	 on	 the	 use	 (inter-comparison	 of	 LiDAR-based	
canopy	heights,	prediction	of	AGB	from	canopy	height,	etc.).	For	each	grid	cell,	the	canopy	height	
was	obtained	by	taking	the	mean	value	of	the	original	values.	Prior	to	averaging,	the	segments	
were	filtered	following	indications	by	the	producers	of	the	ATL08	data	product.	Segments	were	
discarded	that	were	(i)	acquired	by	the	weak	beam,	(ii)	characterized	by	less	than	three	photons	
reflected	by	the	canopy,	(iii)	flagged	as	not	belonging	to	natural	vegetation	in	the	ATL08	metadata	

https://nsidc.org/data/atl08
https://github.com/remotesensinginfo/pysl4land
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and	(iv)	exhibited	an	elevation	that	differed	by	more	than	25	m	from	the	reference	DEM	used	in	
all	ATL	products.		
	
A	 detailed	 analysis	 of	 the	 spatial	 distribution	of	 canopy	heights	 and	 their	 fluctuations	 in	 time	
revealed	several	 locations	with	unrealistically	high	values	in	one	or	other	of	the	three	years	of	
data.	Starting	with	this	version	of	the	ATBD,	segments	corresponding	to	a	terrain	slope	steeper	
than	10°	were	discarded	because	they	were	often	characterized	by	unnatural	values.		
	
After	such	filtering,	we	still	identified	several	locations	with	unusually	high	values.	These	occurred	
in	areas	with	a	relatively	low	number	of	photons	per	segment,	as	shown	by	the	example	in	Figure	
3-27.	 Setting	 a	 threshold	on	 the	minimum	number	of	 photons	 reduced	outliers.	However,	 too	
strong	filtering	caused	gaps	and	strong	underestimation	of	canopy	height	(see	cases	for	>40	and	
>50	photons).	This	is	because	tree	canopies	scatter	fewer	photons	than	the	surface	underneath.	
By	deselecting	segments	with	a	small	number	of	photons,	we	discard	segments	where	photons	
come	exclusively	from	the	canopy	and	privilege	ground	returns.	Visual	investigation	of	the	canopy	
height	 maps	 based	 on	 different	 number	 thresholds	 initially	 indicated	 that	 a	 threshold	 of	 20	
photons	 per	 segment	 was	 a	 reasonable	 compromise	 between	 outlier	 reduction	 and	 accuracy	
(used	for	CRPD	v5).	Considerable	loss	of	segments	in	tropical	rainforest	suggested	a	correction	of	
the	threshold	to	10	photons	per	segment	for	the	CRDP	v6.	Outliers	were	filtered	when	generating	
the	spatially	explicit	dataset	of	canopy	height	metrics.	
	

	
Figure 3-27: Canopy height maps from ICESat-2 segments averaged at 12.5 km and filtered for different 

thresholds on the minimum number of photons per segment. The example covers the Karelian region between 
Finland and Russia. 
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Figure	3-28	shows	an	example	of	average	canopy	height	values	based	on	averaging	at	0.1°	and	the	
corresponding	number	of	segments	used	to	estimate	the	average	height	per	grid	cell.	With	three	
years	of	data	gave	homogeneous	coverage	of	the	world’s	forests.	The	spatial	patterns	correspond	
to	the	known	distribution	of	forest	height,	with	taller	forests	in	the	wet	tropics	along	the	Equator	
(Amazon	basin,	Congo,	and	Southeast	Asia)	and	in	temperate	forests	(Pacific	Northwest,	Southeast	
U.S.,	Central	Europe,	Andes,	and	Southeast	Australia).	In	boreal	forests	(north	of	60°N),	the	canopy	
height	decreased	with	 increasing	 latitude.	The	number	of	 segments	per	 grid	 cell	was	high	 for	
boreal	and	temperate	forests.	In	tropical	forests,	the	persistent	presence	of	clouds	and	the	strong	
filtering	on	the	minimum	number	of	photons	explain	the	sparser	coverage.	With	the	availability	
of	a	few	more	years	of	observations,	it	likely	that	one	will	be	able	to	relax	on	the	condition	applied	
to	the	number	of	photons	segments	since	point-wise	noise	will	be	more	automatically	flagged.	
	

	
	

Figure 3-28: Global distribution of canopy height estimated from the ICESat-2 ATL08 dataset of 2019-2022 (top 
panel), and corresponding number of segments retained to form the average canopy height (bottom panel). 

Dark blue areas in this panel correspond to data gaps. For the display, the original heights were averaged to a 
pixel size of 0.1°. 

	
Comparison	of	canopy	height	values	for	two	consecutive	years	(e.g.,	2019	and	2020),	shows	very	
high	consistency	(Figure	3-29).	The	correlation	coefficient	between	the	two	datasets	was	0.79	and	
the	mean	difference	between	the	two	years	was	less	than	0.1	m.	Nonetheless,	Figure	3-29	shows	
some	spread,	which	indicates	temporal	variability	of	the	average	values	(standard	deviation	of	3-
4	m)	due	to	the	sampling.		
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Figure 3-29: Scatterplot comparing canopy height averages at 0.1° for ATL08 data acquired by ICESat-2 in 2019, 
2020 and 2021. The density plot is colour coded, with colour changing from blue to yellow for increasing 

density of data points. 

	
Although	not	shown	here,	we	also	created	canopy	height	rasters	by	splitting	the	data	for	day-	and	
night-time	acquisitions	and/or	 summer-	 and	winter-time	acquisitions.	The	purpose	of	using	a	
dataset	acquired	in	different	seasons	was	to	understand	whether	seasonal	conditions	affect	the	
values	 of	 the	 canopy	 height	 metrics.	 For	 leaf-on	 conditions	 (summertime	 in	 the	 northern	
hemisphere	and	wintertime	in	the	southern	hemisphere),	there	was	a	slight	tendency	towards	
higher	values,	the	difference	being	however	only	a	fraction	of	a	meter.	Separating	canopy	heights	
based	on	daytime	or	night-time	acquisitions	did	not	reveal	any	difference,	regardless	of	the	period	
of	the	year	considered.	

3.5.3 GEDI	
	
The	 GEDI	 instrument	 (Dubayah	 et	 al.,	 2020)	 is	 a	 full	 waveform	 LiDAR	 installed	 on	 the	
International	Space	Station	(ISS)	and	observes	land	masses	between	+/-52°	latitude.	The	size	of	
the	 footprint	 is	 smaller	 than	 for	 ICESat	 GLAS	 (25	 m	 vs.	 70	 m	 diameter)	 and	 the	 density	 of	
observations	is	higher.	The	system	consists	of	one	laser	split	into	two	beams	(“coverage”	beams),	
and	two	 lasers	operating	at	 full	power	(“power”	beams).	Operation	of	GEDI	 leads	to	8	parallel	
tracks,	separated	by	about	600	m	across	track.	Along	each	track,	footprint	centres	are	separated	
by	60	m.	The	distance	between	adjacent	orbital	tracks	was	about	1	km	until	January	2020	(Figure	
3-30),	after	which	it	was	increased	to	70	km	resulting	in	sparser	sampling.	
	

	
Figure 3-30: GEDI orbital tracks (2 weeks) as illustrated in (Dubayah et al., 2020). 
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From	 the	waveform	data,	 several	height	metrics,	 including	 canopy	height	 (defined	as	Relative	
Height	100)	and	canopy	density	are	obtained.	These	 level	2A	(height	metrics)	and	2B	(canopy	
density)	data	are	provided	at	 the	 level	of	 individual	 footprints.	 Currently	version	2,	with	data	
starting	on	25	March	2019,	 is	available	(https://lpdaac.usgs.gov/products/gedi02_av002/,	 last	
access	on	2	October	2024).	To	be	able	to	ingest	the	GEDI	data	into	the	environment	of	the	CORE	
algorithm,	data	from	individual	orbital	files	were	reformatted	with	the	pysl4land	Tool.	For	this	
version	of	the	ATBD,	all	data	acquired	in	2019	and	2020	were	considered.	The	original	footprint-
level	data	were	reformatted	with	the	pysl4land	Tool	and	filtered	for	the	quality	flags	of	the	level	
2A	 and	 2B	 products	 reported	 in	 the	metadata.	 In	 total,	 357	 and	 470	million	 footprints	 were	
retained	for	2019	and	2020,	respectively.	From	these,	we	have	generated	yearly	averages,	as	well	
as	wintertime	and	summertime	averages	per	year.	
	
Figure	 3-31	 shows	 the	 spatial	 distribution	 of	 canopy	 density,	 canopy	 height	 and	 number	 of	
footprints	per	0.1°	grid	cell	for	2020.	The	spatial	distribution	of	canopy	height	and	canopy	density	
is	similar	 to	 those	obtained	 for	 the	 ICESat	GLAS	and	 the	 ICESat-2	data.	The	coverage	presents	
systematic	gaps	due	 to	 the	 large	 spacing	between	orbits	although	 in	 regions	 covered	by	GEDI	
footprints	 the	 number	 of	 footprint-level	 data	 is	 higher.	 This	 is	 a	 consequence	 of	 the	 finer	
resolution	of	GEDI	compared	to	the	other	spaceborne	LiDAR	instruments.	
	

 
Figure 3-31: Maps of average canopy density, canopy height (RH98) and corresponding number of GEDI 

footprints at 0.1° for 2020. Dark blue areas in the bottom panel correspond to data gaps.  

The	analysis	of	canopy	density	and	canopy	height	split	by	seasons	reveals	higher	values	of	canopy	
density	 during	 leaf-on	 conditions	 (April/September	 in	 the	 northern	 hemisphere	 and	
October/March	in	the	southern	hemisphere)	in	the	intermediate	range	and	comparable	values	of	
canopy	height	(Figure	3-32).	We	do	not	discuss	these	results	further	as	the	GEDI	canopy	cover	
observations	have	not	yet	been	implemented	in	the	CORE	algorithm.	
	

https://lpdaac.usgs.gov/products/gedi02_av002/
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Figure 3-32: Scatterplots comparing canopy density (left panels) and canopy height (right panels) estimated 
from GEDI data during summer (April/September) and winter (October/March) months for the northern (top 

panels) and southern hemisphere (bottom panels). Each density plot is colour-coded, with colour changing 
from blue to yellow for increasing density of data points. 

3.5.4 Comparison	of	LiDAR-based	metrics	of	canopy	height	
	
Individual	footprint-level	data	are	not	used	in	the	CORE	algorithm	because	there	is	hardly	any	
coincidence	of	the	footprints	with	the	area	covered	by	forest	inventory	plots	where	biomass	is	
measured.	For	this	reason,	it	is	not	possible	to	construct	reliable	models	that	would	capture	the	
spatial	 variability	 of	 the	 association	 between	 canopy	 height	 and	 biomass.	 The	 best	 spatial	
coverage	of	AGB	can	either	be	obtained	from	maps	or	from	statistics	published	by	National	Forest	
Inventories	(NFI)	at	sub-national	or	national	level.	Although	each	of	these	AGB	sources	has	its	own	
errors,	they	can	be	used	to	characterize	the	shape	of	the	curve	relating	AGB	and	canopy	height.	It	
is	therefore	of	interest	to	relate	statistics	of	AGB	with	similar	statistics	derived	from	spaceborne	
LiDAR	data.	
	
While	the	datasets	produced	with	observations	by	the	new	spaceborne	LiDAR	missions	are	more	
complete	in	terms	of	spatial	coverage	compared	to	ICESat	GLAS,	they	are	undersampled	in	several	
regions	of	the	world.	For	this	reason,	it	is	necessary	to	understand	the	reliability	of	the	GEDI	and	
ICESat-2	canopy	height	averages.	In	this	exercise,	we	compare	0.1°	averages	of	canopy	height	from	
the	 three	datasets,	noting	 the	 ICESat	GLAS	averages	are	not	 contemporary	with	 the	GEDI	and	
ICESat-2	based	values	(epoch	2005	vs.	2020).	Figure	3-33	shows	density	plots	of	ICESat-2	and	
GEDI	with	respect	to	ICESat	GLAS	canopy	heights.	While	the	ICESat-2	values	appear	to	be	slightly	
overestimated	in	low	canopies,	the	GEDI	values	are	systematically	underestimated	regardless	of	
the	canopy	height	level.		
	
While	we	cannot	exclude	forest	cover	changes	as	one	of	the	reasons	for	the	discrepancy	between	
the	 three	datasets	 of	 canopy	heights,	 it	 is	 puzzling	 to	 observe	divergent	 trends	 for	 the	 recent	
spaceborne	LiDAR	missions.	Although	we	applied	all	filters	suggested	by	the	production	teams	to	
reduce	the	number	of	incorrect	observations	and	further	kept	footprints	that	were	within	areas	
labelled	as	forest	according	to	the	CCI	Land	Cover	dataset,	there	may	be	an	aspect	that	we	have	
overlooked	in	our	comparison,	given	that	our	results	differ	from	published	literature	suggesting	
superior	accuracy	of	the	GEDI	data	compared	to	ICESat-2.	To	help	clarify	this	issue,	the	results	of	
the	inter-comparison	have	been	shared	with	the	GEDI	and	the	ICESat-2	teams.	
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Given	the	global	coverage	and	the	strong	agreement	of	the	ICESat-2	canopy	height	dataset	with	
the	ICESat	GLAS	data,	which	was	used	in	previous	versions	of	the	CCI	Biomass	CRDP,	we	decided	
to	use	the	ICESat-2	dataset	for	this	version	of	the	ATBD	and	for	the	CRDP	version	5.	
	

	
Figure 3-33: Density plots comparing 0.1° averages of canopy height from the ICESat GLAS (2003-2009, 

horizontal axis), ICESat-2 (2020, vertical axis, left plot) and GEDI (2020, vertical axis, right plot).  

3.6 Digital Elevation Model 
3.6.1 SRTM-based	DEM	
	
Until	v3,	we	used	an	SRTM-based	DEM	(Figure	3-34)	in	the	pre-processing	phase	of	the	SAR	data	
(ENVISAT	ASAR,	Sentinel-1	acquired	in	2017	and	2018)	and	the	Lidar	data	(ICESAT	GLAS)	and	to	
analyse	the	quality	of	the	retrieved	biomass.	The	SRTM-based	DEM	consisted	of	a	global	dataset	
of	1°	×	1°	tiles	collated	from	various	sources	to	form	a	seamless	and	gap-free	dataset	of	surface	
elevation	(de	Ferranti,	2009).	The	dataset	has	a	pixel	spacing	of	3	arc-seconds,	corresponding	to	
90	m	at	the	Equator.	For	regions	between	60°N	and	56°S,	the	DEM	consists	of	gap-filled	3	arc-
seconds	SRTM	elevations;	refer	to	de	Ferranti	(2009)	for	details	on	the	gap-filling	approach.	For	
latitudes	north	of	60°N,	the	elevations	consist	of	a	blend	of	datasets	(topographic	maps,	coarse	
and	high	resolution	DEMs,	optical	imagery)	selected	according	to	which	has	the	best	quality	in	
each	region	(de	Ferranti,	2009).		
	
	

	
Figure 3-34: Global seamless DEM based on elevation datasets available at 

http://www.viewfinderpanoramas.org. 
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To	 support	 the	 terrain	 geocoding	 of	 the	 Sentinel-1	 images	 to	 150	m	 pixel	 size,	 the	 DEM	was	
resampled	using	cubic	resampling,	as	implemented	in	the	gdalwarp	tool	of	the	Geospatial	Data	
Abstraction	Library	(GDAL).	The	same	procedure	was	applied	to	the	DEM	to	terrain	geocode	the	
ASAR	images	to	150	m	and	1,000	m.	
	
Following	indications	by	de	Ferranti	(2009),	the	consistency	of	elevations	reported	in	this	global	
dataset	is	superior	to	other	global	elevation	datasets.	Despite	some	inaccuracy,	this	DEM	was	the	
most	reliable	option	for	pre-processing	and	analysis	until	the	release	of	the	Copernicus	DEM.		

3.6.2 Copernicus	DEM	
	
While	the	Sentinel-1	data	acquired	in	2017	and	2018	had	been	processed	with	the	SRTM-based	
DEM	described	above,	the	Sentinel-1	data	for	the	years	2019	and	2020	as	well	as	the	ALOS-2	KC	
strip	data	have	been	processed	(ortho-rectification,	geocoding,	topographic	corrections)	with	the	
more	recent	Copernicus	Digital	Surface	Model.		
	
The	Copernicus	DEM	is	derived	from	the	WorldDEM	produced	from	interferometric	X-band	radar	
observations	 of	 the	German	TandemX	 satellite	mission.	 The	 Copernicus	DEM	differs	 from	 the	
WorldDEM	in	that	water	bodies	have	been	flattened.	The	elevations	reported	over	water	in	the	
original	 radar	 product	 presented	 a	 high	 level	 of	 uncertainty	 (noise,	 offsets)	 due	 to	 low	
interferometric	 coherence	 of	 single-pass	 interferometric	 X-band	 observations	 over	 water	
surfaces.	The	absolute	vertical	and	horizontal	accuracy	of	the	DEM	has	been	reported	to	be	better	
than	4	m	and	6	m,	respectively	(Fahrland	et	al.,	2022).		
 
The	 Copernicus	 DEM	 is	 provided	 in	 three	 different	 resolutions	with	 either	 regional	 or	 global	
coverage	and	in	three	different	data	formats	(DGED,	DTED,	INSPIRE).	The	highest	resolution	of	
0.3-arc-second	is	available	only	for	Europe	(EEA-10),	whereas	the	1-	(GLO-30)	and	3-arc-second	
(GLO-90)	versions	are	available	globally.	All	DEM	versions	are	provided	in	form	of	1°	x	1°	tiles	in	
geographic	 coordinates	 with	 World	 Geodetic	 System	 1984	 (WGS84;	 EPSG	 4326)	 and	 Earth	
Gravitational	Model	2008	(EGM2008;	EPSG	3855)	horizontal	and	vertical	reference,	respectively.	
All	versions	comprise	a	set	of	quality	layers	indicating	where	the	original	WorldDEM	had	been	
edited,	 the	 water	 body	 mask	 that	 was	 applied,	 and	 a	 layer	 indicating	 the	 error	 of	 elevation	
estimates	at	pixel	level.		
 
To	evaluate	which	version	of	the	Copernicus	DEM	should	be	used,	the	performance	of	the	S1	pre-
processing	with	 each	 of	 the	 different	 DEM	 versions	was	 tested	 for	 different	 regions	 (Van	 De	
Kerchove	et	al.,	2021).	The	tests	of	the	pre-processing	of	Sentinel-1	data	with	all	different	versions	
of	the	Copernicus	DEM	indicated	that	the	differences	in	the	accuracy	of	geocoding	and	topographic	
corrections	between	the	EEA-10	and	GLO-30	DEM	(regardless	of	the	format)	are	small	whereas	
the	use	of	the	3-arc-second	version	would	have	resulted	in	a	significantly	reduced	quality	of	the	
topographic	corrections.	It	was	therefore	decided	to	use	the	GLO-30	DEM	for	the	global	processing	
of	Sentinel-1	data.		

3.7 MODIS Vegetation Continuous Fields 
The	 MODIS	 Vegetation	 Continuous	 Fields	 (VCF)	 product	 (MOD44B)	 (DiMiceli	 et	 al.,	 2015)	
estimates	the	percentage	cover	of	woody	vegetation,	herbaceous	vegetation,	and	bare	ground.	It	
was	derived	from	all	seven	bands	of	MODIS	(Hansen	et	al.,	2003)	and	is	available	annually	since	
2000	with	a	spatial	resolution	of	250	m.	Version	6	is	the	current	version.	Data	are	provided	in	an	
sinusoidal	projection	in	tiles	of	4800	×	4800	pixels	from	the	Global	Land	Cover	Facility	(GLCF)	and	
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can	 be	 accessed	 via	 the	 following	 website	
(https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod44b_V006).		
	
In	 this	project,	 the	dataset	was	resampled	 from	250	m	to	300	m	to	match	the	CCI	Land	Cover	
dataset	and	allows	nested	gridding	with	the	Sentinel-1	and	ASAR	datasets	with	a	pixel	size	of	150	
m.	Its	use	was	originally	foreseen	in	the	training	phase	of	the	models	relating	C-band	backscatter	
to	biomass.		
	
Due	 to	macroscopic	 artefacts	 especially	 in	 the	 tropics	 because	 of	 permanent	 cloud	 cover,	 the	
model	training	does	not	rely	on	the	dataset	any	longer.	Instead,	the	MODIS	VCF	dataset	is	currently	
used	to	support	the	estimation	of	the	ENL	for	the	Sentinel-1	data.		

3.8  Landsat canopy density and density change 
A	global	Landsat-based	canopy	density	map	representing	forest	state	in	2000	was	released	in	the	
framework	of	the	Global	Forest	Change	project	(Hansen	et	al.,	2013).	To	map	canopy	density,	a	
suite	 of	 multi-temporal	 reflectance	 metrics	 (maximum,	 minimum,	 various	 percentiles)	 was	
calculated	for	the	global	Landsat	dataset	and	used	in	regression	tree	models,	trained	with	the	aid	
of	very	high-resolution	imagery	(e.g.,	Quickbird)	classified	to	forest/non-forest	classes.	The	same	
multi-temporal	metrics	were	 also	 used	 to	 produce	 global	 30	m	maps	 of	 forest	 cover	 change,	
including	information	about	annual	forest	cover	loss	since	the	year	2000,	as	well	as	gains.	The	
forest	cover	change	database	includes	a	30	m	water	body	map,	but	no	information	was	available	
about	how	this	map	was	generated.	Canopy	density	and	related	changes	are	mapped	globally	at	1	
arc-second	 pixel	 posting.	 Data	 are	 available	 at	
https://earthenginepartners.appspot.com/science-2013-global-forest.	Using	the	same	algorithm,	
the	 United	 States	 Geological	 Survey	 (USGS)	 and	 the	 University	 of	 Maryland,	 Department	 of	
Geographical	 Sciences,	 released	 30	 m	 resolution	 raster	 data	 layers	 for	 circa	 2010	 of	 canopy	
density	and	bare	ground	from	Landsat	7	ETM+	data	(Figure	3-35).	The	canopy	density	and	bare	
ground	data	are	per	pixel	estimates,	1	to	100%	(given	as	integers	values	1-100).	Data	description	
and	 access	 information	 can	 be	 found	 under	 https://glad.umd.edu/dataset/global-2010-tree-
cover-30-m	(last	consulted	on	2	October	2024).	The	dataset	is	used	in	the	training	phase	of	the	
models	relating	C-band	and	L-band	backscatter	observations	to	biomass.	
	

	
Figure 3-35: Canopy density map for the year 2010 produced from Landsat. 

https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod44b_V006
https://earthenginepartners.appspot.com/science-2013-global-forest
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3.9  CCI Land Cover 
Land	 cover	 information	 is	 used	 during	 training	 of	 the	 biomass	 retrieval	 models	 to	mask	 out	
specific	classes.	More	specifically,	 the	BIOMASAR	approach	requires	 the	 identification	of	areas	
with	low	canopy	density	and	only	belonging	to	a	vegetation	type	of	class.	Water	bodies,	urban	
areas	 and	 permanently	 snow-covered	 areas	 are	 characterized	 by	 very	 low	 canopy	 density.	
Cropland	is	also	characterized	by	low	canopy	density.	If	not	flagged,	the	backscatter	values	from	
such	 types	of	 land	surfaces	can	distort	 the	histograms	used	 to	estimate	 the	parameters	of	 the	
model	 relating	 SAR	 backscatter	 to	 biomass.	 At	 C-band,	 the	 SAR	 backscatter	 of	 water	 bodies	
presents	some	of	 the	highest	and	 lowest	backscatter	values.	The	backscatter	of	urban	areas	 is	
mostly	 higher	 than	 in	 forests.	 The	 backscatter	 of	 permanent	 snow/ice	 cover	 presents	 strong	
variability	 in	 time	 and	 space	depending	 on	 the	wet/dry	 conditions	 of	 the	 snow	 layer	 and	 the	
structure	of	the	ice.	At	L-band,	the	backscatter	of	water	bodies	and	ice-covered	terrain	is	much	
lower	compared	to	the	backscatter	of	other	types	of	unvegetated	terrain.	Built-up	areas	have	high	
co-polarized	backscatter	and	very	low	cross-polarized	backscatter.	Cropland	can	be	assumed	to	
be	an	unvegetated	surface	when	plants	are	not	growing;	however,	when	plants	grow,	they	have	a	
distinct	signal	that	can	substantially	differ	from	the	backscatter	of	an	unvegetated	surface.	It	is	
therefore	 preferable	 to	 discard	 observations	 in	 correspondence	 of	 cropland	 even	 if	 this	 may	
reduce	the	number	of	samples	used	to	estimate	the	backscatter	model	parameters	at	the	lower	
end.	The	Climate	Change	Initiative	Land	Cover	(CCI-LC)	project	has	released	annual	land	cover	
maps	between	1992	and	2020	(https://maps.elie.ucl.ac.be/CCI/viewer/	,	last	access	on	2	October	
2024)	based	on	optical	spaceborne	datasets	(Figure	3-36).	The	land	cover	maps	are	provided	in	
equiangular	projection	with	a	pixel	size	of	1/360th	of	a	degree	in	latitude	and	longitude.	The	two	
land	cover	maps	were	resampled	to	the	geometries	of	the	SAR	datasets	in	support	of	the	biomass	
retrieval	procedure	using	nearest	neighbour	resampling. 
	

	
Figure 3-36: Illustration of CCI Land Cover maps (https://www.esa-landcover-cci.org) 

The	 overall	 accuracy	 of	 the	 yearly	 land	 cover	 dataset	was	 reported	 to	 be	 slightly	 above	 70%	
(Product	User’s	Guide	under	https://www.esa-landcover-cci.org,	last	access	on	2	October	2024).	
Commission	 and	 omission	 errors	 occur,	 particularly	 in	 mixed	 classes	 or	 areas	 of	 strongly	
heterogeneous	 land	 cover.	 The	 classes	 of	 interest	 to	 CCI	 Biomass	 have	 among	 the	 highest	
classification	accuracy	though,	typically	above	the	overall	accuracy	of	70%.	A	data	layer	giving	the	
classification	certainty	and	a	set	of	quality	flags	are	provided.		

https://maps.elie.ucl.ac.be/CCI/viewer/
https://www.esa-landcover-cci.org/
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3.10  Copernicus Global Land Operations 
Retrieval	of	 forest	above-ground	biomass	with	C-	and	L-band	SAR	data	implies	that	non-forest	
land	cover	types,	such	as	urban	areas	or	agricultural	land,	may	be	assigned	AGB	values	if	their	
backscatter	 is	 in	 the	 range	 of	 values	 observed	 over	 forest.	 In	 addition,	 the	 CCI	 Biomass	map	
products	report	AGB	values	for	vegetated	land	that	may	not	be	considered	forest	according	to	the	
forest	definition	being	applied.	The	general	approach	followed	in	CCI	Biomass	is	not	to	apply	any	
masks	 over	 vegetated	 land	 to	 allow	 for	 users	 to	 apply	 their	 own	 forest	 definitions.	However,	
obvious	erroneous	biomass	assignments	over	built-up	areas,	bare	ground,	snow/ice,	or	water	are	
masked	out	using	the	Copernicus	Global	Operations	Land	Cover	product	(CGLS-LC100)	version	
3.0.1	(doi=10.5281/zenodo.3939050).	The	land	cover	maps	are	produced	from	PROBA-V	data	at	
100	 m	 spatial	 resolution	 at	 three	 different	 levels	 of	 detail	 according	 to	 the	 Land	 Cover	
Classification	System	(LCCS).	The	number	of	classes	range	from	12	at	level	1	up	to	23	classes	at	
level	3.	Version	3	of	CGLOPS	provides	annual	maps	for	the	years	2015	to	2019	with	an	accuracy	
of	 the	 order	 of	 80	 %.	 In	 the	 CCI	 Biomass	 AGB	 maps,	 the	 CGLOPS	 land	 cover	 classes	 urban	
(code=50),	water	(code=80),	open	sea	(code=200),	bare	(code=60),	and	snow/ice	(code=70)	have	
been	masked	out.	

3.11  FAO Global Ecological Zones 
The	Global	Ecological	Zones	(GEZ)	dataset	produced	by	the	FAO	(Simons,	2001)	divides	the	land	
surface	 into	 20	 zones	with	 “broad	 yet	 relatively	 homogeneous	 natural	 vegetation	 formations,	
similar	 (but	 not	 necessarily	 identical)	 in	 physiognomy	 (Figure	 3-37).	 Boundaries	 of	 the	 EZs	
approximately	coincide	with	the	map	of	Köppen-Trewartha	climatic	types,	which	was	based	on	
temperature	and	rainfall.	An	exception	 to	 this	definition	 is	 “Mountain	systems”,	 classified	as	a	
separate	EZ	in	each	Domain	and	characterized	by	high	variation	in	both	vegetation	formations	
and	climatic	conditions	caused	by	large	altitude	and	topographic	variation”	(Simons,	2001).	The	
GEZ	 dataset	 is	 publicly	 available	 as	 a	 vector	 dataset,	 in	 equiangular	map	 projection.	 The	 GEZ	
dataset	 is	 used	 to	 stratify	 the	 estimation	 of	 some	 of	 the	 model	 parameters	 of	 the	 retrieval	
algorithms.	To	 this	 scope,	 the	GEZ	dataset	 is	 rasterized	on-the-fly	 to	 the	 geometry	of	 the	 SAR	
images	used	to	retrieve	biomass.	The	re-projection	is	done	with	GDAL.	
	
	

	
 

 

Figure 3-37: FAO GEZ dataset 

TAr	=	Tropical	rainforest		
TAwa	=	Tropical	moist	
deciduous	forest		
TAwb	=	Tropical	dry	forest		
TBSh	=	Tropical	shrubland		
TBWh	=	Tropical	desert		
TM	=	Tropical	mountain		
SCf	=	Subtropical	humid		
SCs	=	Subtropical	dry		
SBSh	=	Subtropical	steppe		
SBWh	=	Subtropical	desert		
SM	=	Subtropical	mountain		
TeDo	=	Temperate	oceanic		
TeDc	=	Temperate	continental		
TeBSk	=	Temperate	steppe		
TeBWk	=	Temperate	desert		
TeM	=	Temperate	mountain		
Ba	=	Boreal	coniferous		
Bb	=	Boreal	tundra	woodland		
BM=	Boreal	mountain		
P	=	Polar	
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3.12  Terrestrial Ecoregions of the World 
The	 very	 broad	 definition	 of	 ecoregions	 in	 the	 GEZ	 dataset	 does	 not	 allow	 for	 fine	 tuning	 of	
retrieval	algorithms.	To	this	scope,	we	also	consider	the	better	delineation	of	vegetation	in	the	
Terrestrial	Ecoregions	of	the	World	(TEOW)	dataset	(Olson	et	al.,	2001).	Compared	to	the	GEZ	
dataset,	the	TEOW	dataset	also	brings	in	ecological	properties	of	the	landscape.	The	TEOW	dataset	
divides	the	Earth	land	surfaces	into	825	ecoregions	(Figure	3-38Error!	Reference	source	not	
found.).	These	are	categorized	within	14	biomes	and	eight	biogeographic	realms	(Figure	3-39).	
The	boundaries	of	each	ecoregion,	biome	and	realm	correspond	to	the	original	extent	of	natural	
communities	prior	to	major	land-use	change.		
	

	
	

Figure 3-38: Terrestrial ecoregions of the world (Olson et al., 2001). 

	
	

	
	

Figure 3-39: Grouping of the terrestrial ecoregions into biomes (see legend) and realms (see map). Picture 
reproduced from Olson et al. (2001). 
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As	for	the	GEZ	dataset,	the	TEOW	is	rasterized	on-the-fly	to	the	geometry	of	the	SAR	images	used	
to	 retrieve	 biomass.	 The	 re-projection	 is	 done	with	 the	 program	 gdal_rasterize	 of	 GDAL.	 This	
dataset	is	also	used	to	segment	the	ICESat	GLAS	dataset	in	the	process	of	estimating	the	model	
coefficient	relating	canopy	density	and	RH100	measurements	from	the	individual	waveforms.	

3.13   Relating forest variables 
Tree	variables	such	as	diameter	at	breast	height,	tree	height,	crown	diameter	and	tree	biomass,		
are	correlated	in	the	sense	that	much	of	the	variability	of	one	variable	(e.g.,	AGB)	can	be	explained	
in	terms	of	the	variability	of	one	or	a	few	other	variables	(e.g.,	tree	height	and	diameter	at	breast	
height).	 Models	 can	 therefore	 be	 created	 that	 aim	 at	 generalizing	 the	 functional	 relationship	
between	forest	variables	and	allow	estimation	in	regions	where	the	output	variable	of	interest	is	
poorly	characterized	by	 in	 situ	observations	(Chave	et	al.,	2005).	Stand-level	variables	such	as	
basal	 area,	 canopy	height,	 canopy	density,	 crown	diameter,	 growing	 stock	 volume	and	above-
ground	biomass	density	are	also	related	to	each	other,	although	the	functional	relationships	might	
be	different	between	the	tree	and	stand	level.		
	
Since	 the	 retrieval	 model	 implemented	 in	 the	 CORE	 algorithm	 originally	 relates	 the	 SAR	
backscatter	to	variables	that	express	the	horizontal	and	vertical	structural	properties	of	a	forest	
(canopy	density	and	canopy	height),	 it	requires	an	additional	 link	to	AGB.	As	our	 interest	 is	to	
estimate	 AGB,	 we	 then	 need	 to	 establish	 functions	 that	may	 (i)	 reduce	 the	 number	 of	 forest	
variables	 in	 the	models	 and	 (ii)	 relate	 those	 forest	 variables	 to	AGB.	Functional	dependencies	
between	forest	variables	at	the	level	of	forest	stands	or	even	coarser	resolution	are	therefore	of	
interest.	
	
The	CORE	retrieval	algorithm	implements	two	sets	of	such	functions:	
	
1)	A	function	between	canopy	density	(CD)	and	canopy	height	(h)	reduces	the	number	of	forest	
variables	to	height	only:	
	
𝐶𝐷 = f(ℎ)	 	 	 	 	 	 	 	 	 	 	 (3-2)	
	
2)	A	 second	 function	 linking	AGB	 to	 canopy	height	allows	explicit	 formulation	of	 the	 retrieval	
model	in	terms	of	AGB:	
	
ℎ = 𝑓(𝐵)	 	 	 	 	 	 	 	 	 	 	 (3-3)	
	
These	two	sets	of	 functions	are	described	in	this	Section	and	applied	 in	the	retrieval	methods.	
Equation	(3-3)	is	also	used	to	derive	the	layer	of	maximum	AGB	from	the	LiDAR	data.	
	
The	coefficients	of	the	functions	in	Equations	(3-2)	and	(3-3)	represent	auxiliary	datasets	ingested	
by	the	CORE	algorithm.	The	coefficients	are	introduced,	presented,	and	discussed	below.	
	

3.13.1 Linking	LiDAR	canopy	density	and	canopy	height	
 
We	 use	 a	 generic	 model	 explaining	 canopy	 density	 as	 a	 function	 of	 the	 height	 metric	
corresponding	to	the	start	of	a	GLAS	waveform	(RH100).	Canopy	density	was	estimated	as	the	
ratio	 between	 the	 energy	 received	 from	 the	 canopy	 and	 the	 total	 energy	 returned	 for	 each	
footprint.	 Here,	 canopy	 density	 is	 considered	 as	 a	 normalized	 value	 ranging	 between	 0	
(unvegetated	surface)	and	1	(gapless	canopy):	
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𝐶𝐷 = 1 − 𝑒(*+		 	 	 	 	 	 	 	 	 	 (3-4)	
	
The	coefficient	q	in	Equation	(3-4)	is	empirical	and	describes	variation	in	the	relationship	between	
canopy	density	and	canopy	height.	Higher	q	means	that	canopy	tends	to	close	faster	when	trees	
grow.	
 
To	investigate	the	variation	of	q	across	the	globe,	the	ICESat-GLAS	dataset	described	in	Section	3.6	
was	used.	Any	remaining	footprints	in	unvegetated	areas	were	removed	using	the	CCI-LC	product	
for	2010.	The	ICESat	GLAS	data	were	then	divided	according	to	a	combination	of	 the	different	
TEOW	ecoregions	and	a	1o	x	1o	grid.	Each	grid	cell	was	divided	by	the	ecoregions	within	it	and	vice	
versa,	with	100	 footprints	being	a	minimum	requirement	 for	 a	polygon	 to	be	 retained	 for	 the	
regression,	 otherwise	 the	 regression	was	 undertaken	with	 all	 the	 footprints	 available	 for	 the	
underlying	ecoregion.	The	upper	and	lower	5	%	were	removed	to	account	for	potential	outliers.	
A	least	squares	regression,	using	the	scipy	optimize	curve	fit	function,	was	then	undertaken	to	
obtain	q	(Figure	3-41)	for	each	polygon.	The	mean	square	error	(MSE)	was	also	calculated	for	each	
regression.		
 
The	model	described	in	Equation	(3-4)	corresponded	to	the	ICESat	GLAS	metrics	despite	varying	
patterns	of	the	canopy	density	to	canopy	height	relationship	(Figure	3-40;	Kay	et	al.,	2021).	The	
varying	dispersion	of	the	data	resulted	in	relative	MSE	values	with	a	median	of	39%	and	inter-
quartile	range	of	27-60%	relative	to	the	q	values	obtained.	The	coefficient	q	varies	from	0.019	to	
0.153	across	the	globe,	with	the	lowest	values	found	in	the	sparser	forests	of	the	savanna	or	boreal	
regions	and	the	highest	in	tropical	regions	(Figure	3-41	and		Figure	3-42).		
	

	
Figure 3-40: Least squares regression curves denoted by blue line (extended to 60m canopy height for 
comparison) for example polygons. With {a} a low q value (0.031), {b} a q value close to the global mean (0.064) 
and {c} with a high q value (0.131) 
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Figure 3-41: Map of q values per combination of TEOW ecoregion and 1o x 1o grid, obtained through least 

squares regression of available ICESat GLAS footprints within each ecoregion after filtering, ecoregions in white 
had no footprints 

	
	

	
 Figure 3-42: Histograms of q values per biome, split into two figures for clarity 

These	observations	indicate	that	the	functional	dependencies	in	Equation	(3-4)	are	maintained	
across	the	globe	for	most	ecoregions.	A	rapid	increase	in	canopy	density	with	increasing	height	
for	dense	tropical	forests	and	a	shallower	slope	for	the	sparser	savanna	and	boreal	regions	was	
observed.	The	TEOW	ecoregions	were	selected	as	a	broad	characterisation	of	multiple	biophysical	
variables	 that	may	 influence	 forest	 structure.	However,	 localized	 variations	 of	 these	 variables	
within	ecoregions	are	not	available	on	a	global	 scale.	To	 capture	 some	of	 these,	 a	1o	 grid	was	
applied	as	a	compromise	to	the	number	of	footprints	available	for	a	regression.	Analysis	of	the	
factors	 potentially	 contributing	 to	 these	 localised	 variations	 indicate	 that	 they	may	 be	 better	
captured	by	using	additional	information	such	as	altitude,	temperature,	precipitation,	geology,	or	
a	wilderness	layer.	This	was	not	possible	in	this	analysis	due	to	the	relatively	sparse	sampling	of	
ICESat	GLAS	and	the	additional	filtering	applied.		
 
From	the	set	of	estimates	of	the	coefficient	q	for	each	ecoregion,	we	generated	a	raster	map	with	
a	pixel	size	of	1,000	m	by	rasterizing	the	TEOW	dataset.	 Inpainting	was	applied	to	extrapolate	
values	to	surfaces	not	represented	in	the	TEOW	dataset.	
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GEDI	 LiDAR	 data	 were	 processed	 using	 the	 same	 methods,	 with	 non-vegetated	 footprints	
removed	by	applying	the	PROBA-V	land	cover	product	(Buchhorn	et	al.,	2020).	In	addition,	only	
the	night-time	full	power	beams	were	used,	and	these	were	filtered	for	l2a	and	l2b	quality	flags.	
To	match	the	ICESat-GLAS	dataset,	all	orbits	from	the	1st	and	4th	quarter	of	the	year	(e.g.,	data	from	
October	to	March)	were	also	removed.	
	
ICESat	GLAS	is	the	only	satellite	which	provides	global	coverage,	even	though	the	sampling	is	less	
dense	than	GEDI.	In	addition,	the	MSE	values	in	relation	to	q	are	considerably	lower	for	ICESat	
GLAS	(median	of	39%	and	interquartile	range	of	27-60%)	compared	to	GEDI	(median	of	69%	and	
interquartile	 range	 of	 44-91%).	 Visual	 analysis	 of	 the	 GEDI	 dataset	 has	 also	 shown	 several	
discrepancies	which	include:	concentrations	of	 footprints	with	very	 low	canopy	density	values	
(Figure	3-43),	a	step	in	height	to	canopy	density	values	around	8	m	height,	and	regions	which	have	
some	 orbits	 with	 lower	 canopy	 density	 values	 (personal	 communication	 John	 Armston).	 The	
above	functional	relationships	are	based	on	those	calculated	with	ICESat	GLAS	data.	At	the	time	
of	writing,	there	is	no	equivalent	dataset	released	from	ICESat-2	data.	
	
The	single	parameter	(q)	varied	depending	on	which	satellite	data	were	applied,	with	GEDI	having	
consistently	lower	q	values	across	the	majority	of	polygons	(Figure	3-44,d).	This	variation	is	due	
to	differences	in	the	canopy	density	values	from	each	satellite	(assessed	by	comparing	the	means	
per	polygon;	Figure	3-44,b),	with	mean	canopy	density	values	being	consistently	lower	for	GEDI	
except	for	those	from	polygons	with	high	mean	density	(canopy	density	values	of	~0.8).		
	

	
Figure 3-43: Density scatterplots with viridis colour scale comparing GEDI data on the x axis and ICESat GLAS 
data on the y axis. Comparing mean canopy height per polygon (top left), mean canopy density per polygon 

(top right), mean square error of the q regression per polygon (bottom left) and derived q values per polygon 
(bottom right). A 1:1 line has been added to each blot in black. 
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Figure 3-44: Least squares regression curves denoted by red line (extended to 60 m canopy height for 
comparison) for example polygons. The regression of GEDI data is on the top row with ICESat GLAS data on the 
bottom row. With (a) varied concentrations of the data distribution, (b) concentration of low canopy density 
values for GEDI, (c) a jump in GEDI at around 8 m height and 0.18 canopy density and (d) a shift in canopy density 
values, in particular in intermediate canopy density ranges. 

	

3.13.2 Linking	AGB	and	canopy	height	
	
AGB	is	obtained	from	measurements	of	trees	stem	diameter,	height,	 form	factor,	wood	density	
and	number	of	trees	per	unit	area.	An	inventory	of	trees	to	compute	AGB	can	be	complicated	from	
an	economic	and	logistical	point	of	view,	especially	in	remote	areas.	For	this	reason,	close-range	
EO	measurement	techniques	have	been	developed	(e.g.,	terrestrial	laser	scanners)	that	can	allow	
more	 rapid	 quantification	 of	 several	 such	 parameters.	However,	 even	 such	 techniques	 do	 not	
allow	mapping	of	large	areas,	which	instead	can	only	be	achieved	with	far-range	EO	instruments	
(i.e.,	 mounted	 on	 airborne	 or	 spaceborne	 platforms).	 Whenever	 the	 measurements	 of	 forest	
variables	are	"outsourced"	to	far-range	EO,	tree	allometries	(based	on	destructive	sampling)	start	
to	play	a	role.	Airborne	 laser	scanning	has	proved	to	be	a	reliable	sensing	 technique,	allowing	
accurate	measurement	of	 variables	 related	 to	 forest	 structure.	Accordingly,	 studies	have	been	
developing	 in	 the	 direction	 of	 characterizing	 the	 relationship	 between	 AGB	 and	 laser-based	
metrics	at	stand	level	to	mimic	the	relationship	between	tree	variables	 in	tree-level	allometric	
functions.	In	particular,	the	relationship	between	canopy	height	and	AGB	has	been	investigated	at	
several	 locations	 because	 both	 horizontal	 and	 vertical	 structures	 of	 the	 forest	 are	 sensed	 by	
LiDAR.	
	
Lefsky	et	al.	 (2005)	 found	a	 linear	relationship	 linking	AGB	to	the	square	of	maximum	canopy	
height	estimated	from	ICESat	GLAS	waveforms	in	tropical	forest	in	the	Amazon	and	showed	good	
agreement	between	field	measurements	and	predictions.	Asner	et	al.	(2012)	proposed	a	generic	
power-law	model	relating	above-ground	carbon	density,	i.e.,	roughly	half	of	the	AGB,	and	a	LiDAR	
metric	referred	to	as	mean	canopy	height	(MCH)	for	tropical	forests.	The	method	appeared	to	be	
valid	across	 four	sites,	although	the	model	had	to	be	 trained	separately	at	each	to	capture	the	
region-specific	forest	structural	properties	in	the	power-law	model.	Saatchi	et	al.	(2011)	proposed	
a	similar	power-law	function	relating	AGB	to	basal	area	weighted	tree	height	(Lorey's	height)	to	
estimate	AGB	in	tropical	forest.	The	models	were	trained	on	a	continent-by-continent	basis	using	
in	 situ	 observations	 and	 applied	 to	 ICESat	GLAS	measurements	 and	 several	 image	datasets	 to	
generate	a	map	of	AGB	for	the	tropical	regions.	Asner	and	Mascaro	(2014)	proposed	a	set	of	global	
and	regional	equations	relating	LiDAR	metric	top-of-canopy	height	(TCH)	obtained	from	airborne	
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observations	 to	 above-ground	 carbon	density	 in	 neotropical	 forest.	 Their	 conclusion	was	 that	
global	models	can	explain	the	variability	of	AGB	with	TCH,	but	they	are	not	able	to	characterize	
the	variability	at	the	level	of	single	sites.	They	also	observed	that	Lorey's	height	is	flawed	in	open	
canopy	forest	and	therefore	can	potentially	generate	incorrect	biomass	estimates.	Coomes	et	al.	
(2017)	expanded	the	work	by	Asner	and	Mascaro	to	Southeast	Asian	Forest	and	demonstrated	
that	the	power-law	function	is	still	applicable	but	needs	further	adaptation	to	site	conditions.	They	
also	 showed	 that	 an	explicit	use	of	 canopy	gap	 information	derived	 from	 laser	measurements	
improves	the	retrieval	of	carbon	density.	Labriere	et	al.	(2018)	used	airborne	laser	scanned	data	
and	 in	 situ	 observations	 in	 tropical	 forests	 in	 Gabon	 and	 French	 Guiana	 to	 test	 a	 power-law	
function	relating	AGB	to	several	height	metrics,	including	TCH	and	MCH.		
	
The	survey	of	literature	dealing	with	biomass	estimation	based	on	LiDAR	observations	indicated	
that	a	power-law	function	relating	AGB	to	a	LiDAR	height	metric	is	a	sensible	way	to	proceed:		
	
𝐴𝐺𝐵 = 𝑝,ℎ-* 	 	 	 	 	 	 	 	 	 	 	 (3-5)	
	
where	 p1	 and	 p2	 are	 regression	 coefficients	 estimated	 by	 non-linear	 least	 squares.	 Here	 h	
represents	the	canopy	height	of	a	forest.		
	
An	attempt	to	use	a	function	relating	a	forest	height	metric	and	AGB	at	the	global	scale	can	build	
on	such	local	studies	but	requires	simplifying	assumptions	and	a	great	deal	of	generalization.	The	
spaceborne	 LiDAR	 datasets	 provide	 a	 reasonable	 sampling	 of	 canopy	 height	 globally.	
Unfortunately,	there	are	no	measurements	available	at	the	footprint	level	nor	are	there	alternative	
databases	 containing	 height	 and	 AGB	 from	 the	 same	 location	 that	 would	 allow	 spatial	
characterization	of	the	functional	dependence	between	height	and	AGB	at	the	global	scale	and	at	
the	hectare	scale	spatial	resolution	envisaged	in	CCI	Biomass.		
	
The	major	limitation	to	estimating	the	coefficients	in	Equation	(3-5)	and	characterizing	its	spatial	
variability,	may	be	overcome	in	two	ways:	
	
1)	By	exploiting	spatially	explicit	estimates	of	AGB	derived	from	EO	observations	
2)	By	exploiting	statistics	obtained	from	inventory-based	measurements	of	AGB	at	 the	 level	of	
administrative	or	ecological	level	
	
The	first	approach	was	pursued	for	previous	versions	of	the	CCI	Biomass	CRDP.	In	a	first	attempt,	
the	first	version	of	the	CCI	Biomass	dataset	was	used	as	reference.	This	version	was	obtained	with	
the	approach	developed	for	the	GlobBiomass	dataset	and	did	not	include	an	explicit	function	that	
related	forest	variables	(Santoro	et	al.,	2021).	While	we	were	fully	aware	that	errors	in	the	map	
dataset	might	have	affected	the	estimates	of	the	model	relating	AGB	and	canopy	height,	our	deep	
knowledge	of	this	AGB	dataset	and	its	errors	was	exploited	to	reduce	the	impact	of	source	errors	
on	the	models	proposed	to	relate	AGB	and	height.		
	
To	 estimate	 the	 regression	 coefficients,	 we	 computed	 the	 AGB	 value	 from	 the	 map	 dataset	
corresponding	 to	 the	 area	 of	 the	 LiDAR	 footprint.	 An	 assessment	 of	 the	 relationship	 between	
canopy	height	from	spaceborne	LiDAR	and	AGB	from	the	map	revealed	low	correlation	and	very	
large	variance.	However,	after	averaging	to	coarse	resolution	grid	cells,	the	error	was	found	to	
decrease	and	the	coefficient	of	the	equation	relating	height	to	AGB	became	significant.	The	average	
values	of	canopy	height	and	AGB	were	then	stratified	according	to	different	criteria	to	capture	the	
spatial	variability	of	the	association	between	height	and	AGB.	We	refer	to	previous	versions	of	the	
CCI	Biomass	ATBD	for	a	description	of	 the	stratification	and	the	outcome	of	 the	 investigations	
(https://climate.esa.int/en/projects/biomass/key-documents/,	last	access	on	30	October	2023).	

https://climate.esa.int/en/projects/biomass/key-documents/
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From	the	extensive	analysis	undertaken	in	previous	years,	we	concluded	that	the	most	reliable	
set	of	coefficients	corresponded	to	average	values	in	1°	×	1°	grid	cells	and	a	window	size	of	10°	×	
10°.		
 
The	map	with	the	estimates	of	the	coefficients	p1	and	p2	used	until	v3	of	the	CRDP,	i.e.,	based	on	a	
combination	of	data	from	ICESat	GLAS	and	ICESat-2,	 is	shown	in	Figure	3-45.	While	this	set	of	
estimates	may	be	considered	a	realistic	approximation,	the	evaluation	of	the	CCI	Biomass	AGB	
maps	showed	that	they	caused	biases.	
	
	

 
Figure 3-45: Maps of the coefficients p1 and p2 used until v3 of the CRDP. The maps were based on canopy height 
from ICESat GLAS and ICESat-2, and AGB from the GlobBiomass and CCI Biomass v1 datasets. 

	
	
Starting	with	v4 of	the	CORE	retrieval	algorithm,	we	pursued	the	second	approach,	and	linked	
averages	of	spaceborne	LiDAR	canopy	height	values	to	AGB	averages	derived	from	national	forest	
inventory	(NFI)	data	per	administrative	unit	(e.g.,	provinces,	states,	counties)	or	ecological	unit	
(broadleaf	forest,	coniferous	forest).		
	
The	ICESat-2	dataset	was	used	to	compute	the	averages	of	canopy	height	per	administrative	or	
ecological	 unit	 to	 associate	with	 the	 values	 of	 AGB.	 The	 AGB	 averages	were	 either	 computed	
directly	when	data	were	available	to	us	or,	in	most	cases,	were	extracted	from	inventory	reports	
published	by	the	NFIs.	We	were	able	to	identify	NFI-based	data	or	statistics	for	106	countries.	In	
addition,	we	used	national	averages	of	AGB	reported	in	the	FAO	Forest	Resources	Assessment	for	
2020	 (https://fra-data.fao.org/WO/fra2020/home/,	 last	 access	 on	 1	 October	 2024)	 to	
complement	our	database	over	94	countries	for	which	we	could	not	identify	NFI	measurements	
or	statistical	data.	For	50	remaining	countries,	we	could	neither	identify	NFI-based	statistics	nor	
the	FRA	2020	database	reported	AGB.	Figure	3-46	shows	the	spatial	coverage	of	our	database	of	
NFI	AGB	averages	 in	 the	 form	of	maps.	We	split	 the	averages	according	 to	whether	 they	were	
obtained	from	(i)	NFI	measurements	either	by	ourselves	or	from	the	reports	and	(ii)	FAO	FRA	
2020	country	reports.	Except	for	large	parts	of	Africa,	the	Middle	East,	parts	of	Southeast	Asia	and	
the	Caribbean,	we	were	able	to	identify	NFI-based	values.	Gaps	could,	however,	be	filled	with	the	
FAO	FRA	2020	data.	The	50	countries	 for	which	we	could	not	 identify	any	value	on	AGB	were	
either	very	small	countries	or	countries	without	forest	cover.	
	

https://fra-data.fao.org/WO/fra2020/home/
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Figure 3-46: Map illustrating the coverage of AGB values per administrative or ecological unit derived from NFI 
datasets and statistical reports. 

	
Our	database	of	AGB	averages	(see	Annex	D)	currently	consists	of	761	values	 for	sub-national	
administrative	or	ecological	units	and	94	values	at	national	level	from	the	FRA.	To	obtain	some	
sort	of	spatial	characterization	of	the	height-to-AGB	function,	the	data	were	stratified	by	continent	
and	major	ecological	traits.	The	definition	of	the	18	strata	in	Figure	3-47	followed	an	additional	
set	 of	 criteria	 based	 on	 number	 of	 data	 values,	 availability	 of	 NFI-based	 values	 and	 uniform	
representation	of	the	range	of	AGB.	It	is	understood	that	such	a	stratification	does	not	allow	the	
capture	of	small-scale	variability	of	the	height-to-AGB	relationship.	Nonetheless,	the	focus	was	on	
establishing	valid	and	reliable	predictions	of	AGB	everywhere,	trying	at	the	same	time	to	capture	
macroecological	patterns.	Our	overall	goal	was	to	minimize	the	risk	that	large	regions	would	have	
been	characterized	by	AGB	biases	attributed	to	an	imperfect	function.		
	

 
Figure 3-47: Strata used to split the database of AGB and LiDAR canopy height statistics. 
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The	data	values	of	average	canopy	height	and	AGB,	and	the	corresponding	fit	of	the	power-law	
function	in	Equation	(3-5)	to	the	data	are	illustrated	in	Figure	3-48.	Strata	characterized	by	many	
sample	points,	which	were,	furthermore,	based	on	data	from	well-established	NFIs	(e.g.,	Europe,	
Russia,	or	North	America)	demonstrated	the	capability	of	the	power-law	model	to	reproduce	the	
trend	between	AGB	and	canopy	height.	In	such	cases,	the	coefficient	p2	was	always	between	1	and	
2.5.	This	can	be	considered	a	range	of	realistic	values	for	the	coefficient,	even	if	the	spatial	scale	
at	which	we	are	fitting	Equation	(3-5)	is	much	coarser	than	the	sub-hectare	scale	of	other	studies.	
Indeed,	AGB	must	increase	with	height	and	the	rate	of	the	biomass	increase	must	be	larger	than	
the	rate	of	height	increase	(i.e.,	p2	must	be	larger	than	1).	A	value	larger	than	2.5	is	unrealistic	
because	it	would	imply	an	extraordinarily	rapid	increase	of	biomass	for	a	small	increase	of	height.	
Originally	(v4),	our	approach	included	strata	that	were	characterized	by	a	small	number	of	data	
points	or	by	substantial	spread	of	the	observations,	when	the	estimates	of	the	two	coefficients	did	
not	have	physical	meaning.	In	this	case,	we	opted	for	fitting	a	 linear	function,	 i.e.,	a	power-law	
model	with	p2	=	1	(e.g.,	Oceania,	North	Africa,	Middle	East).	Such	cases	were	mostly	characterized	
by	lack	of	sub-national	values	of	AGB	by	NFIs	so	that	the	models	had	to	be	based	on	FAO	FRA	
national	values.	We	preferred	associating	a	set	of	coefficient	estimates	to	each	stratum,	even	if	
approximated,	 rather	 than	 expanding	 estimates	 from	neighbouring	 strata	 to	 preserve,	 even	 if	
minimally,	the	spatial	variability	of	the	relationship	between	height	and	AGB.	Validation	of	the	
CRDP	 v4	 revealed	 that	 this	 linear	 assumption	 caused	 significant	 biases.	 For	 version	 5,	 we	
therefore	revisited	the	definition	of	the	strata,	reducing	it	from	20	to	17,	and	revisited	some	of	the	
AGB	statistics,	which	were	apparently	incorrect	and	distorted	the	estimates	of	the	coefficients	in	
Equation	(3-5).	Validation	of	the	CRDP	v5	revealed	strong	biases	in	Southeast	Asia	and	Oceania,	
which	could	be	attributed	to	the	imperfect	structural	function.	For	version	6,	we	revisited	the	AGB	
statistics	for	these	regions	and	updated	the	structural	functions.		
	

 
Figure 3-48: Observations of average canopy height and average AGB at national and sub-national level (circles) 
and corresponding model fit based on Equation (3-7) for each of the 18 strata in Figure 3-47. The 18 panels are 
here arranged by continent. Each panel reports the estimate of the model’s coefficients and their SDs. The model 
fitted to the observations (solid curve) is extended up to 50 m (dashed curve) in accordance with the canopy 
height range shown in Figure 3-28. 
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The	stratum-wise	estimates	of	the	two	coefficients	of	Equation	(3-5)	were	finally	converted	to	the	
spatially	explicit	dataset	shown	in	Figure	3-49.	Compared	to	the	previous	version	of	the	estimates	
of	the	coefficients	in	Figure	3-45,	the	range	of	values	estimated	for	the	two	coefficients	p1	and	p2	
is	 smaller	 and	 we	 obtained	 a	 realistic	 model	 fit	 in	 each	 stratum.	 With	 this	 update	 in	 the	
stratification,	we	could	solve	one	issue	that	assumed	a	linear	function	instead	of	a	power-law	if	
the	estimates	of	p2	had	been	smaller	than	1,	i.e.,	for	increasing	height	the	biomass	accumulation	
would	have	reduced.	
	

 
 

Figure 3-49: Maps of the coefficients p1 and p2 based on canopy height from ICESat-2, and AGB averages obtained 
from inventory data by NFIs or the FAO FRA 2020 country reports. 

	
To	verify	the	reliability	of	AGB	predicted	with	the	function	in	Equation	(3-5),	we	compared	the	
AGB	estimates	based	on	Equation	(3-5)	and	the	set	of	coefficients	obtained	for	this	version	of	the	
ATBD	in	Figure	3-49	with	AGB	values	obtained	from	plot	inventory	measurements	at	the	0.1°	large	
grid	cells	used	in	the	Product	Validation	Report	of	v4	[RD-8].	We	also	compared	the	same	AGB	
values	from	the	plot	 inventory	data	with	AGB	estimates	derived	from	previous	versions	of	 the	
estimates	of	p1	and	p2	in	Equation	(3-5).	For	this,	we	used	grid	cell	averages	of	ICESat-2	canopy	
heights	 from	 the	 segments	 for	 the	 years	 2019-2022.	We	 note	 that	 the	 AGB	 predictions	 from	
ICESat-2	and	the	AGB	values	based	on	forest	inventory	data	are	independent	of	each	other.		
	
Figure	3-50	shows	that	for	each	version	of	the	coefficients	of	the	function	relating	LiDAR-based	
canopy	height	to	AGB,	the	data	points	clustered	more	tightly	along	the	identity	line.	Although	we	
are	not	able	to	model	correctly	the	highest	AGBs,	which	occurred	primarily	in	a	few	regions	of	
Australia,	the	improvement	since	v3	is	remarkable,	indicating	that	the	modifications	leading	to	
the	current	version	of	the	CORE	algorithm	point	in	the	right	direction.	v4,	v5	and	v6	share	the	
same	 predictor,	 i.e.,	 ICESat-2	 observations	 and	 inventory-based	 sub-national	 averages,	 but	
different	stratification	of	the	world	and	updated	support	datasets.	The	function	obtained	for	v6	is	
closer	to	those	obtained	for	v3	(based	on	a	blend	of	spaceborne	LiDAR	and	the	first	CCI	Biomass	
AGB	map)	and	v2	(based	on	ICESat	GLAS	only	and	the	GlobBiomass	AGB	dataset).	Dispersion	and	
bias	are	however	smaller,	particularly	in	the	low	biomass	range.		
	
This	 analysis	 was	 undertaken	 to	 understand	 the	 reliability	 of	 relating	 canopy	 height	 from	
spaceborne	LiDAR	to	AGB	from	a	global	dataset	of	observations.	Results	from	this	analysis	impact	
the	CORE	retrieval	algorithm	but	 it	 is	remarked	that	the	AGB	values	 from	the	database	of	plot	
inventory	measurements	used	to	validate	the	AGB	maps	were	not	used	to	calibrate	or	fine	tune	
the	height-to-AGB	relationship.	Indeed,	the	overall	assumption	that	LiDAR-based	canopy	height	
from	 space	 and	 inventory-based	 statistics	 of	AGB	 could	 be	 used	 as	 a	 surrogate	 to	 predict	 the	
relationship	between	height	and	AGB	is	confirmed.		
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Figure 3-50. Comparison of grid cell average values of AGB from field inventory data and from Equation (3-7) 
applied to ICESat-2 canopy height measurements (circles) for each version of the ATBD. The filled circles 
represent the median value of AGB from the LiDAR-based predictions in the corresponding 50 Mg ha-1 wide bin 
of AGB from the inventory-based values. The colour bar refers to the number of 0.1° grid cell observations in 
each AGB bin. 

Regardless	of	the	approach	developed	in	CCI	Biomass	to	train	Equation	(3-5),	the	use	of	average	
values	at	coarse	spatial	resolution	implies	that	the	set	of	estimates	for	the	equation’s	coefficients	
is	not	valid	for	the	hectare	scale	because	of	the	non-linear	nature	of	the	model.	In	addition,	average	
values	of	AGB	and	canopy	height	cover	a	smaller	 range	of	values	 than	 the	original	data	at	 full	
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resolution,	which	is	at	hectare	scale.	By	missing	extreme	values	in	the	training	dataset,	the	model	
in	Equation	(3-5)	is	not	well	constrained	for	forests	with	the	highest	biomass	densities.	The	two	
sources	 of	 potential	 bias	 are	 here	 acknowledged,	 but	 it	 is	 not	 possible	 to	 quantify	 the	 bias	
introduced	by	using	an	 “average”	model	 for	 the	height-to-AGB	relationship	except	at	 the	 local	
scale	where	retrievals	with	the	CORE	algorithm	implementing	the	“average”	model	and	a	“local”	
model	(e.g.,	Labriere	et	al.,	2018)	are	compared	to	each	other.	Possible	endeavours	to	bridge	the	
gap	between	data	availability	and	spatial	scale	are	discussed	in	the	Algorithm	Development	Plan	
report	 [RD-6].	Nonetheless,	we	 believe	 that	 our	 approach	 using	 coarse	 resolution	 but	 equally	
distributed	 measurements	 of	 AGB	 and	 canopy	 height	 as	 being	 currently	 the	 only	 option	 to	
characterize	the	height-to-AGB	relationship	globally.	
	

3.13.3 Raster	dataset	of	maximum	biomass	
	
The	retrieval	algorithms	aim	to	minimize	the	dependence	on	in	situ	information	about	biomass	to	
train	the	models	relating	the	SAR	backscatter	to	AGB.	However,	the	models	built	in	the	retrieval	
algorithms	need	to	be	constrained.	On	one	hand,	the	spatially	explicit	datasets	of	canopy	density	
and	canopy	height	derived	from	optical	and	LiDAR	observations	are	used	to	derive	estimates	of	
the	retrieval	model	parameters.	On	 the	other	hand,	an	estimate	of	 the	maximum	biomass	 in	a	
region	 is	 required	 to	constrain	 the	retrieval	within	a	 realistic	 range	of	biomass	values.	This	 is	
necessary	to	avoid	values	of	biomass	that	are	outside	their	known	range,	which	is	likely	to	occur	
with	the	EO	data	here	selected	as	predictors	because	of	their	increasingly	weaker	sensitivity	to	
biomass.	To	this	end,	we	first	developed	a	spatial	database	reporting	estimates	of	AGB	assumed	
to	 be	 representative	 of	 dense	 forests,	 i.e.,	with	 high	 biomass	 density,	 in	 a	 certain	 area.	 These	
estimates	were	then	converted	to	maximum	AGB.	Later,	we	developed	an	alternative	framework	
based	on	LiDAR	metrics	of	 canopy	height	and	spatially-explicit	 explicit	 estimates	of	AGB	 from	
inventory	or	map	data	through	the	height-to-AGB	function	in	Equation	(3-5).	

3.13.3.1 Inventory and map-based maximum biomass 

Initially,	a	value	was	assigned	to	the	centre	of	each	tile	in	a	regular	2°×2°	grid.	Where	available,	in	
situ	measurements	from	field	plots	or	spatially	explicit	datasets	of	Growing	Stock	Volume	(GSV)	
or	AGB	were	used.	The	AGB	of	dense	forests,	i.e.,	a	parameter	used	in	the	retrieval	model	was	then	
defined	 as	 the	 90th	 percentile	 of	 the	 histogram	 within	 the	 2°×2°	 area	 (Santoro	 et	 al.,	 2011).	
Interestingly,	 we	 identified	 a	 rather	 robust	 scaling	 factor	 between	 this	 parameter	 and	 the	
maximum	AGB	of	1.2.	Elsewhere,	it	was	estimated	with	an	empirical	piece-wise	linear	function	
(Santoro	et	al.,	2015a)	starting	from	values	of	the	average	AGB	reported	at	a	provincial	or	national	
level.	For	tiles	including	several	provinces	or	nations,	the	average	AGB	representative	for	the	tile	
was	obtained	by	weighting	the	individual	averages	by	the	area	of	each	within	the	tile.	In	regions	
where	numbers	based	on	in	situ	measurements	were	unavailable,	but	we	could	gather	more	than	
one	map	of	AGB	(preferably	based	on	laser	scanning	observations),	we	estimated	the	AGB	of	dense	
forest	as	the	joint	90th	percentile	of	the	histogram	of	the	map	values.	For	areas	lacking	any	form	
of	AGB	estimates,	the	IIASA	FAO	0.5°	dataset	of	global	AGB	was	used.	The	value	for	the	AGB	of	
dense	forests	was	then	set	equal	to	the	maximum	of	the	16	values	within	the	2°×2°	large	tile.	Given	
that	the	database	contained	both	GSV	and	AGB	observations,	we	applied	the	Biomass	Conversion	
and	 Expansion	 Factor	 (BCEF)	 computed	 in	 the	 GlobBiomass	 project	 (Santoro	 et	 al.,	 2021)	 to	
convert	 between	 the	 two	 variables	 (AGB	 =	 BCEF	 *	 GSV).	 Figure	 3-51	 shows	 the	 origin	 of	 the	
estimate	of	the	biomass	of	dense	forests.	
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Figure 3-51: Map detailing the origin of the numbers used to generate an estimate of the biomass of dense 

forests at the spatial scale of 2°. 

	
The	procedure	implemented	to	characterize	the	maximum	AGB	globally	was	crude	and	should	be	
considered	a	first-order	approximation.	Attaching	a	single	value	to	areas	covering	thousands	of	
km2	 was	 assumed	 to	 be	 sufficient	 to	 characterize	 it	 in	 regions	 including	 a	 dominant	 type	 of	
vegetation.	In	fact,	we	assumed	that	the	spatial	variability	of	the	maximum	AGB	would	be	small.	
This	approximation	fails	in	regions	with	transitions	between	ecosystems	(e.g.,	tropical	forest	and	
savannah).	Ultimately,	ensuring	spatial	consistency	of	the	estimates	could	not	prevent	the	dataset	
having	errors	and	uncertainties	propagating	from	the	input	datasets,	the	rules	implemented	to	
estimate	the	AGB	of	dense	forests	from	the	data	available	in	a	tile,	and	the	BCEF	values.		
	
To	reduce	some	of	the	weaknesses	in	the	dataset,	additional	processing	steps	were	carried	out,	
whose	aim	was	to:	

• Improve	the	reliability	of	the	database,	which	in	some	areas,	such	as	large	parts	of	Africa	
or	 Southeast	 Asia,	 had	 to	 rely	 on	 the	 assumption	 that	 linear	 relationships	 between	
reported	average	stocks	and	local	maximum	exist.	

• Fill	gaps	in	the	2-degree	database.	
• Increase	the	spatial	resolution	to	better	depict	smaller	scale	variations	in	the	maximum	

AGB,	such	as	are	expected	for	transition	areas	between	tropical	rainforest	and	savannah.	
	
The	 maximum	 AGB	 reached	 by	 forests	 across	 different	 ecoregions	 is	 expected	 to	 depend	 on	
natural	 factors	 such	 as	 temperature,	 precipitation,	 or	 disturbance	 regime,	 as	 well	 as	 on	
anthropogenic	factors	such	as	varying	types	of	forest	management.	To	verify/improve	the	initial	
estimates	 and	 to	 fill	 gaps,	 a	 database	 of	 predictor	 layers	 that	 are	 expected	 to	 have	 predictive	
power	for	maximum	AGB	was	compiled	at	2°	×	2°	resolution,	including	the	bioclimatic	variables	
and	ICESat	GLAS	observations	of	canopy	density	and	height.	For	each	2°	×	2°	grid	cell,	metrics	
were	calculated	from	the	local	ICESat	GLAS	footprints	that	characterize	the	distribution	of	forest	
height	and	density	(i.e.,	quartiles	of	the	distribution	of	GLAS	height	metrics	RH100	and	the	Height	
Of	Median	Energy;	HOME).	RandomForest	(Breiman,	2001)	models	were	then	developed	for	each	
FAO	ecoregion	using	the	initial	estimates	in	our	database	as	response	and	the	ancillary	datasets	
as	predictors.	Once	calibrated,	 the	models	were	 then	used	 to	predict	 the	GSV	of	dense	 forests	
globally	at	a	resolution	of	0.2°	×	0.2°	(Santoro	et	al.,	2021).	
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Figure 3-52: Map of the GSV of dense forests with a spatial resolution of 0.2°. 

	
Using	the	scaling	factor	of	1.2	between	GSV	of	dense	forests	and	maximum	GSV	as	well	as	the	BCEF	
relating	GSV	and	AGB	(Santoro	et	al.,	2021),	we	generated	a	global	layer	of	maximum	AGB.	The	
layer	of	maximum	AGB	obtained	from	the	dataset	of	maximum	GSV	and	scaled	with	the	BCEF	is	
displayed	in	Figure	3-53.	
	

	
Figure 3-53: Map of maximum AGB derived from inventory and map-based datasets and the BCEF. 

These	datasets	of	dense	forest	GSV,	maximum	GSV	and	maximum	AGB	were	used	to	generate	the	
v1	of	the	CRDP.	Validation	of	the	CCI	Biomass	maps	based	on	the	initial	map	of	maximum	AGB	
revealed	 locations	affected	by	underestimation	of	 the	map-based	values.	The	underestimation	
occurred	 in	 the	 form	 of	 a	 saturated	 value	 shown	 in	 the	 PVASR	 [RD-4]	 and	 the	 PVIR	 [RD-8]	
documents,	an	indication	that	the	retrieval	had	been	cut	off	at	an	AGB	level	lower	than	the	real	
maximum	AGB.	This	occurred	in	regions	where	the	characterization	of	the	maximum	AGB	was	
poor,	e.g.,	because	extrapolated	from	national	inventory	averages,	other	maps,	or	scarce	inventory	
samples.	Since	the	datasets	underpinning	our	spatially	explicit	layer	of	dense	forest	and	maximum	
AGB	have	not	improved	in	the	last	years,	this	approach	is	not	supported	any	longer.	It	is	indeed	
preferred	 to	 rely	 on	 direct	 observations	 relating	 LiDAR	 and	 inventory-based	 data	 through	
functions	that	may	guarantee	stronger	reliability.	However,	the	datasets	based	on	the	collation	of	
inventory	and	map	data	streams	are	still	used	 in	CCI	Biomass	 to	benchmark	 this	new	 form	of	
estimating	maximum	biomass.	
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3.13.3.2 LiDAR-based maximum biomass 

To	 overcome	 the	 problem	 related	 to	 a	 layer	 of	maximum	 biomass	 primarily	 based	 on	 values	
collated	 from	 different	 sources,	 an	 alternative	 solution	 was	 sought	 that	 would	 be	 more	 data	
driven.	The	availability	of	global	coverages	of	canopy	height	metrics	from	three	sensors	indeed	
suggested	they	could	be	used	to	improve	values	in	regions	where	the	original	maximum	AGB	was	
poorly	characterized.	For	this,	we	used	the	function	relating	canopy	height	and	AGB	and	defined	
the	maximum	AGB	as	the	value	predicted	by	Equation	(3-5)	corresponding	to	the	maximum	value	
of	canopy	height.		
	
Below	we	describe	the	procedure	that	was	originally	implemented	to	create	the	first	global	layer	
of	maximum	biomass	from	spaceborne	LiDAR	followed	by	the	improvement	that	 is	part	of	the	
current	version	of	the	ATBD	(v6).	
	
V2	and	v3	of	the	CRDP	preceding	this	ATBD	share	the	same	approach	but	different	sets	of	LiDAR	
observations,	 namely	 ICESat	GLAS	only	 and	 a	 combination	of	 data	 from	 the	 three	 spaceborne	
LiDAR	sensors,	respectively.	The	combination	was	undertaken	to	overcome	the	issue	of	sparse	
sampling	in	each	of	the	three	datasets.	For	each	laser	sensor,	a	map	of	maximum	canopy	height	
with	a	pixel	size	of	0.25°	was	generated	at	first.	The	maximum	canopy	height	in	a	pixel	was	defined	
as	the	95th	percentile	of	the	canopy	height	histogram	from	the	footprint-level	data.	The	coarse	
resolution	 reduced	 the	 impact	 of	 incorrect	 canopy	 height	 estimates	 on	 the	 percentile	 value	
because	this	was	based	on	many	values	even	in	regions	with	sparse	footprints.	In	v2,	this	map	
represented	the	maximum	biomass.	In	v3,	the	three	maps	of	canopy	height	were	combined	with	
a	 weighted	 average.	 The	 weights	 were	 proportional	 to	 the	 area	 covered	 by	 all	
footprints/segments	within	a	given	area	(0.25°	in	our	case).	GEDI	was	the	main	contributor	in	the	
tropics	whereas	ICESat	GLAS	and	ICESat-2	data	contributed	in	an	equal	manner	in	extra-tropical	
regions.	 To	 generate	 the	 maximum	 AGB	 from	 the	 maximum	 canopy	 height,	 we	 applied	 the	
function	described	in	Equation	(3-5)	(Section	3.14.2).	Figure	3-54	shows	the	layer	of	maximum	
AGB	based	on	the	LiDAR	observations.		
	

	
Figure 3-54: Map of maximum AGB derived from the LiDAR-based dataset of maximum canopy height. This layer 
was used in v3 release of the CCI Biomass CRDP. 

With	v3,	for	boreal	and	temperate	forests,	the	AGB	predicted	from	the	LiDAR	measurements	was	
slightly	 higher,	 which	 is	 in	 line	 with	 investigations	 that	 demonstrated	 light	 saturation	 of	 the	
earlier	CCI	maps	when	the	retrieval	was	constrained	with	the	inventory/map-based	maximum	
AGB	(v1)	and	with	the	ICESat	GLAS	data	only	(v2)	[RD-4]	and	[RD-8].	Smaller	values	were	instead	
predicted	across	Alaska	and	most	of	 the	western	north	American	continent.	These	 results	 are	
plausible	since	 the	assessment	of	 the	earlier	CCI	maps	(versions	1	and	2)	 indicated	somewhat	



 

Ref CCI Biomass Algorithm Theoretical Basis 
Document 

 Issue Page Date 
6.0 76 19.12.2024 

	

This document is the property of the CCI-Biomass partnership, no part of it shall be reproduced or transmitted 
without the express prior written authorization of Aberystwyth University and Gamma Remote Sensing AG. 

higher	values	from	the	map	than	those	reported	by	forest	inventory.	Across	the	wet	tropics,	higher	
AGB	values	were	again	predicted	using	the	LiDAR-based	measurements.	This	result	is	consistent	
with	assessments	of	earlier	CCI	maps	[RD-4].	In	the	dry	tropics	and	the	subtropics,	instead,	the	
maximum	AGB	predicted	 from	 the	LiDAR	data	 is	often	 smaller	 than	 the	 inventory/map-based	
values.	 These	 were	 based	 primarily	 on	 other	 AGB	 maps	 or	 upscaled	 country	 statistics	 and	
therefore	potentially	biased.	 In	regions,	where	 inventory	data	were	available	(e.g.,	Madagascar	
and	 Australia),	 the	 lower	 values	 are	 explained	 because	 of	 the	 small	 number	 of	 LiDAR	
measurements	in	our	database.	The	densest	forest	was	hardly	observed,	which	lead	to	a	lower	
maximum	AGB.		
	
The	availability	of	LiDAR	observations	from	GEDI	and	ICESat-2	from	several	years,	starting	with	
v4,	implied	that	a	layer	of	maximum	AGB	could	be	based	on	data	acquired	by	one	sensor.	Since	v5	
of	 the	CRDP,	we	 selected	 ICESat-2	data	 as	 the	only	 contributor	 to	 the	 layer	of	maximum	AGB	
because	the	ICESat-2	canopy	heights	appear	to	be	more	consistent	with	the	ICESat	GLAS	values	
than	GEDI	and	because	ICESat-2	is	global.	
	
For	v4	and	v5,	we	first	estimated	the	maximum	canopy	height	for	each	year	of	the	ICESat-2	dataset	
(i.e.,	2019-2020	in	v4	and	2019-2021	in	v5)	and	then	combined	the	results	to	give	a	final	value.	
For	v4,	the	maximum	value	of	canopy	height	in	a	given	year	was	defined	as	the	99th	percentile	of	
all	height	estimates	corresponding	to	vegetation	within	an	0.1°	grid	cell.	Maximum	height	was	
estimated	in	grid	cells	with	dimensions	of	0.1°	´	0.1°.	This	was	a	compromise	between	stabilizing	
the	value	of	the	percentile	expressing	the	maximum	canopy	height	and	retaining	spatial	detail.	
This	 definition	 tried	 to	 truly	 detect	 the	 tallest	 forest	 in	 a	 certain	 area	 and	 account	 for	 spatial	
variability.	However,	 it	 likely	captured	the	tallest	tree	within	a	segment,	so	was	not	properly	a	
forest	canopy	height	and	was	furthermore	susceptible	to	noise.	The	average	of	the	yearly	height	
values	weighted	by	the	number	of	segments	in	each	grid	cell	helped	to	reduce	noise	but	could	not	
remove	potential	biases.	For	v5,	we	first	averaged	the	segment-wise	data	to	1	km	grid	cells	 to	
create	 yearly	 maps	 of	 mean	 canopy	 height	 and	 averaged	 them	 in	 time	 using	 the	 number	 of	
segments	per	grid	cell	as	weights.	Having	accounted	for	noisy	measurements	in	the	original	data,	
we	defined	the	maximum	canopy	height	as	the	98th	percentile	of	the	1	km	values	within	0.1°	large	
areas.	 This	 was	 found	 to	 be	 sufficiently	 stable	 to	 avoid	 point-wise	 noise	 in	 regions	 of	 poor	
coverage.	A	2-D	median	filter	was	then	applied	to	reduce	unrealistically	high	values.	For	v6,	we	
created	 a	 single	map	 of	mean	 canopy	 height	with	 a	 grid	 cell	 of	 1	 km	 from	 the	 data	 acquired	
between	2019	and	2022.	The	maximum	canopy	height	was	still	defined	as	the	98th	percentile	of	
all	canopy	heights	within	0.1°	grid	cells.	Estimates	based	on	less	than	3	observations	and	with	an	
estimate	larger	than	35	m	corresponding	to	a	tree	cover	of	less	than	30%	were	discarded.	These	
thresholds	were	obtained	after	a	detailed	analysis	of	the	data	aiming	at	understanding	the	causes	
of	 biased	 height	 estimates.	 Figure	 3-55	 shows	 the	map	 of	maximum	 canopy	 height;	 values	 in	
correspondence	 of	 unvegetated	 surfaces	 (e.g.,	 desert,	 and	 ice-covered	 regions)	were	 obtained	
with	 inpainting	 from	 neighbouring	 regions	 where	 valid	 canopy	 height	 measurements	 were	
available.	
	



 

Ref CCI Biomass Algorithm Theoretical Basis 
Document 

 Issue Page Date 
6.0 77 19.12.2024 

	

This document is the property of the CCI-Biomass partnership, no part of it shall be reproduced or transmitted 
without the express prior written authorization of Aberystwyth University and Gamma Remote Sensing AG. 

	
Figure 3-55: Map of maximum canopy height derived from ICESat-2 data acquired in 2019-2021. 

	
Figure	 3-56	 shows	 the	 corresponding	map	 of	maximum	AGB	while	 Figure	 3-57	 indicates	 the	
difference	between	this	map	and	the	previous	version.	
	

	
Figure 3-56: Map of maximum AGB derived from the ICESat-2-based dataset of maximum canopy height. This 

layer is used in the current release of the CCI Biomass CRDP. 

	

	
Figure 3-57: Difference of maximum AGB estimates from the current version (v5) and the previous version (v4). 
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The	spatial	patterns	of	maximum	AGB	correspond	to	those	identified	in	the	previous	versions	of	
the	same	layer	but	there	are	discrepancies	in	several	regions.	The	maximum	AGB	in	polar	regions	
and	some	sparsely	vegetated	regions	(e.g.,	Pampas	and	Kazakhstan)	decreased	to	low	values	as	a	
consequence	 of	 the	 filtering	 to	 remove	 unnatural	 high	 values	 of	 canopy	 height	 in	 sparsely	
vegetated	regions.	Improved	filtering	of	the	ICESat-2	data	also	led	to	a	reduction	of	the	maximum	
AGB	 in	 regions	with	 steep	 topography	 (Pacific	Northwest	 coast,	 Andes	 region	 and	Himalaya).	
Improved	structural	 functions	 in	Southeast	Asia	and	Australia	 led	 to	a	marked	 increase	of	 the	
maximum	 AGB.	 The	 strong	 increase	 of	 the	 maximum	 AGB	 in	 the	 wet	 tropics	 in	 Africa	 are	 a	
consequence	of	having	lowered	the	threshold	on	the	number	of	laser	photons	per	segment.	
	
Although	the	layer	of	maximum	AGB	seems	to	have	improved	in	each	version	of	the	CORE	retrieval	
algorithm,	it	is	not	possible	to	quantify	the	accuracy	of	the	current	version.		The	accuracy	of	the	
current	 version	 can	 only	 be	 quantified	 indirectly	 through	 validation	 of	 the	AGB	maps	 against	
inventory	data.	Biases	 revealed	by	 this	 exercise	 are	usually	 explained	because	of	 an	 incorrect	
value	of	the	maximum	AGB.		
	
The	continual	improvements	to	the	layer	of	maximum	of	AGB	imply	variability	of	its	values	from	
version	to	version,	which	is	illustrated	by	the	temporal	standard	deviation	of	its	values	from	v1	to	
v6	in	Figure	3-58.	The	largest	variability	in	time	occurs	in	eastern	Oceania,	the	Andes	region,	the	
western	 Congo	Basin,	 peninsular	 Southeast	Asia	 and	 the	 eastern	US.	 In	Asia	 and	Oceania,	 the	
uncertainty	is	a	consequence	of	continuous	changes	in	the	AGB	data	support	and	the	stratification	
applied	to	characterized	the	structural	function.	The	large	difference	of	values	in	the	Andes	region	
and	the	eastern	US	is	due	to	differences	in	the	AGB	data	support	(GlobBiomass	dataset	and	NFI	
averages).	 Changes	 applied	 to	 the	 filtering	 of	 the	 ICESat-2	 data	 explains	 the	 variability	 of	 the	
maximum	AGB	in	the	Congo	Basin.	Other	regions	of	the	world	(e.g.,	Eurasian	temperate	and	boreal	
forests,	western	and	eastern	Amazon)	also	showed	remarkable	fluctuations	of	the	maximum	AGB,	
which	were	 explained	by	 changes	 in	 the	AGB	data	 support.	 Changes	 in	maximum	AGB	 across	
versions	of	the	CCI	Biomass	CORE	retrieval	algorithm	imply	variability	of	the	corresponding	AGB	
maps	 in	 the	 CRDP.	 The	map	 in	 Figure	 3-58	 therefore	 indicates	 regions	 where	 the	 structural	
function	 relating	 height	 to	 AGB	 needs	 better	 characterization,	 i.e.,	where	 knowledge	 of	 forest	
structure	needs	to	be	improved.	
	

	
Figure 3-58: Map of the temporal standard deviation (SD) of the maximum AGB between v1 and v6 of the CCI 
Biomass CORE retrieval algorithm. 
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4 AGB estimation methods 

4.1 The GlobBiomass global biomass retrieval algorithm 
This	Section	starts	with	an	overview	of	the	GlobBiomass	retrieval	algorithm	because	it	served	as	
starting	point	for	the	development	of	the	CORE	algorithm	used	in	CCI	Biomass.	
	
The	 GlobBiomass	 algorithm	 consisted	 of	 a	 three-stage	 approach	 that	 exploits	 a	 simple	Water	
Cloud	Model	(WCM)	to	obtain	two	independent	estimates	of	biomass	from	multi-temporal	C-band	
SAR	backscatter	observations	and	from	a	single	observation	of	L-band	backscatter.	The	estimates	
were	then	combined	with	the	intention	to	compensate	for	systematic	errors	in	one	or	the	other	
dataset.	Because	the	WCM	was	expressed	in	a	form	relating	SAR	backscatter	to	the	GSV	(m3	ha-1),	
AGB	was	estimated	from	GSV	by	scaling	using	the	BCEF.		
	
Although	there	is	no	experimental	evidence	that	estimating	AGB	from	GSV	is	more	accurate	than	
estimating	AGB	directly,	it	was	believed	that	this	approach	is	more	robust	than	a	direct	retrieval	
of	AGB	from	the	SAR	backscatter	for	the	following	reasons:	

• The	SAR	backscatter	at	C-	and	L-band	is	affected	by	the	 forest	structure	and	dielectric.	
Here,	we	initially	discard	the	contribution	from	the	forest	floor.	For	such	wavelengths,	the	
major	component	of	the	backscatter	from	a	forest	is	expected	to	originate	in	the	upper	
part	 of	 the	 canopy,	 thus	 explaining	 the	 limited	 sensitivity	 of	 the	 backscatter	 to	 forest	
structural	parameters	for	increasing	density.	However,	it	was	also	reported	that	under	dry	
or	frozen	conditions,	the	sensitivity	of	the	SAR	backscatter	to	forest	structural	variables	
increases	(Santoro	et	al.,	2011;	Santoro	et	al.,	2015a),	which	can	be	explained	by	increased	
penetration	of	the	wavelength	into	the	canopy	so	that	major	elements	of	the	forest	are	
being	sensed.	If	a	retrieval	algorithm	is	designed	to	give	more	weight	to	such	observations	
than	 to	 other	 observations	 (if	 available),	 it	 is	 reasonable	 to	 assume	 that	 GSV	 can	 be	
retrieved	from	SAR	backscatter	(as	implemented	in	the	GlobBiomass	algorithm).		

• By	 relating	 to	 a	 structural	 parameter	 such	 as	 GSV,	 one	 can	 base	 the	 retrieval	 on	 a	
physically-based	model,	with	parameters	that	can	be	predicted	by	using	observations.	If	
the	variable	of	interest	were	AGB,	it	is	unclear	how	such	models	could	be	parameterized	
given	 that	 the	weight	of	 the	 trees	cannot	be	 inferred	 from	measurements	of	 structural	
parameters	only.	

• AGB	requires	knowledge	of	the	wood	density.	 It	remains	undemonstrated	that	the	SAR	
backscatter	at	C-	and	L-band	is	sensitive	to	the	specific	wood	gravity	of	trees.	Lacking	such	
evidence,	it	is	preferable	to	proceed	with	the	estimation	of	forest	structural	parameters	
from	the	SAR	backscatter	and	convert	to	AGB	using	a	separate	layer	(the	BCEF)	that	does	
not	depend	on	EO	observations.		

• Volume	is	the	major	predictor	of	biomass.	The	use	of	volume	as	the	major	predictor	of	AGB	
is	clearly	evidenced	by	the	country	reports	to	the	FAO	2010	Forest	Resources	Assessment	
(FRA).	More	than	80%	of	the	171	countries	reporting	their	biomass	and	carbon	resources	
to	the	FRA	based	their	numbers	on	estimates	of	volume	(and	not	vice	versa).	

	
Given	that	there	are	hardly	any	datasets	reporting	measurements	of	GSV	and	AGB,	it	is	currently	
not	possible	to	go	beyond	these	statements,	but	some	of	them	clearly	require	being	addressed	in	
the	future	at	the	level	of	prototyping	studies.		
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Figure 4-1: Flowchart of the GlobBiomass global biomass retrieval algorithm. 

	
The	 three	 stages	 of	 the	 GlobBiomass	 algorithm	were	 structured	 as	 follows	 (Figure	 4-1Error!	
Reference	source	not	found.).	
	

• A	 global	 dataset	 of	 GSV	 was	 derived	 from	 hyper-temporal	 observations	 of	 C-band	
backscatter	using	the	BIOMASAR-C	algorithm	(Santoro	et	al.,	2011;	Santoro	et	al.,	2015a).	
BIOMASAR-C	was	trained	without	in	situ	measurements	and	retrieved	GSV	at	the	spatial	
resolution	 of	 the	 input	 EO	 data.	While	 BIOMASAR-C	was	 found	 to	 capture	 the	 spatial	
distribution	 of	 GSV,	 even	 under	 unfavourable	 conditions	 such	 as	 in	 the	 wet	 tropics	
(Santoro	et	al.,	2021),	there	were	evident	limitations	of	C-band	SAR	for	estimating	GSV	in	
dense	forests	or	in	patchy	landscapes	with	a	mix	of	forest	and	other	land	cover	types.	In	
addition,	cropland	was	often	associated	with	non-zero	biomass	because	of	the	seasonal	
increase	of	the	backscatter	to	levels	observed	in	young	forests.	A	global	GSV	map	obtained	
with	BIOMASAR-C	was	therefore	treated	in	the	first	instance	as	an	indicator	of	biomass,	
supporting	the	retrieval	with	EO	data	at	higher	spatial	resolution	and	stronger	sensitivity	
to	forest	biomass.		

• The	bulk	of	the	GlobBiomass	retrieval	corresponded	to	the	second	stage,	which	included	
several	 retrieval	 approaches	 applied	 to	 high-resolution	 SAR	data.	Multiple	 approaches	
were	considered	to	reduce	potential	flaws	in	each	single	approach	due	either	to	the	input	
dataset	 or	 the	 simplifying	 assumptions	 used	 to	 model	 the	 relationship	 between	 SAR	
backscatter	and	GSV.	Here,	 the	L-band	backscatter	was	used	as	a	predictor	 in	a	model-
based	approach	mimicking	BIOMASAR-C	(hence	referred	to	as	BIOMASAR-L)	and	in	a	re-
scaling	approach	of	the	moderate	resolution	BIOMASAR-C	estimates	together	with	other	
high-resolution	datasets	(e.g.,	Landsat	reflectances).	The	re-scaling	approach	was	referred	
to	as	BIOMASAR-C+	and	was	developed	to	complement	the	retrieval	with	BIOMASAR-L	in	
areas	of	poor	performance	of	the	retrieval	based	on	a	single	L-band	observation	(e.g.,	very	
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low	biomass)	or	systematic	effects	(e.g.,	due	to	topography	or	events	altering	the	ALOS	
PALSAR	backscatter	on	the	specific	acquisition	date).	Like	BIOMASAR-C,	both	approaches	
were	 designed	 to	 be	 calibrated	without	 in	 situ	measurements	 and	 retrieve	 GSV	 at	 the	
spatial	resolution	of	the	input	EO	data.		

• For	 each	 pixel,	 the	 final	 estimate	 of	 biomass	 was	 obtained	 by	 linearly	 combining	 the	
BIOMASAR-L	and	the	BIOMASAR-C+	estimates	with	weights	defined	by	their	similarity	to	
theoretical	 behaviour	when	 related	 to	 forest	 canopy	height,	 canopy	density	 and	 forest	
transmissivity	observations.	The	integration	of	the	biomass	estimates	was	parameterized	
at	the	ecozone	level.	The	integration	was	implemented	to	produce	a	combined	biomass	
expressed	as	GSV.		

• An	additional	step	was	then	required	to	estimate	AGB.	AGB	was	estimated	from	the	GSV	
dataset	 using	 spatially	 explicit	 estimates	 of	 wood	 density	 and	 stem-to-total	 biomass	
expansion	factors,	which	were	derived	from	an	extrapolation	of	in	situ	observations	and	
modelling.		

• At	 this	 stage,	 additional	 approaches	 were	 considered	 to	 complement	 structural	
deficiencies	of	the	BIOMASAR-type	of	estimations	and/or	the	conversion	of	GSV	to	AGB.	
In	GlobBiomass,	several	data	products	were	evaluated	but	none	could	compensate	for	the	
deficiencies	of	the	GlobBiomass	data	product.		

• Each	estimate	of	GSV	and	AGB	has	a	corresponding	estimate	of	its	precision.	
• To	account	for	different	user	needs,	the	high-resolution	biomass	(GSV	and	AGB)	estimates	

can	be	aggregated	(by	spatial	averaging)	to	form	new	estimates	at	moderate	and	coarse	
scale.	 Accordingly,	 estimates	 of	 the	 estimation	 accuracy	 for	 the	 averaged	 biomass	 are	
obtained.	

4.2 The CCI Biomass CORE algorithm 
Before	cloning	the	three-stages	approach	developed	in	the	GlobBiomass	project	for	the	satellite	
data	of	2010	to	represent	the	CORE	algorithm	of	CCI	Biomass,	it	was	necessary	to	understand	if	
the	same	conditions	apply	for	the	satellite	data	to	be	used	in	this	project.		
	
The	 spatial	 resolution	 of	 the	 hyper-temporal	 dataset	 of	 Sentinel-1	 C-band	 observations	 is	
substantially	 higher	 than	 in	 the	 GlobBiomass	 project	 (150	 m	 vs.	 1000	 m).	 In	 addition,	 the	
availability	of	the	cross-polarized	backscatter	and	the	possibility	to	compensate	for	topographic	
effects	 on	 the	 backscatter	 allows	 us	 to	 assume	 that	 the	 C-band	 estimates	 of	 biomass	 are	
sufficiently	 reliable	 to	be	used	without	 refinements	or	 rescaling.	 In	other	words,	 the	 rescaling	
applied	at	stage	2	in	Figure	4-1	with	the	BIOMASAR-C+	algorithm	becomes	redundant.		
	
We	 also	 consider	 that	 the	 L-band	 datasets	 available	 to	 this	 project	 consist	 of	multi-temporal	
observations	primarily	from	the	ScanSAR	mode,	which	comes	with	a	spatial	resolution	of	50m	and	
contributes	 substantially	 to	 the	 retrieval	 in	 the	 tropics.	As	 a	 result,	 it	 is	 preferred	 to	 estimate	
biomass	from	the	L-band	data	at	100	m	pixel	size	to	reduce	the	effect	of	artefacts	in	the	L-band	
data	but	still	preserve	details	to	a	level	comparable	to	the	details	reproduced	in	the	GlobBiomass	
dataset.		
	
Merging	according	to	predefined	rules	that	prefer	one	or	other	dataset	based	on	the	plausibility	
of	the	estimates	is	maintained.	For	this,	the	C-band	estimates	of	biomass	are	simply	resampled	to	
the	geometry	of	the	L-band	estimates.		
	
Since	the	start	of	the	CCI	Biomass	project,	the	CORE	algorithm	evolved	chronologically	as	follows:	

• The	GlobBiomass	algorithm	was	adapted	to	Sentinel-1	and	ALOS-2	datasets.	
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• Implement	canopy	height	in	the	retrieval	models	by	integrating	a	function	relating	canopy	
height-and-AGB.	

• Estimate	 directly	 AGB	 rather	 than	 through	 an	 estimate	 of	 GSV.	 	 This	 step	 was	 also	 a	
consequence	of	reduced	activity	on	the	characterization	between	vegetation	volume	and	
organic	mass	in	recent	years.	

• Identify	ways	to	guarantee	temporal	consistency	of	AGB	estimates	from	different	satellite	
data	sources	(bias	modelling,	rescaling)		

	
The	biomass	estimation	procedure	described	in	Figure	4-1	was	detailed	in	Santoro	et	al.	(2021)	
by	showing	the	relationship	between	EO	data,	methods,	and	outputs.	In	this	document,	we	follow	
the	 same	 procedure	 and	 present	 in	 Figure	 4-2	 a	 functional	 flowchart	 that	 focuses	 on	 the	
interdependencies	of	datasets	and	algorithms	 in	 the	current	version	of	 the	CCI	Biomass	CORE	
global	biomass	retrieval	algorithm	(v6).	For	past	versions	of	the	CORE	algorithm,	we	refer	to	older	
versions	of	the	ATBD	available	at	https://climate.esa.int/en/projects/biomass/key-documents/	
(last	access	on	8	October	2024)	
	
The	CORE	algorithm	consists	of	the	following	processing	steps.	
	

• Multi-temporal	C-band	backscatter	data	are	used	to	generate	global	estimates	of	AGB	at	
150	m	pixel	size	using	the	BIOMASAR-C	algorithm;	these	are	then	resampled	to	100	m.	

• Multi-temporal	L-band	backscatter	data	are	used	to	generate	global	estimates	of	AGB	at	
100	m	pixel	size	using	the	BIOMASAR-L	algorithm.		

• A	set	of	auxiliary	datasets	 is	used	 to	calibrate	 the	parametric	models	embedded	 in	 the	
BIOMASAR	algorithms	since	our	strategy	avoids	in	situ	measurements	for	training.	

• The	AGB	estimates	from	BIOMASAR-L	and	BIOMASAR-C	are	merged	to	reduce	systematic	
errors	in	either	of	them.	

• The	precision	of	the	estimates	 is	characterized	at	each	step	shown	in	Figure	4-2Error!	
Reference	source	not	found.,	and	an	estimate	of	the	AGB	precision	is	attached	to	each	
100	m	pixel.		

• The	CORE	algorithm	can	be	expanded	by	linking	it	with	additional	datasets	produced	with	
algorithms	that	perform	better	than	those	proposed	here.	

	
Spatial	averaging	can	be	applied	to	reduce	pixel-wise	retrieval	errors	and	increase	the	accuracy.	
This	final	step	is	done	“on	demand”	where	a	user	can	specify	the	target	spatial	resolution.	
	

https://climate.esa.int/en/projects/biomass/key-documents/
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Figure 4-2: Functional dependencies of datasets and approaches forming the CCI Biomass CORE global biomass 

retrieval algorithm. The shaded part of the flowchart represents potential improvements following the 
implementation of additional retrieval techniques. 

	
In	the	following	Sections,	we	describe	the	individual	components	of	the	CORE	algorithm:	

• BIOMASAR-C	
• BIOMASAR-L	
• Merging	

4.3 The BIOMASAR-C algorithm 
The	theoretical	basis	of	the	BIOMASAR-C	algorithm	has	been	presented	in	Santoro	et	al.	(2011,	
2015a	 and	 2021)	 and	 was	 extensively	 presented	 in	 Santoro	 et	 al.	 (2021).	 Here,	 the	 major	
components	are	summarized,	and	a	reference	is	given	to	previous	documentation	for	technical	
aspects	that	do	not	need	to	be	repeated	in	this	context.		
	
Figure	4-3	shows	the	flowchart	of	the	current	implementation	of	BIOMASAR-C,	which	is	applied	
separately	to	Sentinel-1	and	Envisat	ASAR	data	(sigma0	SAR	images).	For	each	sigma0	SAR	image,	
the	 forest	 backscatter	model	 is	 trained,	 i.e.,	 the	model	 parameters	 are	 estimated,	 resulting	 in	
corresponding	images	for	each	of	the	two	model	parameters.	The	model	training	does	not	require	
reference	measurements	 of	 biomass.	 The	model	 parameters	 are	 estimated	by	 relating	 canopy	
density	(e.g.,	from	a	VCF	type	of	product)	and	the	backscatter	observations	in	the	sigma0	image.	
Once	the	model	parameters	are	estimated,	the	forest	backscatter	model	is	inverted	to	express	the	
biomass	variable	of	interest	(e.g.,	AGB)	as	a	function	of	the	measured	backscatter.	To	allow	for	the	
estimation	of	AGB,	it	 is	necessary	to	reformulate	the	forest	backscatter	model	by	replacing	the	
original	predictors,	namely	canopy	height	and	density,	with	AGB.	This	is	achieved	with	the	two	
functions	 relating	 forest	 variables,	which	 require	 LiDAR	metrics	 of	 canopy	height	 and	 canopy	
density,	and	AGB	reference	data,	here	represented	by	statistics	(mean	value)	derived	from	forest	
field	 inventory	measurements.	 Note,	 that	 it	 is	 not	mandatory	 to	 have	 access	 to	 the	 inventory	
measurements	as	the	calibration	of	the	function	relating	to	AGB	can	equally	be	run	on	statistics	
published	by	NFIs.	
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Figure 4-3: Flowchart of the BIOMASAR-C algorithm. 

	

4.3.1 The	forest	backscatter	model	
	
At	 C-band,	 spatial	 and	 temporal	 variability	 of	 the	 backscatter	 make	 empirical	 modelling	 of	
biomass	(whether	as	GSV	or	AGB)	derived	using	in	situ	measurements	almost	useless	if	the	aim	is	
to	produce	large-scale	estimates	based	on	a	small	set	of	reference	measurements,	which	is	very	
often	 the	 reality.	 Hence	 robust	 retrieval	 of	 biomass	 from	 backscatter	 should	 be	 based	 on	 a	
physically-based	 model	 that	 expresses	 the	 backscatter	 in	 terms	 of	 the	 main	 scattering	
mechanisms	in	as	general	a	manner	as	possible.	We	opted	for	the	semi-empirical	Water	Cloud	
Model	(Attema	&	Ulaby,	1978)	with	gaps	based	on	the	formulation	reported	by	Askne	et	al.	(1997).	
The	reason	for	this	choice	is	the	demonstrated	reliability	of	this	type	of	model	in	the	retrieval	of	
forest	biomass	(Santoro	and	Cartus,	2018)	and	the	extensive	knowledge	gathered	by	the	team	
developing	the	retrieval	algorithm	with	such	a	modelling	framework.	
	
The	WCM	with	gaps,	given	as	Equation	(4-1),	was	derived	from	the	original	WCM	presented	by	
Attema&Ulaby	(1978)	to	expresses	 the	total	 forest	backscatter	of	a	 forest	as	 the	sum	of	direct	
scattering	 from	 the	 ground	 through	 gaps	 in	 the	 canopy,	 ground	 scattering	 attenuated	 by	 the	
canopy	and	direct	scattering	from	vegetation:	
	
𝝈𝒇𝒐𝒓𝟎 = (𝟏 − 𝜼)𝝈𝒈𝒓𝟎 + 𝜼𝝈𝒈𝒓𝟎 𝑻𝒕𝒓𝒆𝒆 + 𝛈𝝈𝒗𝒆𝒈𝟎 (𝟏 − 𝑻𝒕𝒓𝒆𝒆)	 	 	 	 	 	 (4-1)	
	
Here,	η	is	the	area-fill	or	canopy	density	factor,	representing	the	fraction	of	the	area	covered	by	
vegetation,	s0gr	and	s0veg	are	the	backscattering	coefficients	of	the	ground	and	vegetation	layer,	
respectively,	and	Ttree	is	the	two-way	tree	transmissivity,	which	can	be	expressed	as	e-αh,	where	a	
is	the	two-way	attenuation	per	meter	through	the	tree	canopy	and	h	is	the	depth	of	the	attenuating	
layer.	
	
In	practice,	Equation	(4-1)	is	not	useful	since	the	area-fill	factor	is	not	a	parameter	of	interest	to	
foresters	and	the	model	relates	two	forest	variables	(canopy	height	and	canopy	density,	i.e.,	area-
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fill	factor)	to	a	single	observation.	For	retrieval	purposes,	it	is	more	convenient	to	describe	the	
backscatter	 as	 a	 function	 of	 biomass.	 Leaving	 aside	 all	 possible	 formulations	 of	 the	 WCM	
expressing	the	SAR	backscatter	as	a	function	of	AGB	with	empirical	coefficients	(Santoro	&	Cartus,	
2018),	Pulliainen	et	al.	(1994)	rewrote	the	original	WCM	in	a	form	similar	to	Equation	(4-1)	that	
relates	the	SAR	backscatter	to	stem	volume,	V,	which	can	be	considered	equivalent	to	GSV:	
	

𝝈𝒇𝒐𝒓𝟎 = 𝝈𝒈𝒓𝟎 𝒆(𝜷𝑽 + 𝝈𝒗𝒆𝒈𝟎 @𝟏 − 𝒆(𝜷𝑽A	 	 	 	 	 	 	 	 (4-2)	

	
In	 Equation	 (4-2),	 β	 is	 an	 empirically	 defined	 coefficient	 expressed	 in	 ha	 m-3.	 However,	 this	
coefficient	has	some	physical	meaning	since,	by	comparing	Equations	(4-1)	and	(4-2),	β,	η	and	α	
are	linked	by	the	relation	(Santoro	et	al.,	2002):		
	

𝒆(𝜷𝑽 = 𝟏 − 𝜼@𝟏 − 𝒆(𝜶𝒉A	 	 	 	 	 	 	 	 	 (4-3)	

Each	of	these	terms	represents	the	forest	two-way	transmissivity.	The	major	assumption	when	
rewriting	the	exponent	of	the	original	WCM	as	a	simple	scaling	of	GSV	was	that	height	and	volume	
are	linearly	correlated.	This	may	apply	to	mature	forests	but	is	not	correct	throughout	the	range	
of	heights	and	volumes	in	boreal	forests,	where	Equation	(4-3)	was	developed.	Similarly,	the	non-
linear	 relationship	 between	 height	 and	 AGB	 suggests	 that	 the	 inversion	 of	 Equation	 (4-3)	 to	
estimate	 biomass	 from	 SAR	 backscatter	 may	 introduce	 systematic	 biases	 in	 the	 retrieval,	
regardless	of	the	forest	structure.	
	
Equation	 (4-3)	was	used	 to	 generate	GSV	estimates	part	of	 the	 first	CRDP	of	 the	CCI	Biomass	
project.	We	refer	to	Santoro	et	al.	(2021)	for	the	description	of	BIOMASAR-C	for	GSV	retrieval.	
Later	versions	of	the	CRDP	only	included	AGB	and	were	based	on	the	original	WCM	with	gaps	in	
Equation	(4-1)	integrated	with	the	models	relating	canopy	density	and	canopy	height	in	Equation	
(3-4),	and	the	model	relating	canopy	height	and	AGB	in	Equation	(3-5).	Here,	it	was	assumed	that	
the	area-fill	factor	equals	the	optical	canopy	density	in	Equation	(3-4).	
	
As	we	want	to	express	the	backscatter	as	a	function	of	AGB,	we	first	need	to	invert	Equation	(3-
7),	thus	obtaining	ℎ = (𝑏, ∙ 𝐴𝐺𝐵):* 	 with	b1	=	1/p1	and	b2	=	1/p2.	The	coefficients	p1	and	p2	were	
introduced	 in	 Equation	 (3-5).	 Equation	 (4-5)	 shows	 the	 forest	 backscatter	 (observable,	s0for)	
expressed	as	a	function	of	AGB	only.	
	
	

𝜎!"#$ = #1 − &1 − 𝑒%&∙()!∙*+,)"#( &1 − 𝑒%.∙()!∙*+,)"#() 𝜎/#$

+ &1 − 𝑒%&∙()!∙*+,)"#( &1 − 𝑒%.∙()!∙*+,)"#( 𝜎01/$ 	
(4-4)	

	

4.3.2 Model	training	
	
Regardless	of	whether	 the	biomass	variable	of	 interest	 is	GSV	or	AGB,	 the	retrieval	model	has	
three	unknowns,	namelys0gr,	s0veg	and	α.	In	addition,	the	model	expressed	as	a	function	of	GSV	has	
an	additional	unknown:	the	coefficient	of	the	forest	transmissivity	β.	
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If	a	set	of	reference	GSV	or	AGB	values	is	available,	the	model	parameters	can	be	estimated	with	a	
least	 squares	 regression	 to	 the	 reference	 measurements	 and	 the	 measurements	 of	 the	 SAR	
backscatter	corresponding	to	the	GSV	or	AGB	observations.	This	approach	is	unfeasible	for	large	
areas	 because	 it	 requires	 a	 dense	 network	 of	 training	 sites	 to	 correctly	 capture	 the	 spatial	
variability	 of	 the	 SAR	 backscatter	 of	 the	 forest	 and	 therefore	 of	 its	 ground	 and	 vegetation	
component	as	well	as	of	the	attenuation	in	the	canopy.	For	this	reason,	in	BIOMASAR-C	a	method	
was	developed	that	can	provide	estimates	of	s0

gr and	s0
veg	by	means	of	statistics	of	the	backscatter	

for	 certain	 types	 of	 forest	 cover.	 For	α,	we	 currently	 assume	2	dB/m	 following	 a	 synthesis	 of	
studies	dealing	with	attenuation	of	C-band	microwaves	in	tree	canopies;	an	attempt	to	distinguish	
between	unfrozen	conditions	and	leaf-on	conditions	from	frozen	or	leaf-off	conditions	has	not	yet	
been	attempted.	In	case	the	response	variable	is	GSV,	the	coefficient	β	is	estimated	from	metrics	
of	the	ICESat	GLAS	waveforms.	Refer	to	previous	versions	of	the	ATBD	for	the	estimation	of	this	
model	parameter. 
	
Associating	statistics	of	the	backscatter	to	the	model	parameters	s0gr	and	s0veg	 is	referred	to	as	
self-calibration.	 Unlike	 previous	 versions	 of	 BIOMASAR-C	when	 both	model	 parameters	were	
based	on	self-calibrated	values,	here	we	use	the	self-calibrated	value	of	s0gr	as	its	estimate	and	the	
self-calibrated	value	of	s0veg	as	an	initial	estimate	to	be	used	in	a	least	squares	regression.		
	
The	self-calibrated	value	for	s0gr	is	here	set	as	the	25th	percentile	of	the	backscatter	distribution	
for	pixels	belonging	to	a	class	of	low	vegetation	cover	density	("ground"	pixels).	This	percentile	
was	found	to	lead	to	more	accurate	estimates	of	AGB	than	the	median	value	or	lower	percentiles.	
The	self-calibrated	value	for	s0veg	is	defined	as	the	median	of	the	backscatter	for	high	vegetation	
cover	density	("dense	forest"	pixels).	The	“ground”	and	“dense	forest”	pixels	are	extracted	within	
an	estimation	window	of	finite	size	to	allow	the	estimation	of	the	two	model	parameters	to	adapt	
to	 the	 local	 conditions	 of	 the	 forest	 and	 of	 the	 backscatter.	We	 apply	 a	 single	 canopy	 density	
threshold,	i.e.,	pixels	are	labelled	either	as	"ground"	or	as	"dense	forest"	depending	on	whether	
the	canopy	density	is	below	or	above	30%.	The	estimation	window	corresponds	to	the	size	of	a	
tile,	i.e.,	1°	×	1°.	It	is	assumed	that	sufficient	samples	are	captured	in	each	class	with	such	a	window	
size;	 a	 drawback	 can	 be	 the	 inclusion	 of	 pixels	 characterized	 by	 different	 properties	 of	 the	
backscatter	because	of	different	environmental	conditions	within	the	area	covered	by	the	tile.	
	
The	 final	estimate	of	s0veg	 is	 then	obtained	by	means	of	 least	squares	regression	between	SAR	
backscatter	observations	and	corresponding	canopy	density	and	height	values	with	Equation	(4-
1)	within	the	same	estimation	window.	Here,	s0gr	is	known	and	equal	to	its	self-calibrated	value.	
In	 Equation	 (4-1),	 we	 replace	 canopy	 height	 with	 the	 model	 relating	 it	 to	 canopy	 density	 in	
Equation	(3-4)	to	express	the	SAR	backscatter	as	a	function	of	canopy	density	only.	The	reason	for	
this	step	is	the	availability	of	global	datasets	of	canopy	density.	Even	though	global	datasets	of	
canopy	height	 also	exist,	 they	are	mostly	based	on	 inferences	 from	optical	data.	Based	on	 the	
physics	behind	optical	data,	 it	 is	assumed	that	canopy	density	derived	 from	such	data	 is	more	
reliable	than	canopy	height	derived	from	the	same	type	of	data.	
	
The	tree	cover	density	dataset	used	in	the	self-calibration	and	the	regression	steps	is	the	percent	
tree	cover	dataset	of	2010	because	it	is	more	reliable	in	terms	of	spatial	consistency	than	other	
high-to-moderate	 resolution	datasets	 currently	 available	 (see	Annex	B).	 In	 addition,	 areas	not	
corresponding	to	natural	vegetation	are	masked	out	because	of	their	different	features	in	terms	
of	C-band	backscatter,	to	avoid	distorting	estimates	of	s0gr.	For	this,	the	CCI	Land	Cover	dataset	of	
the	year	closest	in	terms	of	availability	to	the	year	of	the	C-band	data	is	used	and	pixels	labelled	
as	cropland,	urban	areas,	bare	soil,	permanent	snow	and	ice	and	water	bodies	are	excluded	from	
the	training	phase.	
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To	account	 for	 the	different	 levels	of	 SAR	backscatter	depending	on	 local	 incidence	angle,	 the	
estimation	of	s0gr	and	s0veg	 is	 applied	 separately	 to	each	 set	of	backscatter	measurements	and	
percent	 tree	 cover	 values	 characterized	by	 a	 specific	 range	of	 incidence	 angles.	As	 a	 trade-off	
between	precision,	speed	of	computation	and	representativeness	of	the	estimates,	we	divide	the	
observations	into	five	10°	wide	intervals	of	 local	 incidence	angle,	starting	with	20°	and	ending	
with	70°.	Because	of	 the	rather	 large	spread	of	backscatter	observations	 for	any	given	 level	of	
canopy	density	(see	vertical	bars	in	Figures	A5	and	A11),	we	regress	the	median	values	of	the	SAR	
backscatter	 rather	 than	 the	 original	 SAR	backscatter	 observations	 to	 canopy	density	 (see	 line	
connecting	data	points	in	Figures	A5	and	A11).	The	median	backscatter	was	computed	for	each	
integer	value	of	canopy	density.	Prior	to	this,	the	backscatter	dataset	is	filtered	for	outliers,	due,	
for	example,	to	forest	cover	changes	between	2010	and	the	year	of	acquisition	of	the	SAR	image.		
	
The	estimates	of	s0gr	and	s0veg	obtained	for	a	given	image	in	a	tile	and	for	a	given	range	of	incidence	
angles	are	retained	if	based	on	at	least	3	valid	median	values	of	the	SAR	backscatter.	This	avoids	
cases	when	only	a	small	range	of	canopy	densities	is	represented	(e.g.,	very	high	or	very	low	tree	
cover)	thus	causing	erroneous	estimates	of	one	or	the	other	parameter.	When	this	requirement	is	
not	met,	 no	 estimate	 is	 associated	with	s0gr	ands0veg	 for	 the	 specific	 image	 and	 range	 of	 local	
incidence	angle.	
	
To	show	the	performance	of	the	combined	approach	(i.e.,	self-calibration	and	regression)	with	
respect	to	self-calibration	only,	we	have	selected	four	tiles	along	a	north-south	transect	in	Europe	
and	Africa	and	therein	a	Sentinel-1	image.		
Figure	4-4	to		
Figure	4-7	show	estimates	of	the	two	model	parameters	obtained	with	the	combined	approach	
and	from	the	self-calibration	at	each	location.	The	estimates	with	the	combined	approach	appear	
to	represent	well	the	levels	of	the	backscatter	of	an	unvegetated	surface	and	the	densest	canopies.	
In	contrast,	with	self-calibration	there	are	cases	when	the	estimates	of	one	or	both	parameters	
are	affected	by	the	distribution	of	backscatter	values,	often	following	the	choice	of	the	threshold	
to	define	the	"ground"	and	the	"dense	forest"	classes.	We	also	show	the	canopy	density	modelled	
with	 Equation	 (4-1)	 to	 confirm	 the	 suitability	 of	 this	model	 relating	 canopy	 density	 and	 SAR	
backscatter.	Note	 that	 these	curves	 should	not	be	 interpreted	as	having	a	predictive	meaning,	
since	the	model	behind	them	was	introduced	only	to	estimate	model	parameters.		
	
Figure	4-4	to		
Figure	4-7	also	show	examples	of	s0gr	and	s0veg	for	each	of	the	five	ranges	of	local	incidence	angles.	
A	quadratic	model	appeared	to	be	a	reliable	description	of	the	relationship	between	the	model	
parameters	and	incidence	angle	and	performed	robustly	across	forest	types	and	forest	landscapes	
of	the	world.		
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Figure 4-4: Panels with incidence angle range as title show (i) estimates of s0
gr and s0

veg obtained with the 
combined approach (black asterisks) and Equation (4-1) fitted to the median backscatter for a given canopy 
density (circles). The panel relating backscatter to incidence angle shows the estimates of s0

gr (black circles) 
and s0

veg (red asterisks) obtained with the combined approach and their quadratic fits (black curve for s0
gr and 

red curve for s0
veg) spanning the range of incidence angles between 0° and 90°. Dataset: Sentinel-1, VH-

polarization., acquired during May 2017 along a descending orbit. Tile (top left corner coordinate): 64°N, 30°E 
(boreal forest). Note that the incidence angle ranges 20-30 deg and 60-70 deg were not represented in the 

dataset. 

	

	
 

Figure 4-5: Same as in 

Figure 4-4. Dataset: Sentinel-1, VH-polarization., acquired in July 2017. Tile (top left corner coordinate): 46°N, 
11°E (temperate forest). 
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Figure 4-6: Same as in  

Figure 4-4. Dataset: Sentinel-1, VH-polarization., acquired in July 2017. Tile (top left corner coordinate): 0°N, 
11°E (wet tropics). 

	

	
 

Figure 4-7: Same as in  

Figure 4-4. Dataset: Sentinel-1, VH-polarization., acquired in July 2017. Tile (top left corner coordinate): 9°S, 
17°E (miombo woodlands). 

	
Because	of	the	multiple	requirements	imposed	to	obtain	an	estimate	of	s0gr	and	s0veg,	it	is	likely	
that	 the	 1°	 ×	 1°	 grid	 of	 estimates	 for	 a	 given	 SAR	 image	may	 be	 incomplete	 (see	 e.g.,	 Figure	
4-4Error!	Reference	 source	not	 found.).	 In	 a	 post-processing	 step,	we	 therefore	 interpolate	
spatially	by	infilling	over	valid	estimates	to	fill	gaps.	This	is	done	separately	for	each	of	the	five	
intervals	of	incidence	angle	into	which	the	SAR	backscatter	and	canopy	density	were	stratified.	
The	 quadratic	 model	 was	 then	 applied	 to	 obtain	 a	 raster	 for	 each	 of	 the	 two	 parameters	
corresponding	to	the	raster	of	local	incidence	angle	for	a	given	SAR	backscatter	image.	Figure	4-8	
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shows	 an	 example	 of	 s0gr	 and	 s0veg	 rasters	 for	 the	 Sentinel-1	 image	 used	 in	 Figure	 4-6.	 The	
moderate	topography	in	the	1°	×	1°	area	covered	by	the	SAR	image	is	visible	in	the	local	incidence	
angle	image.	It	is	also	clear	that	incidence	angle	increased	from	east	to	west,	i.e.,	the	image	was	
acquired	along	a	descending	orbit.	The	raster	image	of	s0gr	shows	a	decrease	of	the	backscatter	
for	increasing	incidence	angle,	as	shown	by	the	panel	relating	incidence	angle	and	s0gr	estimates	
in	Figure	4-6.	For	s0veg	we	can	see	hardly	any	variability,	as	shown	by	the	same	panel	in	Figure	
4-6.	Both	images	however	show	the	model	parameter	estimates	follow	the	patterns	of	the	local	
incidence	angle.	Figure	4-8	also	shows	that,	while	the	SAR	backscatter	image	is	affected	by	a	seam	
corresponding	to	adjacent	Sentinel-1	sub-swaths,	the	seam	does	not	appear	in	the	s0gr	and	s0veg	
images	because	of	the	interpolation	used	to	generate	these	images.	The	consequence	is	a	seam	in	
the	AGB	map	obtained	from	the	Sentinel-1	image	(not	shown	here).	
	

	
Figure 4-8: Illustrating the raster images of the estimates of s0

gr and s0
veg (bottom row) for the tile used in 

Figure 4-6. The top row shows the image of the SAR backscatter and the image of the local incidence angle. 

	

4.3.3 Single	image	retrieval	
	
The	 estimation	 of	 AGB	 from	 the	 backscatter	 model	 in	 Equation	 (4-4)	 requires	 numerical	
minimization	and	a	constraint	on	the	maximum	retrievable	AGB.	In	addition,	estimates	of	AGB	
obtained	for	a	backscatter	measurement	not	within	the	range	of	modelled	backscatter	values	need	
to	be	corrected.	
	
Figure	4-9	shows	the	simulation	of	the	Water	Cloud	Model	in	Equation	(4-4)	assuming	that	the	
maximum	AGB	is	362	Mg/ha.	The	backscatter	first	increases	rapidly	for	increasing	AGB,	then	the	
sensitivity	 of	 the	backscatter	 to	AGB	 reduces.	The	 range	of	 backscatter	 values	 covered	by	 the	
model	 is	about	2	dB.	The	estimation	of	AGB	 for	a	backscatter	measurement	 falling	within	 this	
range	returns	realistic	numbers.	When	a	measurement	of	the	backscatter	falls	outside	this	range,	
the	inversion	rule	overrides	the	estimate	because	either	it	is	negative	or	unrealistic.	We	define	
two	 intervals	 of	 backscatter	 to	which	 the	 inversion	 either	 associates	 the	maximum	AGB	 or	 0	
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Mg/ha	 depending	 on	 whether	 the	 measurement	 is	 above	 or	 below	 the	 range	 of	 modelled	
backscatter.	These	intervals	account	for	the	potential	outliers	of	the	backscatter.	A	backscatter	
value	lying	within	an	interval	between	the	minimum	or	maximum	modelled	backscatter	and	this	
value	plus	3	times	the	standard	deviation	of	the	measurements	at	low	and	high	canopy	density	is	
associated	with	0	and	the	maximum	AGB,	respectively.	Otherwise,	it	is	assumed	to	be	unrealistic	
and	discarded	from	the	retrieval.		
	
To	visualize	the	difference	between	this	approach	and	the	approach	that	retrieves	GSV,	we	also	
illustrate	the	model	fit	obtained	with	Equation	(4-2),	i.e.,	not	exploiting	functions	that	relate	forest	
variables,	in	Figure	4-9.	For	a	measurement	of	the	backscatter,	the	integrated	Water	Cloud	Model	
allows	 a	 higher	 AGB	 to	 be	 estimated	 for	 high	 AGB.	 This	 is	 an	 improvement	 considering	 the	
observation	that	BIOMASAR-C	for	GSV	retrieval	can	be	locally	underestimated	for	high	biomass	
forests.		
	
Because	of	the	limited	sensitivity	of	C-band	backscatter	to	biomass,	the	biomass	map	obtained	
from	a	single	backscatter	 image	 is	often	characterized	by	 the	extreme	values	0	and	maximum	
biomass.	 For	 this	 reason,	 the	 performance	 of	 maps	 obtained	 with	 the	 two	 BIOMASAR-C	
implementations	described	in	this	document	cannot	be	compared.		
	

 
Figure 4-9: AGB retrieval rules depending on the level of the backscatter measurement. 

 

4.3.4 Multi-temporal	retrieval	
	
Given	 N	 individual	 estimates	 of	 AGB	 from	 inversion	 of	 Equation	 (4-4),	 a	 weighted	 linear	
combination	of	the	estimates	is	used	to	obtain	the	final	estimate	of	AGB,	AGBmt,	with	Equation	(4-
5).	This	reduces	the	retrieval	error	with	respect	to	each	of	the	individual	estimates	(Kurvonen	et	
al.,	1999;	Santoro	et	al.,	2002;	Santoro	et	al.,	2011).		
	
𝑨𝑮𝑩𝒎𝒕 =

∑ 𝒘𝒊$>?𝒊𝑵
𝒊-𝟏
∑ 𝒘𝒊𝑵
𝒊-𝟏

	 	 	 	 	 	 	 	 	 	 (4-5)	

	
The	weights,	wi,	in	Equation	(4-5)	are	defined	as	the	vegetation-to-ground	backscatter	difference	
in	dB,	s0veg	-	s0gr,	normalized	by	the	maximum	backscatter	difference:		
	

𝒘𝒊 =
𝝈𝒗𝒆𝒈,𝒊
𝟎 (𝝈𝒈𝒓,𝒊

𝟎

𝒎𝒂𝒙C𝝈𝒗𝒆𝒈,𝒊
𝟎 (𝝈𝒈𝒓,𝒊

𝟎 D
	 	 	 	 	 	 	 	 	 	 (4-6)	
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4.4 The BIOMASAR-L algorithm 
Many	studies	have	documented	the	sensitivity,	as	well	as	the	limitations,	of	L-band	backscatter	to	
forest	biophysical	parameters,	such	as	GSV	or	AGB,	across	a	wide	range	of	forest	ecosystems.	The	
existing	 studies	 generally	 report	 a	 higher	 sensitivity	 of	 L-band	 to	 GSV	 or	 AGB	 than	 shorter	
wavelength	because	of	its	increased	ability	to	penetrate	forest	canopies.	The	highest	sensitivity	
was	 usually	 reported	 for	 the	 L-band	 cross-polarized	 intensity.	 While	 an	 increase	 of	 L-band	
backscatter	with	 increasing	GSV	or	AGB	was	consistently	observed,	as	well	 as	with	 increasing	
canopy	density	and	height,	the	backscatter	contribution	from	the	forest	floor	decreases	and	the	
volume	scattering	contribution	from	the	canopy	increases,	and	forest	structural	differences	have	
been	shown	to	affect	the	functional	relationship	between	backscatter	and	GSV	or	AGB.	Although	
not	as	evident	as	in	the	case	of	C-band,	L-band	backscatter	is	affected	by	environmental	conditions	
at	the	time	of	acquisition.	
	
Algorithms	 aiming	 to	 exploit	 the	 sensitivity	 of	 L-band	 backscatter	 to	 biomass	 for	 large-scale	
retrieval	 therefore	 need	 to	 be	 calibrated	 adaptively	 to	 local	 forest	 structure	 as	 well	 as	 the	
prevalent	imaging	conditions.	The	limited	availability	of	in	situ	information	(e.g.,	inventory	plots)	
prevents	 adaptive	 calibration	 of	 retrieval	 algorithms	 using	 conventional	 approaches.	 In	many	
areas,	particularly	the	tropics,	the	number	of	available	plots	is	very	limited	so	that	models	may	
only	be	calibrated	using	reference	information	collected	over	 large	areas	(Bouvet	et	al.,	2018).	
Conventional	 approaches	 generally	 necessitate	 working	 with	 mosaics	 of	 L-band	 backscatter	
imagery	 that	 are	 compiled	 in	 such	 a	way	 that	 potential	 differences	 in	 the	 imaging	 conditions	
between	the	orbits/acquisition	dates	used	for	generating	the	backscatter	mosaic	are	minimized.	
When	multi-temporal	observations	are	available,	mosaicking	entails	careful	selection	of	imagery	
to	 minimize	 between-orbit	 radiometric	 differences.	 Alternatively,	 empirical	 inter-orbit	
normalization	techniques	may	be	applied	(e.g.,	De	Grandi	et	al.,	2011;	Shimada	et	al.,	2010).	
	
BIOMASAR-L	is	here	used	to	retrieve	biomass	globally	from	L-band	backscatter.	Like	BIOMASAR-
C,	multi-temporal	stacks	of	SAR	backscatter	observations	are	modelled	individually,	and	biomass	
is	obtained	by	integrating	the	estimates	from	the	individual	data	takes.	Major	improvements	in	
retrieval	performance	have	been	 reported	at	C-band	 (Santoro	et	 al.,	 2011,	2019;	Cartus	 et	 al.,	
2019a,	2019b),	but	improvements	could	also	be	achieved	at	L-band	(Santoro	et	al.,	2006,	2015b;	
Cartus	et	al.,	2012;	Cartus	et	al.,	2019a,	2019b),	albeit	less	pronounced	than	at	C-band.		
	
To	model	 the	 relationship	between	L-band	backscatter	 observations	 and	biomass,	we	use	 the	
same	Water	Cloud	type	of	models	as	for	C-band.	One	of	the	underlying	assumptions	of	this	model	
is	that	higher	order	scattering	can	be	neglected.	Although	under	typical	conditions	(rough	forest	
floor,	substantial	attenuation	in	the	canopy)	stem-ground	interactions	can	be	neglected	at	L-band	
(Dobson	 et	 al.,	 1992;	 Pulliainen	 et	 al.,	 1999),	 a	 significant	 contribution	 from	 higher	 order	
scattering	may	arise	 from	 the	 canopy.	Models	 indicate	 that	higher	order	 scattering	effects	are	
negligible	 for	co-polarization,	but	not	necessarily	 for	cross-polarization.	 In	Wang	et	al.	 (1998),	
higher	order	scattering	increased	the	modelled	L-HV	backscatter	from	pine	forest	by	1.5	to	2	dB	
(at	~	35°	incidence	angle).	Karam	et	al.	(1992)	noted	that	higher	order	scattering	from	walnut	
orchards	had	a	significant	effect	at	HV	polarization	only	for	X-band,	not	L-band,	regardless	of	the	
incidence	angle.	For	a	forested	site	in	France,	Picard	et	al.	(2004)	observed	underestimation	of	L-
HV	 backscatter	 when	 only	 first	 order	 scattering	 in	 a	 model	 was	 considered.	 However,	 when	
multiple	scattering	effects	were	included,	the	backscatter	was	overestimated	compared	to	SIR-C	
L-HV	measurements	at	26°	and	54°	incidence	angle.	Picard	et	al.	concluded	that	the	improvements	
in	modelling	by	including	multiple	scattering	were	minor	compared	to	the	overall	uncertainty	in	
the	modelling	and	that,	in	contrast	to	C-HV,	the	modelled	relationship	between	L-HV	backscatter	
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and	biomass	containing	only	first	order	scattering	depicted	well	the	observed	relationship	of	SIR-
C	L-HV	intensity	and	biomass.	
	
As	in	the	case	of	BIOMASAR-C,	Equation	(4-1)	combined	with	Equation	(4-3)	was	used	to	support	
v1	of	the	CCI	Biomass	CRDP.	Since	v2,	we	considered	the	original	WCM	with	gaps	in	Equation	(4-
1)	and	the	same	set	of	functional	dependencies	between	canopy	density,	tree	height	and	above-
ground	biomass	to	express	the	WCM	as	a	function	of	AGB,	i.e.,	Equation	(4-4).		
	
As	for	BIOMASAR-C,	we	seek	to	adapt	the	modelling	and	model	calibration	framework	so	that:	
	

• AGB	can	be	retrieved	directly,	
• incidence	angle	effects	in	the	L-band	backscatter	to	AGB	relationship	can	be	accounted	for.	

	
The	adapted	BIOMASAR-L	retrieval	approach	generally	complies	with	 the	modelling	basis	and	
workflow	presented	for	BIOMASAR-C.	In	this	section,	we	therefore	focus	on	differences	between	
BIOMASAR-C	and	BIOMASAR-L,	which	are	a	consequence	of	differences	in	the	response	of	L-band	
backscatter	to	canopy	density,	height	and,	eventually,	AGB.	
	
The	retrieval	approach	comprises	three	main	steps:	

1) calibration	of	the	model	in	Equation	(4-1)	with	the	aid	of	a	Landsat	canopy	density	map,	
considering	 differences	 in	 the	 relationship	 between	 backscatter	 and	 canopy	 density	
dependent	on	incidence	angle,	

2) retrieval	 of	 AGB	 for	 each	 single	 acquisition	 in	 a	 multi-temporal	 stack	 of	 L-band	
observations	by	inverting	Equation	(4-4),	

3) weighted	multi-temporal	combination	of	single	image	AGB	estimates.	
	

4.4.1 Model	calibration	
	
The	model	relating	L-band	backscatter	to	AGB	is	based	on	Equation	(4-1).	This	relates	backscatter	
to	canopy	density,	𝜂,	while	considering	that	backscatter	may	not	only	be	affected	by	the	level	of	
canopy	 closure	 but	 also	 the	 depth	 (i.e.,	 height)	 of	 the	 canopy	 and	 the	 strength	 of	 the	 signal	
attenuation	while	passing	through	the	canopy.	In	contrast	to	C-band,	the	two-way	transmissivity	
term	in	the	model	(exp(-αh))	significantly	affects	the	backscatter	to	𝜂	relationship	(Cartus	et	al.,	
2018)	as	 illustrated	 in	Figure	4-10.	Assuming	a	 two-way	attenuation	of	0.5	dB/m,	 i.e.,	 a	value	
considered	realistic	for	boreal	forests	(Praks	et	al.,	2012;	Askne	et	al.,	2003),	simulations	based	
on	Equation	(4-1)	demonstrate	that	the	two-way	transmissivity	term	is	not	negligible	for	L-band	
since	 the	 response	 of	 backscatter	 to	 changes	 in	 𝜂	 depends	 strongly	 on	 the	 canopy	 height,	 in	
particular	in	low	canopy	height	ranges	(<15m).		
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Figure 4-10: Simulated differences in the L-band HV backscatter response to changes in η for forests with 

canopy heights between 5 and 35 m. 

Given	knowledge	of	the	local	relationships	between	canopy	density,	𝜂,	and	height	h,	the	unknown	
model	 parameters	 σ0gr,	 σ0veg,	 and	 α	 can	 be	 estimated	 for	 each	 individual	 L-band	 backscatter	
observation	with	the	aid	of	existing	global	maps	of	canopy	density	only	(Hansen	et	al.,	2013)	when	
reformulating	the	original	model	in	Equation	(4-1)	with	height	expressed	as	function	of	canopy	
density:	
	
𝜎E&F# = (1 − 𝜂)𝜎GF# + 𝜂𝜎GF# 𝑒(H+(J) + 𝜂𝜎LMG# @1 − 𝑒(H+(J)A	 	 	 	 	 (4-8)	
	
where	
	
ℎ = − NOP	(,(J)

*
	 	 	 	 	 	 	 	 	 	 	 (4-9)	

	
Equation	(4-9)	is	derived	from	Equation	(3-4),	where	q	characterizes	the	relationship	between	𝜂	
and	height.	
	
The	model	in	Equation	(4-8)	is	calibrated	for	each	orbit	contained	in	a	1x1˚	tile	of	the	ALOS-1/2	
PALSAR-1/2	backscatter	data	provided	by	JAXA.	To	capture	the	dependence	of	the	parameters	on	
the	local	incidence	angle,	models	are	fitted	separately	for	10˚	wide	ranges	of	the	local	incidence	
angle	(i.e.,	20-30˚,	30-40˚,	40-50˚,	50-60°,	60-70°,	70-80°).	In	previous	versions	of	the	BIOMASAR-
L	algorithm	(up	to	version	5	of	the	CRDP),	the	model	in	Equation	(4-8)	was	calibrated	by	fitting	it	
to	observed	relationships	between	L-band	backscatter	and	Landsat	canopy	density	using	least-
squares	 regression.	 In	 this	way,	 estimates	 for	σ0gr,	σ0veg,	 and	α	 could	 be	 obtained.	 To	 produce	
version	 6	 of	 the	 CCI	 Biomass	 CRDP,	 we	 adopted	 a	 modified	 calibration	 approach	 like	 that	
originally	implemented	for	the	ESA	GlobBiomass	product	(Santoro	et	al.,	2021)..	In	this	approach,	
estimates	for	σ0gr	and	σ0veg	are	obtained	by	identifying	areas	of	sparse	and	dense	forest	cover	and	
calculating	 the	 mean	 observed	 backscatter	 in	 such	 regions,	 respectively.	 The	 thresholds	 for	
identifying	areas	of	low	and	high	canopy	density	are	defined	adaptively	for	each	1°	x	1°	tile	and	
backscatter	 image	so	 that	 the	average	backscatter	can	be	estimated	across	a	minimum	of	200	
pixels.	Before	calculating	the	average	backscatter	in	areas	of	low	and	high	canopy	density,	areas	
are	masked	for	which:	
	

• land	cover	maps	report	cropland,	bare	ground,	wetland	or	built-up	areas,	
• layover/shadow	has	been	detected,	
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• annual	 Landsat-based	 forest	 cover	 change	maps	 (Hansen	 et	 al.,	 2013)	 report	 gains	 or	
losses	 of	 forest	 cover	 between	 2010,	 i.e.,	 the	 year	 of	 the	 Landsat	 canopy	 density	map	
(Section	3.8),	and	the	year	of	the	L-band	backscatter	image	acquisition.		

	
After	 masking	 out	 the	 aforementioned	 areas,	 the	 average	 backscatter	 in	 areas	 with	 sparse	
vegetation	cover	according	to	the	Landsat	canopy	density	is	considered	a	direct	estimate	of	σ0gr.	
The	model	parameter	σ0veg,	instead	represents	the	backscatter	from	an	ideal	opaque	forest	canopy	
whereas	the	average	backscatter	observed	over	dense	forest	canopies,	here	referred	to	as	σ0df,	
may	still	include	significant	ground	contributions	due	to	a	forest	layer	with	finite	depth,	remaining	
gaps	in	the	canopy,	and	hence	a	two-way	transmissivity	larger	than	zero.	To	derive	σ0veg,	σ0df	needs	
to	be	compensated	for	residual	ground	contributions	with:		
	

𝜎LMG# =
R5"
6 (C,(J5"SJ5"M

7895"DR:;6

J5"C,(M
7895"D

	 	 	 	 	 	 	 (4-10)	

	
In	 Equation	 (4-10),	𝜂df	 and	hdf	 denote	 the	 canopy	 density	 and	 height	 of	 forests	 for	which	 the	
average	 backscatter	 σ0df	 has	 been	 calculated.	 𝜂df	 is	 derived	 with	 the	 average	 Landsat	 canopy	
density	of	pixels	considered	for	the	estimation	of	σ0df.	The	average	height	of	dense	forests,	hdf,	is	
inferred	from	the	gridded	dataset	of	IceSAT-2	LiDAR	heights	representative	of	the	densest	forests.		
	
In	 previous	 implementations	 of	 the	 BIOMASAR-L	 algorithm,	 the	 two-way	 tree	 attenuation	
coefficient	was	either	defined	with	a	global	constant	value	of	0.5	dB/m	or	estimated	when	fitting	
the	model	 in	Equation	(4-8)	to	observations	of	canopy	density	and	L-band	backscatter.	 	 In	the	
latest	version	of	the	algorithm,	used	to	produce	version	6	of	the	CCI	Biomass	CRDP,	we	relied	on	
spatially	explicit	estimates	of	the	one-way	tree	transmissivity	at	nadir,	α1w,	produced	from	SMOS	
and	 SMAP	 L-band	 radiometer	 data	 (Cartus	 et	 al.,	 submitted).	 The	 two-way	 attenuation	 α	 in	
Equation	(4-8)	can	be	derived	from	the	one-way	attenuation	α1w	coefficient	with	2α1w/cos(𝜃%&').	
The	 radiometer-based	 estimates	 for	 α1w	are	 generally	 in	 the	 range	 of	 0.2	 to	 0.3	 dB/m,	which	
translates	to	values	for	α	of	0.5	to	0.75	dB/m.	
	
The	 decision	 to	 estimate	 σ0gr	 and	 σ0veg	 via	 a	 self-calibration	 approach	 was	 motivated	 by	 the	
validation	of	previous	releases	of	the	CCI	Biomass	CRDP	indicating	that	in	semi-arid	forest	regions	
the	CCI	Biomass	maps	tended	to	underestimate	the	AGB	in	the	lower	AGB	ranges.	In	most	forest	
areas,	 the	 two	 different	 model	 calibration	 approaches,	 i.e.,	 the	 regression-based	 approach	
deployed	until	 version	5	of	 the	CRDP,	 and	 the	approach	described	above,	 lead	 to	very	 similar	
results.	This	is	exemplified	in	Figure	4-12a	for	a	1°	x	1°	large	area	in	the	Amazon	Basin	and	all	
PALSAR-2	ScanSAR	observations	in	2018.	The	two	model	calibration	approaches	lead	to	almost	
identical	results	(red	and	blue	curves).	In	contrast,	in	semi-arid	forest	regions	such	as	Southern	
California	(4-12b)	and	Mozambique	(4-12c),	the	regression-based	calibration	approach	tends	to	
result	in	higher	estimates	for	the	parameter	σ0gr	and	thus	underestimation	of	the	AGB	particularly	
in	low	AGB	ranges.	The	main	advantage	of	a	regression-based	model	calibration	is	the	possibility	
to	obtain	estimates	for	σ0gr	and	σ0veg	even	when	in	the	region	of	interest	there	are	no	forests	with	
very	 sparse	 or	 dense	 canopies.	 However,	 there	 are	 major	 drawbacks	 to	 a	 regression-based	
parameter	estimation:	
	

• The	latest	Landsat	canopy	density	map	is	available	for	the	year	2010.	Even	when	masking	
out	areas	where	Landsat	change	products	report	gains	or	 losses	 in	canopy	density,	 the	
uncertainty	of	the	2010	canopy	density	map,	particularly	in	intermediate	density	ranges,	
is	high.	For	model	calibration	via	regression,	such	uncertainties	in	intermediate	density	
ranges	were	found	to	affect	the	estimation	of	the	model	parameters.	The	requirement	of	



 

Ref CCI Biomass Algorithm Theoretical Basis 
Document 

 Issue Page Date 
6.0 96 19.12.2024 

	

This document is the property of the CCI-Biomass partnership, no part of it shall be reproduced or transmitted 
without the express prior written authorization of Aberystwyth University and Gamma Remote Sensing AG. 

having	a	timely	density	map	is	clearly	relaxed	when	focussing	on	sparse	and	dense	forest	
only.		

• Even	when	up	to	date,	the	reliability	of	optical	density	products	has	been	reported	to	be	
lower	 in	 intermediate	 canopy	 density	 ranges	 and	 the	 estimates	 obtained	 in	 some	
ecoregions,	e.g.,	semi-arid	regions,	tend	to	be	biased,	i.e.,	too	low.	

	
Once	 σ0gr	 and	 σ0veg	 have	 been	 estimated	 for	 each	 local	 incidence	 angle	 range,	 second	 order	
polynomials	 are	 fitted	 to	 the	 observed	 relationships	 between	 the	 parameters	 and	 the	 local	
incidence	 angle	 (Figure	 4-13).	 These	 polynomials	 are	 subsequently	 used	 to	 obtain	 spatially	
explicit	estimates	of	the	parameters	using	the	local	incidence	angle	maps	(Figure	4-14).	The	initial	
model	calibration	is	performed	for	each	orbit	on	a	1x1˚	tile-by-tile	basis.	Since,	within	a	given	tile,	
only	part	 of	 the	 incidence	 angle	 range	 in	 an	ALOS-2	 image	may	be	 represented,	we	here	 also	
consider	 derived	 estimates	 for	 the	 model	 parameters	 obtained	 for	 the	 backscatter	 images	
acquired	from	same	orbit	in	adjacent	tiles	(in	a	5x5˚	window).	To	increase	the	robustness	of	the	
polynomial	fit,	the	polynomial	coefficients	are	estimated	by	means	of	a	weighted	regression	with	
weights	calculated	based	on	the	inverse	of	the	standard	error	of	the	fit	of	the	model	in	Equations	
(4-8)	and	 (4-9)	 to	 the	observed	 relationship	between	L-band	backscatter	 and	Landsat	 canopy	
density.	

	
Figure 4-11. The average annual one-way attenuation at L-band derived from SOMS and SMAP L-band 
radiometer data (Cartus et al., submitted). 

(a)	
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(b)	

	
(c)	

	
Figure 4-12. Observations of Landsat canopy density (Hansen et al., 2013) and ALOS-2 PALSAR-2 Fine-Beam and 
ScanSAR L-band HV polarization backscatter observations for three different 1° x 1° tiles covering the Amazon 
Basin (a), Southern California, USA (b), and Eastern Mozambique (c). The curves represent the fit of the model in 
Equation 4-8 when estimating σ0

gr and σ0
veg via least-squares regression to the observed relationship between 

backscatter and Landsat canopy density (blue curves) or based on thresholds of canopy density to calculate the 
average backscatter in correspondence of sparse (σ0

gr) and dense (σ0
veg) forest vegetation (red curves). In the 

case of Fine-Beam imagery, the figure reports the acquisition date. In the case of ALOS-2 ScanSAR data the 
observation cycle is indicated. 
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Figure 4-13: Estimates for the model parameters σ0

gr (red dots) and σ0
veg (green dots) as function of the local 

incidence angle for ALOS-2 orbits covering the Swiss Alps (left) and the Pacific Northwest of the United States 
(right). The curves represent the corresponding fit of a second order polynomial. 

	

	
Figure 4-14: Spatially explicit estimates for the model parameters σ0

gr and σ0
veg for a 1x1˚ ALOS-2 tile (year 

2016) covering the Swiss Alps. 

4.4.2 Single	image	retrieval	
	
Once	the	unknown	parameters	σ0gr	and	σ0veg	are	known,	estimates	for	the	parameter	q,	p1	and	p2	
relating	canopy	density,	height	and	AGB	may	be	used	to	retrieve	AGB	for	each	L-band	backscatter	
image	in	the	multi-temporal	stack	of	observations	using	Equation	(4-7).	However,	direct	inversion	
of	the	model	is	not	possible,	and	a	numerical	minimization	approach	is	required.	As	in	the	case	of	
the	retrieval	of	BIOMASAR-C,	the	retrieval	is	constrained	to	a	maximum	AGB.		
	

4.4.3 Multi-temporal	retrieval	
	
Single	 image	 derived	 estimates	 are	 subsequently	 combined	 in	 a	 weighted	 multi-temporal	
combination.	 The	 weighted	 combination	 and	 the	 definition	 of	 weights	 have	 already	 been	
described	for	BIOMASAR-C.		
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4.5 Methods to derive a merged biomass dataset 
C-	 and	 L-band	 derived	 estimates	 of	 biomass	 are	 expected	 to	 present	 specific	 advantages	 and	
disadvantages	in	terms	of	the	sensitivity	to	biomass,	the	number	of	images	available	for	multi-
temporal	combination,	or	the	quality	of	the	pre-processing	(calibration,	topographic	correction,	
geocoding).	It	is	therefore	advisable	to	combine	the	estimates	that	were	obtained	independently	
considering	the	respective	strengths	and	weaknesses	of	each	dataset.		
	
In	general,	the	purpose	of	integrating	datasets	is	to	increase	the	accuracy	of	each	estimate.	The	
simplest	approach	is	to	take	the	average.	This,	however,	is	useful	only	when	the	estimates	being	
combined	do	not	have	biases,	which	is	not	true	in	our	case.	A	more	suitable	approach	is	to	consider	
a	weighted	average	of	the	kind	proposed	in	the	multi-temporal	combination	of	BIOMASAR-C	when	
combining	single-image	estimates.	Here,	 the	weighted	average	would	be	applied	to	two	values	
only,	from	BIOMASAR-L	and	BIOMASAR-C.	This	still	retains	the	bias,	though	possibly	weakened.	
	
An	elegant	way	of	defining	the	weights	is	to	use	a	measure	of	how	well	estimates	and	reference	
values	agree	(Avitabile	et	al.,	2016).	 If	all	biomass	estimates	have	 the	same	error,	 the	weights	
would	be	similar.	If	one	of	the	estimates	is	characterized	by	a	larger	error,	the	weight	associated	
with	this	estimate	would	be	smaller.	The	definition	of	the	weights	relies	on	a	measure	of	the	error	
of	the	estimate.	Quantifying	the	error	at	the	level	of	a	single	pixel	is	likely	to	generate	weights	with	
strong	fluctuations	in	space	because	the	estimates	of	biomass	have	large	uncertainties	and	they	
typically	 do	 not	 match	 the	 biomass	 estimated	 within	 a	 plot	 at	 the	 spatial	 resolution	 of	 the	
BIOMASAR-L	and	BIOMASAR-C	maps	(~100	m).	In	addition,	the	weights	could	only	be	defined	in	
areas	where	reference	data	are	available,	causing	the	weights	to	be	highly	uncertain	in	other	areas.		
	
Based	 on	 a	 systematic	 assessment	 of	 differences	 in	 global	 biomass	 estimates	 derived	 from	C-	
(ENVISAT	 ASAR)	 and	 L-band	 (ALOS	 PALSAR)	 backscatter	 data	 in	 the	 GlobBiomass	 project,	 a	
merging	scheme	was	developed	that	accounted	for:	
	

• systematic	differences	in	the	sensitivity	of	C-	and	L-band	data	to	biomass		
• the	number	of	observations	used	for	estimating	biomass		

	
A	weighting	scheme	focusing	on	full	resolution	(i.e.,	weights	defined	at	the	~100	m	pixel	size	of	
the	maps)	entails	the	risk	of	strong	fluctuations	in	the	weights	between	adjacent	pixels	and	the	
generation	 of	 artefacts.	 The	 weights	 are	 therefore	 produced	 at	 a	 scale	 of	 0.01°	 and	 then	
oversampled	to	the	full	resolution	of	the	biomass	maps.	In	that	way,	the	weighting	is	more	geared	
towards	identification	of	systematic	regional	differences	in	the	biomass	maps.	

4.5.1	 C-	and	L-band	sensitivity	to	biomass	
	
The	modelling	of	C-	and	L-band	backscatter	suggests	that	their	respective	sensitivities	to	biomass	
change	with	increasing	biomass.	In	the	lower	ranges	of	biomass,	we	expect	a	higher	sensitivity	at	
C-band,	whereas	in	the	higher	ranges,	L-band	is	expected	to	present	higher	sensitivity.	In	the	semi-
empirical	 model	 used	 in	 BIOMASAR-C	 and	 BIOMASAR-L,	 this	 is	 reflected	 in	 the	 forest	
transmissivity,	which	is	considered	a	function	of	canopy	density,	η,	canopy	height,	h,	and	two-way	
attenuation	coefficient,	α:	
	
𝑇E&F = 1 − 𝜂@1 − 𝑒(H+A = 1 − 𝜂(ℎ(𝐴𝐺𝐵)@1 − 𝑒(H+($>?)A		 	 	 	 (4-10)	
	
and	may	be	formulated	as	function	of	AGB	when	relating	η	and	h	to	AGB	using	Equations	(3-4)	
and	(3-5).	As	a	consequence	of	the	stronger	attenuation	of	the	C-band	signal	in	the	canopy,	and	
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thus	 a	 faster	 decrease	 of	 the	 transmissivity	 with	 increasing	 biomass,	 higher	 values	 for	 the	
attenuation	terms,	α,	are	generally	required	to	describe	the	transmissivity	as	a	function	of	biomass	
at	C-band	than	at	L-band.	This	is	exemplified	in	Figure	4-15,	which	shows	the	transmissivity	as	a	
function	 of	 AGB	 for	 two	 different	 values	 of	 α	 to	 represent	 attenuation	 at	 C-	 and	 L-band.	 The	
derivative	 of	 Equation	 (4-10),	which	may	 be	 considered	 an	 indicator	 of	 the	 sensitivity	 of	 the	
signals	to	biomass,	is	therefore	more	negative	for	higher	values	of	α	(i.e.	for	C-band)	in	the	lower	
ranges	of	AGB.	In	the	higher	ranges	of	AGB,	instead,	the	derivative	is	higher	for	the	lower	values	
of	α	(i.e.,	for	L-band).	
	
A	simple	weighting	scheme	that	reflects	the	difference	in	sensitivity	between	C-	and	L-band	may	
therefore	be	defined	by	calculating	the	difference	in	the	derivatives	of	Equation	(4-10),	which	in	
the	case	of	AGB	is	written	as:	
	
𝒘𝑴 = J 𝝏𝑻𝑳

𝝏𝑨𝑮𝑩
J − J 𝝏𝑻𝑪

𝝏𝑨𝑮𝑩
J	 	 	 	 	 	 	 	 	 (4-11)	

	
The	transmissivities	at	L-	and	C-band,	TL	and	TC,	are	determined	using	values	for	α	of	2	and	0.5	
dB/m	for	C-	and	L-band,	respectively,	the	local	models	relating	forest	variables,	and	a	reference	
AGB	map	produced	by	converting	a	gridded	dataset	of	the	of	the	average	canopy	height	according	
to	IceSAT-2	LiDAR	data	at	0.01°	x	0.01°	resolution	to	AGB	using	Eq.	3-5.		
	

	
Figure 4-15: Forest transmissivity at C-band and L-band modelled as a function of AGB using forest structural 

parameters (q, p1, p2) appropriate to tropical forests of the Amazon Basin. 

4.5.2	 Number	of	observations	
	
The	performance	of	the	retrieval	of	biomass	with	C-	or	L-band	imagery	depends	on	the	number	of	
backscatter	observations	available.	In	the	case	of	BIOMASAR-L,	a	limited	number	of	observations	
per	 year	 and	within	 a	 few	 seasons	 (primarily	 summer)	 acquired	 in	 the	 FB	modes	 of	 ALOS-1	
PALSAR-1	and	ALOS-2	PALSAR-2	were	available	for	most	of	the	northern	hemisphere,	which	is	a	
limitation	on	the	performance	of	the	approach,	since	locally	adverse	imaging	conditions	or	a	failed	
model	calibration	cannot	be	compensated	by	combining	estimates	from	a	large	multi-temporal	
stack	 of	 observations.	 Only	 for	 the	 tropics	 and	 sub-tropics	 could	 a	 larger	 stack	 of	 images	 be	
considered	because	of	the	availability	of	ALOS-2	ScanSAR	observations.	For	BIOMASAR-C,	instead,	
many	Sentinel-1	and	Envisat	ASAR	images	were	available	across	most	 forest	areas	worldwide.	
The	largest	number	of	observations	(>100)	was	generally	available	for	Europe,	whereas	for	large	
areas	 in	boreal	Asia,	most	of	Brazil,	most	of	Africa,	 and	Australia,	 the	number	of	observations	
tended	to	be	 in	 the	range	of	25	to	30	 images.	Note	that	most	of	 the	acquisitions	were	 in	dual-
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polarization	mode	so	that,	for	instance,	100	observations	correspond	to	200	backscatter	images.	
Although	the	Sentinel-1	dataset	was	reduced	to	monthly	averages,	the	number	of	observations	
per	pixel	was	still	higher	than	the	L-band	datasets.	Previous	experience	with	retrieval	of	biomass	
using	multi-temporal	C-band	data	acquired	by	Envisat	ASAR	(Santoro	et	al.,	2011)	suggested	that,	
ideally,	dozens	of	observations	should	be	used	to	achieve	high	retrieval	performance.	Although	
the	number	of	 images	 required	 for	 the	 retrieval	 also	depends	on	 the	ecosystem,	 the	 coverage	
available	from	Sentinel-1	might	be	close	to	the	required	minimum	locally.		
	
The	number	of	images	used	in	BIOMASAR-L	(NL)	and	BIOMASAR-C	(NC)	is	therefore	added	to	the	
weighting	by	 scaling	 the	original	weight	defined	 in	Equation	 (4-12)	by	 the	 square	 root	 of	 the	
number	of	observations	available	at	C-	and	L-band	at	a	given	pixel	location:	
	
𝒘𝑴 = J 𝝏𝑻𝑳

𝝏𝑨𝑮𝑩K𝑵𝑳J − J
𝝏𝑻𝑪
𝝏𝑨𝑮𝑩K𝑵𝑪J	 	 	 	 	 	 	 (4-12)	

	
This	weight	can	then	be	rescaled	to	the	range	0	to	1	to	obtain	normalized	weights:	
	
𝒘𝑴,𝒏𝒐𝒓𝒎 = (𝒘𝑴(𝒎𝒊𝒏(𝒘𝑴)	)

𝒎𝒂𝒙(𝒘𝑴(𝒎𝒊𝒏(𝒘𝑴)	)
	 	 	 	 	 	 	 	 (4-13)	

	
The	rescaling	is	undertaken	separately	for	each	FAO	ecoregion.	Given	the	way	Equations	(4-12)	
and	 (4-13)	 are	defined,	wM	 is	 greater	 in	higher	 ranges	of	biomass	and	 low	 in	 lower	 ranges	of	
biomass	 (i.e.,	 wM,	 norm	 serves	 as	 a	 weight	 for	 BIOMASAR-L).	 Since	 only	 two	 maps	 are	 to	 be	
combined,	the	corresponding	weight	for	BIOMASAR-C	can	simply	be	defined	as	1-wM,norm.		

4.5.3	 Final	weight	for	merging	
	
The	 individual	 AGB	maps	 produced	with	 BIOMASAR-C	 and	 BIOMASAR-L	 do	 contain	 artefacts	
because	of	processing	related	issues	in	the	calibration	and	topographic	correction	of	the	C-	and	L-
band	SAR	data.	Furthermore,	an	incomplete	multi-seasonal	coverage,	particularly	in	the	case	of	
the	L-band	imagery,	may	lead	to	local	differences	in	the	annual	AGB	maps	produced	with	either	of	
the	two	datasets	that	exceed	the	possible	range	of	biomass	changes	on	the	ground	due	to	growth,	
mortality,	 degradation,	 etc.	 To	 maximize	 the	 inter-annual	 agreement	 between	 the	 maps,	 the	
weights	for	each	year,	calculated	as	described	above,	were	refined	locally	considering	the	stack	of	
C-	and	L-band	derived	biomass	maps	for	the	years	2007,	2010,	and	2015	to	2022.	A	refined	weight	
for	each	of	the	ten	years	was	obtained	by	minimizing	a	cost	function	(CF):	
	

𝐶𝐹 = $ $ %&𝐵?,@A +𝑤B,@A*𝐵B,@A −𝐵?,@A,- − &𝐵?,@C +𝑤B,@C*𝐵B,@C −𝐵?,@C,-%
C

@ADC

@CE@ADA

CFCA

@AECFFG

	

(4-14)	
	
based	on	the	differences	between	the	merged	C-	and	L-band	derived	biomass	maps	for	any	given	
year	and	the	merged	biomass	estimates	for	the	following	(one	or	two	years).	In	the	minimization,	
the	weights	determined	as	described	in	Section	4.5.2	serve	as	starting	point	for	the	optimization.	
The	search	space	for	the	new	weights	is	constrained	to	a	range	of	+/-	10%	of	the	initial	value.	
Since	this	is	computationally	demanding,	the	weight	refinement	is	carried	out	at	an	aggregated	
scale	of	0.01°,	 i.e.,	 after	aggregating	all	C-	and	L-band	derived	maps	 to	0.01°	resolution.	 In	 the	
weight	refinement,	however,	tropical	evergreen	forests,	as	classified	in	the	CCI	Land	Cover	maps	
for	the	given	year,	were	not	considered	because	of	potential	biases	in	the	BIOMASAR-C	maps	in	
this	type	of	forest.	Instead,	the	weights	were	locally	adjusted	so	that	all	weight	was	assigned	to	
the	BIOMASAR-L	maps.	 In	 addition,	weights	were	over-ruled	 in	 areas	where	 land	 cover	maps	
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report	cropland,	since	the	BIOMASAR-L	maps	tend	to	exhibit	less	erroneous	biomass	assignments	
over	crops.	
	
The	approach	followed	for	weight	refinement	may	be	seen	as	a	temporary,	rather	conservative,	
solution	with	 respect	 to	 the	 quantification	 of	 biomass	 changes	 throughout	 the	 time	 series	 of	
biomass	maps	(2007,	2010,	2015	to	2022)	since	 the	resulting	series	of	maps	present	biomass	
changes	only	when	unequivocally	detected	by	both	the	C-	and	L-band	derived	products.		
	
An	example	of	weights	that	have	been	determined	for	the	BIOMASAR-L	map	produced	for	the	year	
2020	is	illustrated	in	Figure	4-16.	Although	the	illustration	was	derived	for	the	previous	version	
of	the	CORE	retrieval	algorithm	(v5),	the	distribution	of	the	weights	was	not	altered	in	the	current	
version	of	the	CORE	algorithm.	The	merging	weighted	the	C-	and	L-band	datasets	almost	equally	
except	for:	(i)	tropical	rainforests,	where	it	relied	exclusively	on	the	BIOMASAR-L	AGB	estimates	
due	 to	 under-prediction	 by	 BIOMASAR-C	 and	 (ii)	 short	 forests	 and	 vegetation,	 where	 the	
proportion	of	BIOMASAR-L	AGB	estimates	dominated.	In	other	parts	of	the	world	the	merged	map	
represents	a	mix	of	BIOMASAR-C	and	BIOMASAR-L	with	generally	increasing	weights	assigned	to	
BIOMASAR-L	in	low	and	high	biomass	forests.	
	

	
	
Figure 4-16: Map of the weights used to merge the BIOMASAR-C and BIOMASAR-L maps for the year 2020. The 

map shown represents the weights applied for the L-band products. The inset shows the distribution of the 
weights as a function of canopy height from the ICESat-2 dataset. For each bin of canopy height, the circle and 
the vertical bar represent the median and the interval between the 5th and the 95th percentile of the weights. 

5 AGB change estimation methods 

AGB	changes	between	two	epochs	can	be	quantified	either	by	differencing	signals	assumed	to	be	
sensitive	to	AGB	or	by	differencing	estimates	of	AGB.	Differencing	signals	is	viable	if	a	change	in	
the	signals	can	be	attributed	to	a	change	in	biomass.	The	specifications	of	the	data	products	to	be	
delivered	 by	 the	 CCI	 Biomass	 project	 can	 only	 be	 achieved	 through	 a	 combination	 of	 high-
resolution	satellite	data.	In	addition,	for	each	epoch	to	be	mapped,	the	satellite	dataset	consists	of	
a	different	set	of	observations.	A	biomass	change	product	based	on	signal	differences	is	therefore	
not	feasible.		
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The	AGB	change	estimates	obtained	in	CCI	Biomass	are	defined	as	the	difference	between	AGB	
estimates	at	two	points	in	time	(AGBy2	and	AGBy1).	Since	each	value	is	an	estimate	of	the	true	AGB,	
an	additional	term,	representing	the	AGB	bias	(Biasy2	and	Biasy1)	needs	to	be	accounted	for.	The	
bias	term	is	relevant	when	the	set	of	predictors	used	to	estimate	AGB	at	each	point	in	time	is	not	
the	same,	as	in	the	case	of	the	three	epochs	targeted	in	CCI	Biomass	
	
Δ𝐴𝐺𝐵 = @𝐴𝐺𝐵^_ − 𝐵𝑖𝑎𝑠^_A − @𝐴𝐺𝐵^, − 𝐵𝑖𝑎𝑠^,A	 	 	 	 	 	 (5-1)	
	
In	principle,	 the	bias	may	vary	 in	 space	 and	with	AGB	value,	 so	 it	 is	 hard	 to	 characterise	 and	
remove.	

6 AGB bias estimation 

The	evaluation	of	the	AGB	maps	against	plot-based	values	of	AGB	[RD-8]	revealed	that	the	CCI	
Biomass	maps	are	affected	by	biases.	The	cause	of	these	biases	is	often	an	interplay	of	multiple	
factors,	including	the	weak	sensitivity	of	the	EO	data	to	biomass,	the	models	relating	biomass	to	
the	EO	data	and	the	uncertainty	of	the	auxiliary	layers	used	to	calibrate	the	retrieval	model.		
	
The	AGB	bias	 is	 estimated	with	 the	non-parametric	Random	Forest	 (RF)	 regression	 approach	
(Breiman,	2001),	which	 is	an	ensemble	model	of	decision	 trees	 from	bootstrapped	samples	of	
training	data	that	produces	averaged	predictions	(Araza	et	al.,	2022).	
	
Several	RF	models	were	initially	tested	with	a	set	of	many	covariates	that	could	possibly	influence	
the	bias	(Chave	et	al.,	2004;	Rejou-Mechain	et	al.,	2014),	including	the	AGB	estimates	themselves	
and	 their	 standard	 deviation	 [RD-5],	 terrain	 elevation,	 slope	 and	 aspect	 angles,	 tree	 cover,	
precipitation,	temperature,	biome,	longitude	and	latitude.	Using	all	and	partial	combinations	of	
the	 covariates,	 multiple	 RF	 models	 using	 the	 default	 RF	 hyper-parameters	 were	 tested.	 The	
models	were	evaluated	using	a	randomly	held	out	30%	of	the	0.1°	data	to	assess	the	proportion	
of	 the	 variance	 of	 residuals	 explained	 by	 the	 model.	We	 then	 visually	 inspected	 the	 bias	 for	
indications	of	geographic	correlation	among	covariates,	as	suggested	in	Meyer	et	al.	(2019).	After	
this	 initial	 investigation,	 the	 covariates	were	 limited	 to	 AGB,	 AGB	 uncertainty,	 tree	 cover	 and	
slope.	
	
The	predictive	power	of	the	covariates	in	the	RF	model	is	assessed	by	the	Variable	Importance	
Measure	(VIM)	and	Partial	Dependence	Plots	(PDP).	VIM	is	the	mean	decrease	in	accuracy	of	an	
RF	model	after	data	permutation	of	a	covariate.	When	evaluated	against	the	CCI	Biomass	dataset	
of	2017	produced	in	year	1,	the	VIM	ranked	the	AGB	estimates	as	the	most	important	predictor,	
followed	by	tree	cover	density,	AGB	standard	deviation,	slope	and	aspect	angle,	with	a	proportion	
that	decreased	from	26%	to	17%(Figure	6-1).	
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Figure 6-1: PDP of predicted bias as a function of CCI Biomass 2017 AGB and tree cover at 0.1° (a) and slope and 
aspect angle (b). A PDP shows the marginal effect of covariates on bias prediction. The PDPs are displayed as 
matrices, color-coded with bias and with the axes labelled by the values of a covariate pair, e.g., bias plotted 
against AGB map and tree cover. 

	
In	CCI	Biomass,	the	bias	is	modelled	at	0.1°	to	form	weighted	bootstrap	samples.	Refer	to	[RD-7]	
for	the	rationale	underpinning	the	choice	of	this	spatial	scale	in	the	process	of	bias	evaluation	and	
bias	modelling.	
	

7 Results 

This	Section	presents	mapping	results	based	on	the	current	version	(v6)	of	the	CORE	algorithm	
(from	C-	 and	 L-band	data	 separately	 and	merged	 estimates)	 and	 compares	 them	with	 results	
obtained	with	previous	versions	of	the	CORE	algorithm.	

7.1 AGB estimation 

7.1.1 BIOMASAR-C	
	
In	 previous	 versions	 of	 this	 ATBD,	 we	 compared	 the	 performance	 of	 the	 CCI	 Biomass	 CORE	
algorithm	 with	 the	 GlobBiomass	 algorithm	 (https://climate.esa.int/en/projects/biomass/key-
documents/).	For	AGB	maps	based	on	Sentinel-1,	we	demonstrated	the	improved	performance	of	
BIOMASAR-C,	thanks	to	the	higher	spatial	resolution	of	the	C-band	data	(20	m	vs.	1,000	m)	and	
the	availability	of	cross-polarized	backscatter.	We	then	compared	the	performance	of	BIOMASAR-
C	with	the	semi-empirical	terms	in	the	WCM	and	with	the	models	relating	forest	variables.	The	
accuracy	 of	 the	 AGB	 estimates	 improved	 when	 these	models	 were	 integrated	 into	 the	 forest	
backscatter	model,	confirming	the	plausibility	of	the	integrated	modelling	framework.	
	
The	 performance	 of	 BIOMASAR-C	 using	 Sentinel-1	 data	 is	 shown	 in	 the	 examples	 in	 Figure	
7-1Error!	Reference	source	not	found..	The	area	in	the	panel	on	the	left-hand	side	is	intensively	
managed	boreal	 forest	with	 frequent	 clear-cuts	 (rectangular	 shapes)	 and	 regenerating	 forests	
(light	green	areas).	The	level	of	detail	is	high,	as	demonstrated	by	the	linear	features	(deforested	
corridors),	despite	the	moderate	resolution	of	the	Sentinel-1	data	used	in	CCI	Biomass	(150	m).	
This	is	a	consequence	of	the	multi-temporal	approach	followed	in	BIOMASAR-C,	which	filters	out	
temporally	uncorrelated	noise	and	maximizes	the	part	of	the	backscatter	signal	related	to	forest	
structure.	The	area	 in	the	panel	on	the	right-hand	side	 includes	undisturbed	rainforests	 in	the	

https://climate.esa.int/en/projects/biomass/key-documents/
https://climate.esa.int/en/projects/biomass/key-documents/
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Brazilian	Amazon	to	the	north	and	disturbed	forests	to	the	south	(fishbone	pattern).	The	multi-
temporal	features	of	the	Sentinel-1	dataset	allowed	clear	distinction	of	the	two	levels	of	biomass.		
	

	
 

Figure 7-1: Examples of AGB estimates obtained with BIOMASAR-C applied to 1° × 1° tiles of Sentinel-1 data 
acquired in 2017. 

The	performance	of	BIOMASAR-C	for	an	extended	region	is	shown	in	Figure	7-2,	with	an	AGB	map	
of	the	Alpine	range.	Artefacts	are	infrequent	and	the	map	is	in	line	with	the	impression	given	by	
the	Sentinel-1	colour	composite	in	Figure	3-2	that	suggested	a	spatially	consistent	representation	
of	SAR	backscatter	globally.	Topography	disturbs	the	estimates	of	AGB	only	locally,	whereas	the	
spatial	distribution	appears	to	be	well	captured	in	such	a	patchy	landscape	consisting	of	forests,	
cropland,	lakes	and	urban	areas.	The	latter	are	a	systematic	issue	because	they	are	associated	with	
the	highest	possible	AGB	because	of	the	very	high	backscatter.	The	same	occurs	over	moraines	in	
the	Alps	where	the	soil	roughness	occasionally	causes	high	backscatter,	depending	on	the	local	
incidence	angle.	This	experimental	evidence	highlights	the	necessity	of	masking	non-forest	areas	
or	 accounting	 for	 the	 different	 levels	 of	 reliability	 of	 BIOMASAR-C	 and	 BIOMASAR-L	 in	 the	
merging	process.	
	

	
 

Figure 7-2: Estimates of AGB for the region of the European Alps from Sentinel-1 imagery acquired in 2017 
using BIOMASAR-C. 
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The	 global	 AGB	 map	 for	 2017	 obtained	 with	 BIOMASAR-C	 is	 shown	 in	 Figure	 7-3Error!	
Reference	 source	not	 found..	 The	 coverage	 is	 almost	 global	with	 a	 few	minor	 gaps	 in	 north	
Canada	and	Russia.	Extended	unvegetated	regions	(Greenland,	Canadian	Isles,	Sahara)	were	not	
mapped	because	 the	 computing	 efforts	 required	 to	process	 the	 Sentinel-1	 images	would	have	
been	disproportionate	with	respect	to	the	real	benefit	to	the	global	map.	Note	that	in	such	regions	
BIOMASAR-L	produced	reliable	estimates	of	AGB	from	ALOS-2	data	using	however	only	a	minor	
fraction	 of	 the	 computing	 resources	 that	 would	 have	 been	 needed	 to	 process	 the	 Sentinel-1	
dataset.	

	
Figure 7-3: Map of AGB obtained with the BIOMASAR-C algorithm applied to the multi-temporal dataset of 
Sentinel-1 backscatter observations of 2017. Pixel size: 150 m. 

The	spatial	distribution	of	AGB	is	consistent	with	known	patterns.	High	biomass	was	estimated	in	
the	wet	tropics	as	well	as	along	the	Pacific	Northwest	coast,	the	Andes,	and	Southwest	Australia.	
Low	biomass	was	estimated	in	dry	regions	of	the	world	(savannas	and	tundra).	The	gradient	of	
decreasing	AGB	from	the	Equator	to	the	North	Pole	is	also	well	represented.	Abrupt	variations	of	
AGB	occurred	occasionally	along	the	edge	of	two	adjacent	Sentinel-1	orbits	or	swaths.	Figure	7-4	
shows	two	examples	of	AGB	offsets.	The	left	panel	of	Figure	7-4	covers	an	area	in	the	Southeast	
U.S.	The	AGB	offset	is	due	to	an	incorrect	estimate	of	the	noise	floor,	which	appears	as	banding	in	
the	Sentinel-1	IWS	images.	This	banding	was	also	observed	over	Southeast	China	and	cannot	be	
undone.	The	right	panel	of	Figure	7-4	instead	includes	an	area	in	Gabon	characterized	by	dense	
tropical	forest	where	slight	differences	in	the	estimates	of	the	model	parameter	in	adjacent	scenes	
translated	to	clear	offsets.	Even	though	we	tried	to	adapt	the	WCM	to	the	local	incidence	angle,	
such	artefacts	appeared	because	the	sensitivity	of	the	SAR	backscatter	to	AGB	was	a	fraction	of	a	
dB	 so	 that	 even	 a	 slightly	 incorrect	 estimate	 of	 one	 of	 the	WCM	 parameters	 in	 images	 from	
adjacent	orbits	resulted	in	an	AGB	offset.		
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Figure 7-4: Examples of AGB estimates obtained with BIOMASAR-C for 1° × 1° tiles and characterized by AGB 
offsets across seams in Sentinel-1 imagery. 

	
Figure	7-5	shows	a	quantitative	assessment	of	the	AGB	estimates	obtained	with	BIOMASAR-C.	The	
reference	consists	of	NFI-based	averages	of	AGB	per	administrative	or	ecological	unit,	which	were	
used	to	set	up	the	model	between	canopy	height	and	AGB.	Accordingly,	we	computed	the	AGB	
average	for	each	unit	included	in	the	reference	dataset.	The	comparison	is	not	per	se	a	validation	
of	 the	BIOMASAR-C	estimates	but	helps	 to	assess	 the	quality	of	 the	output	of	BIOMASAR-C	as	
regards	 the	occurrence	of	 systematic	biases.	The	 spatial	patterns	of	AGB	appear	 to	have	been	
reproduced	with	overpredictions	 in	regions	with	AGB	<	200	Mg	ha-1,	primarily	 in	Europe.	The	
wide	range	of	backscatter	values	for	unvegetated	terrain	affected	the	estimation	of	s0gr	leading	to	
smaller	values	than	in	reality	and	a	modelled	backscatter	lower	than	the	measured	values	in	the	
low-to-moderate	 range	 of	 AGBs.	 The	 regions	 most	 distant	 from	 the	 identity	 line	 mainly	
correspond	to	small	administrative	units	in	Asia	and	Central	Europe,	with	a	small	forest	fraction	

	
 

Figure 7-5: Scatterplot comparing averages of AGB from NFIs at administrative or ecological region with 
corresponding averages from the BIOMASAR-C AGB map of 2017 (v6). The red markers report the median AGB 

from the BIOMASAR-C AGB map for 50 Mg ha-1 wide bins of reference AGB. 

	

7.1.2 Comparing	BIOMASAR-C	versions	in	CCI	CORE	algorithms	
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Similar	 to	what	was	 reported	 for	 the	 BIOMASAR-C	 v6	 AGB	map,	 the	 scatterplot	 in	Figure 7-6	
compares	the	NFI-based	averages	of	AGB	with	the	corresponding	average	values	from	the	last	set	
of	estimates	of	the	BIOMASAR-C	map.	The	overall	trend	remains	unchanged	with	overall	lower	
AGB	estimates.	These	results	relate	to	the	fact	that	no	major	structural	change	was	introduced	
except	for	a	new	definition	of	the	starting	value	for	the	regression	of	the	WCM	to	estimate	s0

veg.	
Because	of	the	weak	sensitivity	of	the	C-band	backscatter	to	AGB	in	many	regions	of	the	world,	
this	slight	change	caused	a	substantial	increase	of	the	AGB	estimates.	Modifications	introduced	in	
v6	concerned	the	 function	relating	height	 to	AGB	 in	Southeast	Asia	and	Australia	and,	 thereof,	
maximum	AGB,	which	likely	caused	some	changes	in	data	points	characterized	by	high	biomass.		
	

	
Figure 7-6: Same as in Figure 7-5 but based on v5 of the BIOMASAR-C algorithm. 

7.1.3 BIOMASAR-L	
	
An	 analysis	 of	 previous	 BIOMASAR-L	 estimates	 compared	 to	 the	 GlobBiomass	 dataset	 was	
reported	 in	 earlier	 versions	 of	 this	 document.	 As	 for	 BIOMASAR-C,	 we	 first	 show	 two	 full	
resolution	maps	(Figure	7-7)	of	the	AGB	estimates	for	the	same	1°	×	1°	areas	used	in	Figure	7-1.	
The	 L-and	 C-band	 estimates	 present	 similar	 spatial	 patterns	 but	 the	 former	 exhibits	 stronger	
contrast	between	unvegetated	regions	and	dense	forests.	With	BIOMASAR-L,	the	estimated	AGBs	
were	closer	to	zero	in	unvegetated	regions	and	closer	to	the	maximum	biomass	in	dense	forests.	
The	comparison	of	the	C-	and	L-band	estimates	indicates	that	the	two	datasets	(i.e.,	Sentinel-1	and	
ALOS-2)	do	not	produce	the	same	levels	of	AGB,	which	corroborates	our	view	that	merging	the	
datasets	is	necessary	to	overcome	systematic	biases	in	one	or	other	AGB	dataset.		
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Figure 7-7: Example of AGB estimates obtained with BIOMASAR-L applied to the same 1° × 1° tile shown in 

Figure 7-1. 

Figure	7-8	shows	the	AGB	map	from	BIOMASAR-L	for	the	Alpine	region	and	the	year	2018,	which	
can	be	compared	with	the	output	from	BIOMASAR-C	in	Figure	7-2.	This	extended	AGB	map	has	
more	contrast	than	the	map	obtained	with	BIOMASAR-C	and	confirms	the	indications	reported	
for	Figure	7-7.		
	

	
Figure 7-8: AGB map of the Alpine region obtained with BIOMASAR-L using ALOS-2 data acquired in 2018.  

	
An	example	of	a	global	map	from	BIOMASAR-L	is	displayed	in	Figure	7-9.	The	spatial	distribution	
of	AGB	is	similar	to	that	obtained	with	BIOMASAR-C,	but	the	contrast	is	stronger,	which	means	
that	BIOMASAR-L	can	resolve	the	highest	and	lowest	biomasses	better	than	BIOMASAR-C.	The	
map	in	Figure	7-9	shows	that	the	spatial	distribution	of	AGB	estimated	from	ALOS-2	PALSAR-2	
data	is	more	homogeneous	than	from	C-band	thanks	to	the	filtering	during	the	pre-processing	of	
the	data.	Nonetheless	occasional	striping	occurs,	corresponding	to	the	overlap	between	adjacent	
SAR	images	 in	regions	where	the	sensitivity	of	 the	backscatter	 to	AGB	is	weak	and	even	small	
calibration	errors	of	few	tenths	of	a	dB	lead	to	significant	differences	in	the	estimated	AGB	(Figure	
7-10).	
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Figure 7-9: AGB map obtained with BIOMASAR-L using ALOS-2 data acquired in 2017. 

	

	
Figure 7-10: AGB estimates from ALOS-2 data for the southwestern Amazonian region. 

	
The	scatterplot	comparing	NFI-based	averages	of	AGB	at	the	level	of	administrative	or	ecological	
units	with	AGB	averages	 from	the	BIOMASAR-L	map	of	2017	shows	strong	agreement	and	no	
apparent	 loss	 of	 sensitivity	 of	 the	 retrieved	 AGB.	 The	 red	 circles	 indicate	 that,	 on	 average,	
BIOMASAR-L	tends	to	slightly	overestimate	AGB	below	200	Mg	ha-1	and	underestimate	in	the	high	
biomass	range	(>	300	Mg	ha-1).	This	tendency	was	also	identified	in	BIOMASAR-C,	although	the	L-
band	estimates	appear	to	be	more	in	line	with	the	NFI-based	averages,	except	for	several	outliers	
that	did	not	occur	 in	the	BIOMASAR-C	map.	These	results	suggest	merging	of	the	two	maps	to	
mitigate	systematic	biases	in	each	single	map.	
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Figure 7-11: Scatterplot comparing averages of AGB from NFIs at administrative or ecological region with 
corresponding averages from the BIOMASAR-L AGB map of 2017. The red markers report the median AGB from 

the BIOMASAR-C AGB map for 50 Mg ha-1 wide bins of reference AGB. 

	

7.1.4 Comparing	BIOMASAR-L	versions	in	CCI	CORE	algorithms	
	
The	 BIOMASAR-L	 algorithm	 has	 undergone	 several	 modifications	 to	 produce	 v6	 of	 the	 CCI	
Biomass	maps,	so	the	maps	produced	with	v5	and	v6	of	the	algorithm	exhibit	differences.	Figure	
7-12	 illustrates	 these	 differences	 for	 the	maps	produced	 for	 2020.	 They	 occur	 for	 three	main	
reasons:	
	

1. Changes	in	the	height-to-biomass	model	(locally).	
	

2. Changes	in	the	maximum	retrievable	biomass	(globally).	
	

3. Changes	in	the	estimation	of	the	model	parameters	(globally).	
	
The	current	AGB	maps	produced	from	ALOS-1	PALSAR-1	or	ALOS-2	PALSAR-2	data	tend	to	have	
a	higher	AGB	across	dense	forest	areas	in	the	humid	tropical,	temperate,	and	boreal	forest	regions.	
AGB	 is	 instead	 lower	 than	 in	 previous	 versions	 across	 forests	 in	 the	 Pacific	Northwest	 of	 the	
United	 States	 and	 British	 Columbia,	 Canada,	 as	 well	 as	 for	 forest	 regions	 in	 Central	 Chile	
dominated	by	pine	and	eucalyptus	plantations.	These	differences	are	primarily	associated	with	
differences	in	the	IceSAT-2	LiDAR-based	map	of	maximum	forest	heights	and,	consequently,	the	
maximum	retrievable	AGB.	Also,	 across	 semi-arid	 forest	 regions	 in	 Southern	Africa	 and	South	
America,	the	new	version	presents	a	moderately	higher	AGB	in	low	AGB	ranges.	These	differences	
are	associated	with	the	modified	approach	for	estimating	the	model	parameter	σ0gr	in	Equation	
(4-8)	(Section	4.4.1).	The	new	estimates	for	σ0gr	tend	to	be	lower	and	hence	the	AGB	estimates	
higher	in	low	AGB	ranges.		
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Figure 7-12: Differences between the AGB maps for the year 2020 produced with v5 and v6 of BIOMASAR-L, 
respectively. 

Finally,	we	show	an	assessment	of	the	BIOMASAR-L	estimates	from	v5	with	respect	to	NFI-based	
averages	(Figure	7-13).	Figure	7-13).	The	distribution	of	the	AGB	averages	is	almost	unaltered	
compared	to	v6	in	Figure	7-11.	
	

	
Figure 7-13: Same as Figure 7-11 but based on v5 of the BIOMASAR-L algorithm. 

	

7.1.5 Merging	AGB	estimates	
	
The	merging	 approach,	which	had	already	been	 implemented	 for	 generating	 the	GlobBiomass	
product,	was	also	 found	 to	 improve	 the	estimates	of	biomass	derived	 from	 the	C-	 and	L-band	
datasets	in	v1	to	v5	of	the	CCI	Biomass	AGB	maps.	It	was	therefore	applied	also	to	produce	v6	of	
the	CRDP.	Overall,	the	merging	approach	favours	the	L-band	derived	AGB	over	values	from	C-band	
for	forests	with	low	or	high	AGB.	In	forests	with	moderate	AGB,	instead,	L-band	derived	estimates	
are	 given	 more	 weight.	 However,	 deviations	 from	 this	 simple	 rule	 (Equation	 (4-11))	 were	
required	to	account	for	the	varying	number	of	annual	backscatter	observations	available,	i.e.,	in	
particular	the	variable	number	of	Fine-Beam	observations	from	ALOS-1	PALSAR-1	and	ALOS-2	
PALSAR-2	 (Equation	 (4-12)).	 With	 the	 focus	 of	 the	 CCI	 Biomass	 project	 moving	 towards	
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quantification	of	AGB	changes,	the	merging	of	maps	from	C-	and	L-band	data	acquired	in	multiple	
years	since	v5	of	the	CRDP	also	considers	the	interannual	consistency	of	the	resulting	merged	AGB	
maps	(Equation	(4-14)),	i.e.,	the	weights	for	combining	C-	and	L-band	derived	biomass	maps	from	
a	 given	 year	 are	 adjusted	 so	 that	 the	 interannual	 variability	 between	 merged	 AGB	maps	 for	
consecutive	years	is	minimized.	As	can	be	seen	in	Figure	7-10,	the	individual	C-	and	L-band	based	
AGB	maps	do	present	local	artifacts	due	to	calibration	errors	as	well	as	an	inconsistent	annual	
coverage	with	observations	from	different	seasons	locally.	Because	of	these	imperfections	in	the	
individual	C-	and	L-band	products,	a	harmonization	across	multiple	years	is	performed	to	produce	
a	 temporal	 series	 of	maps	which	 allow	 for	 assessing	 annual	 and	 decadal	 changes	 in	 AGB.	 As	
illustrated	in	Figure	7-14,	the	harmonization	leads	to	a	better	interannual	consistency	(i.e.,	higher	
correlation,	lower	RMSD)	between	the	AGB	maps	(compared	to	v4	of	the	CRDP),	a	fundamental	
requirement	for	an	analysis	of	biomass	trends.		
	
Figure	7-15	presents	the	difference	in	AGB	between	the	v6	maps	for	the	years	2010	and	2020	for	
Central	Canada,	the	Northern	United	States	and	Central	Brazil.	The	map	clearly	shows	the	areas	
of	 deforestation	 and	 forest	 fires	 (red).	 However,	 the	 AGB	 differences	 also	 indicate	 areas	 of	
increasing	biomass	 (green	 to	 blue).	 These	 increases	 are	not	 verified	 and	 at	 this	 stage	 suggest	
changes	between	the	maps	produced	for	2007,	2010,	and	2015-2022	need	to	be	interpreted	with	
care	(see	also	Section	7.2).			
	

	
Figure 7-14: Comparison of merged AGB maps for 2010, 2017 and 2020 per continent and at kilometric scale for 
the CRDP v4 and v6, produced without and with interannual harmonization of weights for merging C- and L-band 
AGB maps, respectively. 
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(a)	

	
(b)	

	
	
Figure 7-15: Difference between CCI Biomass v6 AGB maps for 2020 and 2010 in Central Canada/Northern USA 

(a) and Brazil (b). Forests subject to biomass loss show up in red, potential biomass increase in blue. 

7.2 AGB change estimation 
The	CCI	Biomass	project	targets	estimation	of	AGB	changes	for	annual	intervals	between	2015	
and	2022	and	for	a	decadal	interval,	i.e.,	between	2010	and	2020.	Verification	of	the	global	AGB	
maps	produced	for	v5	of	the	CRDP	reveals	a	consistent	spatial	distribution	of	AGB	but	different	
levels,	particularly	in	the	dense	tropics.	This	is	due	to	the	different	EO	datasets	available	in	2010	
(multi-temporal	 moderate	 resolution	 Envisat	 ASAR	 observation	 and	 a	 few	 ALOS	 PALSAR	
observations)	 compared	 to	 years	 starting	 with	 2015	 (multi-temporal,	 high	 resolution	
observations	from	Sentinel-1	and	ALOS-2	PALSAR-2).		
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Since	global	AGB	change	maps	are	not	ready	at	the	time	of	finalizing	this	document,	the	discussion	
is	centred	around	problems	that	were	evident	 in	older	releases	of	the	CRDP	and	that	may	still	
affect	the	biomass	change	maps	included	in	the	CRDP	following	this	report.	
	
Figure	7-16	shows	an	example	of	the	AGB	difference	between	AGB	maps	of	2020	and	2010	from	
v5	of	the	CRDP	and	a	latitudinal	profile	of	the	AGB	difference.	In	this	example,	we	compare	maps	
averaged	to	0.1°	to	identify	major	patterns	of	change	and	to	judge	the	overall	quality	of	a	change	
product	derived	from	the	difference	of	two	maps.		
	
The	latitudinal	pattern	indicates	constant	AGB	or	slight	decrease.	In	the	absence	of	a	truly	global	
reference	dataset	of	AGB	differences,	these	trends	cannot	be	confirmed.	Compared	to	v4,	where	
the	magnitude	of	the	changes	was	larger	and	some	of	the	detected	changes	were	dubious,	here	we	
see	 a	 more	 constrained	 range	 of	 changes	 between	 2010	 and	 2020.	 Northern	 latitudes	 are	
characterized	by	increase	of	AGB	and	local	strong	losses.	Widespread	losses	in	tropical	regions	
were	detected	in	the	Amazon	and	the	Congo	Basin.	However,	we	also	detected	some	increases	in	
both	regions,	as	well	as	in	China	and	in	temperate	South	America.	The	result	is	an	improvement	
of	the	AGB	merging	step	where	temporal	consistency	of	the	AGB	estimates	was	introduced	in	v5.	
	
	
	

	
Figure 7-16: Difference between the 2020 and the 2010 AGB datasets (left) and latitudinal profile of the AGB 
difference (right). The AGB maps were averaged to 0.1° before taking the difference. The colour ramp is 
constrained between +/- 50 Mg ha-1 to enhance contrast. The latitudinal profile shows the average AGB 
difference as a function of latitude (thick line) and the interquartile range of AGB difference at a given latitude 
(horizontal bars). The AGB maps used in this example are part of the CRDP v5 of the CCI Biomass project. 

	
The	 variability	 of	 the	 AGB	 changes	 is,	 however,	 much	 stronger	 when	 considering	 the	 full	
resolution	of	the	maps.	An	example	is	shown	by	Figure	7-17	with	the	AGB	difference	map	obtained	
at	full	resolution	from	the	2020	and	2010	maps	of	v5.	The	10°	x	10°	region	in	Figure	7-17	covers	
tropical	rainforests	along	the	Amazon	River,	with	significant	deforestation	occurring	south	of	the	
river	(fishbone	pattern).	The	AGB	difference	map	shows	both	positive	and	negative	values,	some	
of	them	substantially	larger	than	would	be	expected.	Further	evidence	for	the	low	reliability	of	
these	AGB	change	estimates	is	the	strong	variability	of	the	AGB	difference	between	adjacent	pixels.	
We	interpret	this	to	mean	that	the	AGB	difference	is	dominated	by	errors	and	uncertainties	in	the	
individual	maps.	In	summary,	the	interpretation	of	CCI	Biomass	change	maps	at	full	resolution	
must	 be	 very	 cautious.	 There	 is,	 however,	 one	 exception,	 which	 concerns	 areas	 affected	 by	
deforestation.	 Figure	 7-17	 shows	 several	 red-coloured	 spots	 at	 the	 edges	 of	 previous	
deforestation.	 The	 strong	 loss	 of	 biomass	 between	 2010	 and	 2020	 can	 be	 explained	with	 the	
expansion	of	deforestation	into	intact	rainforests.			
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Figure 7-17: Difference between the AGB estimates obtained for 2020 and 2010 (left) and index of reliability of 
the AGB difference estimate (right). 

	
To	quantify	the	reliability	of	an	estimate	of	AGB	difference,	we	followed	the	approach	developed	
in	the	GlobBiomass	project	for	mapping	AGB	changes	at	regional	scale.	Each	of	the	two	estimates	
contributing	to	an	AGB	difference	may	have	a	substantial	standard	deviation,	typically	40%-60%	
of	the	estimated	value	[RD-5].	The	standard	error	of	the	AGB	difference	is	therefore	even	larger	
because	 the	 variances	 of	 the	 individual	 estimates	 are	 summed.	 As	 a	 result,	 even	 a	 large	 AGB	
difference	 obtained	 from	 the	 maps	 may	 not	 be	 significant.	 In	 the	 GlobBiomass	 project,	 two	
scenarios	were	depicted.	Let	us	assume	that	AGB1	 is	the	estimate	at	the	first	point	in	time	and	
AGB2	is	the	estimate	for	the	same	pixel	at	the	second	point	in	time.	Let	us	then	assume	that	SD1	
and	SD2	are	the	standard	deviations	of	the	two	estimates,	respectively.	The	probability	that	the	
AGB	difference	corresponds	to	a	high	or	low	probability	of	true	change	depends	on	whether	the	
intervals	AGBi	±	1	SDi	are	disjoint	(Figure	7-18,	upper	graphic)	or	overlap	(Figure	7-18,	 lower	
graphic).	 Because	 of	 the	 rather	 large	 intervals	 of	 AGB,	we	 also	 introduce	 a	moderate	 level	 of	
reliability	referred	to	as	potential	change.	Potential	change	occurs	when	the	intervals	overlap	but	
the	estimate	at	one	point	in	time	is	outside	the	interval	AGBj	±1	SDj	for	the	second	interval	in	time	
(Figure	7-19).	
	
Though	this	approach	oversimplifies	the	issue,	it	is	a	valuable	way	to	generate	a	simple	auxiliary	
layer	that	can	inform	map	users	about	the	reliability	of	the	difference	estimate.	
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Figure 7-18: Upper graphic: disjoint intervals of AGB estimates at points in time 1 and 2 indicating high reliability 
of an AGB change defined as AGB difference. Lower graphic: overlapping intervals of AGB estimates at points in 
time 1 and 2 indicating low reliability of AGB change defined as AGB difference. 

	

	
Figure 7-19: Partial overlap of intervals AGBi+/-SDi corresponding to a definition of potential AGB loss (AGB2< 
AGB1-SD1, upper graphic) or potential AGB gain (lower graphic, AGB2> AGB1+SD1). 

	
	
Figure	7-20	shows	an	example	of	a	reliability	map	corresponding	to	the	AGB	difference	between	
2020	 and	 2010.	 Low	 reliability	 corresponds	 to	 having	 overlapping	 AGB	 distributions	 and	
characterizes	most	 of	 the	 area,	 even	 if	 the	 AGB	 change	 is	 non-negligible.	 Very	 few	 areas	 are	
characterized	 by	 an	 intermediate	 reliability,	 corresponding	 to	 a	 definition	 of	 potential	 AGB	
change.	Areas	with	a	high	reliability,	i.e.,	with	disjoint	AGB	distributions,	occur	seldom	but	always	
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correspond	to	areas	where	AGB	dropped	from	the	level	of	a	mature	forest	to	a	level	close	to	0	Mg	
ha-1.	
	

	 	
Figure 7-20: Zoom of Figure 7-17 in an area characterized by expanding deforestation into intact forests. 

	
We	conclude	that	an	AGB	difference	map	should	be	handled	with	care	and	a	layer	indicating	its	
reliability	 should	 accompany	 the	 AGB	 differences	 to	 decide	 whether	 such	 differences	 are	
meaningful.	 In	 this	 context,	 we	 do	 not	 consider	 the	 effect	 of	 spatial	 averaging	 to	 reduce	 the	
variance	of	the	error	in	an	AGB	estimate.	Nonetheless,	the	concept	developed	here	for	the	maps	
at	full	resolution	applies	to	maps	obtained	after	spatial	averaging	to	coarser	resolution.		
	
It	 should	 finally	 be	 noted	 that,	 regardless	 of	 the	 spatial	 scale	 at	 which	 the	 AGB	 difference	 is	
obtained,	this	approach	does	not	account	for	biases	affecting	each	AGB	map.	Should	the	two	maps	
be	affected	by	different	biases,	the	AGB	change	obtained	by	differencing	AGBs	at	the	two	points	in	
time	will	have	an	additional	bias	term	(difference	of	biases)	which	will	affect	the	accuracy	of	the	
estimate	of	AGB	change.			
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9 Annex A 

To	assess	the	dependency	of	SAR	backscatter	on	local	orientation	of	terrain,	observations	at	C-
band	 (Sentinel-1)	 and	 L-band	 (ALOS	PALSAR)	were	 stratified	 in	 terms	 of	 canopy	 density	 and	
aspect	 angle	 or	 incidence	 angle.	 In	 addition,	 we	 analysed	 the	 same	 sets	 of	 observations	 as	 a	
function	 of	 canopy	 density,	 stratifying	 in	 terms	 of	 local	 incidence	 angle.	 Here,	 we	 show	 two	
examples.	The	 first	example	corresponds	 to	a	1°	×	1°	 large	 tile	 characterized	by	high	biomass	
forest,	 pasture,	 agriculture,	 and	 mountainous	 terrain	 with	 steep	 slopes	 between	 Austria	 and	
Slovenia.	This	is	representative	for	the	behaviour	of	the	backscatter	in	case	of	strong	topography.	
The	second	corresponds	to	a	tropical	landscape	in	Gabon,	including	both	dry	and	wet	forest	types,	
with	hilly	terrain.	This	example	is	representative	for	the	behaviour	of	the	backscatter	in	case	of	
moderate	 topography.	 In	 both	 examples,	we	 use	 the	Hansen	 percent	 tree	 cover	 data	 product	
(Hansen	et	al.,	2013)	as	reference	for	the	canopy	density.	
	

9.1 Alpine terrain, temperate forests 
Figure	A1	shows	the	relationship	between	Sentinel-1	SAR	backscatter	(VV-	and	VH-polarization)	
and	terrain	aspect	angle	for	the	1°	×	1°	tile	between	Austria	and	Slovenia	and	characterized	by	
local	 terrain	 slopes	 well	 above	 40°.	 Observations	 are	 stratified	 by	 canopy	 density	 to	 better	
understand	scattering	patterns.	The	backscatter	presents	a	quasi-sinusoidal	pattern,	being	more	
accentuated	 in	 the	 case	 of	 sparsely	 vegetated	 terrain	 The	 results	 are	 in	 line	 with	 other	
experimental	results	shown	in	Hoekman	and	Reiche,	2015.	The	highest	backscatter	was	obtained	
for	slopes	facing	the	radar.	A	slightly	different	pattern	was	obtained	for	the	ALOS	SAR	backscatter	
(Figure	A2).	Although	we	observe	more	 sensitivity	 to	 the	 orientation	of	 the	 terrain	 in	 case	 of	
unvegetated	or	sparsely	vegetated	 terrain,	we	do	not	observe	 the	same	sinusoidal	pattern	but	
rather	 a	 peak	 at	 about	 150°.	 Interestingly	 the	 range	 of	 aspect	 angles	 at	 which	 we	 observe	 a	
maximum	backscatter	corresponds	to	slopes	facing	away	from	both	ALOS	PALSAR	and	Sentinel-
1.	 It	 can	 be	 assumed	 that	 the	 topographic	 correction	 introduced	 during	 pre-processing	 over-
corrected	the	backscatter,	introducing	artefacts	in	the	final	image	product.		
	
The	plot	in	Figure	A1	and	A2	do	not	distinguish	between	pixels	located	on	steep	terrain	or	flat	
terrain.	A	3-dimensional	plot	of	observations	where	backscatter	is	plotted	as	a	function	of	terrain	
slope	and	terrain	orientation	is	difficult	to	 interpret.	A	more	straightforward	visualisation	that	
combines	 slope	 and	 aspect	 and	 can	 still	 be	 considered	 to	 well	 synthesize	 landscape-specific	
scattering	patterns	and	terrain	conditions	is	provided	in	Figures	A3	and	A4.	There,	the	C-	and	L-
band	backscatter,	respectively,	is	plotted	as	a	function	of	local	incidence	angle.	The	plots	show	a	
minimum	 in	 correspondence	 of	 the	 incidence	 angle	 for	 flat	 terrain	 conditions	 and	 higher	
backscatter	 for	sloped	terrain,	 following	a	quadratic	pattern.	The	sensitivity	of	 the	backscatter	
upon	incidence	angle	differed	depending	on	canopy	density	and,	in	addition,	to	polarization	and	
frequency.	Although	one	would	have	expected	that	the	highest	backscatter	corresponded	to	the	
smallest	 incidence	 angles	 (i.e.,	 slopes	 facing	 the	 radar),	 we	 see	 high	 backscatter	 also	 in	
correspondence	of	the	largest	incidence	angles	for	steep	slopes	facing	away	from	the	radar.	This	
is	 another	 way	 of	 showing	 the	 over-correction	 applied	 during	 pre-processing,	 i.e.,	 a	 "global"	
correction	for	pixel	area	and	incidence	angle	that	did	not	account	for	the	specific	landscape.	
	
To	then	understand	the	impact	of	terrain	slope	on	a	retrieval	of	a	forest	variable,	we	plotted	the	
same	observations	 of	 Figures	A3-A4,	 as	 a	 function	 of	 canopy	density	 after	 stratifying	 by	 local	
incidence	angle.	Figures	A5	and	A6	show	that	there	 is	a	clear	difference	 in	terms	of	 functional	
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dependence	between	backscatter	and	canopy	density	when	considering	observations	for	different	
incidence	angles.	The	strongest	sensitivity	was	obtained	for	flat	terrain	(incidence	angles	between	
30°	and	40°),	the	weakest	for	steep	slopes	with	large	incidence	angles.		
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Figure A 1: Observations of Sentinel-1 backscatter as a function of terrain aspect angle for the 1° x 1° tile with 
top left coordinate: 14°E, 47°N. The tile includes temperate forests and alpine terrain between Austria and 
Slovenia. Aspect angle is defined as being zero when the normal to the surface is oriented northwards. 
Observations are stratified per canopy density. Each circle represents the median backscatter for a given canopy 
density interval (see legend) and aspect angle interval (10° interval). 

	

	

Figure A 2: Observations of ALOS PALSAR backscatter as a function of terrain aspect angle for the same 1° x 1° 
tile as in Figure A1. Observations are stratified per canopy density. Each circle represents the median 
backscatter for a given canopy density interval (see legend) and aspect angle interval (10° interval). 
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Figure A 3: Observations of Sentinel-1 backscatter as a function of local incidence angle for the same dataset and 
tile in Figure A1. Observations are stratified per canopy density. Each circle represents the median backscatter 
for a given canopy density interval (see legend) and incidence angle interval (10° interval). 

	

	
 

Figure A 4: Observations of ALOS PALSAR backscatter as a function of local incidence angle for the same dataset 
and tile in Figure A2. Observations are stratified per canopy density. Each circle represents the median 
backscatter for a given canopy density interval (see legend) and incidence angle interval (10° interval). 
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Figure A 5: Observations of Sentinel-1 backscatter as a function of canopy density (Landsat VCF) for the same 
dataset and tile in Figure A1. Observations are stratified per incidence angle. Each circle represents the median 
backscatter for a given incidence angle interval (see legend) and canopy density interval (10° interval). The 
vertical bars represent the interquartile range of backscatter measurements in each VCF range and incidence 
angle interval of flat terrain. 

	

	
 

Figure A 6: Observations of ALOS PALSAR backscatter as a function of canopy density (Landsat VCF) for the same 
dataset and tile in Figure A2. Observations are stratified per incidence angle. Each circle represents the median 
backscatter for a given incidence angle interval (see legend) and canopy density interval (10° interval). 
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9.2 Flat to hilly terrain, tropical forest 
The	analysis	was	repeated	for	a	more	moderate	topography	and	a	different	forest	type.	The	results	
are	 in	 line	with	previous	observations,	 showing	 less	variability	 though	because	of	 the	 smaller	
range	of	incidence	angles.	The	relationship	between	aspect	angle	and	SAR	backscatter	(Figures	
A7	and	A8)	show	the	same	sinusoidal	pattern.	For	canopy	density	ranges	where	this	is	not	as	clear,	
the	reason	is	the	small	number	of	pixels.	Similar,	plotting	the	SAR	backscatter	as	a	function	of	local	
incidence	angle	and	stratifying	by	canopy	density	(Figures	A9	and	A10)	confirms	that	the	smallest	
backscatter	is	obtained	in	correspondence	of	flat	terrain	whereas	steep	slopes	are	characterized	
by	higher	values.	When	reversing	the	plots	by	expressing	the	SAR	backscatter	as	a	 function	of	
canopy	density	after	stratifying	by	local	incidence	angle	(Figures	A11	and	A12),	we	see	different	
backscatter	levels	for	different	ranges	of	incidence	angle	for	canopy	density	up	to	70%.	Thereafter	
the	almost	negligible	sensitivity	of	short-wavelength	backscatter	to	forest	variable	appears	to	set	
in	 and	 the	differences	are	of	 the	order	of	 a	 fraction	of	dB.	 Still,	 there	appear	 to	be	 systematic	
differences	related	to	local	incidence	angle.	This	is	confirmed	when	looking	at	Figures	A13	and	
A14,	 where	we	 plotted	 the	 SAR	 backscatter	 as	 a	 function	 of	 AGB	 for	 a	 subset	 of	 the	 1°	 ×	 1°	
corresponding	to	 the	area	covered	by	the	LiDAR-based	dataset	of	AGB	at	 the	test	site	of	Lope,	
Gabon	 (Labriere	 et	 al.,	 2018),	 Interestingly,	 the	 SAR	backscatter	presented	 some	variation	 for	
increasing	AGB	even	at	the	highest	levels	of	AGB	whereas	there	was	hardly	any	variability	when	
the	 same	 observations	 were	 plotted	 against	 canopy	 density.	 This	 seems	 to	 indicate	 that	 the	
reliability	of	the	percent	tree	cover	values	above	80%	can	be	questioned	as	no	sensitivity	of	the	
backsscatter	to	canopy	density	was	evident	above	80%.		 	



 

Ref CCI Biomass Algorithm Theoretical Basis 
Document 

 Issue Page Date 
6.0 133 19.12.2024 

	

This document is the property of the CCI-Biomass partnership, no part of it shall be reproduced or transmitted 
without the express prior written authorization of Aberystwyth University and Gamma Remote Sensing AG. 

	
	

	
 

Figure A 7: Observations of Sentinel-1 backscatter as a function of terrain aspect angle for the 1° x 1° tile with 
top left coordinate: 11°E, 0°N. The tile includes the forest site of Lope, Gabon. Aspect angle is defined as being 
zero when the normal to the surface is oriented northwards. Observations are stratified per canopy density. Each 
circle represents the median backscatter for a given canopy density interval (see legend) and aspect angle 
interval (10° interval). 

	

	
 

Figure A 8: Observations of ALOS PALSAR backscatter as a function of terrain aspect angle for the same 1° x 1° 
tile as in Figure A7. Observations are stratified per canopy density. Each circle represents the median backscatter 
for a given canopy density interval (see legend) and aspect angle interval (10° interval). 
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Figure A 9: Observations of Sentinel-1 backscatter as a function of local incidence angle for the same dataset and 
tile in Figure A7. Observations are stratified per canopy density. Each circle represents the median backscatter 
for a given canopy density interval (see legend) and incidence angle interval (10° interval). 

	

	
 

Figure A 10: Observations of ALOS PALSAR backscatter as a function of local incidence angle for the same dataset 
and tile in Figure A8. Observations are stratified per canopy density. Each circle represents the median 
backscatter for a given canopy density interval (see legend) and incidence angle interval (10° interval). 
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Figure A 11: Observations of Sentinel-1 backscatter as a function of canopy density (Landsat VCF) for the same 
dataset and tile in Figure A7. Observations are stratified per incidence angle. Each circle represents the median 
backscatter for a given incidence angle interval (see legend) and canopy density interval (10° interval). The 
vertical bars represent the interquartile range of backscatter measurements in each VCF range and incidence 
angle interval of flat terrain. 

	

	
 

Figure A 12: Observations of ALOS PALSAR backscatter as a function of canopy density (Landsat VCF) for the same 
dataset and tile in Figure A8. Observations are stratified per incidence angle. Each circle represents the median 
backscatter for a given incidence angle interval (see legend) and canopy density interval (10° interval). 
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Figure A 13: Observations of Sentinel-1 backscatter as a function of AGB over Lope, Gabon, (Labriere et al., 
2018) for the same dataset in Figure A7. Observations are stratified per incidence angle. Each circle represents 
the median backscatter for a given incidence angle interval (see legend) and AGB interval (50 Mg ha-1).  

	

	
 

Figure A 14: Observations of ALOS PALSAR backscatter as a function of AGB over Lope, Gabon, (Labriere et al., 
2018) for the same dataset in Figure A8. Observations are stratified per incidence angle. Each circle represents 
the median backscatter for a given incidence angle interval (see legend) and AGB interval (50 Mg ha-1).  
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10 Annex B 

In	 this	 Annex,	 we	 present	 a	 comparison	 of	 percent	 tree	 cover	 datasets	 with	 the	 objective	 of	
drawing	 some	 conclusion	 on	 the	 quality	 of	 canopy	 density	 datasets	 to	 be	 used	 in	 the	model	
training	 phase	 of	 the	 BIOMASAR	 algorithm.	 Several	 regions	 of	 the	 Earth	 were	 analysed;	 the	
examples	below	are	 indicative	 for	an	area	of	 frequent	 cloud	cover	 throughout	 the	year.	Cloud	
cover	was	indeed	identified	the	major	factor	to	cause	artefacts	in	global	maps	of	canopy	density.		
	
Figure	B1	shows	four	percent	tree	cover	datasets	with	spatial	resolution	between	30	m	and	1,000	
m	of	potential	interest	to	support	the	model	training.	For	reference,	we	included	the	optical	image	
in	 Google	 Earth.	 This	 area	 (100	 km	 ×	 60	 km)	 is	 in	 Equatorial	 Guinea.	 The	 nearly	 horizontal,	
repeated	segments	in	the	two	Landsat	canopy	density	datasets	are	a	consequence	of	the	SLC-off	
artefacts	 in	Landsat	 imagery	due	 to	 scanning.	Because	of	 the	poor	Landsat	 coverage	 in	 recent	
years,	the	annual	Landsat	VCF	datasets	by	Sexton	et	al.	(2013),	are	often	characterized	by	SLC-off	
effects	and	missing	data	because	of	cloud	cover.	The	MODIS	VCF	dataset	shows	strong	variability	
because	 of	 frequent	 cloud	 cover,	 which	 introduced	 several	 artefacts	 and	 reduced	 the	 overall	
quality	of	the	canopy	density	estimates.	The	Proba-V	tree	cover	fraction	appears	to	be	reliable	in	
terms	of	artefacts	but	seems	to	classify	tree	cover	as	being	100%	everywhere	there	is	vegetation.	
This	feature	was	noticed	in	boreal	forests	as	well,	where	forests	are	sparser.		
	
As	a	result,	the	percent	Landsat-based	tree	cover	appears	to	be	the	most	reliable	dataset	globally	
whereas	the	others	suffer	 from	artefacts	and	missing	values	due	to	cloud	cover	and	haze	with	
some	quite	destructive	impact	on	model	training	and,	thereof,	biomass	retrieval.	
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Landsat	percent	tree	cover,	30	m,	2010.	 Landsat	 Vegetation	 Continuous	 Fields	
(tree	cover),	30	m,	2015.	

	 	

MODIS	 Vegetation	 Continuous	 Fields	 v6,	
250	m,	2017.	

Proba-V	tree	cover	fraction,	100	m,	2015.	

	

Figure	 B1.	 Comparing	 four	 percent	 tree	 cover	 datasets	 for	 a	 100	 km	 ×	 60	 km	 large	 area	 in	
Equatorial	Guinea.	The	image	at	the	top	of	this	Figure	was	taken	from	Google	Earth.	Each	percent	
tree	cover	image	is	scaled	between	0	and	100.	The	white	features	in	the	Landsat	VCF	dataset	by	
Sexton	 et	 al.	 (2013)	 represent	 invalid	 locations	 and	 are	 caused	 either	 by	 SLC-off	 artefacts	
(segments)	or	clouds.	
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11 Annex C 

From	the	GlobBiomass	dataset,	we	derived	averages	at	0.25°	and	compared	with	the	average	AGB	
from	 plot	 inventory	 measurements	 described	 in	 the	 Product	 Validation	 Plan	 [RD-7].	 The	
agreement	was	strong	below	250	Mg	ha-1	(Figure	C1).	Above	this	level,	the	map-based	AGBs	were	
underestimated,	 the	discrepancy	between	map-based	and	plot-based	AGB	averages	 increasing	
with	increasing	AGB.	This	difference	explains	the	negative	bias	and	the	rather	high	relative	root	
mean	squared	difference	between	map-based	and	plot-based	averages	(Figure	C1).		
	

	
Figure C 1: Scatter plot comparing average AGB from plot inventory observations and map-based average AGB 

from the GlobBiomass dataset at 0.25°. Circles and bars represent the median and inter-quartile ranges of 
map-based averages for 50 Mg ha-1 wide bins of plot-based average AGB. Individual pairs of AGB values are 

represented by crosses. Retrieval statistics reported in this figure include the number of grid cells, i.e., pixels, 
the RMSD relative to the average plot-based AGB, the bias and the coefficient of determination R2. 
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12 Annex D 

	

Country No. units Type of unit Reported biomass Year URL
Albania 1 Country AGB ~ 2015 Avitabile et al., 2018
American Samoa 1 Country AGB 2012 https://apps.fs.usda.gov/fiadb-api/evalidator
Argentina 6 Ecoregion AGB 2017 https://www.argentina.gob.ar/ambiente/bosques/segundo-inventario-nacional-bosques-nativos
Australia 8 Territory AGB 2016 https://www.agriculture.gov.au/abares/forestsaustralia/sofr/sofr-2018/
Bangladesh 5 Socioeconomic zone AGB 2016-2019 https://forestecosyst.springeropen.com/track/pdf/10.1186/s40663-021-00284-1.pdf
Belarus 6 Province GSV 2010 http://www.metla.fi/julkaisut/workingpapers/2010/mwp170.pdf
Belize 1 Country AGB 2018 Inventarios Forestales Nacionales de America Latina y el Caribe: Hacia la armonización de la información forestal
Bhutan 20 Province GSV 2012-2015 http://www.bhutantrustfund.bt/wp-content/uploads/2018/11/National-Forest-Inventory-Report-Vol.-I-DoFPS.pdf
Bosnia 1 Country AGB ~ 2015 Avitabile et al., 2018
Brazil 6 Ecoregion AGB 2018 Brazilian Forest at a glance 2019, Ministry of Agriculture, Livestock and Food Supply, Brazilian Forest Service
Bulgaria 1 Country AGB ~ 2015 Avitabile et al., 2018
Burkina Faso 13 Province AGC 2014 http://cns.bf/IMG/pdf/rapport_second_inventaire_forestier_national2.pdf
Cabo Verde 9 Island AGB 2012 http://www.caboverdeifn.ifer.cz/?page_id=79
Cambodia 3 Ecoregion AGB 2014 https://cambodia-redd.org/wp-content/uploads/2016/01/Forest-biomass-in-Cambodia-from-field-plots-to-national-estimates.pdf
Canada 12 Ecozone AGB 2006-2017 https://nfi.nfis.org/en/standardreports
Chile 11 Region GSV 2020 https://ifn.infor.cl/index.php/descargas-recursos/descargas/category/2-documentos-inventario-forestal
China 31 Province AGB 2014-2018 China forest resources report, 9th forest inventory
Colombia 5 Biogeografic region AGB 2015-2019 Inventarios Forestales Nacionales de America Latina y el Caribe: Hacia la armonización de la información forestal
Comores 3 Island AGB 2010 FAO FRA country report 2020
Congo 5 Ecoregion CO2 equivalent 2014 https://www.fao.org/3/cb2941fr/cb2941fr.pdf
Costarica 11 Life zone CO2 equivalent 2014-2015 https://www.sirefor.go.cr/Sirefor/publicaciones_tabla?nombre=INF
Croatia 1 Country AGB ~ 2015 Avitabile et al., 2018
Cyprus 1 Country AGB ~ 2015 Avitabile et al., 2018
Democratic Republic of the Congo 26 Province AGB 2011-2016 https://medd.gouv.cd/wp-content/uploads/2020/10/NERF-de-la-RDC.pdf (based on Xu et al., 2021)
Dominican Republic 4 Ecoregion AGB 2018 https://fdocuments.ec/document/informe-final-inventario-nacional-forestal-de-repblica-ndice-elaboracin.html
Ecuador 9 Ecoregion AGC 2009-2013 http://enf.ambiente.gob.ec/web_enf/?page_id=1239
El Salvador 4 Ecoregion AGB 2018 https://cidoc.marn.gob.sv/documentos/inventario-nacional-de-bosques-de-el-salvador/
Estonia 1 Country AGB ~ 2015 Avitabile et al., 2018
Ethiopia 4 Ecoregion AGB 2010 https://redd.unfccc.int/files/ethiopia_frel_3.2_final_modified_submission.pdf
Fiji 1 Country AGB 2006 http://fijireddplus.org/resources/publications/NFI2006DraftReport.pdf
Finland 19 NFI unit AGB 2016-2020 https://statdb.luke.fi/PxWeb/pxweb/en/LUKE/LUKE__04%20Metsa__06%20Metsavarat/1.29_Puuston_biomassa_metsa_ja_kitumaalla.px/
French Guyana 1 Country AGB 2015 Inventarios Forestales Nacionales de America Latina y el Caribe: Hacia la armonización de la información forestal
Guam 1 Country AGB 2013 https://apps.fs.usda.gov/fiadb-api/evalidator
Guatemala 3 Forest type AGB 2002-2003 Inventarios Forestales Nacionales de America Latina y el Caribe: Hacia la armonización de la información forestal
Honduras 4 Forest type AGC 2020 https://icf.gob.hn/wp-content/uploads/2021/08/Anuario_Estadistico_Forestal_de_Honduras_2021.pdf
Iceland 1 Country AGB ~ 2015 Avitabile et al., 2018
India 41 State AGC 2016 https://fsi.nic.in/isfr-2021/chapter-9.pdf
Indonesia 7 Island AGB 2014 http://ditjenppi.menlhk.go.id/kcpi/dokumen/national_frel_final%20revisi_10des.pdf
Ivory Coast 3 Ecoregion AGB 2014 https://www.fao.org/3/i8019f/i8019f.pdf
Japan 47 Prefecture GSV 2013-2017 https://www.rinya.maff.go.jp/j/keikaku/genkyou/h29/attach/pdf/3-13.pdf
Kosovo 1 Country AGB ~ 2015 Avitabile et al., 2018
Laos 4 Forest type AGB 2019 https://nfms.maf.gov.la
Latvia 1 Country AGB ~ 2015 Avitabile et al., 2018
Liberia 15 Province Total biomass 2018 https://www.forestcarbonpartnership.org/system/files/documents/Liberia%20National%20Forest%20Inventory.pdf
Liechtenstein 1 Country AGB ~ 2015 Avitabile et al., 2018
Luxembourg 1 Country AGB ~ 2015 Avitabile et al., 2018
Madagascar 4 Ecoregion AGB 2017 https://redd.unfccc.int/files/2017_frel_mdg_modified_submission.pdf
Malawi 2 Region Total biomass 2018 https://cepa.rmportal.net/Library/inbox/national-forest-inventory-2018-report
Marshall Islands 1 Country AGB 2018 https://apps.fs.usda.gov/fiadb-api/evalidator
Mexico 32 State AGB 2005-2009 de Jong et al., 2010
Micronesia 1 Country AGB 2016 https://www.fs.usda.gov/pnw/projects/pnw-fia-pacific-islands-inventory
Mongolia 4 Ecoregion AGB 2017 http://forest-atlas.gov.mn/DataSetResults.aspx
Montenegro 1 Country AGB ~ 2015 Avitabile et al., 2018
Mozambique 10 Province AGB 2018 https://www.biofund.org.mz/wp-content/uploads/2019/01/1548412245-Relatório%20do%20%20IV%20Inventário%20Florestal%20Nacional.pdf
Nepal 3 Physiographic region AGB 2017 https://nepalindata.com/resource/STATE-OF-NEPAL%27S-FORESTS/
Nicaragua 4 Forest type AGB 2007-2008 https://cambioclimatico.ineter.gob.ni/bibliografia/Mitigacion%20del%20cambio%20climatico/Informe%20Final%20inventario%20forestal.pdf
Nigeria 6 Ecozone AGB 2019 https://www.fao.org/3/cb0037en/cb0037en.pdf
North Macedonia 1 Country AGB ~ 2015 Avitabile et al., 2018
Northern Mariana Islands 1 Country AGB 2015 https://www.fs.usda.gov/pnw/projects/pnw-fia-pacific-islands-inventory
Pakistan 12 Forest type AGC 2008-2012 https://redd.unfccc.int/files/1._unfccc_frel_pakistan__final_with_proofread_-final.pdf
Palau 1 Country AGB 2014 https://apps.fs.usda.gov/fiadb-api/evalidator
Panama 1 Country AGB 2013-2015 https://chm.cbd.int/api/v2013/documents/05B386D2-5BCD-A52D-6097-F853803CC619/attachments/205145/Inventario%20Nacional%20Forestal%20-%20Resultados%20Fase%20Piloto%202013-2015.pdf
Papua New Guinea 1 Country AGB > 2010 Proceedings_of_the_second_NFI_Research_Conference_compressed.pdf
Paraguay 6 Ecoregion AGC 2014 http://www.infona.gov.py/index.php?cID=296
Peru 6 Ecozone AGB 2013-2018 Inventarios Forestales Nacionales de America Latina y el Caribe: Hacia la armonización de la información forestal
Puerto Rica 1 Country AGB 2019 Inventarios Forestales Nacionales de America Latina y el Caribe: Hacia la armonización de la información forestal
Republic of Korea 10 Province GSV 2014 https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjRkbvRtZn6AhWYh_0HHeG5C7kQFnoECAUQAQ&url=https%3A%2F%2Fwww.forest.go.kr%2Fkfsweb%2Fcmm%2Ffms%2FFileDown.do%3Bjsessionid%3DNLnLiHubhFNUOX5DhDrmaHEZurg8MExsUujmYxegMKFeFV2IJg2pXlg5gjiYe8wd.frswas01_servlet_engine5%3FatchFileId%3DFILE_000000000664384%26fileSn%3D1%26dwldHistYn%3DN%26bbsId%3DBBSMSTR_1064&usg=AOvVaw0iCa_PPyQe6pgoOnvJOsjc
Russia 83 Province GSV 2011-2020 Private data sharing, D. Schepaschenko (IIASA)
Sudan 3 State GSV 2017 https://redd.unfccc.int/files/sudan_frl_submission_to_unfccc_january_2020.pdf
Suriname 2 Ecozone AGC 2017 https://sbbsur.com/wp-content/uploads/2017/04/TechnischrapportEmissieFactors_CarbonStocks.pdf
Taiwan 8 Province GSV 2021 https://www.forest.gov.tw/EN/0001465
Tanzania 25 Province GSV 2015 https://www.tfs.go.tz/uploads/NAFORMA_REPORT.pdf
Thailand 3 Forest type AGB 2013-2018 https://redd.unfccc.int/files/thailand_frel_frl_report.pdf
Togo 4 Ecoregion AGB 2015-2016 https://redd.unfccc.int/files/nrf_togo_06_1_20_rev_18_08_20_finale.pdf
Turkey 1 Country AGB ~ 2015 Avitabile et al., 2018
Uganda 80 Province (district) AGB 2005 https://www.nfa.go.ug/images/reports/biomasstechnicalreport2009.pdf
Ukraine 25 Province GSV 2010 Private data sharing, D. Schepaschenko (IIASA)
United Kingdom 1 Country AGB ~ 2015 Avitabile et al., 2018
United States 50 State AGB 2010-2021 https://apps.fs.usda.gov/fiadb-api/evalidator
United States Virgin Islands 1 Country AGB 2014 Inventarios Forestales Nacionales de America Latina y el Caribe: Hacia la armonización de la información forestal
Uruguay 1 Country AGB 2009-2016 Inventarios Forestales Nacionales de America Latina y el Caribe: Hacia la armonización de la información forestal
Vietnam 5 Forest type Total carbon 2016 https://redd.unfccc.int/files/2016_submission_frel_viet_nam.pdf
Zambia 1 Country AGB 2009-2016 https://redd.unfccc.int/files/zambia_frel-2020-technical_assessment.pdf


