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SYMBOLS AND ACRONYMS

AGB Above-ground biomass density (in general)

AAGB Above-ground biomass change (in general)

AGBmap Above-ground biomass density according to the map

AGBypiot In situ above-ground biomass density

AGB:ef AGByiet, corrected for inventory date and if footprint < 1 ha corrected for forest fraction

AGB” True above-ground biomass density

ALS Aerial Laser Scanning

BGB Below-ground biomass

ccl Climate Change Initiative

CEOS Committee on Earth Observation Satellites

Cl Confidence Interval

CoFor Congo basin Forests AGB dataset (Ploton et al., 2020)

DRC Democratic Republic of the Congo

ECV Essential Climate Variables

ESA European Space Agency

FAO Food and Agriculture Organisation

FRA Forest Resources Assessment

IPCC Intergovernmental Panel on Climate Change

LiDAR Light Detection And Ranging

LPV Land Product Validation

MAAP Multi-mission Algorithm Analysis Platform

MSE Mean Squared Error

NEON National Ecological Observatory Network

NFI National Forest Inventory

Pl Prediction Interval

PVIR Product Validation and Intercomparison Report

PVP Product Validation Plan

RMSD Root Mean Squared Difference

SAR Synthetic Aperture Radar

SD Standard Deviation

SLB Sustainable Landscape Brazil

TERN Terrestrial Ecosystem Research Network

Var Variance

Yacg (h) Variogram model of AGB with a spatial support matching the smallest plot size used our
analyses

yu(h) Variogram model of the residuals between AGBmap and AGB s, with a spatial support matching

the map pixels.

© Aberystwyth University and GAMMA Remote Sensing, 2018
This document is the property of the CCI-Biomass partnership, no part of it shall be reproduced or transmitted without the
express prior written authorization of Aberystwyth University and Gamma Remote Sensing AG.



Ref CCI Biomass Product Validation Plan v5

Issue Page Date = biomass
g
5.0 8 4-Dec-2024

© Aberystwyth University and GAMMA Remote Sensing, 2018
This document is the property of the CCI-Biomass partnership, no part of it shall be reproduced or transmitted without the
express prior written authorization of Aberystwyth University and Gamma Remote Sensing AG.




Ref CCI Biomass Product Validation Plan v5

= esa Issue Page Date biomass
. - 28
5.0 9 4-Dec-2024

1.Introduction

This Product Validation Plan (PVP) aims to provide a common framework for assessing and reporting
the accuracy of the European Space Agency’s (ESA) Climate Change Initiative (CCl) Biomass products,
namely the various global above-ground biomass (AGB) maps as well as the corresponding uncertainty
layers, and to assess user appreciation of these products. Elaboration of the plan and the forthcoming
validation itself run in parallel with ongoing Committee on Earth Observation Satellites (CEQS) cal/val
development, which provides opportunities for co-creation of the CEOS cal/val procedure. We further
build on results of the GlobBiomass project (Avitabile et al. 2015, Rozendaal et al. 2017) and the CCI
Biomass Phase 1 project and the related validation efforts. In fact, the annual map validation uses the
same framework as in Phase 1. In addition, there is a focus on exploring options towards validation of
AGB change obtained through comparison of the global AGB maps between time-separated periods
(years to decades) and exploring options for direct and independent biomass change accuracy analysis.

The framework consists of five main activities that jointly lead to the achievement of the validation
objectives, as shown in Figure 1.

s N
/Validation objectives\

Database compilation
* Thorough assessment of
. \ J

multi-year product

accuracy and error sources (" N
* Co-creation CEOS cal/val Methods & tools

procedures development

. o - J

* |dentify priorities for -
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* Spatial uncertainty L (for each assessment)

assessment at different

resolutions ( )
* Build user confidence for Map - in-situ comparison

applications

N

* Increase awareness and )

acceptance of the products

within the international Spatial uncertainty

xommunity / assessment
_ J

Figure 1. Validation objectives (left) and derived validation activities (right).

As with its predecessors from CCl Biomass Phase 1 (de Bruin et al. 2019a, de Bruin et al. 2020a), this
Product Validation Plan is developed in line with the new CEOS Land Product Validation (LPV) protocol
for biomass for space calibration and validation. The new CEQS protocol contains a dedicated section
about using existing in situ data as a reference for the validation of larger area AGB maps, assuming they
are properly screened, processed and harmonized, to allow for comparison with large area AGB map
predictions. It is recognized that different users, such as national inventory experts, global climate
modelers, local project implementers, etc., all have specific needs when it comes to biomass estimation
and uncertainty assessment with respect to spatial resolution, geographic extent, timing, thematic
content and definitions, and type and standards of uncertainty reporting. The CCl Biomass project and
its climate users are also interested in spatially explicit assessments of map precision and map bias in
addition to the more standard accuracy analysis undertaken for AGB map validation exercises. This
requires an effort to include a large number of in situ data sources covering all major geographical

© Aberystwyth University and GAMMA Remote Sensing, 2018
This document is the property of the CCI-Biomass partnership, no part of it shall be reproduced or transmitted without the
express prior written authorization of Aberystwyth University and Gamma Remote Sensing AG.



Ref CCI Biomass Product Validation Plan v5

& esa Issue Page Date biomass
: ) \
5.0 10 4-Dec-2024 é

regions and forest types (top box on the right of Figure 1). The main data sources of forest biomass
information include National Forest Inventories (NFls), research forest plot networks and operational
monitoring stations established for forestry, ecology or environmental purposes, including those using
local Light Detection and Ranging (LiDAR) observations from which AGB and ideally associated estimates
of uncertainty have been estimated.

The second box from the top at the right-hand side of Figure 1 indicates that a common set of data
harmonization and analysis methods and tools is developed and used. To support wider use, these are
provided in the form of an R-package that allows the climate change community (both within and
outside the project) to assess maps of AGB based on their own reference data, without the need to
upload those data to an external database.

The centre box at the right-hand side of Figure 1 refers to in situ data selection from the database, based
on a set of pre-defined quality criteria. The box further denotes data harmonization to adjust for any
partial forest cover within map pixels and allowable (< 10 years) temporal mismatches between the map
reference year and the in situ AGB inventory date.

Map-plot comparison (fourth box from the top in Figure 1) concerns statistical assessment of differences
between map and in situ estimates of AGB over reference AGB ranges. The assessments are performed
at the map pixel level, as well as spatially aggregated over larger pixel blocks. They are also differentiated
over ecoregions, realms! and slope and aspect classes which have been found to affect AGB retrieval
from satellite data (e.g., Réjou-Méchain et al. 2019). The aims of the map-plot comparisons are to assess
whether the biomass map satisfies design specifications (relative error of less than 20% where AGB
exceeds 50 Mg/ha) and to provide map producers with information on how and where to improve their
products. It is important to realize that the reference data are also estimates and therefore affected by
errors that should be taken into account when using them in the map-plot comparisons (Réjou-Méchain
et al. 2017, Réjou-Méchain et al. 2019). This is indicated by the short upward arrow in the bottom-right
of Figure 1.

These essential steps for validation of AGB maps also relate to the potential assessment of AGB changes.
With this PVP, we provide the first steps and concepts towards an AGB change validation framework.
This is in response to the proliferation of different approaches being developed to estimate AGB change
over larger areas including from AGB between different time-separated maps at different spatial
resolutions. We explain that there are different reference data sources and to what extent they are
available and suitable for any future AGB change validation exercises.

During the CCl Biomass User Workshops and later communications, the climate, carbon cycle and
REDD+ communities expressed the need for unbiased biomass estimates accompanied by spatially
explicit uncertainty information at spatial resolutions ranging from the 1 ha resolution of CCl Biomass
up to 0.5 or even 1-degree cells (for climate modelling) or countries (for REDD+) (Quegan and Ciais 2018
and CCl Biomass Phase 2 User Requirements Document). Hence, CCl Biomass product validation should
explicitly address estimation of systematic deviations and random differences between reference and
map biomass and uncertainty assessment at different spatial aggregation levels. This is indicated by the
box at the bottom-right of Figure 1.

Details of the approaches are provided in later chapters of this validation plan.

1 Biogeographic realms are large spatial regions within which ecosystems share a broadly similar biological evolutionary history.
Eight terrestrial biogeographic realms are typically recognized, corresponding roughly to continents. See Dinerstein, et al.
(2017).
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2.Concepts

2.1. Definitions

Accuracy is only occasionally used in this document to qualitatively refer to both random and systematic
error. This use of the term is in line with the ISO 5725 definition of accuracy.

Bias expresses the degree to which the expected value of an estimator differs from the true value of
the quantitative parameter being estimated.

Error. For a continuous variable such as AGB, error is defined as the difference between our
representation of reality (e.g., a mapped AGB value) and reality (e.g., a true AGB value). We can only
know error at some locations, if at all, because we rely on scarce reference values (e.g., from plots)
which themselves are estimates of reality. Therefore, we will often refer to differences or residuals
between mapped AGB values and reference AGB.

Precision denotes the dispersion of random errors; it is expressed by measures of statistical variability
such as variance and standard deviation.

Stability. According to the World Meteorological Organization (2011), stability is the extent to which
the error of a product remains constant over a longer period of time.

Systematic deviation of biomass refers to a systematic difference between predicted biomass (on the
map) and reference biomass obtained from plot data. Only if plot data (which themselves are estimates)
are unbiased, systematic deviation would equal bias. We assume the plot data to be unbiased.

Uncertainty is a quantitative description of error: we are aware that our representation differs from
reality, but we are only able to model the distribution of error (expressed by a probability distribution)
or, in many cases, just some statistic, such as standard deviation of the error, rather than the error itself.
This is a common situation, because if we knew error, we would simply correct for it and reduce the
error to zero.

2.2. Statistics

Table 1 lists the statistics used in this PVP, as well as their definitions, where E is the expected value, Z
denotes a random variable, u is the mean of Z Y is a vector of n reference values, Y is a vector of n
predicted values (i.e., CCl Biomass predictions), and h denotes a distance between two locations x.
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Table 1. Statistics used in this PVP.

Acronym Name

Description

Definition

Var Variance

SD Standard
deviation

di Observed
difference

MD Mean difference

MSD Mean squared
difference

RMSD Root mean
squared
difference

CI Confidence
interval

PI Prediction
interval

y(h) (Semi)variogram

0; Spatial
covariance

Measure of spread of a random
variable (2)

Measure of spread of a random
variable; square root of the
variance

Difference between a predicted
value, y;and a reference value,
y;, where i refers to a particular
instance, e.g., a location.

Average difference between
reference values and predicted
values

Average squared difference
between reference values and
predicted values

Square root of MSD

Measure of uncertainty
associated with a sample
population estimate (e.g., it);
intervals covering individual
observations commonly
referred to as prediction
intervals (see below).

Measure of uncertainty
associated with the prediction
of single observations

Function describing the degree
of spatial dependence of a
spatial random field, where x is
a spatial position and h is a
distance lag

Element of the spatial
covariance matrix, 2, where i
andj (1... n) refer to pixels
within a spatial unit

Var(2) = E[(Z - »)?]

SD(Z) = /Var(2)

1 n
MSD = —Z d?
n i=1

RMSD = VMSD

Estimated range of values likely to include
an unknown population property.

Estimated range in which a new
observation falls, with a certain
probability, given an existing model

y(h) = %Var[Z(x) —Z(x+h)]

0;,j = E[Z(x) — E(Z(x)]
- E[Z(x + h)
—E(Z(x + h)],
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3.Database compilation for biomass stocks

3.1. Sources of reference data

Building upon the GlobBiomass reference database (Rozendaal et al. 2017), an extensive dataset of
forest in situ data across the world has been acquired for the purpose of the validation (see Appendix
1, Figure 2). Plots included in the database undergo a series of quality checks (see below). In situ forest
data were not used for calibrating the CCl Biomass AGB map to guarantee full independence from the
production process and because the project’s AGB map processing chain does not rely on such a
calibration procedure.

The following in situ data selection criteria are used for CCl Biomass product validation. In situ data
need:

e A proper citable reference source and metadata to assess the procedures and quality of biomass
(AGB but also below-ground biomass (BGB) when collected) estimation.

e Precise coordinates (4-6 decimals for coordinates in decimal degrees).

e A census date within ten years from the reference year of the AGB map to avoid temporal
inconsistency with the assessed maps.

e Measurements of all trees of diameter > 10 cm (or less) included in the estimates.

e Sites that were not deforested between the year of the inventory and the reference year of the CCl
Biomass AGB map (i.e., 2010 and 2017-2020). The latter assessment is based on the 2021 forest
loss layer of the Hansen dataset (Hansen et al., 2013).

e LiDAR-derived AGB or other indirect AGB data should be accompanied by estimates of the standard
deviation of AGB error.

Note that the current data agreements will have to be renewed, and new agreements established.

Alternatively, reference data coming from harmonized and aggregated reference data described above
can be used for validation. This AGB reference dataset (“AGBref’) comes at different spatial aggregates
and epochs, is published as a scientific data and can be downloaded from Zenodo (under preparation).

3.2. Sampling design

We primarily rely on AGB in situ data that are not specifically produced for validation purposes but that
are rather collected within the context of NFIs and other efforts at local to regional scale. This has several
consequences, which are summarised as follows:

e The populations of the CCl Biomass products and those of the inventories differ. CCl Biomass
concerns forest AGB over the entire globe (including areas without forest), whereas forest
inventories typically only concern forested areas within countries or regions. Moreover, large
portions of the world including Southeast Asia, large parts of Africa, the dry tropics and Siberia
have very little or no in situ data (see Figure 2).

e The sampling frames are different: CCl Biomass concerns mean forest AGB density estimates
discretised in ~100m x 100 m pixels (including non-forested areas) while the inventories employ
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non-uniformly sized and typically small plots (on average 0.15 ha for the AGB plot data referred to
in Appendix 1) within forested areas.

e Regionally, the AGB plot locations may have been chosen by probability sampling but large areas
of the world are not included in the AGB plot sample (see first bullet). That is because in these
areas, there are no national forest inventories or because institutions or authorities are unwilling
to share inventory data.

e The wide variety of sampling designs included in the AGB in situ dataset produces a complex
amalgamated sample.

Given the above, our approach is to consider the AGB in situ data with its mix of plot sizes or footprints
and local sampling designs as an opportunistic sample (also referred to as an ad hoc sample by other
authors). Such sampling invalidates conventional statistical inference methods unless particular
assumptions are made (see section 5.1).

Additionally, a model-based approach is adopted here, with the model parameters estimated from the
in situ data along with other data sources (see section 6.2).

3.3, Tiers of plot data and other in situ data

The contributions of AGB measurement error and within-pixel sampling error (see section 6.1) are
known to be largest for small plots, including those associated with NFls, whereas detailed
measurements of all trees within large plots deliver higher quality AGB data (Réjou-Méchain et al. 2014,
Réjou-Méchain et al. 2019).

A straightforward approach for taking into account expected differences in the accuracy of plot data is
to adopt a tiered approach comprising (Tier 1) small plots (< 0.6 ha) including NFI data, (Tier 2) larger
plots with sizes in the range 0.9-3 ha, and (Tier 3) high-quality large plots (> 6 ha; such as some from
Labriere et al. (2018)).

In addition to the above tiered classification, we use LiDAR-based AGB estimates at 100 m resolution
from the Sustainable Landscape Brazil project (SLB), the National Ecological Observatory Network, USA
(NEON) and the Terrestrial Ecosystem Research Network, Australia (TERN) processed by Labriere and
Chave (20204, b, c). Other region- or country-wise LiDAR transect collections are also included (over
e.g., Kalimantan, the Brazilian Amazon and the Democratic Republic of Congo).

An independent data source concerns 1-km pixel forest management inventory data originating from
the Congo basin Forests AGB (CoFor) dataset (Ploton et al., 2020). In this dataset, only pixels having at
least five in situ forest management inventoried plots are proposed to be used. Similarly, the
Environmental Monitoring and Assessment Program (EMAP) AGB also an aggregated data can be used.
The dataset is an aggregate of 27-km hexagons estimated from the Forest Inventory and Analysis
Program of the US Forest Service (Menlove and Healey, 2020).

These tiered plot data, the EMAP, LiDAR and the CoFor data are analysed separately in the descriptive
plot-pixel comparisons (section 5.2). This categorization is favourable given the increasing recognition
on use of LiDAR-based reference data.
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Figure 2. Geographical locations of plots and footprints of the reference datasets collected up to January 2024.

3.4, Data harmonization

For AGB product validation, the response design encompasses all steps leading to the assessment of
differences between map and plot AGB (cf. Olofsson et al. 2014). The plots used in our comparison may
have been surveyed at a different time than the map being assessed, they typically differ in spatial
support (i.e., the area covered by individual plots) from the AGB map (AGBmap) pixels and they measure
different spatial entities (average biomass over a pixel area versus forest biomass within a forest plot of
known dimensions). Therefore, data harmonization is needed prior to the analysis of differences, as
outlined below.

Differences between the inventory date of AGB plots and the reference year of the AGB map are
harmonized using updated Intergovernmental Panel on Climate Change (IPCC) growth rates (IPCC 2019,
Requena Suarez et al. 2019) following the approach described in Version 1 of the PVP (de Bruin et al.
2019a). For plots in tropical and subtropical ecological zones, age category dependent growth rates are
available (IPCC 2019, Requena Suarez et al. 2019). In those cases, plot AGB values in the range 0-99
Mg/ha, 100-152 Mg/ha and above 153 Mg/ha are assumed to represent young secondary forest, old
secondary forest (Van Breugel et al. 2007), and old growth stands (Brown et al. 1989, Clark and Clark
2000, Mello et al. 2016) respectively. Given the absence of data on plot forest age, mature forests with
low biomass cannot be distinguished from young stands, which has potential implications for the
proposed procedure. For temperate oceanic forests in Europe, boreal coniferous forests and tundra
woodlands, no differentiation of growth rates as a function of age is used. The temporal adjustments by
growth rates are applied up to a difference of ten years between the inventory date and the map
reference year. Plots having a larger temporal difference are discarded in the analyses (see Section 3.1).
The growth rate table in IPCC (2019) also reports different types of uncertainty estimates, such as
confidence intervals (Cl). The latter are translated into variances assuming a normal distribution.

Recall that the AGB plot data and the map have distinct sampling populations (see Section 3.2) in terms
of both different spatial support and the inclusion of non-forested areas within map pixels.
Harmonization of these differences is attempted by multiplying the temporally adjusted plot AGB by
forest fraction. This forest fraction is computed by putting a 10% threshold on a tree cover product
(Hansen et al. 2013) corresponding to the CCl Biomass map reference year. This is undertaken both at
the pixel level and over larger aggregated blocks. In the rare case of more than one AGB plot occurring
within a pixel, the average of the adjusted AGB per plot is used. The correction for forest fraction is
applied only to plots with an area below 1 ha. Given that CCl dataset has multiple epochs, the 2010 tree
cover was used to derive 2010 forest mask, 2000 tree cover data for the 2005 epoch but only after
removing forest loss pixels from 2001 to 2005. For the 2015 and 2020 epochs, the tree cover 2010
dataset was used but without the forest loss pixels from 2011-2015 and 2011-2020, respectively.

The data harmonization procedure is pictured in Figure 3. The reference AGB obtained (either at pixel
level or over aggregated pixel blocks) is referred to as AGBer.
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Figure 3. Overview of data harmonization steps.
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4.Database compilation for biomass changes

4.1. Sources of reference data

Reference data of changes in AGB (AAGB) in the past decade are required for the assessment of
differences between the AGB maps derived from the CCl maps. While we already noted limited coverage
in reference data for AGB stocks, the availability of AGB change (AAGB) reference measurements is even
more limited. What we present here is a first attempt to collect and compile a dataset that could be
useful for a comparison with AAGB estimates. The aim here is to explore availability and usefulness and
compile the data for a first order comparison with AGB map-based change estimates. The current focus
is on the period 2010-2020, as earlier data availability is more limited and, currently, no dedicated CCl
Biomass AGB change products have been generated (only annual biomass maps).

The first set of reference data concerns re-measured NFI plot data acquired from Belgium, the
Netherlands, Philippines and Sweden, where time 1 (T;) and time 2 (T2), that represent the times of
measurement, are at least five years apart. For the NFls, plot-level AGB has been estimated by the data
providers but without uncertainty estimates. Also available are multi-date plot data for some of the
plots from Tier 2 and Tier 3 described in the above section.

The second set of reference data comprises AGB maps derived locally in forests with re-measured plot
inventories and two corresponding airborne LiDAR campaigns that took place between 2010 and 2019.
These include maps from Brazil (Longo et al., 2016) and the USA (Johnson et al., 2010) where AGB
mapping involved calibration of LIDAR height and plot AGB using power-law models. Also available are
LiDAR-based maps from research projects in Bulgaria, Czech Republic, Ecuador, Spain, USA and Poland,
derived using regression models that relate height and AGB. The LiDAR maps resampled to 100 m were
used. Some of these maps have associated standard deviation (SD) layers (Appendix 2). Using LiDAR
maps as reference allows skipping of the spatial harmonization step discussed in Section 3.4 and Figure
3.

The third set of reference data is country-level estimates of AAGB obtained from the Food and
Agriculture Organisation (FAO) Forest Resources Assessment (FRA). These were derived by differencing
the reported AGB Mg/ha from 2018 and 2010, where 2018 is computed as the average of 2015 and
2020 AGB Mg/ha estimates. The country’s capability to conduct NFIs and derive FRA variables using
remote sensing data was categorized on a scale of 1 to 5 (1=very poor; 5=very good).

4.2. Data processing and harmonization

The quality filtering criteria of AAGB reference data are as follows:

1. Multi-date NFI plots can be filtered using tree cover loss datasets Hansen et al. (2013) to retain
only plots without forest area changes after the latest measurement and before the 2020 map
epoch. Plots more than 10 years apart from the map epoch can also be discarded;

2. LiDAR pixels can be discarded if there are AGB values in one epoch but not in another;

3. FRA data can be limited to countries with re-measured NFI or with “very good” NFI| reporting
capacity since 2010.
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Following this, the number of reference data retained after quality filtering compared to the original
data was reported and mapped over eco-zones defined by Whittaker (1975). The coverage per eco-
zone and country determined the suitability of reference data for global map assessments. For each
reference dataset, histograms of the AGB distribution in two epochs are shown in Figure 5. The
histograms of NFI and LiDAR selected data to derive the AAGB density and to assess the AAGB
distribution at every aggregation level as described in Section 5.3.3 were also produced.

4.3, Characteristics of reference data

The characteristics of the compiled reference data are shown in Figure 4 (large plots not displayed yet,
as the survey of relevant available data is still ongoing). The number of discarded data is largest for those
associated with the FRA (90 %) since most countries do not have repeated NFIs. More than half (56 %)
of the NFI plots were excluded either because they were outdated, or the sites had been deforested
after the second measurement and before 2020. Almost no LIDAR pixels (<1%) were filtered out as
reference since the repeated LiDAR surveys all took place in the past decade and almost all pixels were
associated with data collected during the 2010-2021 period. The reference data were mostly found in
the temperate and tropics, but these are still under-represented, as were all other eco-zones. The
selected FRA data, though small in size, are relevant to all ecozones. Despite its smaller size, the NFI
dataset had broader eco-zone coverage than the LiDAR dataset. That was because NFls are surveyed
over entire countries while LIDAR campaigns are typically confined to certain forested zones or regions.
The current reference data do not include NFIs and LiDAR data from Africa, Australia or Brazil (where
some transects and sites from the SLB project were flown over again during the EBA project; see Tejada
et al. 2019 for details). The AAGB distributions of LiDAR and NFI data at different aggregation levels
(Section 5.4) are shown in Figure 5. The highest density of data is observed for small AAGB but there are
also several reference data indicating large AGB gains and losses.

Figure 4. Coverage of the reference data per major ecological zone (a) and the map of the selected reference data
(b). The reference data are already quality-filtered.
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Figure 5. Distributions according to NFI and LiDAR data for the five aggregation levels.
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5.Map-plot comparisons

5.1. Assumptions

After adjustments for temporal discrepancies and partial forest fraction and having at least ten in situ
sites within a reference biomass range, we assumed mean AGB..s computed from the reference data in
Tiers 1 and 2 to be unbiased. For Tier 3 data we relaxed the requirement of 10 plots per biomass range
because these data were recorded over large footprints (> 6 ha) and the measurements followed a strict
protocol.

When reporting mean differences (i.e., AGBmap - AGByef) and root mean squared difference (RMSD) over
different spatial strata, we assumed that comparisons of map data and in situ data within these were
representative of those strata. For the descriptive analyses (Section 5.2), we further assumed that map-
plot comparisons are mutually independent but in the proposed geostatistical approaches (Chapter 6),
this assumption was relaxed.

5.2. Descriptive analyses

For tabulation, 50 Mg/ha wide AGB;.f bins were used up to 400 Mg/ha, while AGB.f values above 400
Mg/ha were grouped in a single bin (i.e., 0-50, 50-100 ... 350-400 and > 300 Mg/ha). For each bin, the
tables list at least the mean AGBef, mean AGBmap, mean AGBmap - AGBrer (MD), and the RMSD between
AGBrer and AGBmap.

For plotting, 25 Mg/ha wide bins were used up to 350 Mg/ha along with a single bin for all higher AGBef
values. The plots have AGBer on the x-axis and AGBmap On the y-axis. Mean (AGBrer, AGBmap) pairs are
shown using a point symbol while the interquartile ranges of AGBmap per bin are depicted by whiskers.
An example is shown in Figure 6.

#/bin

400  * <10 ® 50-100
+ 1020 @ 100-200
® 2050 @ >200

300

200

4
T T T T T
0 100 200 300 >300

Mapped AGB (Mg/ha)

Mean reference AGB (Mg/ha)

Figure 6. Example of a AGBmap - AGBrer comparison plot taken for epoch 2020 from the PVIR 5.0 report (last
accessed July, 2024).

A straightforward way of analysing AGBmap - AGByef differences was anticipated in Section 3.3. To account
for the expected differences in the accuracy of plots in different size categories, plots in different tiers
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can be analysed separately. Under the above unbiasedness assumption (Section 5.1), mean differences
between harmonized in situ data and map values aggregated over bins covering ranges of reference
AGB values were interpreted as map bias, per tier. However, note that binning of in situ data that are
affected by random errors may falsely suggest map bias. This has been demonstrated for the within-
pixel sampling error in the latest Product Validation and Intercomparison Report (PVIR) (de Bruin et al.,
2020b, Figures 17 and 18). To empirically verify the assumption of unbiased in situ data, the analyses
were conducted for each of the tier’s other data sources and the consistency of results was assessed
whenever data volume allowed.

An alternative to the tiered approach is to weight AGBmap - AGBr differences within bins using inverse
variance weighting based on the sum of the in situ measurement error variance, the variance of the
error introduced at the data harmonization steps, and the plot-pixel sampling error. These error
variances are explained in Section 6.1. Such an approach is only possible if sufficient data are available
for assessing spatial correlation structures of the latter error component for the smallest footprint size.

When weighted (AGBrer, AGBmap) pairs are computed, weighted quantiles and RMSD were used for
tabulation and plotting.

5.3. Stratification and spatial aggregation for stocks

5.3.1. Comparisons at 0.1° cell resolution

Depending on how data are used, biomass map users such as climate modellers and REDD+
communities may be interested in uncertainties over larger support units, such as square pixel blocks.
This preference was shared by climate modellers themselves in a survey conducted in 2018 (Quegan
and Ciais 2018). Aggregation of biomass predictions and measurements over larger spatial units often
results in a partial cancelling out of random prediction errors and measurement errors. Note that this
does not hold for systematic error or bias. Therefore, aggregation is expected to improve the precision
of map and harmonized plot data if both map and multi-plot data are averaged over larger spatial units.

To assess the CCl Biomass map at a resolution commonly used by climate modellers, AGBmap - AGBer
comparisons were also made over multi-pixel blocks at 0.1° cell resolution. In this case, correction for
partial forest fraction (see above) was undertaken at the level of the coarse resolution cells. Mean AGB s
at 0.1° cell resolution was computed by multiplying forest fraction at the 0.1° cell level with the mean
temporally adjusted AGB plots in that cell (see Figure 3).

Three options were considered for calculating the latter mean temporally adjusted AGB at the 0.1° cell
level.

e Using unweighted means for each of the tiers and other data sources (LiDAR/CoFoR) separately (see
Section 5.2).

e |nverse variance weighting of in situ data based on the sum of the AGB measurement error variance,
the variance of the error introduced at the data harmonization steps (Section 3.4), and the within-
pixel sampling error. This option still assumes mutual independence of plot data but explicitly
accounts for differences in the quality of plot data.

e Relaxing the mutual independence of in situ data. Another option is to compute block averages
through a block kriging approach (Goovaerts 1999, Malone et al. 2013).

Our aim is to compare the above options but the latter two are only feasible if sufficient data are
available for assessing spatial correlation structures (variograms y,qz(h)) of AGB for the smallest plot

© Aberystwyth University and GAMMA Remote Sensing, 2018
This document is the property of the CCI-Biomass partnership, no part of it shall be reproduced or transmitted without the
express prior written authorization of Aberystwyth University and Gamma Remote Sensing AG.



Ref CCI Biomass Product Validation Plan v5

= esa Issue Page Date biomass
. - 28
5.0 23 4-Dec-2024

size used in the analyses. The resulting AGB reference values were then compared with the average
AGBmap over the corresponding 0.1° cells.

5.3.2.  Comparisons at native map resolution

Other map users may be interested with the validation of maps at native resolution. In such a case, the
biomass estimates between reference data can be compared with pixel-level biomass. The comparisons
can be per based on different tiers according to plot sizes and even reference data type e.g., LiDAR only
for map-map comparisons (see PVIR 5.0).

5.3.3. Ecoregions

AGBmap — AGBer comparisons at 0.1° cell resolution (see above) were also stratified at biome scales
according to the map of Dinerstein et al. (2017; see https://ecoregions2017.appspot.com/). The biomes
include Once downloaded, the original vector maps were rasterized to 0.1° resolution and the raster
cells were assigned to the category covering the largest portion of the cell area.

5.4, Spatial aggregation for AGB change

Similarly to assessing AGB stocks, grid cells for AAGB assessments were used if they met the minimum
number of reference data requirements (Araza et al., 2022). Hence grid cells with very few reference
data were excluded from the analysis. Selected data inside grid cells were assumed to capture the
composition of forest structure at the selected grid cell resolution. The AGB averages per epoch from
NFI plots and LiDAR pixels at grid cells were estimated as weighted means where reference data with
high uncertainty received smaller weights in the averaging. The weights were inversely proportional to
the variance of an NFI plot or a LiDAR pixel (Araza et al., 2022). The AGB averages of all grid cells were
harmonized, particularly those that included non-forest areas to minimize the discrepancy in forest
areas between the reference data and maps (i.e., map pixels include both forest and non-forest). This
spatial aggregation was proposed to be undertaken iteratively at different aggregation levels in the
context of different map users requiring products from fine to coarse resolutions (Table 2).

Table 2. Details of the AAGB map-reference data comparisons and the selection of grid cells.

Assessment spatial scale NFI grid cell selection criteria LiDAR grid cell selection criteria
100x100 m? (100 m) all All

500%500 m? (500 m) all All

1x1 km? (1 km) >1 plots All

10x10 km? (10 km) >4 plots >14 pixels

25%25 km? (25 km) >9 plots >19 pixels
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6.Spatial uncertainty modelling for biomass

6.1. Definition of the error model

Even though the in situ AGB data were assumed unbiased, they are not error-free and therefore
comparisons between AGB maps and AGB in situ data should be accompanied by an uncertainty
analysis. The first step in such analysis is the definition of the error model. We propose an additive
model expressing the difference between a map prediction AGBmap and reference AGBes at pixel x
(denoted as D(x)) as a random variable composed of five zero mean random error components and a
map bias component (Equation 1):

D(x) = M(x) — (Plt(x) + Pos(x) + H(x)) +S(x) + b(x) (1

where M (x) the map biomass error at location x, PIt(x) is the plot measurement error (Réjou-Méchain
et al. 2017), Pos(x) is a positional error component, H(x) is the error introduced at the data
harmonization steps (Section 3.4), S(x) is a within-pixel sampling error component, and b(x)) is the
map bias (i.e., the difference AGBmap(x) — AGB’(x), where the latter term is the true biomass density for
pixel x. The within-pixel sampling error, S(x), arises because the AGB plot size is usually small compared
to the ~1 ha AGB map pixel (see Appendix 1). It is defined as AGB"(x) — AGB" pot(x), where the latter term
is the true biomass at the spatial support of in situ data within the pixel. A pixel footprint covered by a
homogeneous forest biomass population has sub-pixel biomass variation, and the plot samples only part
of that. Pixel footprints partly covered with forest undergo a harmonization procedure as explained in
Section 3.4. Note that S(x), Plt(x), Pos(x), S(x) and H(x) are random variables whose values are
unknown but can be described by probability distributions (Heuvelink, 2005).

All random error terms at the right-hand side of Equation (1) (i.e., all terms except b(x)) are assumed
to be zero mean and mutually uncorrelated. If the plot is small relative to the pixel size, Pos(x) is not
relevant unless the plot is at the edge of the pixel; all that matters is that it is located within the pixel.
Earlier analyses using a conservative distance decay function for sampling map-plot residuals revealed
that indeed Pos(x) is small compared to the other error components. Omitting Pos(x), the variance
of the difference between a map prediction AGBmap and reference AGByef at pixel x equals the sum of
the remaining error variances (Equation 2):

Var(D(x)) = Var(M(x)) + Var(Plt(x)) + Var(S(x)) + Var(H(x)) )

In our geostatistical modelling, we consider the spatial correlation of M(x), because errors in the AGB
maps can be spatially correlated and we need to account for this in our model-based inference. We take
into account this spatial correlation for purposes of assessing the joint AGB uncertainty when
aggregating map data to larger support units, such as pixel blocks, countries or other regions of interest.
The spatial correlation of M(x) is modelled using (biome-specific) variograms, ¥, (h), where A refers to
a distance lag.

We aim to model the bias b(x) as a function of AGBna, and other spatially exhaustive covariates, as
described in Section 6.3.1.
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6.2. Identification of the error model

6.2.1. Overview

Table 2 provides an overview of the approaches for estimating the parameters of the uncertainty model
described above. First results confirm an inverse relationship between Var(Plt(x)) and plot size, while
b(x) is often positive when the predicted AGB value is small (i.e., low AGBmap values tend to exceed
AGB;ef) and negative when they are large (i.e., high AGBmap vValues in the map tend to be less than AGB.f).

Table 3. Estimation methods for the parameters of the uncertainty model.

Component Estimation approach

b(x) Modelled as a function of AGBmap and spatially exhaustive covariates such as biome
(Dinerstein et al. 2017), topographic variables and proxies for anthropogenic activity, using
a random forest model (Breiman 2001) trained on observed differences, di, between AGBmap
and AGB:rerdata.

Var(M(x)) Square of the SD of the (zero mean) prediction error accompanying the CCI Biomass maps,
as described in Quegan et al., (2017) and Santoro and Cartus (2019).

Var(Plt(x)) For a subset of plots having individual tree measurements, (Réjou-Méchain et al. 2017)
biomass R-package is used. For other plots lacking such data, Var (Plt(x)) is predicted by a
random forest model trained on the subset having individual tree measurements, using
AGBumap, plot size and biomes as explanatory variables.

Var (S(x)) Var(AGBpixel - AGBplot) = Var(AGBpixel) + Var(AGBplot) +20 AGBpixel, AGBplot, where
G AGBpixel, AGBplot 1S the covariance of AGBpixet and AGBpior. All terms on the right-hand side
of this equation are obtained from variograms of small, contiguously clustered sites within
relevant Biomes, using change of support geostatistics (Goovaerts 1999, Malone et al.
2013). If nearby sites have different inventory dates, temporal adjustment to a common date
is required, as described in Section 3.4.

Var(H(x)) Variance of mathematical operations applied to random variables in the harmonization
steps.
Yace (h) Variogram model fitted to experimental semivariances of AGB with a spatial support of the

smallest plot size used. Used data are small-plot AGByiot data, LIDAR -derived AGB or
AGByiot from larger plots, followed by deconvolution using a nugget-to-sill ratio borrowed
from LiDAR data. Following Christensen (2011), the mean of Var (Plt(x)) is subtracted
from the nugget.

ym () Variogram model fitted to experimental semivariances of residuals between AGBmap and
AGB:.r after subtracting the bias b(x). This variogram has a spatial support of map pixels.
To correct for the other error sources, the mean variances
Var (Plt(x)), Var(S (x)) and Var(H(x)) are subtracted from the nugget, following
Christensen (2011). Scaling of the residuals may be needed to transform M(x) to
homoscedasticity (see Section 6.2.3).

6.2.2. Variograms of AGB from small plots

As shown in Table 3, prediction of Var(S(x)) requires variograms of AGB from small, contiguously
clustered sites located within relevant biomes (y,,(h)). At the stage of writing, we only have access to a
limited number of data coming from research plots, clustered NFI plots, and LiDAR-derived AGB data
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from small footprints acquired over two forest sites in Remningstorp, Sweden, and Lope, Gabon (i.e., a
boreal and a tropical forest site, respectively). The former ALS datasets were acquired in the framework
of the airborne ESA BIOSAR (Ulander et al., 2011).

Subplots from research plots are often larger (0.25ha) than the smallest plots of our dataset (a few plots
are only 0.01ha). Variograms at the smallest support size will be obtained by variogram deconvolution
(Goovaerts 2008) with a fixed nugget-to-sill ratio obtained from fine resolution AGB data, such as LiDAR-
derived AGB. Following Christensen (2011), the mean variance of the plot measurement error is
subtracted from the nugget variance.

6.2.3.  Variograms of map error at the spatial support of map pixels

Spatial aggregation of uncertainty over larger support units (see section 6.3.4) requires variograms of
M(+) at pixel support (y,,(h)). The uncertainty layer of the CCl Biomass maps and the other uncertainties
considered in Section 6.1 acknowledge that we expect Var(D(x)) to vary over space (i.e., it is
heteroscedastic). In other words, we recognize that at some locations, larger deviations between
AGBmap and AGB.es are more likely to occur than at other locations. Again, the (Christensen 2011)
approach for heterogeneous measurement error variances will be used for estimating the variogram of
the unobserved M (*) at pixel support, using estimated values for each error component as listed in Table

3. If necessary, observed realizations of D(x) — b(x) are scaled by /Var(M(x)) aiming to achieve
homoscedasticity.

6.3. Model-based prediction

6.3.1. Bias trend prediction

Different forest types, climatic gradients, topography and AGB itself have been found to affect bias in
AGB predictions (Chave et al. 2004, Rodriguez-Veiga et al. 2019, Santoro et al. 2015). We try to model
this bias as a function of AGBmas, and its textural properties as well as other spatially exhaustive
covariates such as biome (Dinerstein et al. 2017), topographic variables (elevation, slope), canopy height
and a proxy for anthropogenic activity (population density) using a random forest model (Breiman
2001). The approach is documented in more detail in Araza et al. (2022).

The predictive power of the covariates is evaluated using variable importance measures while sensitivity
of the modelled trends to the inputs is assessed using partial dependence plots (Greenwell 2017). If
fitting the bias trend model is successful, the random forest model is used in predictive mode to predict
a global bias layer b(x). The statistical significance of predicted bias is assessed using the prediction
standard errors obtained with Wager’s et al. (2014) infinitesimal jack-knife approach.

6.3.2. Error budgeting

The error model presented in Section 6.1 allows comparison of Var(D(x)) observed over AGB:e bins
with the sum of the error variances at the right-hand side of Equation (2). In de Bruin et al. (2019b,
2020b), a similar partial comparison was used to assess whether the error layer provided with the CCl
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Biomass map is consistent with considered error variances. This comparison can only be completed if
the error model has been fully identified (Section 6.2).

6.3.3. Block kriging for map-plot comparison at supra pixel support

Section 5.3.1 referred to a third option for computing the mean temporally adjusted AGB s at the spatial
support of 0.1° cells by block kriging. This is achieved by computing block averages of AGB from within-
block and nearby temporally adjusted plot AGB using the small plot variograms introduced in Section
6.2.2 and block kriging that accounts for different error variances of the plot data (Malone et al. 2013).
The procedure also computes the variance of the prediction error. Correcting for forest fraction (section
3.4), AGBye at 0.1° cell level is obtained, which is compared with the average AGBmap over the 0.1° cell.
It is repeated here that this procedure is only possible if variograms of AGB at the spatial support of the
smallest plots are available for the different forest types.

6.3.4. Spatial aggregation of random error

Spatially uncorrelated zero-mean errors tend to cancel out when aggregating over larger spatial units,
but this effect is less pronounced when errors are spatially correlated. We model the latter effect using
the variograms introduced in section 6.2.3. From the variograms and the distance matrix for all pixel
pairs, x;, x; contained in a support unit, a covariance matrix, 2 is computed with elements o; ;. The
variance of the map error over the support unit is then predicted by summing the elements of 2 and
division by n? (Equation 3):

1
Var(aggr) = = ?:12?:1 0;j ©)
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/.Map inter-comparison

7.1. Stability of AGBmap — AGBrer among CCl Biomass products

According to the World Meteorological Organization (2011), stability is the extent to which the error of
a product remains constant over time. To exploratively assess the local stability of the plot-map
differences (d;) over the multiple AGB epochs (i.e., 2010 and 2017 - 2020) produced within the CCI
Biomass project, we suggest to produce scatterplots of d; for each combination of map reference years,

as exemplified in Figure 7.

The map producer may want to know where the largest instabilities in the residuals occur. Such
information can be provided by plotting the locations of chosen tails of the distribution of differences
in d; for different combinations of reference years (e.g., the 5% of sites with the most negative
differences and the sites of the 5% largest positive differences). Alternatively, sites where the instability
exceeds a particular threshold (e.g., 10%, as proposed by the World Meteorological Organization?) can

be of interest.

2 https://gcos.wmo.int/en/essential-climate-variables/biomass/ecv-requirements
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Figure 7. Example of AGB residuals between harmonized Tier 1-3 plot data and mapped AGB at 0.1° cell level
for each combination of map reference years. The red dashed line is the 1:1 line.

7.2. Comparison of CCl Biomass maps with other AGB products

This task consists of the comparison of the CCl Biomass maps with other AGB products covering a given
geographic extent, as well as comparison of map bias based on AGB reference data. The comparison
aims to complement the product validation with the following information: evaluation of consistency
between different products; identification of areas with larger disagreements and assessment of
whether these areas need further study; assessment of strengths and weaknesses of different datasets
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based on the analysis of the data and methods used to produce the maps; and increased awareness and
acceptance of CCl Biomass products within the international community.

The map inter-comparison involves the following steps. Firstly, datasets to be compared (i.e., regional
or global maps) are identified and acquired. Secondly, the datasets are harmonized with CCl Biomass
maps in terms of spatial and temporal support (see section 3.4) as well as thematic content (e.g.,
biomass unit). Thirdly, the following comparison metrics are computed at pixel level and at aggregated
grid resolution (e.g., 0.1°):

1. Comparison statistics, global and across continents and biomes

Mean (absolute) difference
Histogram of differences
Root Mean Square Difference
Linear correlation

2. Comparison maps:

Difference maps
Relative difference maps, using the CCl Biomass maps as reference

3. Comparison plots of mapped data:

Scatterplots or whisker plots such as exemplified in Figure 8.
Histograms and cumulative distributions

4. Comparison plots of mapped data against harmonized AGB plot data, such as exemplified in
Figure 8.

The map comparison could be expanded to biomass change datasets using a similar framework.
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Figure 8. Comparison of different global biomass maps against harmonized plot data for the whole of Brazil. The
CCI map is version 4 and the YEXv4 biomass map is from a previous version of Fendrich et al. (under review as
of Febr, 2025). The value of bias refers to the mean AGB of the full dataset.
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8.Expert assessment

The Expert Assessment is an essential quality control and feedback mechanism, aimed at assessing the
users’ acceptance of CCl Biomass products, evaluating their quality and limitations from the users’
perspective, and obtaining recommendations for improvements. The output of the Expert Assessment
consists of an Expert Survey report.

The Expert Assessment is performed using standard questionnaires, which are produced for each CCl
Biomass product. The questionnaires aim to assess:

e User satisfaction.

e  Product usability.

e Delivery system (timing, delivery method, naming, format, etc.).

e Product quality and limitations related to spatial and temporal resolution.
e Applicability of the products for climate modelling.

e Need of capacity building (optional).

e Future data and product requirements.

To support users in assessing the CCl Biomass products using their own data, an R-workflow is being
implemented in tools intended for distinct user groups: This consists of:

(1) An online interactive tool for occasional users, which provides easy access to the analysis methods
described in this validation plan.

(2) An offline toolbox for technical users who want to integrate the analysis methods in their own
workflow (i.e., third parties who conduct independent validation). Error! Reference source not
found. shows a screenshot of a prototype of the online interactive tool; the local version can be
found at: GitHub - arnanaraza/Plot2Map: Plot-to-map comparison of aboveground biomass
workflow. The local version has been tested by users from the University of Leicester, Forest
Research in the UK and the World Resources Institute. The main functionalities of the R workflow
include pre-processing of different forest inventory configurations (e.g., plot shapes), estimation of
measurement error for plot data with and without tree-level measurement and visualization of
plot-to-map comparisons.

The tool Plot2Map can also be accessed using the Multi-mission Algorithm Platform (MAAP) (Albinet
et al., 2019). Through the MAAP, global map users can use their own (country) data to validate global
maps while retaining the privacy of their reference data such as NFls. See Figure 9 for sample MAAP
implementations. The user manual on how to use Plot2Map in the MAAP using the ESA account can
be found here: Plot2Map MAAP User Guide - Google Docs
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B+ X000 > = Cow vy O
#PLOT DATA IS UNFORMATTED i.e. ONN FORMAT OF DATA SOURCE

! ## Since Jupyter Notebook d es the interactive option where users will be asked of ne

## users should format their plot data, which should include PLOT_ID, POINT_X, POINT_Y, A

sf:: sf_use_s2(FALSE)

i+ setwd (dataDir)
plotsFile <~ 'NFI.csv

plots <- read.csv(plotsFile)

world <- readOGR ("/projects/shared-buckets/|eitoldv/NaturalEarth/ne_10m_admin_0_countries
Japan <- worId[wor1dSADMO_A3=="JPN", ]

plot (japan)

p <~ plots

coordinates (p) <- "POINT_X+POINT_Y

plot(p.add=T, main="NFI Japan')

setwd (mainDir)

0GR data source with driver: ESRI Shapefile

Source: “/projects/shared-buckets/leitoldv/NaturalEarth/ne_10Om_admin_0_countries.shp”, la
yer: “ne_10m_admin_0_countries”

with 255 features

It has 94 fields

Integer64 fields read as strings: POP_EST NE_ID

Figure 9. Wales (left) and Japan (right) country cases of validating the CCI map through the MAAP.
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APPENDIX 1 Plot data used for validating CCI Biomass products.

ID Tier Average Average Count Biome URL Paper / source Data access
year size (ha)
. . » . . . . . (Labriére et al.,
AFR L 3 2011 25.00 1 Tropical rainforest https://dspace.stir.ac.uk/retrieve/74d3b352-fa46-418f-ba95-728bb33f4cfc/08417912.pdf 2018) open
. . https://www.-ture.com/articles/s41597-019-0196- (Schepaschenko et
EU_FOS 3 2014 16.25 ! Tropical rainforest 17belid=IwARO8vLoOm4xEQo4EUdLtoKsnP6nsNIY 5CYnfecoqGeS5Z0_UcyaNIr-jcdDg al.,, 2019) open
. . » . . . . . (Labriére et al.,
SAM L 3 2010 7.65 20 Tropical rainforest https://dspace.stir.ac.uk/retrieve/74d3b352-fa46-418f-ba95-728bb33f4cfc/08417912.pdf 2018) open
. » o e e - . source-WUR
AUSI 3 2009 25.00 1 Tropical dry forest http://data.auscover.org.au/xwiki/bin/view/Product+pages/Biomass+Plot+Library (Paul et al., 2016) agreement
. . . . . Lopez-Gonzales
SAM_RF 3 2008 53 10 Tropical rainforest http://www.rainfor.org/en/project/about-rainfor ctal. 2011 Open
. . https://www.-ture.com/articles/s41597-019-0196- (Schepaschenko et
AFR_FOS 2 2013 1.00 44 Tropical rainforest 17belid=IwARO8vLoOm4xEQo4EUdLtoKsnP6nsNIY 5CYnfecoqGeS5Z0_UcyaNIr-jcdDg al.,, 2019) open
. . . L . - . . (Labriére et al.,
AFR L 2 2016 1.00 56 Tropical rainforest https://dspace.stir.ac.uk/retrieve/74d3b352-fa46-418f-ba95-728bb33f4cfc/08417912.pdf 2018) open
. https://www.-ture.com/articles/s41597-019-0196- (Schepaschenko et
AUS_FOS 2 2008 1.00 2 Tropical dry forest 12fbclid=IwAR08VLoOm4xEQo4EUdLtoKsnP6nsNIY 5CYnfcoqGeS5Z0_UeyaNIr-jedDg al., 2019) open
. . https://www.-ture.com/articles/s41597-019-0196- (Schepaschenko et
CAM_FOS 2 2012 101 18 Tropical rainforest 17belid=IwARO8vLoOm4xEQo4EUdLtoKsnP6nsNIY 5CYnfecoqGeS5Z0_UcyaNIr-jcdDg al.,, 2019) open
. https://www.-ture.com/articles/s41597-019-0196- (Schepaschenko et
EU_FOS 2 2010 2.23 2 Boreal coniferous forest 17belid=IwARO8vLoOm4xEQo4EUdLtoKsnP6nsNIY 5CYnfecoqGeS5Z0_UcyaNIr-jcdDg al.,, 2019) open
. . https://www.-ture.com/articles/s41597-019-0196- (Schepaschenko et
SAM_FOS 2 2011 1.00 3 Tropical rainforest 17belid=IwARO8vLoOm4xEQo4EUdLtoKsnP6nsNIY 5CYnfecoqGeS5Z0_UcyaNIr-jcdDg al.,, 2019) open
. . » . . . . . (Labriére et al.,
SAM L 2 2013 1.04 28 Tropical rainforest https://dspace.stir.ac.uk/retrieve/74d3b352-fa46-418f-ba95-728bb33f4cfc/08417912.pdf 2018) open
Pacheco-
. . . . source-WUR
SAM_BAIJ 2 2017 1 3 Tropical rainforest https://ieeexplore.ieee.org/abstract/document/8518871 Pasccagaza et agreement
al., 2020
. . . . . Lopez-Gonzales
SAM_RF 2 2008 1 374 Tropical rainforest http://www.rainfor.org/en/project/about-rainfor otal. 2011 Open
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https://dspace.stir.ac.uk/retrieve/74d3b352-fa46-418f-ba95-728bb33f4cfc/08417912.pdf
https://www.nature.com/articles/s41597-019-0196-1?fbclid=IwAR08vLoOm4xEQo4EUdLtoKsnP6nsNIY5CYnfcoqGcS5Z0_UcyaNIr-jcdDg
https://www.nature.com/articles/s41597-019-0196-1?fbclid=IwAR08vLoOm4xEQo4EUdLtoKsnP6nsNIY5CYnfcoqGcS5Z0_UcyaNIr-jcdDg
https://dspace.stir.ac.uk/retrieve/74d3b352-fa46-418f-ba95-728bb33f4cfc/08417912.pdf
http://data.auscover.org.au/xwiki/bin/view/Product+pages/Biomass+Plot+Library
https://www.nature.com/articles/s41597-019-0196-1?fbclid=IwAR08vLoOm4xEQo4EUdLtoKsnP6nsNIY5CYnfcoqGcS5Z0_UcyaNIr-jcdDg
https://www.nature.com/articles/s41597-019-0196-1?fbclid=IwAR08vLoOm4xEQo4EUdLtoKsnP6nsNIY5CYnfcoqGcS5Z0_UcyaNIr-jcdDg
https://dspace.stir.ac.uk/retrieve/74d3b352-fa46-418f-ba95-728bb33f4cfc/08417912.pdf
https://www.nature.com/articles/s41597-019-0196-1?fbclid=IwAR08vLoOm4xEQo4EUdLtoKsnP6nsNIY5CYnfcoqGcS5Z0_UcyaNIr-jcdDg
https://www.nature.com/articles/s41597-019-0196-1?fbclid=IwAR08vLoOm4xEQo4EUdLtoKsnP6nsNIY5CYnfcoqGcS5Z0_UcyaNIr-jcdDg
https://www.nature.com/articles/s41597-019-0196-1?fbclid=IwAR08vLoOm4xEQo4EUdLtoKsnP6nsNIY5CYnfcoqGcS5Z0_UcyaNIr-jcdDg
https://www.nature.com/articles/s41597-019-0196-1?fbclid=IwAR08vLoOm4xEQo4EUdLtoKsnP6nsNIY5CYnfcoqGcS5Z0_UcyaNIr-jcdDg
https://www.nature.com/articles/s41597-019-0196-1?fbclid=IwAR08vLoOm4xEQo4EUdLtoKsnP6nsNIY5CYnfcoqGcS5Z0_UcyaNIr-jcdDg
https://www.nature.com/articles/s41597-019-0196-1?fbclid=IwAR08vLoOm4xEQo4EUdLtoKsnP6nsNIY5CYnfcoqGcS5Z0_UcyaNIr-jcdDg
https://www.nature.com/articles/s41597-019-0196-1?fbclid=IwAR08vLoOm4xEQo4EUdLtoKsnP6nsNIY5CYnfcoqGcS5Z0_UcyaNIr-jcdDg
https://www.nature.com/articles/s41597-019-0196-1?fbclid=IwAR08vLoOm4xEQo4EUdLtoKsnP6nsNIY5CYnfcoqGcS5Z0_UcyaNIr-jcdDg
https://dspace.stir.ac.uk/retrieve/74d3b352-fa46-418f-ba95-728bb33f4cfc/08417912.pdf
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. . https://www.-ture.com/articles/s41597-019-0196- (Schepaschenko et
UK_FOS 2015 120 ! Tropical rainforest 17belid=IwARO8vLoOm4xEQo4EUdLtoKsnP6nsNIY 5CYnfecoqGeS5Z0_UcyaNIr-jcdDg al.,, 2019) open
AFR10 2007 1.00 7 Tropical rainforest https://iopscience.iop.org/article/10.1088/1748-9326/6/4/049001/meta (Mitchard et al., source-WUR
2011) agreement
AFRI13 2008 1.00 2 Tropical rainforest https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2009GL040692 (Mitchard et al., source-WUR
2009) agreement
AFR14 2009 1.63 4 Tropical rainforest https://www.sciencedirect.com/science/article/abs/pii/S014362281400109X (Rygn, Berry, & source-WUR
Joshi, 2014) agreement
AFR6 2009 1.00 12 Tropical rainforest https://cbmjour-1.biomedcentral.com/articles/10.1186/1750-0680-9-2 (Willcock et al., source-WUR
2014) agreement
AFR7 2012 1.00 19 Tropical rainforest https://royalsocietypublishing.org/doi/full/10.1098/rstb.2012.0295 (Lewis et al., 2013) Z;?;SEX:JR
ASI3 2007 1.00 92 Tropical rainforest https://www.sciencedirect.com/science/article/abs/pii/S0378112711004361 (Morel et al., 2011) Z;?;SEX:JR
AUSI1 2012 1.01 63 Subtropical steppe http://data.auscover.org.au/xwiki/bin/view/Product+pages/Biomass+Plot+Library (Paul et al., 2016) Z;?;SEX:JR
. . , . . source-WUR
SAM2 2012 1.00 40 Tropical rainforest http://geoinfo.cnpm.embrapa.br/geonetwork/srv/ eng/main.home
agreement
. . https://www.-ture.com/articles/s41597-019-0196- (Schepaschenko et
SAM_FOS 2011 0.25 142 Tropical rainforest 12fbclid=IwAR08VLoOm4xEQo4EUdLtoKsnP6nsNIY 5CYnfcoqGeS5Z0_UcyaNIr-jedDg al., 2019) open
. . https://besjour-ls.onlinelibrary.wiley.com/doi/full/10.1111/1365- (Vieilledent et al., source-WUR
AFRIS 2013 0.25 136 Tropical rainforest 2745.12548%4010.1111/%28ISSN%291365-2745.FORESTRY 2016) agreement
(Hirsh, Jourget, source-WUR
AFR1 2008 0.50 1152 Tropical rainforest https://agritrop.cirad.fr/572060/1/document _572060.pdf Feintrenie, Bayol, asreement
& Ebaa Atyi, 2013) | 28
AFR10 2007 0.50 11 Tropical rainforest https://iopscience.iop.org/article/10.1088/1748-9326/6/4/049001/meta (Mitchard et al., source-WUR
2011) agreement
(Avitabile, Baccini,
. . source-WUR
AFR12 2008 0.16 108 Tropical rainforest https://www.sciencedirect.com/science/article/abs/pii/S0034425711003609 Friedl, & "
Schmullius, 2012) | 2&reemen
AFRI13 2008 0.50 23 Tropical rainforest https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2009GL040692 (Mitchard et al., source-WUR
2009) agreement
. , . . . . . source-WUR
AFR14 2009 0.51 70 Tropical dry forest https://www.sciencedirect.com/science/article/abs/pii/S014362281400109X (Ryan et al., 2014) agreement
(DeVries,
. source-WUR
AFR4 2012 0.13 110 Tropical mountain system http://www.geo-informatie.nl/workshops/scw2/papers/deVries.pdf Avitabile, Kooistra, "
& Herold, 2012) agreemen
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https://www.nature.com/articles/s41597-019-0196-1?fbclid=IwAR08vLoOm4xEQo4EUdLtoKsnP6nsNIY5CYnfcoqGcS5Z0_UcyaNIr-jcdDg
https://www.nature.com/articles/s41597-019-0196-1?fbclid=IwAR08vLoOm4xEQo4EUdLtoKsnP6nsNIY5CYnfcoqGcS5Z0_UcyaNIr-jcdDg
https://iopscience.iop.org/article/10.1088/1748-9326/6/4/049001/meta
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2009GL040692
https://www.sciencedirect.com/science/article/abs/pii/S014362281400109X
https://cbmjournal.biomedcentral.com/articles/10.1186/1750-0680-9-2
https://royalsocietypublishing.org/doi/full/10.1098/rstb.2012.0295
https://www.sciencedirect.com/science/article/abs/pii/S0378112711004361
http://data.auscover.org.au/xwiki/bin/view/Product+pages/Biomass+Plot+Library
https://www.nature.com/articles/s41597-019-0196-1?fbclid=IwAR08vLoOm4xEQo4EUdLtoKsnP6nsNIY5CYnfcoqGcS5Z0_UcyaNIr-jcdDg
https://www.nature.com/articles/s41597-019-0196-1?fbclid=IwAR08vLoOm4xEQo4EUdLtoKsnP6nsNIY5CYnfcoqGcS5Z0_UcyaNIr-jcdDg
https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2745.12548%4010.1111/%28ISSN%291365-2745.FORESTRY
https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2745.12548%4010.1111/%28ISSN%291365-2745.FORESTRY
https://agritrop.cirad.fr/572060/1/document_572060.pdf
https://iopscience.iop.org/article/10.1088/1748-9326/6/4/049001/meta
https://www.sciencedirect.com/science/article/abs/pii/S0034425711003609
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2009GL040692
https://www.sciencedirect.com/science/article/abs/pii/S014362281400109X
http://www.geo-informatie.nl/workshops/scw2/papers/deVries.pdf
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. . , . . . o . (Vaglio Laurin et source-WUR
. - p SN . arviewPa ) .
AFRS 2012 0.08 71 Tropical rainforest https://pure.mpg.de/pubman/faces/ViewItemOverviewPage.jsp?itemId=item 2281402 al., 2016) agreement
AFR6 2009 0.33 12 Tropical dry forest https://cbmjour-1.biomedcentral.com/articles/10.1186/1750-0680-9-2 (Willcock et al., source-WUR
2014) agreement
Carreiras,
( source-WUR
AFR8 2008 0.13 105 Tropical moist forest https://www.sciencedirect.com/science/article/abs/pii/S0034425712001058 Vasconcelos, &
agreement
Lucas, 2012)
https://www.mdpi.com/2072-4292/5/4/1524 (Carrei cal
. arreiras et al., open, source-
AFR9 2016 0.13 9642 Tropical dry forest lgttg)ls: /[fndsmoz.maps.arcgis.com/apps/MapSeries/index.html?appid=6602939{39ad4626a10f87bf625 2012) V\eUR agreement
3afle
Tropical and subtropical
AFR_KEN 2011 0.09 362 grasslands, savannas and source-WUR
shrublands agreement
ASII 2008 0.05 2903 Tropical mountain systemand | .0\ tandfonline com/doi/full/10. 1080/17583004.2016.1254009 (Avitabile et al., source-WUR
rainforest 2016) agreement
. . , . . . . . source-WUR
ASI10 2008 0.10 1268 Subtropical mountain system https://www.sciencedirect.com/science/article/abs/pii/S0034425719303608 Zhang et al. 2019 agreement
ASI2 2011 0.11 119 Tropical dry forest http://www .leafasia.org/sites/default/files/public/resources/ WWEF-REDD-pres-July-2013-v3.pdf WWEF and OBf, source-WUR
2013 agreement
ASI4 2010 0.02 70 Tropical dry forest http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.972.708 &rep=rep 1 &type=pdf Wijaya et al., 2015 Z;?;EEX:JR
ASI9 2012 0.13 74 Tropical rainforest http://leutra.geogr.uni-je-.de/vgtbRBIS/metadata/start.php ?gllzablle etal, ZO?;;:K:JR
gl
. . https://www.-ture.com/articles/s41597-019-0196- (Schepaschenko et
ASL_FOS 2014 0.25 2 Tropical rainforest 17belid=IwARO8vLoOm4xEQo4EUdLtoKsnP6nsNIY 5CYnfecoqGeS5Z0_UcyaNIr-jcdDg al.,, 2019) open
AUSI1 2011 0.12 5611 Tropical dry forest http://data.auscover.org.au/xwiki/bin/view/Product+pages/Biomass+Plot+Library Paul et al. 2016 Z;?;SEX:JR
Temperate broadleaf and source-WUR
EU1 2011 0.01 16819 mixed forests and Boreal https://www.slu.se/en/collaborative-centres-and-projects/swedish--tio-1-forest-inventory/ Sweden NFI agreement
forests
EU2 2007 0.20 7177 Mediterranean forests http: /www:nmgran.l.a.g()b.és es d;sarrollo—rurul/temas politica-forestal/inventario- Spain NFI source-WUR
cartografia/inventario-forestal--cio-1 agreement
EU3 2013 0.06 3021 Temperate oceanic forest https://library.wur.nl/WebQuery/wurpubs/454875 Netherlands NFI Z;?;SEX:JR
Temperate broadleaf and L
EU4 2007 0.06 5967 mixed forests and https://www.agriculturejour-Is.cz/publicFiles/01003.pdf g(;?)rémela ctal ZO?;;:K:JR
Mediterranean forests &
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https://pure.mpg.de/pubman/faces/ViewItemOverviewPage.jsp?itemId=item_2281402
https://cbmjournal.biomedcentral.com/articles/10.1186/1750-0680-9-2
https://www.sciencedirect.com/science/article/abs/pii/S0034425712001058
https://www.mdpi.com/2072-4292/5/4/1524
https://fndsmoz.maps.arcgis.com/apps/MapSeries/index.html?appid=6602939f39ad4626a10f87bf6253af1e
https://fndsmoz.maps.arcgis.com/apps/MapSeries/index.html?appid=6602939f39ad4626a10f87bf6253af1e
https://www.tandfonline.com/doi/full/10.1080/17583004.2016.1254009
https://www.sciencedirect.com/science/article/abs/pii/S0034425719303608
http://www.leafasia.org/sites/default/files/public/resources/WWF-REDD-pres-July-2013-v3.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.972.708&rep=rep1&type=pdf
http://leutra.geogr.uni-jena.de/vgtbRBIS/metadata/start.php
https://www.nature.com/articles/s41597-019-0196-1?fbclid=IwAR08vLoOm4xEQo4EUdLtoKsnP6nsNIY5CYnfcoqGcS5Z0_UcyaNIr-jcdDg
https://www.nature.com/articles/s41597-019-0196-1?fbclid=IwAR08vLoOm4xEQo4EUdLtoKsnP6nsNIY5CYnfcoqGcS5Z0_UcyaNIr-jcdDg
http://data.auscover.org.au/xwiki/bin/view/Product+pages/Biomass+Plot+Library
https://www.slu.se/en/collaborative-centres-and-projects/swedish-national-forest-inventory/
http://www.magrama.gob.es/es/desarrollo-rural/temas/politica-forestal/inventario-cartografia/inventario-forestal-nacional/
http://www.magrama.gob.es/es/desarrollo-rural/temas/politica-forestal/inventario-cartografia/inventario-forestal-nacional/
https://library.wur.nl/WebQuery/wurpubs/454875
https://www.agriculturejournals.cz/publicFiles/01003.pdf

Ref

CCI Biomass Product Validation Plan v5

, esa Issue Page Date biomass
5.0 40 4-Dec-2024
https://www.-ture.com/articles/s41597-019-0196- (Schepaschenko et open, source-
EU_FOS 2015 0.28 sla Boreal forests 1?fbelid=IwAR08vVLoOm4xEQo4EUdLtoKsnPonsNIYS5CYnfcoqGeS5Z0 UcyaNlIr-jedDg al., 2019) WUR agreement
NAMI1 2010 0.04 586 Boreal coniferous forest https://www.p-s.org/content/112/18/5738.short (Liang et al., 2015) source-WUR
agreement
NAM2 2004 0.04 75 Temperate mountain system https://www.nature.com/articles/nature07276 (Luyssaert ct al., source-WUR
2008) agreement
NAM3 2010 0.03 588 Temperate continental forest source-WUR
agreement
NAM4 2010 0.04 2794 Temperate mountain system Alaska NFI source-WUR
agreement
SAM2 2013 0.23 241 Tropical rainforest https://www.paisagenslidar.cnptia.embrapa.br/webgis Embrapa, undated source-WUR
agreement
SAM3 2011 0.13 111 Tropical rainforest CIFOR, undated source-WUR
agreement
SAM4 2014 0.15 7 Tropical rainforest CIFOR, undated source-WUR
agreement
SAMS 2014 0.60 23 Tropical rainforest CIFOR, undated source-WUR
agreement
(Pacheco- WUR
SAM_BAIJ 2017 0.25 363 Tropical rainforest https://ieeexplore.ieee.org/abstract/document/8518871 Pasccagaza et Z;?;z;en "
al., 2020)
. . . . . (Lopez-Gonzales
SAM_RF 2008 1 125 Tropical rainforest http://www .rainfor.org/en/project/about-rainfor etal, 2011) open
https://www.tandfonline.com/doi/full/10.1080/07038992.2014.913477?casa_token=EZx (Bispo et al WUR
SAM_TAPA 2009 0.5 138 Tropical rainforest eZoegekk AAAAA%3AZHCNISXtpZRrsSIKoGTBhPy1 yzhAkkLZHfck3fomwSnvSa 201}1’) N Z(;‘rzzremm
O7YDiuPV_hne6M;jlWdn-7ME_sPChP
AFR_COF 2009 100 35029 Tropical moist forest, https://www.nature.com/articles/s41597-020-0561-0 (Ploton et al., 2020) | open
LiDAR 2014 1 744397 Tropical rainforest IS\II]‘E%I\? ERN, open
Temperate broadleaf and .
ASI IR 2019 0.16 223 mixed forests and https://afrjournal.org/index.php/afr/article/view/2390 (Moradi ctal., source_WUR
. 2021) agreement
Mediterranean forests
EU_WLS 2016 0.5 1711 Temperate oceanic forest https://www .forestresearch.gov.uk/ Wales NFI MAAP
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https://www.nature.com/articles/s41597-019-0196-1?fbclid=IwAR08vLoOm4xEQo4EUdLtoKsnP6nsNIY5CYnfcoqGcS5Z0_UcyaNIr-jcdDg
https://www.nature.com/articles/s41597-019-0196-1?fbclid=IwAR08vLoOm4xEQo4EUdLtoKsnP6nsNIY5CYnfcoqGcS5Z0_UcyaNIr-jcdDg
https://www.pnas.org/content/112/18/5738.short
https://www.nature.com/articles/nature07276
https://www.paisagenslidar.cnptia.embrapa.br/webgis/
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. . .. . . Japan research
ASI JAP1 1 2018 1 94 Subtropical mountain system JAXA / Ministry of Environment Japan (only 0.1 plot-map aggregates are provided) plots MAAP
ASI _JAP2 2 2018 0.1 13000 Subtropical mountain system JAXA / Japan Forestry Agency (only 0.1 plot-map aggregates are provided) Japan NFI MAAP
LVIS 1 2016 1 10000+ Tropical rainforest https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1775 2A0r;r(1)ston etal, MAAP

© Aberystwyth University and GAMMA Remote Sensing, 2018
This document is the property of the CCl-Biomass partnership, no part of it shall be reproduced or transmitted without the express prior written authorization of Aberystwyth University and Gamma
Remote Sensing AG.




~@Sd

Ref

CCI Biomass Product Validation Plan v5

Issue

5.0

Page Date biomass
3 \
42 4-Dec-2024

APPENDIX 2.

Country

Netherlands
Belgium
Sweden
Philippines

Poland

Czech
Republic

Spain

Bulgaria
Costa Rica

Brazil

USA

Alaska

Data
type

NFI

NFI

NFI

NFI

LiDAR

LiDAR

LiDAR

LiDAR
LiDAR

LiDAR

LiDAR

LiDAR

Reference data potentially useful used for validating and comparing Biomass change products.

Dominant Measurement n Inventory  Original size AGB change SD Eco-region
forest type (n) year (ha) (Mg/ha) estimate

Temperate broadleaf and mixed
Plantation 3 1562 2007-2016  0.04 11.8 no forests

Temperate broadleaf and mixed
Plantation 3 668 2003-2009 0.1 -2.8 no forests

Temperate broadleaf and Boreal
Plantation 3 12887 2008-2013  0.03 4.9 no forests
Natural 2 587 2003-2014 0.5 2.8 yes Tropical rainforest

Temperate broadleaf and mixed
Plantation 2 770 2005-2019 1 6.5 no forests and Boreal forests
Plantation 2 75 2014-2020  0.05 2 yes Temperate conifer forests
Plantation 2 54058 2010-2016 0.1 0.86 yes Mediterranean forests
Plantation 2 1946  2006-2016 0.1 0.12 yes Temperate conifer forests
Natural 2 9342 2010-2018 0.1 -0.6 no Tropical rainforest
Natural 2 28607 2011-2018 0.1 -17.8 no Tropical rainforest

Temperate broadleaf and Boreal
Natural 2 110939 2013-2019 0.1 1.76 no forests
Natural 2 48552 2013-2019 0.1 1.76 yes Boreal forest

Reference

Schelhaas et al., 2018
Schelhaas et al., 2018

Schelhaas et al., 2018

Araza et al., 2021
Laurin et al., 2020

Brovkina et al., 2017

Mariano et al., under
preparation

Dmitrov et al., under
preparation

Cushman et al. 2021

Longo et al., 2016

Johnson et al., 2010

Johnson et al., 2010
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