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1 Introduction

Above-ground biomass density (AGB, units: Mg ha'1) is defined by the Global Carbon Observing
System (GCOS) as one of 54 Essential Climate Variables (ECV). For climate science communities,
AGB is a pivotal variable of the Earth System, as it impacts the surface energy budget, the land
surface water balance, the atmospheric concentration of greenhouse gases and a range of
ecosystem services. The requirement is for AGB to be provided wall-to-wall over the entire globe
for all major woody biomes, with a spatial resolution between 500 m and 1 km (based on satellite
observations of 100-200 m spatial resolution), a relative error of less than 20% where AGB
exceeds 50 Mg ha'! and a fixed error of 10 Mg ha'! where the AGB is below that limit.

The increased availability of remote sensing imagery during the last 20 years has allowed the
generation of several wall-to-wall datasets of AGB. The uncertainty in magnitude and distribution
of AGB prior to the Climate Change Initiative (CCI) Biomass project is illustrated in (Figure 1-1),
where each line represents latitudinal averages of AGB estimated with remote sensing data. While
the overall trends in the AGB spatial distribution are consistent across the AGB datasets, the
variability of AGB among these datasets is, on average, more than 100% (precision figures here
excluded). While it is acknowledged that remote sensing is the only tool that can provide global
spatially explicit estimates of AGB, the large discrepancies observed in Figure 1-1 are because AGB
can only be inferred from observations since remote sensing instruments do not have the
capability to measure the organic mass stored in vegetation. Yet, as remote sensing observations
and in situ observations increase and improve the characterization of “biomass”, there are
substantial margins to improve the accuracy of the estimates.

AGB [Mg/ha)
A

60 40 20 0 20 40 60 80
Latitude (deg)

Figure 1-1: Latitudinal averages of AGB estimates from the GlobBiomass dataset (Santoro et al. (2021), Saatchi
et al. (2011), Baccini et al. (2012), Avitabile et al. (2016) and GEOCARBON dataset, Hu et al. (2016), Thurner et
al. (2014), Liu et al. (2015) and Kindermann et al. (2008).

The objectives of the CCI Biomass project are to generate global maps of AGB using a variety of
Earth Observation (EO) datasets and state-of-the-art models for several epochs and assess
biomass changes between epochs (annual and decadal changes). The maps should be spatially and
temporally consistent; in addition, they need to be consistent with other thematic data layers that
are produced in the framework of the CCI Programme (e.g., Fire, Land Cover, Snow etc.).
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The scope of this document is to present the algorithms that generate the AGB products and the
corresponding maps of AGB changes. This Algorithm Theoretical Basis Document (ATBD) relies
on indications in the Users Requirements Document (URD) [RD-1], the Product Specifications
Document (PSD) [RD-2] and the Data Access Requirements Document (DARD) [RD-3]. In addition,
itelaborates on major inputs from the earlier Product Validation and Algorithm Selection (PVASR)
documents [RD-4], which investigated potential ways to improve the biomass estimated with the
algorithms described in this ATBD.

While the ATBD describes the data and algorithms used to generate the global biomass and
biomass change products as specified above, the End-to-End ECV Uncertainty Budget (E3UB)
document describes the procedures implemented to quantify the precision of the AGB estimates
[RD-5]. An estimate of the bias of the maps, assessed with inventory plot data and a modelling
framework, is provided in the Product Validation and Intercomparison Report (PVIR) [RD-8].
Future advances that may potentially be implemented in revisions of this ATBD are described in
the Algorithm Development Plan (ADP) [RD-6].

During Year 1 of CCI Biomass (Phase 1), methods were developed that led to the generation of a
first version of a global AGB product for the year 2017. During Year 2, these methods were refined
by considering the assessment of the AGB map of 2017 and alternative algorithmic advances
documented in the PVASR and in the ADP of Year 1. The ATBD was updated in Year 2 to document
the algorithms implemented to generate AGB estimates for the epochs 2010, 2017 and 2018. The
focus of Year 2 was to generate a first set of three AGB maps. These were generated independently
of each other to gather understanding on global AGB mapping in several epochs. The overall
spatial distribution was well captured, although the AGB estimates were affected by different
biases and errors that were particularly noticeable in the densely forested tropics [RD-8]. As a
first approach to quantifying AGB changes at yearly and almost decadal scale, difference maps
were also generated. Large scale errors were apparent when comparing the 2010 dataset with the
other two datasets. The different set of EO data available for 2010 compared to 2017 and 2018
explained these discrepancies. Based on these conclusions, the work undertaken in Year 3
consisted of improving the accuracy of each of the three individual maps of AGB and allowed a
first assessment of AGB change between epochs. At the end of Phase 1 of the CCI Biomass project,
the accuracy of the individual maps was improved but correction methods to overcome
systematic discrepancies between the maps did not perform sufficiently well to guarantee correct
estimates of AGB changes. During the first year of Phase 2 of the CCI Biomass project, the retrieval
algorithms were further developed to reduce biases and improve the inter-annual consistency of
the AGB estimates and provide reliable values for AGB changes on annual and decadal time scales.
Biases were addressed with a novel training of the function relating height to AGB and by using a
much wider dataset of spaceborne LiDAR observations. Verification of the AGB maps produced
with this algorithm showed that the modifications to the CORE algorithm removed some of the
largest biases but also introduced some errors. During year 2 of Phase 2, the CORE algorithm was
improved with more extensive datasets of LiDAR observations and subnational statistics of AGB,
which supported the calibration of one of the structural functions integrated in the retrieval
model. In addition, the temporal adjustment of AGB estimates was introduced to avoid unnatural
year-to-year fluctuations due to the weak-to-moderate sensitivity of the SAR observations to AGB.
Verification of the AGB estimates confirmed that the algorithm improvements are of benefit but
still some issues related to both data and models need to be solved. In this report, we document
recent advances of the CORE retrieval algorithm intended to further reduce biases and improve
the consistency of the AGB estimates on a decadal scale.
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Section 2 provides the background of this ATBD, describing the strategy that underpins the
algorithms implemented in CCI Biomass to estimate AGB. The ATBD also describes the datasets
(EO and auxiliary) used to estimate AGB (Section 3); the AGB retrieval methods used to generate
global maps of AGB (Section 4); and the methods used to quantify AGB changes across epochs
(Section 5). Correction of AGB biases is addressed in Section 6. An assessment of the retrieval
algorithm and the biomass change algorithm is presented in Section 7.

2 Background

2.1 Theory behind algorithms for global biomass retrieval

Thanks to the increasing amount of spaceborne EO data, methods and models that allow
estimation of forest variables are being developed with the aim of achieving a quantitative global
description of forest biomass. Below, we briefly outline strengths and weaknesses of algorithms
published in scientific journals that led to the generation of a global dataset of a forest variable
from EO observations up to the start of the CCI Biomass project in 2018. This list is not meant as
an evaluation of the data product but rather to state where past experiences can be of use in
enhancing or designing AGB retrieval algorithms based on current EO data.

The availability of global and repeated observations, first by the MODIS sensors and more recently
by Landsat sensors, fostered the estimation of global raster datasets of canopy height (Lefsky et
al,, 2010; Simard et al,, 2011) and AGB (Saatchi et al., 2011; Baccini et al., 2012; Hu et al., 2016),
the latter being the first to utilise the Ice, Cloud and land Elevation (ICESat) GLAS waveform data
to calibrate biomass prediction models. Relationships between ICESat GLAS waveform metrics
were established with respect to in situ observations, where available, and ICESat GLAS metrics
were related to observations by optical sensors (MODIS or Landsat) at pixels corresponding to
the ICESat GLAS footprints. Canopy height and AGB were then extrapolated to the remaining
pixels of the optical datasets to obtain wall-to-wall datasets. Even though these methods
implement some measurements of canopy height and AGB (where used), they nonetheless
assume that the estimation of canopy height does not require predictors other than MODIS-
derived observables, which is questionable since MODIS observables are not a direct
measurement of a forest structural parameter. In addition, they rely on a dataset of in situ
measurements to establish the functional dependency between “true” and Light Detection and
Ranging (LiDAR)-based height. Since such datasets are not available globally, there is a risk that
the quality of the estimates is not consistent, being more prone to errors in regions under-
represented in the database of in situ measurements.

To reduce errors in individual maps of AGB, Avitabile et al,, (2016) proposed a technique to fuse
maps based on the level of agreement of each map with reference AGB measurements. This
approach, applied to two pan-tropical maps (Saatchi et al.,, 2011; Baccini et al., 2012), generated a
new map that was then combined with a map of AGB for the boreal and temperate zones (Thurner
etal,, 2014) to obtain a global map referred to as the GEO-CARBON map. The strength of such an
approach was, in our opinion, also its weakness, in the sense that the method was insufficiently
constrained in regions where reference datasets (in situ, laser-based) were unavailable. Having
entered an epoch that can be considered data-rich in terms of spaceborne observations, the
demand on reference datasets has also increased and, accordingly, their availability. Hence, effort
should be spent on developing retrieval algorithms that integrate reference and EO data, rather
than attempting to fuse estimates from different sources that may ultimately lead to aggregation
of errors rather than provide a high-quality result.
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Compared to optical observations, data acquired in the microwave part of the spectrum contains
more information on forest structure because of the weaker attenuation of microwaves by the
canopy (passive sensors) or the deeper penetration of microwaves into the canopy (active
sensors). Hence, it can be reasonably assumed that an estimation based on microwave data
(Synthetic Aperture Radar; SAR-based observations, brightness temperatures) will improve the
accuracy of biomass-related variables. Furthermore, the more frequent sampling of the Earth by
spaceborne LiDAR, including those that are recent (ICESat-2 and Global Ecosystem Dynamics
Investigation; GEDI) or proposed (e.g., the Multi-footprint Observation Lidar and Imager; MOLI)
allow a larger proportion of the estimated AGB to be explained in terms of the waveform-based
measurements, thus in principle leading to a more accurate set of biomass estimates.

At coarser resolutions, attention must be paid to the Vegetation Optical Depth (VOD) observable
from passive microwave observations. X-band VOD has been used to generate yearly maps of
forest AGB and carbon over a period of 20 years (Liu et al.,, 2015) at 25 km spatial resolution. L-
band VOD from Soil Moisture and Ocean Salinity (SMOS) has been evaluated for African
landscapes and shown to be closely related to AGB (Rodriguez et al., 2018; Fan et al.,2019). The
relationship between VOD and AGB is explained in terms of increased attenuation that causes the
VOD to increase with AGB. The retrieval algorithms proposed by Liu et al. (2015) and Rodriguez
etal. (2018) use empirical functions to link VOD and AGB and are trained with AGB estimates from
other AGB maps. This approach can be justified by considering that at the spatial resolution of the
passive microwave data (0.25°), a “global” unique trend may characterize the dependence of VOD
on biomass. This assumption, however, can easily be challenged by noting that VOD experiences
seasonality and depends on the structural and dielectric properties of a forest. Hence, using an
AGB map as a surrogate training set to generate a global map of AGB may introduce errors by
distorting trends corresponding to regions that have not been mapped correctly in the reference
dataset.

A common feature of the algorithms listed above is that most emphasise data from a single sensor
rather than considering how to exploit the information content in multiple datasets, partly
because of data availability when the investigations were undertaken. Although not further
addressed in this document, EO datasets have also been used to generate national, regional,
continental, and biome-specific datasets. Unlike global endeavours, the retrievals were built
around the availability of reference data and/or multiple EO datasets; in addition, retrieval
models could be regionalized by introducing location-specific information on vegetation
properties, climate, etc.

Entering a data-rich epoch, these more local approaches may be transferable to the global scale.
Any algorithm that aims to estimate AGB should consider exploiting complementary information
from multiple sensors and exploit the biomass-related part of the signal. In addition, the uneven
distribution of high-quality reference measurements used to train retrieval algorithms should be
accounted for by designing the training procedure so that it is unaffected by such a deficiency. The
world’s forests are not measured evenly in space, which is likely to be a major source of estimation
bias at global level, and it is unlikely that a single model realization (i.e., a single set of non-
adaptive model parameters) can be applied globally. Using an AGB map as reference dataset could
be considered an alternative, if the AGB estimates are correctly estimated. This may apply to
LiDAR-based maps, which, however, have limited spatial extent. The use of wall-to-wall AGB
datasets is discouraged because of local and regional biases (Mitchard et al., 2013; Rodriguez
Veiga et al,, 2017) that can propagate to the new set of AGB estimates.
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The GlobBiomass project (https://globbiomass.org) attempted to implement the strategy
outlined in the last paragraph and overcome some of the issues listed above by: (i) selecting a
well-known modelling framework; (ii) using an adaptive approach to estimating the model
parameters in space and time; and (iii) removing the requirement of in situ data for training (the
model is self-calibrating). Point (i) was justified by the fact that numerous physics-based retrieval
models already exist and, in contrast to machine learning algorithms, are transparent. Point (ii) is
because EO signals change in space and time, whereas retrieval models typically do not account
for such variability. Point (iii) was possibly the most innovative aspect of an algorithm for
estimating AGB because it aimed to minimise the impact of reference data on the retrieval. Making
a retrieval algorithm independent of reference data allows a truly independent validation of the
retrieval with in situ data. On the other hand, it requires profound knowledge of the EO data to
avoid macroscopic errors being introduced.

The GlobBiomass retrieval algorithm used state-of-the-art retrieval algorithms with a specific
focus on implementing the three criteria set out in the previous paragraph. However, the design
of the algorithm was substantially affected by the EO data available for generating a global map of
forest AGB, in this case, for the epoch 2010. This was a fundamental factor in how the algorithm
was designed, in the sense that it was built around globally available EO datasets containing
information on biomass.

2.2 The GlobBiomass biomass dataset

The objective of the GlobBiomass project was to generate a global dataset of forest AGB
representative of the year 2010 epoch, satisfying the requirements that the error was at most 30%
and the spatial resolution below 500 m. From a design point of view, global coverage was more
important than the requirement on estimation error because the EO data that could support the
generation of a global dataset of AGB was sub-optimal. Biomass itself cannot be sensed by any
instrument but only inferred with mathematical models, from observations that relate to biomass.
Such observations for 2010 consisted of wall-to-wall surface reflectance datasets acquired by high
and moderate resolution sensors (Landsat, MODIS, MERIS) and SAR backscatter datasets acquired
by high-to-coarse resolution sensors at short wavelengths (C- and L-band). In addition, footprints
of laser waveforms were available but with too sparse spatial sampling for direct ingestion in a
biomass retrieval scheme. It is important to note that the selection of input EO data had a major
impact on the estimation results, regardless of how advanced the algorithmic implementation
may have been.
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Figure 2-1: The GlobBiomass AGB dataset (Santoro et al., 2021).
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Figure 2-1 shows the GlobBiomass dataset of forest AGB. Validation of the GlobBiomass AGB
estimates (Santoro et al., 2021) indicated the overall reliability of the data product when
comparing with AGB derived from inventory measurements at sample plots. While the spatial
distribution of AGB appears to be captured, positive biases in the low biomass range (50-100 Mg
ha1l) and negative biases in the high biomass range (> 250 Mg ha'l) occurred, although non-
systematically. Examination of the spatial distribution of the biases revealed that these were
caused by one or more of the factors listed below (Santoro et al., 2021).

e A too conservative constraint on the maximum biomass for a given area, causing
underestimation in the high biomass range.

e A too generic definition of the forest transmissivity term in the models relating SAR
backscatter to growing stock volume (GSV), causing overestimation of biomass in the low-
moderate biomass range.

e Lack of sensitivity of the SAR backscatter to biomass towards the upper range of biomass.

e Artefacts in EO data (Shimada and Ohtaki, 2010), requiring strong image filtering which
cancelled out subtle variations of the SAR backscatter.

e Uncorrected effects of sloping terrain on the SAR backscatter (Shimada and Ohtaki, 2010),
causing severe under/overestimation of biomass for slopes tilted towards/away from the
look direction of the radar.

e Incorrect representation of scattering mechanisms in specific vegetation types where the
models used to link SAR backscatter and biomass were not correctly parameterized (e.g.,
mangroves, flooded forest).

e (Coarse representation of the conversion from GSV to AGB, causing unwanted local biases.

While the weak sensitivity of the SAR backscatter to AGB cannot be compensated for, all other
causes of biases can in theory be handled:

e Wider knowledge of the biomass distribution globally allows better characterization of
the biomass spatial patterns and hence more realistic constraint in the retrieval models.

e Access to unprocessed EO data would allow avoidance of artefacts.

e More precise knowledge of vegetation spatial patterns globally would allow better
characterization of models and model parameters that describe the functional
dependence of biomass on EO observables.

e Wider knowledge of wood density, biomass allocation to the tree components and
allometry linking forest variables could feed back directly to the retrieval models and
improve the capability to adapt to the local relationship between biomass and EO
observables.

The validation exercise and thorough assessment of the GlobBiomass product also provided some
lessons that are of utmost importance when designing a global biomass retrieval algorithm that
can potentially clarify how uncertain the biomass pool is globally (see Figure 1-1) and overcome
issues in GlobBiomass and other endeavours aiming to characterize the world’s forest biomass.

1. Retrieval of biomass requires multiple data sources, including EO data not particularly
suited to retrieving biomass.

2. Height information can substantially improve the estimates of biomass where the other
EO observables do not exhibit sensitivity to biomass.

3. Retrieval of biomass does not necessarily require reference biomass data (e.g., in situ
observations of biomass) for training.
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4. Retrieval should be based on multiple estimates, i.e., multiple models. Each model should
allow adaptation of its parameters to cope with spatial variability in the functional
relationship between EO data and biomass.

Points 1 and 3 represent two pillars of the GlobBiomass retrieval algorithm. Point 2 was given less
importance in the GlobBiomass algorithm than in other approaches, mostly because of the
potentially large error introduced by extrapolating relationships between height and biomass
developed at sample points using raster datasets only partially sensitive to biomass. Nonetheless,
the integration of height information from spaceborne LiDAR instruments is mandatory to better
characterize the relationship between biomass-related variables in the retrieval models. Point 4
was only touched on in GlobBiomass by pursuing separate retrievals with C- and L-band data and
merging them; this needs further development by exploiting other approaches that can
compensate for deficiencies in the biomass estimates obtained with the GlobBiomass approach.

2.3 Moving from the GlobBiomass to the CCl Biomass CORE algorithm

The global biomass retrieval algorithm implemented in CCI Biomass followed the same rationale
as underpinned the development of the GlobBiomass retrieval algorithm. However, it expands and
improves the GlobBiomass algorithm to: (i) better represent some vegetation-specific
relationships between EO observables and biomass; (ii) account for new EO datasets not available
at the time of the GlobBiomass project; and (iii) compensate for systematic errors revealed by the
assessment of the GlobBiomass dataset. The current version of the CORE algorithm furthermore
expands on the experience of previous CCI Biomass project years. In the process of improving the
CORE algorithm, changes are applied that account for evidence from assessment of the AGB maps
of previous years described in the PVIR [RD-8]) and the PVASR [RD-4].

A further development regards the inter-annual consistency of AGB estimates, which is needed to
estimate AGB changes. Since the pool of EO observations used to estimate AGB is not the same
throughout the time interval envisaged by the CCI Biomass project (2005-2022), retrieval
algorithms need to ensure that such diversity is compensated for to ensure temporal consistency
of the estimates across two decades.

3 Datasets and additional material

This section describes the EO datasets used to generate the AGB and AGB change maps to be
included in the Climate Research Data Package (CRDP) for the current project year.

Current CRDP: version 6 (v6)
Years: 2007, 2010, 2015-2016, 2017, 2018, 2019, 2020, 2021 and 2022

For 2015-2022, the EO dataset consists of ALOS-2 PALSAR-2 and Sentinel-1 observations of SAR
backscatter. Wall-to-wall coverage by other SAR datasets was not accessible and passive
microwave observations did not match the requirement of the recommended spatial resolution
of AGB datasets by GCOS. Optical data were not considered because they were unlikely to provide
a substantial contribution to the retrieval, given global coverage by active microwave data.
Microwaves penetrate the forest canopy to a certain extent so that the backscatter recorded by
radar sensors is sensitive to forest structural parameters and, therefore, to AGB. Following the
same reasoning, the retrieval of AGB for the years 2007 and 2010 was based on ALOS-1 PALSAR-
1 and Envisat ASAR datasets.
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Spaceborne LiDAR observations from the ICESat (2003-2009), ICESat-2 (2018-ongoing) and GEDI
(2019-ongoing) missions are an additional source of observations. LiDAR observations capture
vegetation structural features. However, their sampling is still too coarse to use them for wall-to-
wall estimates of forest variables. Spaceborne LiDAR observations are, therefore, used here in the
process of calibrating models rather than as predictors of AGB. We use height and canopy density
metrics because these are directly related to the original observations. LiDAR-based values of
AGB, as in Level 4 GEDI data products, are not ingested in the retrieval algorithm because they are
themselves an estimate and not a true measurement of biomass.

The EO datasets used to generate or used in producing the global maps of AGB are summarized in
Table 3-1. Each set of EO observations is then described in individual sections below.

Table 3-1: Remote sensing data sources, epochs covered and use.

Sensor Epoch Use
ALOS-2 PALSAR-2 2015-2022 Predictor
Sentinel-1 (A and B) 2015-2022 Predictor
ALOS-1 PALSAR-1 2007 and 2010 Predictor
Envisat ASAR 2007 and 2010 Predictor
ICESat GLAS All epochs Calibration
ICESat-2 All epochs Calibration
GEDI All epochs Calibration

The CORE algorithm also utilises several raster datasets to support the prediction of AGB. These
datasets are used either to support the calibration of modules of the retrieval algorithm or as a
mask to select EO observations in the process of self-calibration of the algorithm. Table 3-2
summarises the additional datasets and a short description of their use in the context of this
project.

Table 3-2: Additional datasets, type and use in the CORE retrieval algorithm.

Dataset

Type

Use

Digital Elevation Model

Surface elevation

Pre-processing of SAR data

Landsat canopy density
and density change

Vegetation cover density

Calibration of retrieval model

MODIS Vegetation
Continuous Fields

Vegetation cover density

Mask

CCI Land Cover

Land cover

Mask (specific classes)

Copernicus Global Land

Land cover

Mask (specific classes)

Operations

FAO Global Ecological | Ecoregions map Stratification
Zones
Ecoregions of the World Ecoregions map Stratification

Each of the datasets in Table 3-2 is described in individual Sections. Note that inter-dependency
between some auxiliary datasets exist; details are provided in the individual sections.

3.1 Sentinel-1 (C-band, wavelength 5.6 cm)

Sentinel-1 (S1) is a spaceborne mission operated by the European Commission in the Copernicus
framework and consists of two identical units (1A and 1B) flying C-band SARs. Sentinel-1A was
launched on April 3, 2014, and became operational in October 2014; after a ramp-up phase, the
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satellite began routine observations in 2016. Sentinel-1B was launched on February 25,2016, and
became operational at the beginning of 2017. Each unit has a 12-day repeat-pass interval, which
halves to 6 days when both units are operating. While the Sentinel-1A mission is still operating; a
malfunction on Sentinel-1B stopped acquisitions at the end of 2021.

Each unit can acquire data at single and dual polarization (HH+HV or VV+VH) in several modes.
Over land, the Interferometric Wide Swath (IWS) was selected. Using the TOPSAR scanning
technique, IWS achieves a spatial resolution of approximately 20 m in range and 5 m in azimuth,
covering a swath of approximately 250 km. For remote regions, primarily the interior of polar
regions and along their coastlines, S1 is operated in the Extended Wide Swath (EWS) mode.
Thanks to the ScanSAR observing technique, data acquired in EWS cover a swath of more than
400 km with a spatial resolution of approximately 100 m. Although Sentinel-1 can also acquire
using other modes, these are of marginal interest for the scope of this document. Figure 3-1 shows
a typical observation scenario of the Sentinel-1 constellation with two satellites in operation.
Since Russia and parts of Canada are covered by Sentinel-1B, these regions were not imaged
during 2022.

Sentinel-1 Constellation Observation Scenario: R . B,
Mode - Polarisation - Observation Geometry ﬁ sentinel-1

e ”’""ff///% //W///// é"//?i/'/’}/k//?w//////////
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I. >
{

Al

‘\\%\\\\\\\\\ \\\\\>\\>3\¥\\\ \\\\\\\\Wm
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* W or HH-HY

Figure 3-1: Observation geometry of the Sentinel-1 mission last accessed on 9 February 2019
(https://sentinel.esa.int/web/sentinel /missions/sentinel-1/observation-scenario).

Data acquisition by Sentinel-1 in the IWS mode follows a predefined observation scenario with
different levels of priority. The highest priority is given to acquisitions over Europe, where each
unit acquires along both ascending and descending paths (Figure 3-1). The second level of priority
is given to areas prone to disasters due to tectonics, volcano eruptions and earthquakes, as well
as to polar and ice-covered regions. The third is given to areas of environmental importance
(vegetation, e.g., wall-to-wall coverage of the tropical land surface). Sentinel-1 operations
originally aimed at achieving global coverage every 12 days with each unit. However, the duty
cycle of each unit allowed global coverage every 12 days only when both satellites were in
operation. With the loss of Sentinel-1B, global coverages are not achieved. The EWS mode is not
used as a complement to IWS but should rather be seen as an independent acquisition mode with
specific requirements, i.e., frequent coverage and moderate resolution. EWS primarily targets
polar regions, with some limited extension over northern regions.

The acquisitions in IWS mode are programmed to give minimal overlap of swaths from adjacent
orbital tracks at the Equator. The overlap increases towards the poles so the number of
observations within a repeat-pass cycle of 12 days for a given point on the ground increases. For
regions observed with both units along both ascending and descending paths, one or more
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observations per day were possible. In contrast, the swath overlap of adjacent orbital tracks in
EWS mode is large, leading to a very high number of observations within the 12-day repeat-pass
cycle of one unit (several observations daily are possible at the highest latitudes).

It was shown with Envisat ASAR data that the retrieval of biomass benefits from a dense stack of
observations of C-band backscatter (Santoro et al., 2011; Santoro et al., 2013; Santoro et al,,
2015a). However, not all observations in a data stack were found to contribute to the final
estimate of biomass. The largest contribution came from images acquired under dry and frozen
conditions in the boreal and temperate zone (Santoro et al.,, 2011). More generally, data acquired
under dry conditions appeared to be more suitable than data acquired under wet conditions
(Santoro et al., 2015a). In addition, in Santoro et al. (2011) it was concluded that having at least
20 images available with a backscatter contrast between unvegetated terrain and dense forest
conditions of more than 0.5 dB allows systematic biases in the retrieved biomass to be reduced.
Roughly one third of the C-band backscatter observations investigated in Santoro et al. (2011)
fulfilled this requirement.

Following these indications, retrieval based on Sentinel-1 images is feasible thanks to the
repeated acquisitions, particularly from the start of routine operations by both units in 2017.
However, the retrieval does not require the entire archive of data. For regions with almost daily
observations, the IWS dataset acquired after 2016 was pruned to exclude observations with a
correlation close to 1. An analysis of the Sentinel-1 data archives in terms of geographical
distribution of the imagery at continental scale revealed that, between 2017 and 2021, the image
data pool was extremely redundant over Europe. In addition, for the purpose of retrieving
biomass, imagery acquired north of 75°N and south of 56°N was unnecessary because it is not
covered with woody vegetation.

To demonstrate the wall-to-wall mapping capability of Sentinel-1, we show the data coverage by
Sentinel-1 for 2017 in Figure 3-2 after pruning redundant data. The pool of images achieved global
coverage of all forests except for a gap in northwest Canada. A more detailed search of the
Sentinel-1 archives revealed that for this region there were hardly any acquisitions in IWS mode,
whereas several acquisitions were available in the EWS mode. EWS data were therefore used to
fill gaps. Similar EWS imagery was used to fill two gaps smaller than an IWS scene (i.e., 250 x 250
km?2). This gap-filling strategy had no effect on the biomass estimates obtained from Sentinel-1
data since Sentinel-1 imagery was processed to a pixel size of 150 m.

B e

Figure 3-2: Coverage of the 2017 Sentinel-1 IWS dataset selected to support the estimation of biomass
(courtesy J. Kellndorfer, EBD).
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For 2015 and 2016, about 220,000 scenes acquired by Sentinel-1 A were selected for pre-
processing. Approximately, 250,000 scenes were selected for pre-processing for 2017. For 2018
to 2021, the numbers increased to about 300,000 because in 2017 the 1B unit started delivering
images only in April. For 2022, the number of Sentinel-1 images decreased to about 200,000 due
to the end of operations of the 1B unit. Figure 3-3 shows a comparison in terms of coverage for
the years 2021 and 2022. While in 2021 the coverage was almost global, in 2022 large gaps
occurred over Russia, South America and Africa. The search was undertaken on the data
repository of the Alaska Satellite Facility (ASF) because it mirrors European data holdings while
providing speedier and more reliable access to the data.

Figure 3-3: Mosaics of Sentinel-1 backscatter images (VH-polarization) based on data acquired in 2021 (top) and
2022 (bottom).

The Sentinel-1 IWS data pool consisted of individual images, each covering an area of
approximately 250 km x 250 km, in the acquisition geometry of the Sentinel-1 radar. Pre-
processing generated a stack of terrain geocoded, radiometrically calibrated, speckle-filtered and
co-registered Sentinel-1 observations provided in Ground Range Detected (GRD) format. GRD
images consist of ground-range projected images of the SAR backscatter intensity. The pixel
spacing of a GRD image acquired in the IWS mode is 10 m in both ground range and azimuth. Given
that the spatial resolution of the IWS mode in the azimuth direction is about 14 m and the GRD
data has been multi-looked by factor 5 in range to a ground range resolution of ~18 m (Torres et
al, 2012), the images in GRD format are slightly oversampled. For the EWS mode, the same
reasoning was applied. Compared to the IWS mode, the pixel spacing of an EWS image in GRD
format is 50 m in both range and azimuth, thus oversampled as for IWS data. Although Single Look
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Complex (SLC) images retain the original spatial resolution of the data, data in GRD format were
used for several reasons:

1) SLCimages allow the generation of interferometric variables, such as coherence, and it has been
shown that estimation of biomass from C-band coherence is more accurate than from SAR
backscatter (Santoro et al., 2002; Santoro et al., 2018), but it is unlikely that the 6- and 12-day
repeat-pass intervals of the Sentinel-1 constellation will allow coherence to be preserved in all
vegetated regions on Earth. The effort of processing SLC data to coherence globally is therefore
likely to be of little value to this project.

2) A single GRD scene in IWS mode covers an area of 250 x 250 km?, corresponding to
approximately 1.6 GB of data. The corresponding SLC image consists of approximately 8 GB. Since
SLC data are strongly affected by speckle, multi-looking (i.e., spatial averaging) is required. For a
minimal improvement in terms of radiometric resolution, the effort of accessing and managing
images in SLC format instead of GRD format is unjustified.

3) Based on previous experience when using GRD data for large-scale land mapping and
monitoring (Santoro et al., 2017), the quality of the data in GRD format was sufficient to support
the retrieval of biomass.

The SAR pre-processing chain is shown in Figure 3-4. Before implementing the pre-processing
chain, the output pixel spacing of the Sentinel-1 image data was analysed. The option of pre-
processing to preserve the spatial resolution of the data was discarded because of the extremely
large amount of data to be handled throughout the biomass retrieval phase. Since each image file
consists of roughly 1 GB, we would have faced a total output of 250-300 TB of backscatter data
per year to be used for biomass retrieval. In addition, one would need to account for the size of
the auxiliary data files that support the retrieval, such as maps of layover/shadow and local
incidence angle. In the end, it was decided to spatially average the GRD data files to a pixel size
that would preserve spatial details, while effectively removing speckle. It was also considered that
the purpose of the Sentinel-1 dataset was to support the estimation of biomass in the context of
CCI Biomass (i.e., for a community of users that does not require high spatial resolution products).
Finally, it was considered that such a dataset should be compatible with other datasets of C-band
backscatter measurements, namely from Envisat ASAR. It was, therefore, decided to process the
Sentinel-1 data to the same geometry as the moderate resolution ASAR dataset (i.e., to a pixel
spacing of 150 m). Ultimately, the benefit of working with “clean” SAR backscatter observations
appeared to be more important than preserving high spatial resolution, even though a numerical
analysis was not undertaken.

The commercial software package by GAMMA Remote Sensing was used to pre-process the
Sentinel-1 data. Import of Sentinel-1 SAR images into the GAMMA Software consisted of
reformatting the SAR dataset to the GAMMA Software structure (image dataset and metadata in
the image parameter file) (Wegmiiller et al., 2016). In addition, calibration and noise reduction
were applied using the calibration gain and the noise factors reported in the original image
metadata and auxiliary data files. Precise orbit information was used to replace state vectors
provided in the original metadata of each image (https://qc.sentinell.eo.esa.int/aux poeorb/).
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Figure 3-4: Flowchart of the Sentinel-1 data pre-processing

Multi-looking consisted of boxcar averaging of the backscatter of contiguous pixels in an averaging
window of 15 x 15 pixels to achieve a multi-looked intensity (MLI) image with a pixel spacing of
150 min both range and azimuth. Because of the strong averaging, no additional speckle filter was
applied. To estimate the level of residual speckle noise, the Equivalent Number of Looks (ENL)
(Oliver and Quegan, 1998) was computed.

2

ENL="% (3-1)

The computation of the ENL as in Equation (3-1) was implemented by drawing a polygon that
included an area characterized by a homogeneous distribution of features (e.g., a dense forest, a
field) and computing the mean and variance of the SAR backscatter within it. This operation was
repeated for several polygons spread over the SAR image to obtain a histogram of values to better
quantify the ENL and avoid having an estimate based on one or a small number of polygons that
could be biased because of how these were selected. The computation of the ENL was not
attempted for all Sentinel-1 images. Since it could be reasonably assumed that ENL should not
depend on seasonality or the specific land cover type, we randomly selected a small number of
images from the data stack of 2017, then created polygons and finally computed the ENL for each
polygon and image. This “global” set of ENL values is displayed in Figure 3-5; the median was 162
and the span was [90, 375] with most values being between 100 and 250. The error statistics
derived from this analysis are further discussed in the E3UB document of the CCI Biomass project
[RD-5].
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Figure 3-5: Estimates of ENL for 35 polygons distributed over five Sentinel-1 VV-polarized images randomly

selected in boreal, temperate, and tropical environments.

Since Sentinel-1 images were obtained in radar geometry, they needed to be transformed into the
output map geometry. For CCI Biomass, the geographical coordinate system with a pixel spacing
0f 0.0013888°, corresponding to 150 m at the Equator, was adopted. The transformation of a SAR
image from radar to map geometry was implemented in the form of a geocoding look-up table
(LUT; Wegmiiller, 1999). The LUT reflected the output geometry (map projection in this case); at
each pixel, the LUT contained the corresponding x and y coordinates in the SAR image. The LUT
was created with the aid of orbital parameters and SAR image processing parameters (e.g., slant-
to-ground range polynomials, image start time etc.), and elevation information in a Digital
Elevation Model (DEM). For the Sentinel-1 data acquired in 2017 and 2018, we used a global 3
arc-seconds DEM (i.e., roughly 90 m at the Equator). For all other years, the newly available
Copernicus DEM with 1 arc-second resolution was used. Together with the LUT, data layers
directly related to the elevation reported in the DEM were also generated (i.e., the image of the
local incidence angle, the image of the pixel area and an image flagging the occurrence of layover
or shadow). As the precise orbits were used, there was no need to refine the geocoding LUT. The
co-registration error between the DEM and a small number of geocoded Sentinel-1 images was
estimated by means of the cross-correlation technique described in Wegmiiller et al., (2002). The
standard deviation of the co-registration error was below 1/10t of the output pixel size (i.e., less
than 15 m). Again, given the impossibility of evaluating the co-registration between DEM and SAR
imagery for the entire Sentinel-1 data pool, we assume that the statistics derived here for a small
sample of images apply to the entire image dataset. This should be reasonable considering the
high precision and stability of the Sentinel-1 orbital parameters.

To compensate for distortions of the SAR backscatter due to sloping terrain (foreshortening,
shadow, and layover), a normalization factor was computed. This accounted for the true size of
the pixel instead of the size of the pixel on a flat terrain as assumed when generating the GRD data
product (Frey et al., 2013). The area of each pixel in an image was estimated using the DEM and
the orbital parameters in the SAR image metadata, together with the geocoding LUT. The
normalization procedure estimated both the true pixel area and the area of the pixel on the
ellipsoid (i.e., for a flat surface); from this, a precise normalization factor was obtained. This factor
was applied to each SAR backscatter image to obtain the corresponding image of backscattered
intensity with reduced slope-induced distortions. This step was performed in the original

This document is the property of the CCI-Biomass partnership, no part of it shall be reproduced or transmitted
without the express prior written authorization of Aberystwyth University and Gamma Remote Sensing AG.



Ref CCI Biomass Algorithm Theoretical Basis B blomass
Document e
\ = esa Issue Page Date
6.0 29 19.12.2024

Sentinel-1 radar geometry. In addition, the 09 measurement was converted to Y0 (i.e., o° divided
by the cosine of the local incidence angle).

The SAR backscatter image MLI normalized for pixel area was finally terrain geocoded with the
geocoding LUT.

The pre-processing sequence outlined in Figure 3-4 was repeated for each Sentinel-1 image part
of the data pool. To obtain the stack of co-registered observations of the SAR backscatter, each
image was tiled to a pre-defined 1° x 1° grid. Each tile consisted of 720 x 720 pixels.

Figure 3-6 shows the number of Sentinel-1 backscatter observations per pixel for the year 2017.
The density of observations was highest over Europe, even if we only selected data from one unit.
In accordance with the observation priorities of Sentinel-1, outside Europe hazard-prone areas
were imaged more frequently than other areas. As a minimum, dual-polarized observations every
12 days were available, resulting in approximately 30 observations per polarization (VV and VH
or, primarily in polar regions, HH and HV polarization, i.e., 60 observations per pixel). For the
2018 dataset, the density map showed the same spatial patterns as Figure 3-6 albeit with an
overall larger number of acquisitions per pixel due to the routine operations of both units.
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Figure 3-6: Number of observations per pixel for the Sentinel-1 2017 dataset.

To obtain an overall impression of the quality of the pre-processed data, a mosaic of the 2017
Sentinel-1 dataset represented as a false colour composite of temporally averaged backscatter is
displayed in Figure 3-7. As there were many observations per pixel, the mosaic clearly reveals the
features of the land surfaces and highlights that thematic applications based on Sentinel-1 time
series are possible globally. The image in Figure 3-7 also shows that the distortions in SAR
backscatter due to sloping terrain have been largely minimized.
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-

Figure 3-7: False colour composite of the Sentinel-1 2017 dataset. Red: temporally averaged co-polarized
backscatter; green: temporally averaged cross-polarized backscatter; blue: ratio of the temporally averaged
cross-polarized and co-polarized backscatter. Pixel size: 150 m x 150 m.

The individual Sentinel-1 images are, however, not free from errors; in particular, images are
occasionally affected both by radiometric errors introduced when the Sentinel-1 raw data were
processed to GRD format (high backscatter) and residual slope-induced effects corresponding to
errors in the elevation datasets forming the global DEM. Uncompensated Radio Frequency
Interference (RFI) affected the measurements locally, along the coast of the Baltic Sea. In addition,
seams corresponding to the swath overlap were detected in some regions (southeast China and
southwest US) which were due to incorrect representation of the noise in the metadata provided
with the image data. A detailed presentation of errors affecting the Sentinel-1 backscatter dataset
is given in the E3UB document [RD-5].

The high density of observations by Sentinel-1 and the high resolution of the data implies long
processing times to generate biomass estimates. Although the strength of the biomass retrieval
with multi-temporal C-band backscatter data is the possibility to maximize the information
content on biomass in the signal by filtering out the component related to noise and
environmental conditions, the individual backscatter observations are not uncorrelated in time,
especially over short periods of time. For this reason, we investigated the correlation of
observations acquired within the same month. This exercise was undertaken at global scale. For
each 1° x 1° grid cell and for each month of the year, the correlation coefficient (Pearson’s)
between backscatter observations from the same orbital track was computed. Calculations were
undertaken separately for the VH- and the VV-polarization. In Figure 3-8, we display the mean
values of all correlation coefficients computed for each grid cell and for VH-polarization. The
results described below, however, were not affected by the polarization. The correlation between
observations within one month was everywhere very high (> 0.8) except for the dense and intact
tropics (Amazon and Congo rainforest). These regions are characterized by a very small range of
backscatter values and therefore residual noise dominates the value of the correlation coefficient.
The histogram in Figure 3-9 confirms the visual interpretation of the map in Figure 3-8; 90% of
the correlation coefficient values were larger than 0.66 and 75% of the values were larger than
0.81.

These results support our assumption that reducing the Sentinel-1 dataset to temporal averages
would not result in a loss of information about the estimation of biomass. Eventually, monthly
averages were selected because of the 12-day repeat-pass of each Sentinel-1 unit. On one hand,
shorter time scales (e.g., weekly, or bi-weekly) would have only marginally reduced the amount
of data and data with strong correlation would have been maintained. Longer time scales would
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have reduced the seasonal signal in the backscatter data. It is indeed the seasonality of the
backscatter that allows improvement of the retrieval accuracy with respect to a retrieval based
on a single image. For example, in Santoro et al. (2011), it was shown that images acquired under
frozen conditions in winter in the boreal zone performed better than images acquired under
unfrozen conditions; nonetheless, these also contributed to reducing the retrieval error compared
to an estimate based on winter-time data only.
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Figure 3-8: Map of the average correlation coefficient for Sentinel-1 backscatter observations (year 2020, VH-
polarization) acquired in the same month.
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Figure 3-9: Histogram of the correlation coefficients for Sentinel-1 observations (year 2020, VH-polarization)
acquired within the same month and grouped for the same orbital track.

The temporal averaging reduced the overall amount of data by a factor of 2 in regions with sparse
Sentinel-1 coverage, and up to 5-6 in regions with frequent coverage. In terms of ENL, the
improvement was small because the images that were averaged in time were strongly correlated.
To obtain some global statistics of ENL, we worked at the level of a 1° x 1° grid cell and for each
grid cell, we computed the 90t percentile of the canopy cover from the MODIS Vegetation
Continuous Fields dataset. It was assumed that surfaces with a very dense canopy cover represent
the most homogeneous type of land surface required to estimate the ENL. The ENL for a given grid
cell was then computed with Equation (3-1) by selecting Sentinel-1 pixels corresponding to a
canopy cover larger than the predefined threshold. This operation was repeated for each of the
12 monthly Sentinel-1 datasets and for each polarization. Since canopy cover is sparser at
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northern and southern latitudes, our definition of the ENL estimate might have reproduced some
geographic trends. Low thresholds imply large variability of the backscatter and therefore an ENL
estimate that is smaller than values obtained in dense tropical forest. For this reason, we further
restricted our computation to grid cells with a VCF threshold of 95%, corresponding to intact
tropical forest regions and high-stock boreal forests.

Figure 3-10 shows an example of histograms of ENL for the Sentinel-1 VV- and VH-polarized July
2020 monthly average. The histograms have similar shape but peaks at somewhat different levels.
The histograms did not change regardless of the month. The long tail of the histograms agrees
with the more local results shown in Figure 3-5 and is probably related to the degree of “scatterer
homogeneity” in a grid cell. Taking the mean value of the histograms in Figure 3-10 resulted in a
global ENL of 150 for both the VV- and the VH-polarization. For simplicity, these numbers are used
in the CCI Biomass CORE algorithm to quantify the precision of the Sentinel-1 images used as
predictors. The implications of the ENL on the precision of the biomass estimates is further
discussed in [RD-5]. Comparison with the results based on a single image in Figure 3-5 and with
the preliminary estimate of 165 indicates that averaging only marginally improved the precision
of the SAR backscatter measurements. This is a consequence of the small number of Sentinel-1
backscatter values used to form a monthly average and their strong correlation within one month.
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Figure 3-10: Histograms of the ENL estimates for the Sentinel-1 July 2020 monthly average.

3.2 ALOS-2 PALSAR-2 (L-band, wavelength 23 cm)

The ALOS-2 mission started on May 24t, 2014, and carries an L-band SAR (PALSAR-2 instrument)
with slightly better performance than its predecessor, ALOS-1 PALSAR-1. ALOS-2 PALSAR-2
operates in a high-resolution acquisition mode (25 m, Fine Beam, FB) and a moderate resolution
mode (50 m, Wide Beam, WB). Each year global and repeated acquisitions are scheduled during
seasons that are known to maximize the information content of the backscattered signal with
respect to land surface properties. In both modes, PALSAR-2 acquires data in single polarization
(HH) and dual polarization (HH and HV, or VV and VH over Japan), covering swaths of
approximately 70 km in FB mode and 250 km in WB mode.

Because of the data policy applied by JAXA to ALOS-2 data, only a limited number of images can
normally be obtained free of charge, which hinders global applications. Up to v3 of the CCI
Biomass CRDP, global coverages of ALOS-2 PALSAR-2 data could only be obtained in the form of
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yearly backscatter mosaics for the FB mode and per-cycle mosaics (46 days) for the WB mode.
The latter could be accessed thanks to the involvement of CCI Biomass team members in JAXA’s
Kyoto and Carbon Initiative (KC) (https://www.eorc.jaxa.jp/ALOS/en/kyoto/kyoto link.htm).
The WB mode mosaics are also referred to as ScanSAR mosaics, ScanSAR being the imaging
technique used for covering the large swath of 250 km. The WB mode is, however, operated at
regional level, primarily across the tropics, thus not allowing annual global coverages. In support
of the CCI Biomass project, JAXA provided access to all individual observations of ALOS-2 in Fine-
Beam dual-polarization (HH&HV) mode. The data are provided in the form of ca. 3-degree long
subsets of ALOS-2 orbits in detected format, i.e., backscatter only, and slant range geometry, a
format referred to as “KC strip” because such data are prepared uniquely for members of the KC
Initiative, aiming at mapping and monitoring forests and wetlands with L-band data. These data
are used in the mapping of AGB starting with v4 of the CCI Biomass products.

The ALOS-2 PALSAR-2 dataset used by the current version of CCI Biomass CORE algorithm thus

consists of

o Yearly mosaics of HH and HV polarized backscatter acquired in Fine Beam Dual (FBD) mode,
years 2015- 2022

o Per-cycle mosaics of HH- and HV-polarized backscatter acquired in WB mode between 2015
and 2022

o Individual observations of ALOS-2 HH and HV polarized backscatter acquired in FBD mode,
2015- 2022 (referred to as KC strip data)

The mosaics were produced by JAXA (Shimada and Ohtaki, 2010; Shimada et al., 2014). Each FBD
mosaic covers the entire globe and has been generated primarily with ALOS-2 FBD data acquired
between May and October of a given year. However, to achieve global land coverage, gaps had to
be filled with data acquired in winter throughout the northern hemisphere, and locally also with
data from other years. The annual FBD mosaics (HV-polarization) for 2015-2017 are shown in
Figure 3-11. Both, the FBD and WB mosaics, initially produced by JAXA exhibited geolocation
errors locally and were thus reprocessed in 2022. For a description of these errors, the reader is
referred to the ATBD of the CCI Biomass v3 data products available at
https://climate.esa.int/en/projects/biomass/key-documents/ (last accessed on 25 January
2023). For the CRDP based on this version of the ATBD, we use v2.1 of the ALOS-2 mosaic
products.

The ScanSAR data are primarily acquired over the tropics and therefore the mosaics for each cycle
cover only part of the Earth’s land surface. An example for a ScanSAR mosaic covering the Amazon
basin is shown in Figure 3-12. In total, ScanSAR data acquired between 2015 and 2022 in 120
cycles have been released.
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Figure 3-11: ALOS-2 FBD mosaics, HV-polarization, for the years 2015 (top), 2016 (middle) and 2017 (bottom).
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Figure 3-12: ALOS-2 ScanSAR mosaic generated from HV polarization imagery acquired in April 2018 over the
Amazon Basin.

Each of the mosaics is provided in the form of 1°x1° tiles and includes the HH and HV backscatter

(VV and VH over Japan) as well as:

o The local incidence angle with respect to the orientation of the pixel, derived from the DEM
used by JAXA for the pre-processing (3-arcsec Shuttle Radar Topography Mission (SRTM) or
1-arcsec ASTER DEM), as well as layover/shadow masks.

e The date of acquisition of the image.

e Anindication of whether the pixel is land or water.

The FBD data were processed to Y9 (i.e., o® divided by the cosine of the local incidence angle)
(Shimada, 2010) and resampled to a pixel size of 1/4000% of a degree in both latitude and
longitude, corresponding to roughly 25 m at the Equator. The ScanSAR data were instead
processed to a pixel size of 1/2000t of a degree, i.e., roughly 50 m at the Equator.

The ALOS-2 FBD and ScanSAR datasets were geocoded, orthorectified and calibrated by JAXA. The
mosaics were also compensated for variations in the pixel scattering area due to topography and
for the dependence of backscatter on the local incidence angle (Shimada & Ohtaki, 2010).

To reduce the speckle in the ALOS-2 PALSAR-2 imagery processed by JAXA to a resolution higher
than the target resolution for the mapping of biomass, all images were aggregated to the pixel size
of 100 m (0.00088888°). A first estimate of the ENL of the imagery was assessed for several
homogenous forest patches, identified by means of visual image interpretation. We found the ENL
to be of the order of 70 to 80.
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For the ALOS-2 KC strip data, a pre-processing chain was implemented based on the GAMMA
software (Figure 3-13). Pre-processing aimed at producing fully calibrated and terrain-corrected
backscatter data at 000088888° resolution (EPSG:4326), i.e., the target resolution of CCI Biomass
products. The processing comprises compensation for the Noise Equivalent Sigma Zero (NESZ)
based on range gradients of backscatter identified over smooth water surfaces (Figure 3-14),
topographic corrections according to Frey et al. (2013), and a verification of the geocoding
accuracy for each individual scene (on average a few tenths of the pixel size). Examples of annual
composites (produced for illustration purposes only) for the years 2019 and 2020 are shown in
Figure 3-15, together with maps depicting the number of individual backscatter observations
available from the KC strip datasets annually.

ALOS-2 (c::opernicusthatt:e
KC Data °meCZZZS ata
I Import KC image I
| Multi-looking I
v v

Calculation of Geocoding Lookup
Table, Local Incidence Angle and
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Figure 3-13: Processing workflow for the ALOS-2 KC strip data.
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Figure 3-14: Noise floor of ALOS-2 Fine-Beam HV polarization backscatter imagery as observed in several
images acquired over smooth water surfaces.
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Figure 3-15: Annual mean L-HV backscatter calculated from all ALOS-2 Fine Beam dual-polarization KC strip data
acquired in 2019 (top left) and 2020 (bottom left).

The ALOS-2 PALSAR-2 backscatter data exhibit significant striping, particularly in areas with
continuous forest cover, such as the Amazon or Congo Basin. The striping, which is clearly visible
in the mosaics over continuous tropical rainforest (e.g., Figure 3-12), is associated with the
incidence angle dependence of backscatter as well as uncertainties in the calibration of the
backscatter imagery. In the tropics, the striping is more apparent than elsewhere because of the
continuous forest cover and the low sensitivity of backscatter to forest density or biomass.
Methods aiming at reducing the incidence angle dependence need to consider thatlocally it differs
between land cover classes that might be considered opaque isotropic volume scatterers (e.g.,
dense tropical forest) and sparse vegetation classes with increasingly non-isotropic properties. A
semi-empirical method aiming at adaptive normalization of backscatter with respect to the
incidence angle was presented in Hoekman & Reiche (2015). However, the approach was mostly
valid when using radar imagery to map land cover classes. The implementation when aiming at
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retrieval of a continuous forest variable such as biomass (i.e., when the normalization approach
should adapt to the forest variable of interest itself) is not clear and requires further investigation.

As an interim approach, we opted to minimize the striping effects observed over dense tropical
rainforest using an empirical normalization approach in which trends of the backscatter over
closed tropical forest canopies (as indicated by a Landsat canopy density map in the Easting
direction, i.e., roughly the range dimension in the SAR imaging geometry) were compensated by:

1) Identification of trends in L-HV backscatter using a line-by-line moving window median
filter of 100 pixels window length,

2) Normalization of the ALOS-2 PALSAR-2 backscatter by subtracting line-by-line the median
trend from the actual observations and adding the residuals back to the average
backscatter observed over closed tropical forest canopies.

The normalization leads to more consistent backscatter mosaics over the tropics (Figure 3-16) in
which incidence angle dependent trends were mostly removed. A drawback of the normalization
is, however, that smaller scale variability in backscatter is smoothed out (i.e., some spatial detail
over closed tropical forest canopies, which may or may not be associated with different biomass
levels, is lost).

Figure 3-16: ALOS-2 L-HV mosic before (left) and after (right) normalization.

For both FBD and ScanSAR datasets, the ENL was computed in a more systematic manner
following the approach applied to the Sentinel-1 data. The box plot in Figure 3-17 shows that the
ENLs for the ALOS-2 PALSAR-2 datasets were lower because of the smaller multi-look factors and
the lower radiometric quality. For the FBD dataset, the median value of the ENL was 47 (HH-pol.)
and 50 (HV-pol.) whereas for the ScanSAR data we obtained a value of 19 regardless of the
polarization. The impact of these estimates of the ENL on the precision of the AGB obtained from
the ALOS-2 data is discussed in the E3UB report [RD-5].
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Figure 3-17: Box plots representing the distribution of the ENL estimates from 1° x 1° grid cells per SAR sensor,
mode and polarization. Each box shows the median value (central mark), the interquartile range (edges of the
box), the most extreme data points not considered outliers (whiskers) and the outliers (plus markers).

3.3 Envisat ASAR (C-band, wavelength 5.6 cm)

During the Envisat mission (2002-2012), the ASAR instrument operated over land in four modes.
Image Mode and Alternating Polarization Mode (spatial resolution < 30 m, swath width
approximately 100 km) provided frequent monitoring, but with spatial coverage too sparse for
global applications. The 150 m resolution Wide Swath Mode (WSM) had a 405 km swath and
provided multiple observations of a target during the repeat-pass cycle (35 days until October
2010, 30 days thereafter). For example, at 60°N, observations every three days were possible,
albeit at incidence angles between 18° and 43°. From the high-resolution modes, ESA also
generated Image Mode Medium (IMM) and Alternating Polarization Medium (APM) datasets at
the same resolution as the WSM (Desnos et al,, 2000), filling some of the gaps in the WSM coverage.
The Global Monitoring (GMM) mode, which was operated as a background mission when the
instrument was not meeting other requests, also had a 405 km swath but with 1 km resolution.
From the 10 years of acquisitions, the ASAR archive contains acquisitions in one specific mode for
virtually anywhere on Earth.

Figure 3-18 shows the number of ASAR observations over land for acquisitions at moderate
resolution (150m) and at coarse resolution (1,000) m for each year between 2009 and 2011. We
omit all other years because of similar spatial patterns. Near-global, dense datasets of backscatter
were obtained in GMM. In contrast, the acquisition patterns for modes operating at moderate
spatial resolution was patchy, achieving higher frequency in polar regions, Europe, and other
regions of interest to research communities providing inputs to the acquisition plans by ASAR.
Aggregating all ASAR acquisitions led to global coverage except for some islands in Oceania and
isolated islands in the southern hemisphere.
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Figure 3-18: Map of ASAR acquisitions at 150 m (WSM and IMM combined) and 1,000 m (GMM) per 1°x1° grid-
cell for each year between 2009 and 2011. The colour bar has been constrained between 0 and 30 observations
to increase the image contrast in regions of poor coverage.

All ASAR data acquired in IMM, WSM and GMM over land were pre-processed in past research
projects by Gamma Remote Sensing to form stacks of co-registered images of SAR backscatter
(Santoro et al., 2015a and 2015c). The pre-processing sequence implemented for the ASAR
dataset followed the same strategy applied to process the Sentinel-1 data. The ASAR data were
pre-processed to obtain calibrated and speckle-filtered images with sub-pixel co-registration
accuracy, arranged in a structure that allows easy access and management (Figure 3-19) (Santoro
etal, 2011; Santoro et al., 2015a). A global tiling grid tied to the geographic reference system and
having its origin at 90° N, 180° W, with tiles of relatively small size was used. The IMM and WSM
images (spatial resolution approximately 150mx=150m and pixel size 75mx75m) were geocoded
to a pixel size of 1/720t% of a degree in latitude and longitude and tiled into 1°x1° tiles (i.e,
720x720 pixels). The same tiling grid was used for the pre-processing of the Sentinel-1 data. The
GMM images (spatial resolution approximately 1 kmx1 km and pixel size 500m=x500m) were
instead geocoded to a pixel size of 1/100t of a degree in latitude and longitude and tiled into 2°x2°
tiles (i.e., 200x200 pixels).
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Figure 3-19: Flowchart of ASAR pre-processing.

The ASAR dataset consisted of images of backscattered intensity ($°) in ground range geometry.
Each image was first calibrated to o? using factors provided by ESA in the image metadata. Orbital
state vectors were improved or extended using DORIS Precise Orbit State Vectors
(https://earth.esa.int/web/guest/data-access /browse-data-products/-/article/doris-precise-
orbit-state-vectors-1502, last accessed on 2 October 2024). At this stage, the coverage of the ASAR
image was checked against a coarse resolution map of landmasses; images acquired over the
ocean were discarded. Each remaining image was multi-looked, i.e., spatially averaged, using a
2x2 window to obtain a pixel size closer to the original spatial resolution. A gamma MAP filter
(Lopes et al., 1990) was applied to obtain an estimate of the local average backscatter, which was
later used as a weight in multi-channel speckle filtering.

Each ASAR image was geocoded to the geographic projection using the look-up table procedure
described for geocoding Sentinel-1 images (Santoro et al, 2015c). In addition to the LUT
generation, we applied cross-correlation techniques to compensate for offsets between the
geometry described in the LUT and the true geometry. This step was necessary for ASAR data even
after the correction for precise orbits. Offsets were estimated between the SAR image and an
image of the SAR backscatter simulated from the DEM. The map of offsets in range and azimuth
direction was then modelled with a four-coefficient polynomial; the resulting 2-D model of offsets
was finally applied to the LUT to obtain a refined version, which was eventually used to terrain
geocode the SAR image. For images covering mostly flat terrain and characterized by poor co-
registration with the simulated SAR image from the DEM, e.g., corresponding to predominantly
flat regions, the geocoding was refined by co-registering the geocoded SAR image with a mosaic
of well geocoded ASAR images (Santoro et al,, 2011). This ensured that all images were geocoded
with sub-pixel accuracy.

This document is the property of the CCI-Biomass partnership, no part of it shall be reproduced or transmitted
without the express prior written authorization of Aberystwyth University and Gamma Remote Sensing AG.


https://earth.esa.int/web/guest/data-access/browse-data-products/-/article/doris-precise-orbit-state-vectors-1502
https://earth.esa.int/web/guest/data-access/browse-data-products/-/article/doris-precise-orbit-state-vectors-1502

Ref CCI Biomass Algorithm Theoretical Basis B biomass
Document
esa Issue Page Date )
6.0 42 19.12.2024

The ASAR backscatter images and the corresponding images of local incidence angle and pixel
area were tiled to the predefined grid to obtain a multi-year data stack of observations of ASAR
backscatter with corresponding local incidence angles and pixel area. For each tile, a slightly
modified version of the multi-channel filtering approach in Quegan& Yu (2001) was eventually
applied to the stack of backscatter images. It should be noted that this filter could not be applied
before, e.g., in the radar geometry, because the stack of backscatter observations originated from
images acquired along multiple orbital tracks both along ascending and descending orbits.
Differently than in Quegan& Yu (2001), where the local estimates of the backscattering coefficient
were obtained by means of a moving average applied to the intensity images, here we used the
gamma MAP filtered images as local estimates of the backscattering coefficient. It is here
remarked that that gamma MAP filtered images were obtained in the radar geometry (5 x 5
window) so that the number of looks of the filtered images was not affected by the different size
of the pixel for different latitudes.

As shown in Figure 3-18, full global coverage with ASAR data could be obtained only by merging
the GMM with the IMM and WSM datasets. Since the number of observations from the GMM was
much larger than those acquired at moderate resolution, it made sense to achieve the full global
coverage at 1,000 m spatial resolution by complementing the GMM pool of observations with
WSM and IMM observations multi-looked from 150 m to 1,000 m. While the correct procedure to
obtain a data stack at coarse resolution would have required multi-looking each image acquired
in IMM and WSM to 1 km and then terrain geocoding to 1,000 m, we decided to simply multi-look
and resample the already geocoded WSM and IMM images to avoid substantial pre-processing
that could not be accommodated at the time of the ASAR image processing. As a result, the multi-
channel filtered geocoded WSM and IMM images and the corresponding images of incidence angle
and pixel area were multi-looked with factor 7x7 and resampled to the 0.01°-pixel size of the GMM
images using bi-cubic interpolation.

This merged dataset was used in the GlobBiomass project as a predictor in the BIOMASAR-C
algorithm to guarantee wall-to-wall coverage and increase the reliability of the biomass estimates.
The drawback was loss of spatial detail and approximations in regions with patchy landscapes.
Although we could not explicitly assess the impact of spatial resolution on the AGB estimates,
visual assessments of the GlobBiomass map for 2010 and version 1 of the CCI Biomass CRDP in
regions where the contribution of C-band was strong (e.g., tundra regions of Central Asia)
indicated higher quality and level of detail in the latter.

For this reason, we reconsidered the use of ASAR data in the context of CCI Biomass to map AGB
around 2010. Although the coverage at 150 m was not optimal for unbiased estimates of AGB in
large parts of the world, the 1,000 m dataset would probably have decreased the effective
resolution of the map product, introducing local biases due to the rescaling from 1,000 m to the
target pixel size of the CCI Biomass maps of 100 m.

Regardless of the final spatial resolution, slope-induced distortions need to be accounted for to
avoid artefacts in the AGB maps due to too low or too high backscatter. Because of the moderate-
to-coarse spatial resolution, the procedure proposed by Frey et al. (2013) and applied to the
Sentinel-1 data could be relaxed. The terrain geocoded backscatter was normalized by
compensating for the effective pixel scattering area and local incidence angle as follows
(Wiesmann et al.; 2004; Ulander, 1996; Castel et al., 2001):

A _
0 = g0 % 556, ™ (3-2)

slope

14
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In Equation (3-2), 6. represents the local incidence angle. Asiope and Agq: represent the true pixel
area and the local pixel area for theoretically flat terrain respectively. The images of the area
normalization factor (Asa:/Asiope) and the local incidence angle were obtained from the DEM and
orbital information (Wegmiiller, 1999). The exponent n expresses the variation of scattering
mechanisms due to the presence of a volume on sloping terrain, so is related to the optical depth
of the vegetation. For C-band co-polarized data, it can be assumed to be equal to 1 (Ulander, 1996;
Castel et al., 2001). Hence, the compensation corrects for the effect of terrain slopes on the
backscatter but not for object-specific modulations of the backscatter due to slope and orientation
(e.g., the effect of slope and orientation of trees on the backscatter). It is noted that n=1 was also
applied when correcting the Sentinel-1 data for slope-induced terrain and by JAXA in their mosaic
processing sequence. Again, the two-step approach proposed by Hoekman&Reiche (2015)
according to which the correction of slope-induced effects is tuned with land-cover based
empirical functions is not considered to be feasible in this context as it would require the biomass
to be known a priori to select the appropriate correcting function.

One major issue with the ASAR ScanSAR data (GMM and WSM) is the sub-optimal inter-calibration
of the swaths forming an image. This results in an offset of the backscatter across the seam
between two adjacent swaths, typically of the order of a few tenths of a dB. This issue is critical in
environments where the backscatter difference between unvegetated terrain and dense forest is
1-2 dB. Figure 3-20 shows an example for an ASAR GM1 image covering the rainforest of the
Brazilian Amazon. The area covered by the image corresponds to very dense tropical forest
(percent tree cover from the MODIS Vegetation Continuous Fields dataset > 80%). The panel on
the left shows a clear offset of the backscatter along a diagonal line, which corresponds to the
seam between adjacent swaths of the ASAR image. A profile of the backscatter values along the
dashed line drawn on the ASAR image shows the clear offset at the swath intersection.

Since the calibration of the ASAR data cannot be reversed, the only procedure to avoid radiometric
offsets becoming biomass offsets is to apply a crude 1-D moving median filter (length: 11 pixels)
on each line of a geocoded image prior to biomass retrieval. The filtering is limited to dense
tropical rainforest and moist forests where such offsets would lead to offsets of 100 Mg ha! or
more. Currently, the filter is applied to pixels labelled as tropical wet and tropical moist by the
FAO GEZ dataset. Figure 3-21 shows the result of filtering. The strong median filter reduces seams
but also small-scale features, thus limiting the possibility to resolve small variations of biomass.
This was of minor importance compared to producing a map with artefacts, given that C-band
should not be able to estimate biomass with high accuracy in high biomass tropical forest.
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Figure 3-20: lllustration of backscatter offset along the seam between two adjacent swaths of an ASAR GM1
image covering dense tropical forest in the Amazon (left panel). The profile of the backscatter along the dashed
line superimposed to the ASAR image is showed in the panel on the right hand-side.
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Figure 3-21: Example of the ASAR GM1 used in Figure 3-20 before and after filtering with a moving median filter.

3.4 ALOS-1 PALSAR-1

The ALOS-1 mission operated between 2006 and 2011 with the PALSAR-1 radar instrument
onboard. Coverages were achieved both at high resolution in the Fine Beam mode (FB, 25 m) and
at moderate resolution with the Wide Beam mode (WB, 100 m). Each year global and repeated
acquisitions were scheduled during seasons that were known to maximize the information
content of the backscattered signal with respect to land surface properties. In FB mode, PALSAR-
1 could acquire data in single polarization (HH) and dual polarization (HH and HV), covering a
swath of approximately 70 km. In the WB mode, data could be acquired only in HH-polarization
but covering a swath of approximately 250 km.

Until 2022, the data policy applied by JAXA to ALOS-1 and ALOS-2 data allowed a limited number
of images to be obtained free of charge, which hindered global applications. As for ALOS-2, global
coverages of ALOS-1 PALSAR-1 data could therefore only be obtained in the form of yearly
backscatter mosaics for the FB mode and per-cycle mosaics (46 days) for the WB mode. Starting
with v4, access to the archive of ALOS-1 PALSAR-1 images was possible.
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For the processing of the data until CRDP v3, it is referred to previous versions of this document.
Beginning with v4 of the CCI Biomass CRDP, the release of all available ALOS-1 PALSAR
observations acquired in FB single- and dual-polarization modes by JAXA to the public in Level
2.2 format allowed the multi-temporal coverage acquired by ALOS PALSAR to be explored (Figure
3-22). The data comprises fully calibrated, terrain-corrected, and geocoded backscatter images in
UTM projection with 12.5 m resolution. Since already fully pre-processed, post-processing of the
data for CCI Biomass was limited to reprojection to the geographic coordinate system (EPSG:
4326) and aggregation to the target resolution of 0.00088888°. The ENL of the backscatter
imagery was estimated to be of the order of 80.

(b) )

Figure 3-22: ALOS-1 PALSAR-1 HV backscatter mosaic produced from images acquired in 2010 and released by
JAXA in Level 2.2. format.
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3.5 Spaceborne LiDAR
3.5.1 ICESat GLAS

Although primarily designed for altimetry, between 2003 and 2009 the Geoscience Laser
Altimeter System (GLAS) on board ICESat collected information about the vertical structure of
forests in ca. 65 m large footprints collected every 170 m along track. The distance between tracks
was of the order of tens of km and increased towards the equator. When forest cover lay within a
footprint, the returned signal reflected the vertical distribution of matter, with the density, shape
and reflectivity of leaves, needles, and branches in each layer of the forest canopy determining the
strength of the reflected signal from the respective layer. An example of the vertical distribution
of energy returned from a forest (the “waveform”) is shown in Figure 3-23. Depending on the
height and structure of the forest, the waveform will exhibit a different extent and shape as well
as a different number of peaks. The beginning and end of the waveform are determined based on
a threshold defined relative to the noise floor. The height of the first (from the top of the canopy)
and last (from the forest floor) returns was defined as the heights where the signal energy
exceeded 4.5 times the mean noise level (Los et al., 2012). Their difference is referred to as the
waveform length.

Raw waveform
—— Model alternate fit
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|

Signal Begin

Relative time (ns)
0 700
| |

900
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1000
|

| | | | | |
00 02 04 06 08 1.0

Returned pulse (V)
Figure 3-23: An ICESat GLAS waveform showing the vertical distribution of returned energy from a forest (from
Los et al., 2012).

In CCI Biomass, we use the dataset prepared in the GlobBiomass project (Santoro et al., 2021). We
used the GLA14 product (version 34), which provides altimetry data for land surfaces only to
which geodetic, instrument and atmospheric corrections have already been applied. For each
footprint, up to six Gaussians were used to model the raw waveform, as described in Hofton et al.
(2000).

The GLAS data were used to estimate canopy density (CD) estimated as the ratio of energy
received from the canopy (returns above the ground peak) to the total energy received and the
height (h) as the distance between the ground peak and signal beginning (RH100) (Figure 3-24).
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Figure 3-24: An ICESat GLAS waveform, showing the waveform metrics used to calculate RH100 & CD (Hilbert
&Schmullius, 2012)

Forest height was computed following the approaches in Simard etal. (2011) and Los etal. (2012),
which calculated RH100 globally and defined a set of filters to discard footprints affected by
topography and various noise sources in the waveforms. The remaining GLAS database contained
estimates of RH100 for ca. 26.5 million footprints.

Figure 3-25 shows the spatial coverage of canopy height and canopy density expressed as average
values from the footprint-level data in 0.125° large grid cells. Because of the rather small number
of footprints retained after filtering, we created one single layer for each metric from all the
footprint level data. The number of footprint-level observations used to compute the grid cell
average values is also shown in Figure 3-25. Because of the large distance between the orbital
tracks and the strong filtering applied to the GLA14 dataset, the coverage was not complete. The
density of observations presented some spatial variability; larger gaps corresponding to forests
occurred in South China and the southernmost regions of South America, Africa and Australia.
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Figure 3-25: Maps of canopy density, canopy height (RH100) and corresponding number of GLAS footprints
within each grid cell. For the display, the original heights were averaged to a pixel size of 0.125°.

3.5.2 ICESat-2

Unlike the GLAS sensor, the Advanced Topographic Laser Altimeter System (ATLAS) onboard the
ICESat-2 satellite uses photon counting to retrieve elevation. ATLAS sends pulses of laser light to
the ground, collects photons reflected by the surface underneath and times each photon return.
With a frequency of 10,000 pulses per second, ATLAS achieves a much denser portrait of the
surface compared to the 40 pulses used by GLAS. Consecutive shots are separated by 70 cm, which
reduces the ambiguity of the surface vs. vegetation reflections and the impact of topography on
the reflected signal (Neuenschwander and Pitts, 2019). Together with very accurate timing of the
photons, these two features enable accurate mapping of the Earth’s topography. In addition, it
enables profiling of vegetation, even though the measurement technique is strongly affected by
the power recorded by the instrument. ATLAS splits the laser into six beams arranged as three
pairs of beams approximately 3.3 km apart (Figure 3-26) (Markus et al., 2017). Each pair consists
of a strong and weak energy beam (4:1 ratio). Combination of the strong and weak beam returns
allows better characterization of surface topography (Neuenschwander and Pitts, 2019).
However, for vegetation studies, it is advised to avoid measurements corresponding to weak
beams because of the partly undetected vegetation layering in the returned signals.
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Figure 3-26: Configuration of the ICESat-2 observations (Neuenschwander and Pitts, 2019).

For land and vegetation, a specific product has been developed (ATL0O8) (Neuenschwander and
Pitts, 2019) that contains geophysical parameters related to vegetation and terrain heights. The
ATLO08 algorithm estimates the ground surface and top of canopy surface elevations from the
photons, from which several parameters of relative height are computed. From an investigation
in boreal forests, it was understood that the RH98 (relative height, 98 percentile) corresponds to
canopy height and that seasonal conditions (e.g., snow on the ground) influence the height
estimates. In addition, the properties of the canopy height retrieved in the dense tropics may be
erroneous, in particular when using data from the weak beam, because of the very small number
of photons recorded from the forest floor (Neuenschwander and Pitts, 2019). Also, persistent
cloud cover hinders the acquisition of a sufficient number of photons to pass the set of quality
filters implemented in the data processing algorithms.

The ATLO8 product provides the parameters with a 100 m step size along the flight direction.
Currently version 6 of the product is available from the National Snow and Ice Data Center
(NSIDC) (https://nsidc.org/data/atl08 , last access on 02 October 2024) in the form of strips of
photons collected along one orbit. ICESat-2 data have been available since 14 October 2018. To
obtain segments from the original photon data, the original files are reformatted with the
pysl4land Tool, a set of Python tools to process spaceborne lidar (GEDI and ICESat2) for land
(pySL4Land) applications (https://github.com/remotesensinginfo/pysl4land, last access on 02
October 2024). Herewith, the original photons are grouped into segments of 100 m length and 25
m width.

For this version of the ATBD, ICESat-2 files covering the years 2019-2022 were used. Data were
grouped on an annual basis and treated separately. It is foreseen to extend the time series of
observations in the next versions of the document to reinforce the statistics derived from the
individual measurements. From the segment-wise data, we generated maps of canopy height
(RH98) with several grid spacings depending on the use (inter-comparison of LiDAR-based
canopy heights, prediction of AGB from canopy height, etc.). For each grid cell, the canopy height
was obtained by taking the mean value of the original values. Prior to averaging, the segments
were filtered following indications by the producers of the ATL0O8 data product. Segments were
discarded that were (i) acquired by the weak beam, (ii) characterized by less than three photons
reflected by the canopy, (iii) flagged as not belonging to natural vegetation in the ATL08 metadata
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and (iv) exhibited an elevation that differed by more than 25 m from the reference DEM used in
all ATL products.

A detailed analysis of the spatial distribution of canopy heights and their fluctuations in time
revealed several locations with unrealistically high values in one or other of the three years of
data. Starting with this version of the ATBD, segments corresponding to a terrain slope steeper
than 10° were discarded because they were often characterized by unnatural values.

After such filtering, we still identified several locations with unusually high values. These occurred
in areas with a relatively low number of photons per segment, as shown by the example in Figure
3-27. Setting a threshold on the minimum number of photons reduced outliers. However, too
strong filtering caused gaps and strong underestimation of canopy height (see cases for >40 and
>50 photons). This is because tree canopies scatter fewer photons than the surface underneath.
By deselecting segments with a small number of photons, we discard segments where photons
come exclusively from the canopy and privilege ground returns. Visual investigation of the canopy
height maps based on different number thresholds initially indicated that a threshold of 20
photons per segment was a reasonable compromise between outlier reduction and accuracy
(used for CRPD v5). Considerable loss of segments in tropical rainforest suggested a correction of
the threshold to 10 photons per segment for the CRDP v6. Outliers were filtered when generating
the spatially explicit dataset of canopy height metrics.

ICESat-2, average canopy height @ 12.5 km [m]
Unfiltered >10 photons

40 40

30

20

>20 photons >30 photons

Figure 3-27: Canopy height maps from ICESat-2 segments averaged at 12.5 km and filtered for different
thresholds on the minimum number of photons per segment. The example covers the Karelian region between
Finland and Russia.
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Figure 3-28 shows an example of average canopy height values based on averaging at 0.1° and the
corresponding number of segments used to estimate the average height per grid cell. With three
years of data gave homogeneous coverage of the world’s forests. The spatial patterns correspond
to the known distribution of forest height, with taller forests in the wet tropics along the Equator
(Amazon basin, Congo, and Southeast Asia) and in temperate forests (Pacific Northwest, Southeast
U.S,, Central Europe, Andes, and Southeast Australia). In boreal forests (north of 60°N), the canopy
height decreased with increasing latitude. The number of segments per grid cell was high for
boreal and temperate forests. In tropical forests, the persistent presence of clouds and the strong
filtering on the minimum number of photons explain the sparser coverage. With the availability
of a few more years of observations, it likely that one will be able to relax on the condition applied
to the number of photons segments since point-wise noise will be more automatically flagged.
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Figure 3-28: Global distribution of canopy height estimated from the ICESat-2 ATLO8 dataset of 2019-2022 (top
panel), and corresponding number of segments retained to form the average canopy height (bottom panel).
Dark blue areas in this panel correspond to data gaps. For the display, the original heights were averaged to a
pixel size of 0.1°.

Comparison of canopy height values for two consecutive years (e.g., 2019 and 2020), shows very
high consistency (Figure 3-29). The correlation coefficient between the two datasets was 0.79 and
the mean difference between the two years was less than 0.1 m. Nonetheless, Figure 3-29 shows
some spread, which indicates temporal variability of the average values (standard deviation of 3-
4 m) due to the sampling.
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Figure 3-29: Scatterplot comparing canopy height averages at 0.1° for ATLO8 data acquired by ICESat-2 in 2019,
2020 and 2021. The density plot is colour coded, with colour changing from blue to yellow for increasing
density of data points.

Although not shown here, we also created canopy height rasters by splitting the data for day- and
night-time acquisitions and/or summer- and winter-time acquisitions. The purpose of using a
dataset acquired in different seasons was to understand whether seasonal conditions affect the
values of the canopy height metrics. For leaf-on conditions (summertime in the northern
hemisphere and wintertime in the southern hemisphere), there was a slight tendency towards
higher values, the difference being however only a fraction of a meter. Separating canopy heights
based on daytime or night-time acquisitions did not reveal any difference, regardless of the period
of the year considered.

3.5.3 GEDI

The GEDI instrument (Dubayah et al, 2020) is a full waveform LiDAR installed on the
International Space Station (ISS) and observes land masses between +/-52° latitude. The size of
the footprint is smaller than for ICESat GLAS (25 m vs. 70 m diameter) and the density of
observations is higher. The system consists of one laser split into two beams (“coverage” beams),
and two lasers operating at full power (“power” beams). Operation of GEDI leads to 8 parallel
tracks, separated by about 600 m across track. Along each track, footprint centres are separated
by 60 m. The distance between adjacent orbital tracks was about 1 km until January 2020 (Figure
3-30), after which it was increased to 70 km resulting in sparser sampling.
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Figure 3-30: GEDI orbital tracks (2 weeks) as illustrated in (Dubayah et al., 2020).
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From the waveform data, several height metrics, including canopy height (defined as Relative
Height 100) and canopy density are obtained. These level 2A (height metrics) and 2B (canopy
density) data are provided at the level of individual footprints. Currently version 2, with data
starting on 25 March 2019, is available (https://Ipdaac.usgs.gov/products/gedi02 av002/, last
access on 2 October 2024). To be able to ingest the GEDI data into the environment of the CORE
algorithm, data from individual orbital files were reformatted with the pysl4land Tool. For this
version of the ATBD, all data acquired in 2019 and 2020 were considered. The original footprint-
level data were reformatted with the pysl4land Tool and filtered for the quality flags of the level
2A and 2B products reported in the metadata. In total, 357 and 470 million footprints were
retained for 2019 and 2020, respectively. From these, we have generated yearly averages, as well
as wintertime and summertime averages per year.

Figure 3-31 shows the spatial distribution of canopy density, canopy height and number of
footprints per 0.1° grid cell for 2020. The spatial distribution of canopy height and canopy density
is similar to those obtained for the ICESat GLAS and the ICESat-2 data. The coverage presents
systematic gaps due to the large spacing between orbits although in regions covered by GEDI
footprints the number of footprint-level data is higher. This is a consequence of the finer
resolution of GEDI compared to the other spaceborne LiDAR instruments.
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Figure 3-31: Maps of average canopy density, canopy height (RH98) and corresponding number of GEDI
footprints at 0.1° for 2020. Dark blue areas in the bottom panel correspond to data gaps.

The analysis of canopy density and canopy height split by seasons reveals higher values of canopy
density during leaf-on conditions (April/September in the northern hemisphere and
October/March in the southern hemisphere) in the intermediate range and comparable values of
canopy height (Figure 3-32). We do not discuss these results further as the GEDI canopy cover
observations have not yet been implemented in the CORE algorithm.
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Figure 3-32: Scatterplots comparing canopy density (left panels) and canopy height (right panels) estimated
from GEDI data during summer (April/September) and winter (October/March) months for the northern (top
panels) and southern hemisphere (bottom panels). Each density plot is colour-coded, with colour changing
from blue to yellow for increasing density of data points.

3.5.4 Comparison of LiDAR-based metrics of canopy height

Individual footprint-level data are not used in the CORE algorithm because there is hardly any
coincidence of the footprints with the area covered by forest inventory plots where biomass is
measured. For this reason, it is not possible to construct reliable models that would capture the
spatial variability of the association between canopy height and biomass. The best spatial
coverage of AGB can either be obtained from maps or from statistics published by National Forest
Inventories (NFI) at sub-national or national level. Although each of these AGB sources has its own
errors, they can be used to characterize the shape of the curve relating AGB and canopy height. It
is therefore of interest to relate statistics of AGB with similar statistics derived from spaceborne
LiDAR data.

While the datasets produced with observations by the new spaceborne LiDAR missions are more
complete in terms of spatial coverage compared to ICESat GLAS, they are undersampled in several
regions of the world. For this reason, it is necessary to understand the reliability of the GEDI and
ICESat-2 canopy height averages. In this exercise, we compare 0.1° averages of canopy height from
the three datasets, noting the ICESat GLAS averages are not contemporary with the GEDI and
ICESat-2 based values (epoch 2005 vs. 2020). Figure 3-33 shows density plots of ICESat-2 and
GEDI with respect to ICESat GLAS canopy heights. While the ICESat-2 values appear to be slightly
overestimated in low canopies, the GEDI values are systematically underestimated regardless of
the canopy height level.

While we cannot exclude forest cover changes as one of the reasons for the discrepancy between
the three datasets of canopy heights, it is puzzling to observe divergent trends for the recent
spaceborne LiDAR missions. Although we applied all filters suggested by the production teams to
reduce the number of incorrect observations and further kept footprints that were within areas
labelled as forest according to the CCI Land Cover dataset, there may be an aspect that we have
overlooked in our comparison, given that our results differ from published literature suggesting
superior accuracy of the GEDI data compared to ICESat-2. To help clarify this issue, the results of
the inter-comparison have been shared with the GEDI and the ICESat-2 teams.
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Given the global coverage and the strong agreement of the ICESat-2 canopy height dataset with
the ICESat GLAS data, which was used in previous versions of the CCI Biomass CRDP, we decided
to use the ICESat-2 dataset for this version of the ATBD and for the CRDP version 5.
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Figure 3-33: Density plots comparing 0.1° averages of canopy height from the ICESat GLAS (2003-2009,
horizontal axis), ICESat-2 (2020, vertical axis, left plot) and GEDI (2020, vertical axis, right plot).

3.6 Digital Elevation Model
3.6.1 SRTM-based DEM

Until v3, we used an SRTM-based DEM (Figure 3-34) in the pre-processing phase of the SAR data
(ENVISAT ASAR, Sentinel-1 acquired in 2017 and 2018) and the Lidar data (ICESAT GLAS) and to
analyse the quality of the retrieved biomass. The SRTM-based DEM consisted of a global dataset
of 1° x 1° tiles collated from various sources to form a seamless and gap-free dataset of surface
elevation (de Ferranti, 2009). The dataset has a pixel spacing of 3 arc-seconds, corresponding to
90 m at the Equator. For regions between 60°N and 56°S, the DEM consists of gap-filled 3 arc-
seconds SRTM elevations; refer to de Ferranti (2009) for details on the gap-filling approach. For
latitudes north of 60°N, the elevations consist of a blend of datasets (topographic maps, coarse
and high resolution DEMs, optical imagery) selected according to which has the best quality in
each region (de Ferranti, 2009).

— — e

Figure 3-34: Global seamless DEM based on elevation datasets available at
http://www.viewfinderpanoramas.org.
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To support the terrain geocoding of the Sentinel-1 images to 150 m pixel size, the DEM was
resampled using cubic resampling, as implemented in the gdalwarp tool of the Geospatial Data
Abstraction Library (GDAL). The same procedure was applied to the DEM to terrain geocode the
ASAR images to 150 m and 1,000 m.

Following indications by de Ferranti (2009), the consistency of elevations reported in this global
dataset is superior to other global elevation datasets. Despite some inaccuracy, this DEM was the
most reliable option for pre-processing and analysis until the release of the Copernicus DEM.

3.6.2 Copernicus DEM

While the Sentinel-1 data acquired in 2017 and 2018 had been processed with the SRTM-based
DEM described above, the Sentinel-1 data for the years 2019 and 2020 as well as the ALOS-2 KC
strip data have been processed (ortho-rectification, geocoding, topographic corrections) with the
more recent Copernicus Digital Surface Model.

The Copernicus DEM is derived from the WorldDEM produced from interferometric X-band radar
observations of the German TandemX satellite mission. The Copernicus DEM differs from the
WorldDEM in that water bodies have been flattened. The elevations reported over water in the
original radar product presented a high level of uncertainty (noise, offsets) due to low
interferometric coherence of single-pass interferometric X-band observations over water
surfaces. The absolute vertical and horizontal accuracy of the DEM has been reported to be better
than 4 m and 6 m, respectively (Fahrland et al., 2022).

The Copernicus DEM is provided in three different resolutions with either regional or global
coverage and in three different data formats (DGED, DTED, INSPIRE). The highest resolution of
0.3-arc-second is available only for Europe (EEA-10), whereas the 1- (GLO-30) and 3-arc-second
(GLO-90) versions are available globally. All DEM versions are provided in form of 1° x 1° tiles in
geographic coordinates with World Geodetic System 1984 (WGS84; EPSG 4326) and Earth
Gravitational Model 2008 (EGM2008; EPSG 3855) horizontal and vertical reference, respectively.
All versions comprise a set of quality layers indicating where the original WorldDEM had been
edited, the water body mask that was applied, and a layer indicating the error of elevation
estimates at pixel level.

To evaluate which version of the Copernicus DEM should be used, the performance of the S1 pre-
processing with each of the different DEM versions was tested for different regions (Van De
Kerchove etal,, 2021). The tests of the pre-processing of Sentinel-1 data with all different versions
of the Copernicus DEM indicated that the differences in the accuracy of geocoding and topographic
corrections between the EEA-10 and GLO-30 DEM (regardless of the format) are small whereas
the use of the 3-arc-second version would have resulted in a significantly reduced quality of the
topographic corrections. It was therefore decided to use the GLO-30 DEM for the global processing
of Sentinel-1 data.

3.7 MODIS Vegetation Continuous Fields

The MODIS Vegetation Continuous Fields (VCF) product (MOD44B) (DiMiceli et al, 2015)
estimates the percentage cover of woody vegetation, herbaceous vegetation, and bare ground. It
was derived from all seven bands of MODIS (Hansen et al., 2003) and is available annually since
2000 with a spatial resolution of 250 m. Version 6 is the current version. Data are provided in an
sinusoidal projection in tiles of 4800 x 4800 pixels from the Global Land Cover Facility (GLCF) and
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can be accessed via the following website

(https://lpdaac.usgs.gov/dataset discovery/modis/modis products table/mod44b V006).

In this project, the dataset was resampled from 250 m to 300 m to match the CCI Land Cover
dataset and allows nested gridding with the Sentinel-1 and ASAR datasets with a pixel size of 150
m. [ts use was originally foreseen in the training phase of the models relating C-band backscatter
to biomass.

Due to macroscopic artefacts especially in the tropics because of permanent cloud cover, the
model training does not rely on the dataset any longer. Instead, the MODIS VCF dataset is currently
used to support the estimation of the ENL for the Sentinel-1 data.

3.8 Landsat canopy density and density change

A global Landsat-based canopy density map representing forest state in 2000 was released in the
framework of the Global Forest Change project (Hansen et al., 2013). To map canopy density, a
suite of multi-temporal reflectance metrics (maximum, minimum, various percentiles) was
calculated for the global Landsat dataset and used in regression tree models, trained with the aid
of very high-resolution imagery (e.g., Quickbird) classified to forest/non-forest classes. The same
multi-temporal metrics were also used to produce global 30 m maps of forest cover change,
including information about annual forest cover loss since the year 2000, as well as gains. The
forest cover change database includes a 30 m water body map, but no information was available
about how this map was generated. Canopy density and related changes are mapped globally at 1
arc-second pixel posting. Data are available at
https://earthenginepartners.appspot.com/science-2013-global-forest. Using the same algorithm,
the United States Geological Survey (USGS) and the University of Maryland, Department of
Geographical Sciences, released 30 m resolution raster data layers for circa 2010 of canopy
density and bare ground from Landsat 7 ETM+ data (Figure 3-35). The canopy density and bare
ground data are per pixel estimates, 1 to 100% (given as integers values 1-100). Data description
and access information can be found under https://glad.umd.edu/dataset/global-2010-tree-
cover-30-m (last consulted on 2 October 2024). The dataset is used in the training phase of the
models relating C-band and L-band backscatter observations to biomass.
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Figure 3-35: Canopy density map for the year 2010 produced from Landsat.
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3.9 CCl Land Cover

Land cover information is used during training of the biomass retrieval models to mask out
specific classes. More specifically, the BIOMASAR approach requires the identification of areas
with low canopy density and only belonging to a vegetation type of class. Water bodies, urban
areas and permanently snow-covered areas are characterized by very low canopy density.
Cropland is also characterized by low canopy density. If not flagged, the backscatter values from
such types of land surfaces can distort the histograms used to estimate the parameters of the
model relating SAR backscatter to biomass. At C-band, the SAR backscatter of water bodies
presents some of the highest and lowest backscatter values. The backscatter of urban areas is
mostly higher than in forests. The backscatter of permanent snow/ice cover presents strong
variability in time and space depending on the wet/dry conditions of the snow layer and the
structure of the ice. At L-band, the backscatter of water bodies and ice-covered terrain is much
lower compared to the backscatter of other types of unvegetated terrain. Built-up areas have high
co-polarized backscatter and very low cross-polarized backscatter. Cropland can be assumed to
be an unvegetated surface when plants are not growing; however, when plants grow, they have a
distinct signal that can substantially differ from the backscatter of an unvegetated surface. It is
therefore preferable to discard observations in correspondence of cropland even if this may
reduce the number of samples used to estimate the backscatter model parameters at the lower
end. The Climate Change Initiative Land Cover (CCI-LC) project has released annual land cover
maps between 1992 and 2020 (https://maps.elie.ucl.ac.be/CCl/viewer/, last access on 2 October
2024) based on optical spaceborne datasets (Figure 3-36). The land cover maps are provided in
equiangular projection with a pixel size of 1/360t of a degree in latitude and longitude. The two
land cover maps were resampled to the geometries of the SAR datasets in support of the biomass
retrieval procedure using nearest neighbour resampling.

Figure 3-36: Illustration of CCl Land Cover maps (https://www.esa-landcover-cci.org)

The overall accuracy of the yearly land cover dataset was reported to be slightly above 70%
(Product User’s Guide under https://www.esa-landcover-cci.org, last access on 2 October 2024).
Commission and omission errors occur, particularly in mixed classes or areas of strongly
heterogeneous land cover. The classes of interest to CCI Biomass have among the highest
classification accuracy though, typically above the overall accuracy of 70%. A data layer giving the
classification certainty and a set of quality flags are provided.

This document is the property of the CCI-Biomass partnership, no part of it shall be reproduced or transmitted
without the express prior written authorization of Aberystwyth University and Gamma Remote Sensing AG.


https://maps.elie.ucl.ac.be/CCI/viewer/
https://www.esa-landcover-cci.org/

Ref CCI Biomass Algorithm Theoretical Basis — [T
s Document
= €Sda Issue Page Date
6.0 59 19.12.2024

3.10 Copernicus Global Land Operations

Retrieval of forest above-ground biomass with C- and L-band SAR data implies that non-forest
land cover types, such as urban areas or agricultural land, may be assigned AGB values if their
backscatter is in the range of values observed over forest. In addition, the CCI Biomass map
products report AGB values for vegetated land that may not be considered forest according to the
forest definition being applied. The general approach followed in CCI Biomass is not to apply any
masks over vegetated land to allow for users to apply their own forest definitions. However,
obvious erroneous biomass assignments over built-up areas, bare ground, snow/ice, or water are
masked out using the Copernicus Global Operations Land Cover product (CGLS-LC100) version
3.0.1 (doi=10.5281/zen0d0.3939050). The land cover maps are produced from PROBA-V data at
100 m spatial resolution at three different levels of detail according to the Land Cover
Classification System (LCCS). The number of classes range from 12 at level 1 up to 23 classes at
level 3. Version 3 of CGLOPS provides annual maps for the years 2015 to 2019 with an accuracy
of the order of 80 %. In the CCI Biomass AGB maps, the CGLOPS land cover classes urban
(code=50), water (code=80), open sea (code=200), bare (code=60), and snow/ice (code=70) have
been masked out.

3.11 FAO Global Ecological Zones

The Global Ecological Zones (GEZ) dataset produced by the FAO (Simons, 2001) divides the land
surface into 20 zones with “broad yet relatively homogeneous natural vegetation formations,
similar (but not necessarily identical) in physiognomy (Figure 3-37). Boundaries of the EZs
approximately coincide with the map of Képpen-Trewartha climatic types, which was based on
temperature and rainfall. An exception to this definition is “Mountain systems”, classified as a
separate EZ in each Domain and characterized by high variation in both vegetation formations
and climatic conditions caused by large altitude and topographic variation” (Simons, 2001). The
GEZ dataset is publicly available as a vector dataset, in equiangular map projection. The GEZ
dataset is used to stratify the estimation of some of the model parameters of the retrieval
algorithms. To this scope, the GEZ dataset is rasterized on-the-fly to the geometry of the SAR
images used to retrieve biomass. The re-projection is done with GDAL.
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3.12 Terrestrial Ecoregions of the World

The very broad definition of ecoregions in the GEZ dataset does not allow for fine tuning of

retrieval algorithms. To this scope, we also consider the better delineation of vegetation in the
Terrestrial Ecoregions of the World (TEOW) dataset (Olson et al.,, 2001). Compared to the GEZ
dataset, the TEOW dataset also brings in ecological properties of the landscape. The TEOW dataset

divides the Earth land surfaces into 825 ecoregions (Figure 3-38Error! Reference source not

found.). These are categorized within 14 biomes and eight biogeographic realms (Figure 3-39).
The boundaries of each ecoregion, biome and realm correspond to the original extent of natural
communities prior to major land-use change.

Figure 3-38: Terrestrial ecoregions of the world (Olson et al., 2001).
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Figure 3-39: Grouping of the terrestrial ecoregions into biomes (see legend) and realms (see map). Picture
reproduced from Olson et al. (2001).
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As for the GEZ dataset, the TEOW is rasterized on-the-fly to the geometry of the SAR images used
to retrieve biomass. The re-projection is done with the program gdal_rasterize of GDAL. This
dataset is also used to segment the ICESat GLAS dataset in the process of estimating the model
coefficient relating canopy density and RH100 measurements from the individual waveforms.

3.13 Relating forest variables

Tree variables such as diameter at breast height, tree height, crown diameter and tree biomass,
are correlated in the sense that much of the variability of one variable (e.g., AGB) can be explained
in terms of the variability of one or a few other variables (e.g., tree height and diameter at breast
height). Models can therefore be created that aim at generalizing the functional relationship
between forest variables and allow estimation in regions where the output variable of interest is
poorly characterized by in situ observations (Chave et al., 2005). Stand-level variables such as
basal area, canopy height, canopy density, crown diameter, growing stock volume and above-
ground biomass density are also related to each other, although the functional relationships might
be different between the tree and stand level.

Since the retrieval model implemented in the CORE algorithm originally relates the SAR
backscatter to variables that express the horizontal and vertical structural properties of a forest
(canopy density and canopy height), it requires an additional link to AGB. As our interest is to
estimate AGB, we then need to establish functions that may (i) reduce the number of forest
variables in the models and (ii) relate those forest variables to AGB. Functional dependencies
between forest variables at the level of forest stands or even coarser resolution are therefore of
interest.

The CORE retrieval algorithm implements two sets of such functions:

1) A function between canopy density (CD) and canopy height (h) reduces the number of forest
variables to height only:

CD = f(h) (3-2)

2) A second function linking AGB to canopy height allows explicit formulation of the retrieval
model in terms of AGB:

h=f(B) (3-3)

These two sets of functions are described in this Section and applied in the retrieval methods.
Equation (3-3) is also used to derive the layer of maximum AGB from the LiDAR data.

The coefficients of the functions in Equations (3-2) and (3-3) represent auxiliary datasets ingested
by the CORE algorithm. The coefficients are introduced, presented, and discussed below.

3.13.1 Linking LiDAR canopy density and canopy height

We use a generic model explaining canopy density as a function of the height metric
corresponding to the start of a GLAS waveform (RH100). Canopy density was estimated as the
ratio between the energy received from the canopy and the total energy returned for each
footprint. Here, canopy density is considered as a normalized value ranging between 0
(unvegetated surface) and 1 (gapless canopy):
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The coefficient q in Equation (3-4) is empirical and describes variation in the relationship between
canopy density and canopy height. Higher g means that canopy tends to close faster when trees
grow.

To investigate the variation of g across the globe, the ICESat-GLAS dataset described in Section 3.6
was used. Any remaining footprints in unvegetated areas were removed using the CCI-LC product
for 2010. The ICESat GLAS data were then divided according to a combination of the different
TEOW ecoregions and a 10 x 10 grid. Each grid cell was divided by the ecoregions within it and vice
versa, with 100 footprints being a minimum requirement for a polygon to be retained for the
regression, otherwise the regression was undertaken with all the footprints available for the
underlying ecoregion. The upper and lower 5 % were removed to account for potential outliers.
A least squares regression, using the scipy optimize curve fit function, was then undertaken to
obtain q (Figure 3-41) for each polygon. The mean square error (MSE) was also calculated for each
regression.

The model described in Equation (3-4) corresponded to the ICESat GLAS metrics despite varying
patterns of the canopy density to canopy height relationship (Figure 3-40; Kay et al,, 2021). The
varying dispersion of the data resulted in relative MSE values with a median of 39% and inter-
quartile range of 27-60% relative to the q values obtained. The coefficient g varies from 0.019 to
0.153 across the globe, with the lowest values found in the sparser forests of the savanna or boreal
regions and the highest in tropical regions (Figure 3-41 and Figure 3-42).
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Figure 3-40: Least squares regression curves denoted by blue line (extended to 60m canopy height for
comparison) for example polygons. With {a} a low q value (0.031), {b} a q value close to the global mean (0.064)
and {c} with a high g value (0.131)
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Figure 3-41: Map of g values per combination of TEOW ecoregion and 1° x 1° grid, obtained through least
squares regression of available ICESat GLAS footprints within each ecoregion after filtering, ecoregions in white
had no footprints
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Figure 3-42: Histograms of q values per biome, split into two figures for clarity

These observations indicate that the functional dependencies in Equation (3-4) are maintained
across the globe for most ecoregions. A rapid increase in canopy density with increasing height
for dense tropical forests and a shallower slope for the sparser savanna and boreal regions was
observed. The TEOW ecoregions were selected as a broad characterisation of multiple biophysical
variables that may influence forest structure. However, localized variations of these variables
within ecoregions are not available on a global scale. To capture some of these, a 1° grid was
applied as a compromise to the number of footprints available for a regression. Analysis of the
factors potentially contributing to these localised variations indicate that they may be better
captured by using additional information such as altitude, temperature, precipitation, geology, or
a wilderness layer. This was not possible in this analysis due to the relatively sparse sampling of
ICESat GLAS and the additional filtering applied.

From the set of estimates of the coefficient q for each ecoregion, we generated a raster map with
a pixel size of 1,000 m by rasterizing the TEOW dataset. Inpainting was applied to extrapolate
values to surfaces not represented in the TEOW dataset.
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GEDI LiDAR data were processed using the same methods, with non-vegetated footprints
removed by applying the PROBA-V land cover product (Buchhorn et al., 2020). In addition, only
the night-time full power beams were used, and these were filtered for 12a and 12b quality flags.
To match the ICESat-GLAS dataset, all orbits from the 1stand 4t quarter of the year (e.g., data from
October to March) were also removed.

ICESat GLAS is the only satellite which provides global coverage, even though the sampling is less
dense than GEDI. In addition, the MSE values in relation to q are considerably lower for ICESat
GLAS (median of 39% and interquartile range of 27-60%) compared to GEDI (median of 69% and
interquartile range of 44-91%). Visual analysis of the GEDI dataset has also shown several
discrepancies which include: concentrations of footprints with very low canopy density values
(Figure 3-43), a step in height to canopy density values around 8 m height, and regions which have
some orbits with lower canopy density values (personal communication John Armston). The
above functional relationships are based on those calculated with ICESat GLAS data. At the time
of writing, there is no equivalent dataset released from ICESat-2 data.

The single parameter (q) varied depending on which satellite data were applied, with GEDI having
consistently lower g values across the majority of polygons (Figure 3-44,d). This variation is due
to differences in the canopy density values from each satellite (assessed by comparing the means
per polygon; Figure 3-44,b), with mean canopy density values being consistently lower for GEDI
except for those from polygons with high mean density (canopy density values of ~0.8).
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Figure 3-43: Density scatterplots with viridis colour scale comparing GEDI data on the x axis and ICESat GLAS
data on the y axis. Comparing mean canopy height per polygon (top left), mean canopy density per polygon
(top right), mean square error of the g regression per polygon (bottom left) and derived q values per polygon
(bottom right). A 1:1 line has been added to each blot in black.
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Figure 3-44: Least squares regression curves denoted by red line (extended to 60 m canopy height for
comparison) for example polygons. The regression of GEDI data is on the top row with ICESat GLAS data on the
bottom row. With (a) varied concentrations of the data distribution, (b) concentration of low canopy density
values for GEDI, (c) a jump in GEDI at around 8 m height and 0.18 canopy density and (d) a shift in canopy density
values, in particular in intermediate canopy density ranges.

3.13.2 Linking AGB and canopy height

AGB is obtained from measurements of trees stem diameter, height, form factor, wood density
and number of trees per unit area. An inventory of trees to compute AGB can be complicated from
an economic and logistical point of view, especially in remote areas. For this reason, close-range
EO measurement techniques have been developed (e.g., terrestrial laser scanners) that can allow
more rapid quantification of several such parameters. However, even such techniques do not
allow mapping of large areas, which instead can only be achieved with far-range EO instruments
(i.e, mounted on airborne or spaceborne platforms). Whenever the measurements of forest
variables are "outsourced" to far-range EO, tree allometries (based on destructive sampling) start
to play a role. Airborne laser scanning has proved to be a reliable sensing technique, allowing
accurate measurement of variables related to forest structure. Accordingly, studies have been
developing in the direction of characterizing the relationship between AGB and laser-based
metrics at stand level to mimic the relationship between tree variables in tree-level allometric
functions. In particular, the relationship between canopy height and AGB has been investigated at
several locations because both horizontal and vertical structures of the forest are sensed by
LiDAR.

Lefsky et al. (2005) found a linear relationship linking AGB to the square of maximum canopy
height estimated from ICESat GLAS waveforms in tropical forest in the Amazon and showed good
agreement between field measurements and predictions. Asner et al. (2012) proposed a generic
power-law model relating above-ground carbon density, i.e., roughly half of the AGB, and a LiDAR
metric referred to as mean canopy height (MCH) for tropical forests. The method appeared to be
valid across four sites, although the model had to be trained separately at each to capture the
region-specific forest structural properties in the power-law model. Saatchi et al. (2011) proposed
a similar power-law function relating AGB to basal area weighted tree height (Lorey's height) to
estimate AGB in tropical forest. The models were trained on a continent-by-continent basis using
in situ observations and applied to ICESat GLAS measurements and several image datasets to
generate a map of AGB for the tropical regions. Asner and Mascaro (2014) proposed a set of global
and regional equations relating LiDAR metric top-of-canopy height (TCH) obtained from airborne
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observations to above-ground carbon density in neotropical forest. Their conclusion was that
global models can explain the variability of AGB with TCH, but they are not able to characterize
the variability at the level of single sites. They also observed that Lorey's height is flawed in open
canopy forest and therefore can potentially generate incorrect biomass estimates. Coomes et al.
(2017) expanded the work by Asner and Mascaro to Southeast Asian Forest and demonstrated
that the power-law function is still applicable but needs further adaptation to site conditions. They
also showed that an explicit use of canopy gap information derived from laser measurements
improves the retrieval of carbon density. Labriere et al. (2018) used airborne laser scanned data
and in situ observations in tropical forests in Gabon and French Guiana to test a power-law
function relating AGB to several height metrics, including TCH and MCH.

The survey of literature dealing with biomass estimation based on LiDAR observations indicated
that a power-law function relating AGB to a LiDAR height metric is a sensible way to proceed:

AGB = p,hP> 3-5
P

where p; and p: are regression coefficients estimated by non-linear least squares. Here h
represents the canopy height of a forest.

An attempt to use a function relating a forest height metric and AGB at the global scale can build
on such local studies but requires simplifying assumptions and a great deal of generalization. The
spaceborne LiDAR datasets provide a reasonable sampling of canopy height globally.
Unfortunately, there are no measurements available at the footprintlevel nor are there alternative
databases containing height and AGB from the same location that would allow spatial
characterization of the functional dependence between height and AGB at the global scale and at
the hectare scale spatial resolution envisaged in CCI Biomass.

The major limitation to estimating the coefficients in Equation (3-5) and characterizing its spatial
variability, may be overcome in two ways:

1) By exploiting spatially explicit estimates of AGB derived from EO observations
2) By exploiting statistics obtained from inventory-based measurements of AGB at the level of
administrative or ecological level

The first approach was pursued for previous versions of the CCI Biomass CRDP. In a first attempt,
the first version of the CCI Biomass dataset was used as reference. This version was obtained with
the approach developed for the GlobBiomass dataset and did not include an explicit function that
related forest variables (Santoro et al.,, 2021). While we were fully aware that errors in the map
dataset might have affected the estimates of the model relating AGB and canopy height, our deep
knowledge of this AGB dataset and its errors was exploited to reduce the impact of source errors
on the models proposed to relate AGB and height.

To estimate the regression coefficients, we computed the AGB value from the map dataset
corresponding to the area of the LiDAR footprint. An assessment of the relationship between
canopy height from spaceborne LiDAR and AGB from the map revealed low correlation and very
large variance. However, after averaging to coarse resolution grid cells, the error was found to
decrease and the coefficient of the equation relating height to AGB became significant. The average
values of canopy height and AGB were then stratified according to different criteria to capture the
spatial variability of the association between height and AGB. We refer to previous versions of the
CCI Biomass ATBD for a description of the stratification and the outcome of the investigations
(https://climate.esa.int/en/projects/biomass/key-documents/, last access on 30 October 2023).
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From the extensive analysis undertaken in previous years, we concluded that the most reliable
set of coefficients corresponded to average values in 1° x 1° grid cells and a window size of 10° x
10°.

The map with the estimates of the coefficients p; and p2 used until v3 of the CRDP, i.e., based on a
combination of data from ICESat GLAS and ICESat-2, is shown in Figure 3-45. While this set of
estimates may be considered a realistic approximation, the evaluation of the CCI Biomass AGB
maps showed that they caused biases.
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Figure 3-45: Maps of the coefficients p; and p, used until v3 of the CRDP. The maps were based on canopy height
from ICESat GLAS and ICESat-2, and AGB from the GlobBiomass and CCl Biomass v1 datasets.

Starting with v4 of the CORE retrieval algorithm, we pursued the second approach, and linked
averages of spaceborne LiDAR canopy height values to AGB averages derived from national forest
inventory (NFI) data per administrative unit (e.g., provinces, states, counties) or ecological unit
(broadleaf forest, coniferous forest).

The ICESat-2 dataset was used to compute the averages of canopy height per administrative or
ecological unit to associate with the values of AGB. The AGB averages were either computed
directly when data were available to us or, in most cases, were extracted from inventory reports
published by the NFIs. We were able to identify NFI-based data or statistics for 106 countries. In
addition, we used national averages of AGB reported in the FAO Forest Resources Assessment for
2020 (https://fra-data.fao.org/WO/fra2020/home/, last access on 1 October 2024) to
complement our database over 94 countries for which we could not identify NFI measurements
or statistical data. For 50 remaining countries, we could neither identify NFI-based statistics nor
the FRA 2020 database reported AGB. Figure 3-46 shows the spatial coverage of our database of
NFI AGB averages in the form of maps. We split the averages according to whether they were
obtained from (i) NFI measurements either by ourselves or from the reports and (ii) FAO FRA
2020 country reports. Except for large parts of Africa, the Middle East, parts of Southeast Asia and
the Caribbean, we were able to identify NFI-based values. Gaps could, however, be filled with the
FAO FRA 2020 data. The 50 countries for which we could not identify any value on AGB were
either very small countries or countries without forest cover.
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Figure 3-46: Map illustrating the coverage of AGB values per administrative or ecological unit derived from NFI
datasets and statistical reports.

Our database of AGB averages (see Annex D) currently consists of 761 values for sub-national
administrative or ecological units and 94 values at national level from the FRA. To obtain some
sort of spatial characterization of the height-to-AGB function, the data were stratified by continent
and major ecological traits. The definition of the 18 strata in Figure 3-47 followed an additional
set of criteria based on number of data values, availability of NFI-based values and uniform
representation of the range of AGB. It is understood that such a stratification does not allow the
capture of small-scale variability of the height-to-AGB relationship. Nonetheless, the focus was on
establishing valid and reliable predictions of AGB everywhere, trying at the same time to capture
macroecological patterns. Our overall goal was to minimize the risk that large regions would have
been characterized by AGB biases attributed to an imperfect function.
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Figure 3-47: Strata used to split the database of AGB and LiDAR canopy height statistics.
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The data values of average canopy height and AGB, and the corresponding fit of the power-law
function in Equation (3-5) to the data are illustrated in Figure 3-48. Strata characterized by many
sample points, which were, furthermore, based on data from well-established NFIs (e.g., Europe,
Russia, or North America) demonstrated the capability of the power-law model to reproduce the
trend between AGB and canopy height. In such cases, the coefficient p, was always between 1 and
2.5. This can be considered a range of realistic values for the coefficient, even if the spatial scale
at which we are fitting Equation (3-5) is much coarser than the sub-hectare scale of other studies.
Indeed, AGB must increase with height and the rate of the biomass increase must be larger than
the rate of height increase (i.e., p must be larger than 1). A value larger than 2.5 is unrealistic
because it would imply an extraordinarily rapid increase of biomass for a small increase of height.
Originally (v4), our approach included strata that were characterized by a small number of data
points or by substantial spread of the observations, when the estimates of the two coefficients did
not have physical meaning. In this case, we opted for fitting a linear function, i.e., a power-law
model with pz =1 (e.g., Oceania, North Africa, Middle East). Such cases were mostly characterized
by lack of sub-national values of AGB by NFIs so that the models had to be based on FAO FRA
national values. We preferred associating a set of coefficient estimates to each stratum, even if
approximated, rather than expanding estimates from neighbouring strata to preserve, even if
minimally, the spatial variability of the relationship between height and AGB. Validation of the
CRDP v4 revealed that this linear assumption caused significant biases. For version 5, we
therefore revisited the definition of the strata, reducing it from 20 to 17, and revisited some of the
AGB statistics, which were apparently incorrect and distorted the estimates of the coefficients in
Equation (3-5). Validation of the CRDP v5 revealed strong biases in Southeast Asia and Oceania,
which could be attributed to the imperfect structural function. For version 6, we revisited the AGB
statistics for these regions and updated the structural functions.
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Figure 3-48: Observations of average canopy height and average AGB at national and sub-national level (circles)
and corresponding model fit based on Equation (3-7) for each of the 18 strata in Figure 3-47. The 18 panels are
here arranged by continent. Each panel reports the estimate of the model’s coefficients and their SDs. The model
fitted to the observations (solid curve) is extended up to 50 m (dashed curve) in accordance with the canopy
height range shown in Figure 3-28.
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The stratum-wise estimates of the two coefficients of Equation (3-5) were finally converted to the
spatially explicit dataset shown in Figure 3-49. Compared to the previous version of the estimates
of the coefficients in Figure 3-45, the range of values estimated for the two coefficients p; and p.
is smaller and we obtained a realistic model fit in each stratum. With this update in the
stratification, we could solve one issue that assumed a linear function instead of a power-law if
the estimates of p; had been smaller than 1, i.e., for increasing height the biomass accumulation
would have reduced.
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Figure 3-49: Maps of the coefficients p; and p; based on canopy height from ICESat-2, and AGB averages obtained
from inventory data by NFIs or the FAO FRA 2020 country reports.

To verify the reliability of AGB predicted with the function in Equation (3-5), we compared the
AGB estimates based on Equation (3-5) and the set of coefficients obtained for this version of the
ATBD in Figure 3-49 with AGB values obtained from plot inventory measurements at the 0.1° large
grid cells used in the Product Validation Report of v4 [RD-8]. We also compared the same AGB
values from the plot inventory data with AGB estimates derived from previous versions of the
estimates of p; and p: in Equation (3-5). For this, we used grid cell averages of ICESat-2 canopy
heights from the segments for the years 2019-2022. We note that the AGB predictions from
ICESat-2 and the AGB values based on forest inventory data are independent of each other.

Figure 3-50 shows that for each version of the coefficients of the function relating LiDAR-based
canopy height to AGB, the data points clustered more tightly along the identity line. Although we
are not able to model correctly the highest AGBs, which occurred primarily in a few regions of
Australia, the improvement since v3 is remarkable, indicating that the modifications leading to
the current version of the CORE algorithm point in the right direction. v4, v5 and v6 share the
same predictor, i.e., ICESat-2 observations and inventory-based sub-national averages, but
different stratification of the world and updated support datasets. The function obtained for v6 is
closer to those obtained for v3 (based on a blend of spaceborne LiDAR and the first CCI Biomass
AGB map) and v2 (based on ICESat GLAS only and the GlobBiomass AGB dataset). Dispersion and
bias are however smaller, particularly in the low biomass range.

This analysis was undertaken to understand the reliability of relating canopy height from
spaceborne LiDAR to AGB from a global dataset of observations. Results from this analysis impact
the CORE retrieval algorithm but it is remarked that the AGB values from the database of plot
inventory measurements used to validate the AGB maps were not used to calibrate or fine tune
the height-to-AGB relationship. Indeed, the overall assumption that LiDAR-based canopy height
from space and inventory-based statistics of AGB could be used as a surrogate to predict the
relationship between height and AGB is confirmed.
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Figure 3-50. Comparison of grid cell average values of AGB from field inventory data and from Equation (3-7)
applied to ICESat-2 canopy height measurements (circles) for each version of the ATBD. The filled circles
represent the median value of AGB from the LiDAR-based predictions in the corresponding 50 Mg ha wide bin
of AGB from the inventory-based values. The colour bar refers to the number of 0.1° grid cell observations in
each AGB bin.

Regardless of the approach developed in CCI Biomass to train Equation (3-5), the use of average
values at coarse spatial resolution implies that the set of estimates for the equation’s coefficients
is not valid for the hectare scale because of the non-linear nature of the model. In addition, average
values of AGB and canopy height cover a smaller range of values than the original data at full
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resolution, which is at hectare scale. By missing extreme values in the training dataset, the model
in Equation (3-5) is not well constrained for forests with the highest biomass densities. The two
sources of potential bias are here acknowledged, but it is not possible to quantify the bias
introduced by using an “average” model for the height-to-AGB relationship except at the local
scale where retrievals with the CORE algorithm implementing the “average” model and a “local”
model (e.g., Labriere et al., 2018) are compared to each other. Possible endeavours to bridge the
gap between data availability and spatial scale are discussed in the Algorithm Development Plan
report [RD-6]. Nonetheless, we believe that our approach using coarse resolution but equally
distributed measurements of AGB and canopy height as being currently the only option to
characterize the height-to-AGB relationship globally.

3.13.3 Raster dataset of maximum biomass

The retrieval algorithms aim to minimize the dependence on in situ information about biomass to
train the models relating the SAR backscatter to AGB. However, the models built in the retrieval
algorithms need to be constrained. On one hand, the spatially explicit datasets of canopy density
and canopy height derived from optical and LiDAR observations are used to derive estimates of
the retrieval model parameters. On the other hand, an estimate of the maximum biomass in a
region is required to constrain the retrieval within a realistic range of biomass values. This is
necessary to avoid values of biomass that are outside their known range, which is likely to occur
with the EO data here selected as predictors because of their increasingly weaker sensitivity to
biomass. To this end, we first developed a spatial database reporting estimates of AGB assumed
to be representative of dense forests, i.e.,, with high biomass density, in a certain area. These
estimates were then converted to maximum AGB. Later, we developed an alternative framework
based on LiDAR metrics of canopy height and spatially-explicit explicit estimates of AGB from
inventory or map data through the height-to-AGB function in Equation (3-5).

3.13.3.1 Inventory and map-based maximum biomass

Initially, a value was assigned to the centre of each tile in a regular 2°x2° grid. Where available, in
situ measurements from field plots or spatially explicit datasets of Growing Stock Volume (GSV)
or AGB were used. The AGB of dense forests, i.e., a parameter used in the retrieval model was then
defined as the 90t percentile of the histogram within the 2°x2° area (Santoro et al., 2011).
Interestingly, we identified a rather robust scaling factor between this parameter and the
maximum AGB of 1.2. Elsewhere, it was estimated with an empirical piece-wise linear function
(Santoro etal., 2015a) starting from values of the average AGB reported at a provincial or national
level. For tiles including several provinces or nations, the average AGB representative for the tile
was obtained by weighting the individual averages by the area of each within the tile. In regions
where numbers based on in situ measurements were unavailable, but we could gather more than
one map of AGB (preferably based on laser scanning observations), we estimated the AGB of dense
forest as the joint 90t percentile of the histogram of the map values. For areas lacking any form
of AGB estimates, the IIASA FAO 0.5° dataset of global AGB was used. The value for the AGB of
dense forests was then set equal to the maximum of the 16 values within the 2°x2° large tile. Given
that the database contained both GSV and AGB observations, we applied the Biomass Conversion
and Expansion Factor (BCEF) computed in the GlobBiomass project (Santoro et al., 2021) to
convert between the two variables (AGB = BCEF * GSV). Figure 3-51 shows the origin of the
estimate of the biomass of dense forests.
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Figure 3-51: Map detailing the origin of the numbers used to generate an estimate of the biomass of dense

forests at the spatial scale of 2°.

Water

The procedure implemented to characterize the maximum AGB globally was crude and should be
considered a first-order approximation. Attaching a single value to areas covering thousands of
km? was assumed to be sufficient to characterize it in regions including a dominant type of
vegetation. In fact, we assumed that the spatial variability of the maximum AGB would be small.
This approximation fails in regions with transitions between ecosystems (e.g., tropical forest and
savannah). Ultimately, ensuring spatial consistency of the estimates could not prevent the dataset
having errors and uncertainties propagating from the input datasets, the rules implemented to
estimate the AGB of dense forests from the data available in a tile, and the BCEF values.

To reduce some of the weaknesses in the dataset, additional processing steps were carried out,
whose aim was to:

e Improve the reliability of the database, which in some areas, such as large parts of Africa
or Southeast Asia, had to rely on the assumption that linear relationships between
reported average stocks and local maximum exist.

e Fill gaps in the 2-degree database.

e Increase the spatial resolution to better depict smaller scale variations in the maximum
AGB, such as are expected for transition areas between tropical rainforest and savannah.

The maximum AGB reached by forests across different ecoregions is expected to depend on
natural factors such as temperature, precipitation, or disturbance regime, as well as on
anthropogenic factors such as varying types of forest management. To verify/improve the initial
estimates and to fill gaps, a database of predictor layers that are expected to have predictive
power for maximum AGB was compiled at 2° x 2° resolution, including the bioclimatic variables
and ICESat GLAS observations of canopy density and height. For each 2° x 2° grid cell, metrics
were calculated from the local ICESat GLAS footprints that characterize the distribution of forest
height and density (i.e., quartiles of the distribution of GLAS height metrics RH100 and the Height
Of Median Energy; HOME). RandomForest (Breiman, 2001) models were then developed for each
FAO ecoregion using the initial estimates in our database as response and the ancillary datasets
as predictors. Once calibrated, the models were then used to predict the GSV of dense forests
globally at a resolution of 0.2° x 0.2° (Santoro et al,, 2021).
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Figure 3-52: Map of the GSV of dense forests with a spatial resolution of 0.2°.

Using the scaling factor of 1.2 between GSV of dense forests and maximum GSV as well as the BCEF
relating GSV and AGB (Santoro et al,, 2021), we generated a global layer of maximum AGB. The
layer of maximum AGB obtained from the dataset of maximum GSV and scaled with the BCEF is
displayed in Figure 3-53.
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Figure 3-53: Map of maximum AGB derived from inventory and map-based datasets and the BCEF.

These datasets of dense forest GSV, maximum GSV and maximum AGB were used to generate the
v1 of the CRDP. Validation of the CCI Biomass maps based on the initial map of maximum AGB
revealed locations affected by underestimation of the map-based values. The underestimation
occurred in the form of a saturated value shown in the PVASR [RD-4] and the PVIR [RD-8]
documents, an indication that the retrieval had been cut off at an AGB level lower than the real
maximum AGB. This occurred in regions where the characterization of the maximum AGB was
poor, e.g., because extrapolated from national inventory averages, other maps, or scarce inventory
samples. Since the datasets underpinning our spatially explicit layer of dense forest and maximum
AGB have not improved in the last years, this approach is not supported any longer. It is indeed
preferred to rely on direct observations relating LiDAR and inventory-based data through
functions that may guarantee stronger reliability. However, the datasets based on the collation of
inventory and map data streams are still used in CCI Biomass to benchmark this new form of
estimating maximum biomass.
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3.13.3.2 LiDAR-based maximum biomass

To overcome the problem related to a layer of maximum biomass primarily based on values
collated from different sources, an alternative solution was sought that would be more data
driven. The availability of global coverages of canopy height metrics from three sensors indeed
suggested they could be used to improve values in regions where the original maximum AGB was
poorly characterized. For this, we used the function relating canopy height and AGB and defined
the maximum AGB as the value predicted by Equation (3-5) corresponding to the maximum value
of canopy height.

Below we describe the procedure that was originally implemented to create the first global layer
of maximum biomass from spaceborne LiDAR followed by the improvement that is part of the
current version of the ATBD (v6).

V2 and v3 of the CRDP preceding this ATBD share the same approach but different sets of LIDAR
observations, namely ICESat GLAS only and a combination of data from the three spaceborne
LiDAR sensors, respectively. The combination was undertaken to overcome the issue of sparse
sampling in each of the three datasets. For each laser sensor, a map of maximum canopy height
with a pixel size of 0.25° was generated at first. The maximum canopy height in a pixel was defined
as the 95t percentile of the canopy height histogram from the footprint-level data. The coarse
resolution reduced the impact of incorrect canopy height estimates on the percentile value
because this was based on many values even in regions with sparse footprints. In v2, this map
represented the maximum biomass. In v3, the three maps of canopy height were combined with
a weighted average. The weights were proportional to the area covered by all
footprints/segments within a given area (0.25° in our case). GEDI was the main contributor in the
tropics whereas ICESat GLAS and ICESat-2 data contributed in an equal manner in extra-tropical
regions. To generate the maximum AGB from the maximum canopy height, we applied the
function described in Equation (3-5) (Section 3.14.2). Figure 3-54 shows the layer of maximum
AGB based on the LiDAR observations.
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Figure 3-54: Map of maximum AGB derived from the LiDAR-based dataset of maximum canopy height. This layer
was used in v3 release of the CCl Biomass CRDP.

With v3, for boreal and temperate forests, the AGB predicted from the LiDAR measurements was
slightly higher, which is in line with investigations that demonstrated light saturation of the
earlier CCI maps when the retrieval was constrained with the inventory/map-based maximum
AGB (v1) and with the ICESat GLAS data only (v2) [RD-4] and [RD-8]. Smaller values were instead
predicted across Alaska and most of the western north American continent. These results are
plausible since the assessment of the earlier CCI maps (versions 1 and 2) indicated somewhat
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higher values from the map than those reported by forest inventory. Across the wet tropics, higher
AGB values were again predicted using the LiDAR-based measurements. This result is consistent
with assessments of earlier CCI maps [RD-4]. In the dry tropics and the subtropics, instead, the
maximum AGB predicted from the LiDAR data is often smaller than the inventory/map-based
values. These were based primarily on other AGB maps or upscaled country statistics and
therefore potentially biased. In regions, where inventory data were available (e.g., Madagascar
and Australia), the lower values are explained because of the small number of LiDAR
measurements in our database. The densest forest was hardly observed, which lead to a lower
maximum AGB.

The availability of LiDAR observations from GEDI and ICESat-2 from several years, starting with
v4, implied that a layer of maximum AGB could be based on data acquired by one sensor. Since v5
of the CRDP, we selected ICESat-2 data as the only contributor to the layer of maximum AGB
because the ICESat-2 canopy heights appear to be more consistent with the ICESat GLAS values
than GEDI and because ICESat-2 is global.

For v4 and v5, we first estimated the maximum canopy height for each year of the ICESat-2 dataset
(i.e., 2019-2020 in v4 and 2019-2021 in v5) and then combined the results to give a final value.
For v4, the maximum value of canopy height in a given year was defined as the 99t percentile of
all height estimates corresponding to vegetation within an 0.1° grid cell. Maximum height was
estimated in grid cells with dimensions of 0.1° x 0.1°. This was a compromise between stabilizing
the value of the percentile expressing the maximum canopy height and retaining spatial detail.
This definition tried to truly detect the tallest forest in a certain area and account for spatial
variability. However, it likely captured the tallest tree within a segment, so was not properly a
forest canopy height and was furthermore susceptible to noise. The average of the yearly height
values weighted by the number of segments in each grid cell helped to reduce noise but could not
remove potential biases. For v5, we first averaged the segment-wise data to 1 km grid cells to
create yearly maps of mean canopy height and averaged them in time using the number of
segments per grid cell as weights. Having accounted for noisy measurements in the original data,
we defined the maximum canopy height as the 98t percentile of the 1 km values within 0.1° large
areas. This was found to be sufficiently stable to avoid point-wise noise in regions of poor
coverage. A 2-D median filter was then applied to reduce unrealistically high values. For v6, we
created a single map of mean canopy height with a grid cell of 1 km from the data acquired
between 2019 and 2022. The maximum canopy height was still defined as the 98t percentile of
all canopy heights within 0.1° grid cells. Estimates based on less than 3 observations and with an
estimate larger than 35 m corresponding to a tree cover of less than 30% were discarded. These
thresholds were obtained after a detailed analysis of the data aiming at understanding the causes
of biased height estimates. Figure 3-55 shows the map of maximum canopy height; values in
correspondence of unvegetated surfaces (e.g., desert, and ice-covered regions) were obtained
with inpainting from neighbouring regions where valid canopy height measurements were
available.
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Figure 3-55: Map of maximum canopy height derived from ICESat-2 data acquired in 2019-2021.

Figure 3-56 shows the corresponding map of maximum AGB while Figure 3-57 indicates the
difference between this map and the previous version.
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Figure 3-56: Map of maximum AGB derived from the ICESat-2-based dataset of maximum canopy height. This
layer is used in the current release of the CCl Biomass CRDP.
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Figure 3-57: Difference of maximum AGB estimates from the current version (v5) and the previous version (v4).
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The spatial patterns of maximum AGB correspond to those identified in the previous versions of
the same layer but there are discrepancies in several regions. The maximum AGB in polar regions
and some sparsely vegetated regions (e.g., Pampas and Kazakhstan) decreased to low values as a
consequence of the filtering to remove unnatural high values of canopy height in sparsely
vegetated regions. Improved filtering of the ICESat-2 data also led to a reduction of the maximum
AGB in regions with steep topography (Pacific Northwest coast, Andes region and Himalaya).
Improved structural functions in Southeast Asia and Australia led to a marked increase of the
maximum AGB. The strong increase of the maximum AGB in the wet tropics in Africa are a
consequence of having lowered the threshold on the number of laser photons per segment.

Although the layer of maximum AGB seems to have improved in each version of the CORE retrieval
algorithm, it is not possible to quantify the accuracy of the current version. The accuracy of the
current version can only be quantified indirectly through validation of the AGB maps against
inventory data. Biases revealed by this exercise are usually explained because of an incorrect
value of the maximum AGB.

The continual improvements to the layer of maximum of AGB imply variability of its values from
version to version, which is illustrated by the temporal standard deviation of its values from v1 to
v6 in Figure 3-58. The largest variability in time occurs in eastern Oceania, the Andes region, the
western Congo Basin, peninsular Southeast Asia and the eastern US. In Asia and Oceania, the
uncertainty is a consequence of continuous changes in the AGB data support and the stratification
applied to characterized the structural function. The large difference of values in the Andes region
and the eastern US is due to differences in the AGB data support (GlobBiomass dataset and NFI
averages). Changes applied to the filtering of the ICESat-2 data explains the variability of the
maximum AGB in the Congo Basin. Other regions of the world (e.g., Eurasian temperate and boreal
forests, western and eastern Amazon) also showed remarkable fluctuations of the maximum AGB,
which were explained by changes in the AGB data support. Changes in maximum AGB across
versions of the CCI Biomass CORE retrieval algorithm imply variability of the corresponding AGB
maps in the CRDP. The map in Figure 3-58 therefore indicates regions where the structural
function relating height to AGB needs better characterization, i.e.,, where knowledge of forest
structure needs to be improved.
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Figure 3-58: Map of the temporal standard deviation (SD) of the maximum AGB between v1 and v6 of the CCI
Biomass CORE retrieval algorithm.
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4 AGB estimation methods

4.1 The GlobBiomass global biomass retrieval algorithm

This Section starts with an overview of the GlobBiomass retrieval algorithm because it served as
starting point for the development of the CORE algorithm used in CCI Biomass.

The GlobBiomass algorithm consisted of a three-stage approach that exploits a simple Water
Cloud Model (WCM) to obtain two independent estimates of biomass from multi-temporal C-band
SAR backscatter observations and from a single observation of L-band backscatter. The estimates
were then combined with the intention to compensate for systematic errors in one or the other
dataset. Because the WCM was expressed in a form relating SAR backscatter to the GSV (m3ha1),
AGB was estimated from GSV by scaling using the BCEF.

Although there is no experimental evidence that estimating AGB from GSV is more accurate than
estimating AGB directly, it was believed that this approach is more robust than a direct retrieval
of AGB from the SAR backscatter for the following reasons:

o The SAR backscatter at C- and L-band is affected by the forest structure and dielectric.
Here, we initially discard the contribution from the forest floor. For such wavelengths, the
major component of the backscatter from a forest is expected to originate in the upper
part of the canopy, thus explaining the limited sensitivity of the backscatter to forest
structural parameters for increasing density. However, it was also reported that under dry
or frozen conditions, the sensitivity of the SAR backscatter to forest structural variables
increases (Santoro etal., 2011; Santoro etal., 2015a), which can be explained by increased
penetration of the wavelength into the canopy so that major elements of the forest are
being sensed. If a retrieval algorithm is designed to give more weight to such observations
than to other observations (if available), it is reasonable to assume that GSV can be
retrieved from SAR backscatter (as implemented in the GlobBiomass algorithm).

e By relating to a structural parameter such as GSV, one can base the retrieval on a
physically-based model, with parameters that can be predicted by using observations. If
the variable of interest were AGB, it is unclear how such models could be parameterized
given that the weight of the trees cannot be inferred from measurements of structural
parameters only.

o AGB requires knowledge of the wood density. It remains undemonstrated that the SAR
backscatter at C- and L-band is sensitive to the specific wood gravity of trees. Lacking such
evidence, it is preferable to proceed with the estimation of forest structural parameters
from the SAR backscatter and convert to AGB using a separate layer (the BCEF) that does
not depend on EO observations.

e Volume is the major predictor of biomass. The use of volume as the major predictor of AGB
is clearly evidenced by the country reports to the FAO 2010 Forest Resources Assessment
(FRA). More than 80% of the 171 countries reporting their biomass and carbon resources
to the FRA based their numbers on estimates of volume (and not vice versa).

Given that there are hardly any datasets reporting measurements of GSV and AGB, it is currently
not possible to go beyond these statements, but some of them clearly require being addressed in
the future at the level of prototyping studies.
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Figure 4-1: Flowchart of the GlobBiomass global biomass retrieval algorithm.

The three stages of the GlobBiomass algorithm were structured as follows (Figure 4-1Error!
Reference source not found.).

A global dataset of GSV was derived from hyper-temporal observations of C-band
backscatter using the BIOMASAR-C algorithm (Santoro et al., 2011; Santoro et al., 2015a).
BIOMASAR-C was trained without in situ measurements and retrieved GSV at the spatial
resolution of the input EO data. While BIOMASAR-C was found to capture the spatial
distribution of GSV, even under unfavourable conditions such as in the wet tropics
(Santoro et al., 2021), there were evident limitations of C-band SAR for estimating GSV in
dense forests or in patchy landscapes with a mix of forest and other land cover types. In
addition, cropland was often associated with non-zero biomass because of the seasonal
increase of the backscatter to levels observed in young forests. A global GSV map obtained
with BIOMASAR-C was therefore treated in the first instance as an indicator of biomass,
supporting the retrieval with EO data at higher spatial resolution and stronger sensitivity
to forest biomass.

The bulk of the GlobBiomass retrieval corresponded to the second stage, which included
several retrieval approaches applied to high-resolution SAR data. Multiple approaches
were considered to reduce potential flaws in each single approach due either to the input
dataset or the simplifying assumptions used to model the relationship between SAR
backscatter and GSV. Here, the L-band backscatter was used as a predictor in a model-
based approach mimicking BIOMASAR-C (hence referred to as BIOMASAR-L) and in a re-
scaling approach of the moderate resolution BIOMASAR-C estimates together with other
high-resolution datasets (e.g., Landsat reflectances). The re-scaling approach was referred
to as BIOMASAR-C+ and was developed to complement the retrieval with BIOMASAR-L in
areas of poor performance of the retrieval based on a single L-band observation (e.g., very
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low biomass) or systematic effects (e.g., due to topography or events altering the ALOS
PALSAR backscatter on the specific acquisition date). Like BIOMASAR-C, both approaches
were designed to be calibrated without in situ measurements and retrieve GSV at the
spatial resolution of the input EO data.

e For each pixel, the final estimate of biomass was obtained by linearly combining the
BIOMASAR-L and the BIOMASAR-C+ estimates with weights defined by their similarity to
theoretical behaviour when related to forest canopy height, canopy density and forest
transmissivity observations. The integration of the biomass estimates was parameterized
at the ecozone level. The integration was implemented to produce a combined biomass
expressed as GSV.

e An additional step was then required to estimate AGB. AGB was estimated from the GSV
dataset using spatially explicit estimates of wood density and stem-to-total biomass
expansion factors, which were derived from an extrapolation of in situ observations and
modelling.

e At this stage, additional approaches were considered to complement structural
deficiencies of the BIOMASAR-type of estimations and/or the conversion of GSV to AGB.
In GlobBiomass, several data products were evaluated but none could compensate for the
deficiencies of the GlobBiomass data product.

e Each estimate of GSV and AGB has a corresponding estimate of its precision.

e Toaccount for different user needs, the high-resolution biomass (GSV and AGB) estimates
can be aggregated (by spatial averaging) to form new estimates at moderate and coarse
scale. Accordingly, estimates of the estimation accuracy for the averaged biomass are
obtained.

4.2 The CCl Biomass CORE algorithm

Before cloning the three-stages approach developed in the GlobBiomass project for the satellite
data of 2010 to represent the CORE algorithm of CCI Biomass, it was necessary to understand if
the same conditions apply for the satellite data to be used in this project.

The spatial resolution of the hyper-temporal dataset of Sentinel-1 C-band observations is
substantially higher than in the GlobBiomass project (150 m vs. 1000 m). In addition, the
availability of the cross-polarized backscatter and the possibility to compensate for topographic
effects on the backscatter allows us to assume that the C-band estimates of biomass are
sufficiently reliable to be used without refinements or rescaling. In other words, the rescaling
applied at stage 2 in Figure 4-1 with the BIOMASAR-C+ algorithm becomes redundant.

We also consider that the L-band datasets available to this project consist of multi-temporal
observations primarily from the ScanSAR mode, which comes with a spatial resolution of 50m and
contributes substantially to the retrieval in the tropics. As a result, it is preferred to estimate
biomass from the L-band data at 100 m pixel size to reduce the effect of artefacts in the L-band
data but still preserve details to a level comparable to the details reproduced in the GlobBiomass
dataset.

Merging according to predefined rules that prefer one or other dataset based on the plausibility
of the estimates is maintained. For this, the C-band estimates of biomass are simply resampled to
the geometry of the L-band estimates.

Since the start of the CCI Biomass project, the CORE algorithm evolved chronologically as follows:
o The GlobBiomass algorithm was adapted to Sentinel-1 and ALOS-2 datasets.
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e Implement canopy height in the retrieval models by integrating a function relating canopy
height-and-AGB.

o Estimate directly AGB rather than through an estimate of GSV. This step was also a
consequence of reduced activity on the characterization between vegetation volume and
organic mass in recent years.

o Identify ways to guarantee temporal consistency of AGB estimates from different satellite
data sources (bias modelling, rescaling)

The biomass estimation procedure described in Figure 4-1 was detailed in Santoro et al. (2021)
by showing the relationship between EO data, methods, and outputs. In this document, we follow
the same procedure and present in Figure 4-2 a functional flowchart that focuses on the
interdependencies of datasets and algorithms in the current version of the CCI Biomass CORE
global biomass retrieval algorithm (v6). For past versions of the CORE algorithm, we refer to older
versions of the ATBD available at https://climate.esa.int/en/projects/biomass/key-documents
(last access on 8 October 2024)

The CORE algorithm consists of the following processing steps.

e Multi-temporal C-band backscatter data are used to generate global estimates of AGB at
150 m pixel size using the BIOMASAR-C algorithm; these are then resampled to 100 m.

e Multi-temporal L-band backscatter data are used to generate global estimates of AGB at
100 m pixel size using the BIOMASAR-L algorithm.

e A set of auxiliary datasets is used to calibrate the parametric models embedded in the
BIOMASAR algorithms since our strategy avoids in situ measurements for training.

o The AGB estimates from BIOMASAR-L and BIOMASAR-C are merged to reduce systematic
errors in either of them.

e The precision of the estimates is characterized at each step shown in Figure 4-2Error!
Reference source not found., and an estimate of the AGB precision is attached to each
100 m pixel.

e The CORE algorithm can be expanded by linking it with additional datasets produced with
algorithms that perform better than those proposed here.

Spatial averaging can be applied to reduce pixel-wise retrieval errors and increase the accuracy.
This final step is done “on demand” where a user can specify the target spatial resolution.
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Figure 4-2: Functional dependencies of datasets and approaches forming the CCl Biomass CORE global biomass
retrieval algorithm. The shaded part of the flowchart represents potential improvements following the
implementation of additional retrieval techniques.

In the following Sections, we describe the individual components of the CORE algorithm:
e BIOMASAR-C
e BIOMASAR-L
e Merging

4.3 The BIOMASAR-C algorithm

The theoretical basis of the BIOMASAR-C algorithm has been presented in Santoro et al. (2011,
2015a and 2021) and was extensively presented in Santoro et al. (2021). Here, the major
components are summarized, and a reference is given to previous documentation for technical
aspects that do not need to be repeated in this context.

Figure 4-3 shows the flowchart of the current implementation of BIOMASAR-C, which is applied
separately to Sentinel-1 and Envisat ASAR data (sigma0O SAR images). For each sigma0 SAR image,
the forest backscatter model is trained, i.e., the model parameters are estimated, resulting in
corresponding images for each of the two model parameters. The model training does not require
reference measurements of biomass. The model parameters are estimated by relating canopy
density (e.g., from a VCF type of product) and the backscatter observations in the sigma0 image.
Once the model parameters are estimated, the forest backscatter model is inverted to express the
biomass variable of interest (e.g., AGB) as a function of the measured backscatter. To allow for the
estimation of AGB, it is necessary to reformulate the forest backscatter model by replacing the
original predictors, namely canopy height and density, with AGB. This is achieved with the two
functions relating forest variables, which require LiDAR metrics of canopy height and canopy
density, and AGB reference data, here represented by statistics (mean value) derived from forest
field inventory measurements. Note, that it is not mandatory to have access to the inventory
measurements as the calibration of the function relating to AGB can equally be run on statistics
published by NFIs.
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Figure 4-3: Flowchart of the BIOMASAR-C algorithm.

4.3.1 The forest backscatter model

At C-band, spatial and temporal variability of the backscatter make empirical modelling of
biomass (whether as GSV or AGB) derived using in situ measurements almost useless if the aim is
to produce large-scale estimates based on a small set of reference measurements, which is very
often the reality. Hence robust retrieval of biomass from backscatter should be based on a
physically-based model that expresses the backscatter in terms of the main scattering
mechanisms in as general a manner as possible. We opted for the semi-empirical Water Cloud
Model (Attema & Ulaby, 1978) with gaps based on the formulation reported by Askne et al. (1997).
The reason for this choice is the demonstrated reliability of this type of model in the retrieval of
forest biomass (Santoro and Cartus, 2018) and the extensive knowledge gathered by the team
developing the retrieval algorithm with such a modelling framework.

The WCM with gaps, given as Equation (4-1), was derived from the original WCM presented by
Attema&Ulaby (1978) to expresses the total forest backscatter of a forest as the sum of direct
scattering from the ground through gaps in the canopy, ground scattering attenuated by the
canopy and direct scattering from vegetation:

a'?or = (1 - n)agr + nangtree + nageg(l - Ttree) (4'1)

Here, 1) is the area-fill or canopy density factor, representing the fraction of the area covered by
vegetation, 6% and o%.; are the backscattering coefficients of the ground and vegetation layer,
respectively, and T is the two-way tree transmissivity, which can be expressed as e-eh, where o
is the two-way attenuation per meter through the tree canopy and h is the depth of the attenuating
layer.

In practice, Equation (4-1) is not useful since the area-fill factor is not a parameter of interest to
foresters and the model relates two forest variables (canopy height and canopy density, i.e., area-
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fill factor) to a single observation. For retrieval purposes, it is more convenient to describe the
backscatter as a function of biomass. Leaving aside all possible formulations of the WCM
expressing the SAR backscatter as a function of AGB with empirical coefficients (Santoro & Cartus,
2018), Pulliainen et al. (1994) rewrote the original WCM in a form similar to Equation (4-1) that
relates the SAR backscatter to stem volume, V, which can be considered equivalent to GSV:

0for = 05 FV + 00,4(1 — e7BV) (4-2)

In Equation (4-2), § is an empirically defined coefficient expressed in ha m-3. However, this
coefficient has some physical meaning since, by comparing Equations (4-1) and (4-2), 5, n and a
are linked by the relation (Santoro et al., 2002):

eV =1-n(1-e*h) (4-3)

Each of these terms represents the forest two-way transmissivity. The major assumption when
rewriting the exponent of the original WCM as a simple scaling of GSV was that height and volume
are linearly correlated. This may apply to mature forests but is not correct throughout the range
of heights and volumes in boreal forests, where Equation (4-3) was developed. Similarly, the non-
linear relationship between height and AGB suggests that the inversion of Equation (4-3) to
estimate biomass from SAR backscatter may introduce systematic biases in the retrieval,
regardless of the forest structure.

Equation (4-3) was used to generate GSV estimates part of the first CRDP of the CCI Biomass
project. We refer to Santoro et al. (2021) for the description of BIOMASAR-C for GSV retrieval.
Later versions of the CRDP only included AGB and were based on the original WCM with gaps in
Equation (4-1) integrated with the models relating canopy density and canopy height in Equation
(3-4), and the model relating canopy height and AGB in Equation (3-5). Here, it was assumed that
the area-fill factor equals the optical canopy density in Equation (3-4).

As we want to express the backscatter as a function of AGB, we first need to invert Equation (3-
7), thus obtaining h = (b, - AGB)?2  with b; = 1/p; and bz = 1/p.. The coefficients p; and p, were
introduced in Equation (3-5). Equation (4-5) shows the forest backscatter (observable, G%)
expressed as a function of AGB only.

O'foor = [1 - (1 - e_q'(bl'AGB)bZ) (1 — =@ (br-AGB)? )] U;r

+ (1 _ e—q-(bl-AGB)bZ) (1 _ e—a-(bl-AGB)bZ) Ggeg
(4-4)

4.3.2 Model training
Regardless of whether the biomass variable of interest is GSV or AGB, the retrieval model has

three unknowns, namely oy, 0%, and a. In addition, the model expressed as a function of GSV has
an additional unknown: the coefficient of the forest transmissivity f.
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If a set of reference GSV or AGB values is available, the model parameters can be estimated with a
least squares regression to the reference measurements and the measurements of the SAR
backscatter corresponding to the GSV or AGB observations. This approach is unfeasible for large
areas because it requires a dense network of training sites to correctly capture the spatial
variability of the SAR backscatter of the forest and therefore of its ground and vegetation
component as well as of the attenuation in the canopy. For this reason, in BIOMASAR-C a method
was developed that can provide estimates of 6’;;and o’,.; by means of statistics of the backscatter
for certain types of forest cover. For a, we currently assume 2 dB/m following a synthesis of
studies dealing with attenuation of C-band microwaves in tree canopies; an attempt to distinguish
between unfrozen conditions and leaf-on conditions from frozen or leaf-off conditions has not yet
been attempted. In case the response variable is GSV, the coefficient £ is estimated from metrics
of the ICESat GLAS waveforms. Refer to previous versions of the ATBD for the estimation of this
model parameter.

Associating statistics of the backscatter to the model parameters 0%, and o?, is referred to as
self-calibration. Unlike previous versions of BIOMASAR-C when both model parameters were
based on self-calibrated values, here we use the self-calibrated value of o%, as its estimate and the
self-calibrated value of o%.4 as an initial estimate to be used in a least squares regression.

The self-calibrated value for o is here set as the 25t percentile of the backscatter distribution
for pixels belonging to a class of low vegetation cover density ("ground” pixels). This percentile
was found to lead to more accurate estimates of AGB than the median value or lower percentiles.
The self-calibrated value for o?%., is defined as the median of the backscatter for high vegetation
cover density ("dense forest" pixels). The “ground” and “dense forest” pixels are extracted within
an estimation window of finite size to allow the estimation of the two model parameters to adapt
to the local conditions of the forest and of the backscatter. We apply a single canopy density
threshold, i.e., pixels are labelled either as "ground" or as "dense forest" depending on whether
the canopy density is below or above 30%. The estimation window corresponds to the size of a
tile, i.e., 1° x 1°. Itis assumed that sufficient samples are captured in each class with such a window
size; a drawback can be the inclusion of pixels characterized by different properties of the
backscatter because of different environmental conditions within the area covered by the tile.

The final estimate of o, is then obtained by means of least squares regression between SAR
backscatter observations and corresponding canopy density and height values with Equation (4-
1) within the same estimation window. Here, 0% is known and equal to its self-calibrated value.
In Equation (4-1), we replace canopy height with the model relating it to canopy density in
Equation (3-4) to express the SAR backscatter as a function of canopy density only. The reason for
this step is the availability of global datasets of canopy density. Even though global datasets of
canopy height also exist, they are mostly based on inferences from optical data. Based on the
physics behind optical data, it is assumed that canopy density derived from such data is more
reliable than canopy height derived from the same type of data.

The tree cover density dataset used in the self-calibration and the regression steps is the percent
tree cover dataset of 2010 because it is more reliable in terms of spatial consistency than other
high-to-moderate resolution datasets currently available (see Annex B). In addition, areas not
corresponding to natural vegetation are masked out because of their different features in terms
of C-band backscatter, to avoid distorting estimates of o?%,. For this, the CCI Land Cover dataset of
the year closest in terms of availability to the year of the C-band data is used and pixels labelled
as cropland, urban areas, bare soil, permanent snow and ice and water bodies are excluded from
the training phase.
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To account for the different levels of SAR backscatter depending on local incidence angle, the
estimation of o%,and o?., is applied separately to each set of backscatter measurements and
percent tree cover values characterized by a specific range of incidence angles. As a trade-off
between precision, speed of computation and representativeness of the estimates, we divide the
observations into five 10° wide intervals of local incidence angle, starting with 20° and ending
with 70°. Because of the rather large spread of backscatter observations for any given level of
canopy density (see vertical bars in Figures A5 and A11), we regress the median values of the SAR
backscatter rather than the original SAR backscatter observations to canopy density (see line
connecting data points in Figures A5 and A11). The median backscatter was computed for each
integer value of canopy density. Prior to this, the backscatter dataset is filtered for outliers, due,
for example, to forest cover changes between 2010 and the year of acquisition of the SAR image.

The estimates of of%-and o, obtained for a given image in a tile and for a given range of incidence
angles are retained if based on at least 3 valid median values of the SAR backscatter. This avoids
cases when only a small range of canopy densities is represented (e.g., very high or very low tree
cover) thus causing erroneous estimates of one or the other parameter. When this requirement is
not met, no estimate is associated with of; ando?., for the specific image and range of local
incidence angle.

To show the performance of the combined approach (i.e., self-calibration and regression) with
respect to self-calibration only, we have selected four tiles along a north-south transect in Europe
and Africa and therein a Sentinel-1 image.

Figure 4-4 to

Figure 4-7 show estimates of the two model parameters obtained with the combined approach
and from the self-calibration at each location. The estimates with the combined approach appear
to represent well the levels of the backscatter of an unvegetated surface and the densest canopies.
In contrast, with self-calibration there are cases when the estimates of one or both parameters
are affected by the distribution of backscatter values, often following the choice of the threshold
to define the "ground" and the "dense forest" classes. We also show the canopy density modelled
with Equation (4-1) to confirm the suitability of this model relating canopy density and SAR
backscatter. Note that these curves should not be interpreted as having a predictive meaning,
since the model behind them was introduced only to estimate model parameters.

Figure 4-4 to
Figure 4-7 also show examples of 0%, and o, for each of the five ranges of local incidence angles.
A quadratic model appeared to be a reliable description of the relationship between the model
parameters and incidence angle and performed robustly across forest types and forest landscapes
of the world.
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Figure 4-4: Panels with incidence angle range as title show (i) estimates of 6% and ¢®., obtained with the
combined approach (black asterisks) and Equation (4-1) fitted to the median backscatter for a given canopy
density (circles). The panel relating backscatter to incidence angle shows the estimates of 6% (black circles)

and 6.4 (red asterisks) obtained with the combined approach and their quadratic fits (black curve for ¢°;,and
red curve for 6%g) spanning the range of incidence angles between 0° and 90°. Dataset: Sentinel-1, VH-
polarization., acquired during May 2017 along a descending orbit. Tile (top left corner coordinate): 64°N, 30°E

(boreal forest). Note that the incidence angle ranges 20-30 deg and 60-70 deg were not represented in the

dataset.
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Figure 4-5: Same as in

Figure 4-4. Dataset: Sentinel-1, VH-polarization., acquired in July 2017. Tile (top left corner coordinate): 46°N,
11°E (temperate forest).
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Figure 4-6: Same as in

Figure 4-4. Dataset: Sentinel-1, VH-polarization., acquired in July 2017. Tile (top left corner coordinate): 0°N,
11°E (wet tropics).
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Figure 4-7: Same as in

Figure 4-4. Dataset: Sentinel-1, VH-polarization., acquired in July 2017. Tile (top left corner coordinate): 9°S,
17°E (miombo woodlands).

Because of the multiple requirements imposed to obtain an estimate of 0%, and o?y, it is likely
that the 1° x 1° grid of estimates for a given SAR image may be incomplete (see e.g., Figure
4-4Error! Reference source not found.). In a post-processing step, we therefore interpolate
spatially by infilling over valid estimates to fill gaps. This is done separately for each of the five
intervals of incidence angle into which the SAR backscatter and canopy density were stratified.
The quadratic model was then applied to obtain a raster for each of the two parameters
corresponding to the raster of local incidence angle for a given SAR backscatter image. Figure 4-8

This document is the property of the CCI-Biomass partnership, no part of it shall be reproduced or transmitted
without the express prior written authorization of Aberystwyth University and Gamma Remote Sensing AG.




Ref CCI Biomass Algorithm Theoretical Basis — [T
esa Document

Issue Page Date

6.0 90 19.12.2024

shows an example of oY%, and o?., rasters for the Sentinel-1 image used in Figure 4-6. The
moderate topography in the 1° x 1° area covered by the SAR image is visible in the local incidence
angle image. It is also clear that incidence angle increased from east to west, i.e., the image was
acquired along a descending orbit. The raster image of 0%, shows a decrease of the backscatter
for increasing incidence angle, as shown by the panel relating incidence angle and 0% estimates
in Figure 4-6. For of,.; we can see hardly any variability, as shown by the same panel in Figure
4-6. Both images however show the model parameter estimates follow the patterns of the local
incidence angle. Figure 4-8 also shows that, while the SAR backscatter image is affected by a seam
corresponding to adjacent Sentinel-1 sub-swaths, the seam does not appear in the 0%, and 0%
images because of the interpolation used to generate these images. The consequence is a seam in
the AGB map obtained from the Sentinel-1 image (not shown here).

‘SAR backscatter [dB] 10 Local incidenceangle [deg 70
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Figure 4-8: lllustrating the raster images of the estimates of 6%, and 6%y (bottom row) for the tile used in
Figure 4-6. The top row shows the image of the SAR backscatter and the image of the local incidence angle.

4.3.3 Single image retrieval

The estimation of AGB from the backscatter model in Equation (4-4) requires numerical
minimization and a constraint on the maximum retrievable AGB. In addition, estimates of AGB
obtained for a backscatter measurement not within the range of modelled backscatter values need
to be corrected.

Figure 4-9 shows the simulation of the Water Cloud Model in Equation (4-4) assuming that the
maximum AGB is 362 Mg/ha. The backscatter first increases rapidly for increasing AGB, then the
sensitivity of the backscatter to AGB reduces. The range of backscatter values covered by the
model is about 2 dB. The estimation of AGB for a backscatter measurement falling within this
range returns realistic numbers. When a measurement of the backscatter falls outside this range,
the inversion rule overrides the estimate because either it is negative or unrealistic. We define
two intervals of backscatter to which the inversion either associates the maximum AGB or 0
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Mg/ha depending on whether the measurement is above or below the range of modelled
backscatter. These intervals account for the potential outliers of the backscatter. A backscatter
value lying within an interval between the minimum or maximum modelled backscatter and this
value plus 3 times the standard deviation of the measurements at low and high canopy density is
associated with 0 and the maximum AGB, respectively. Otherwise, it is assumed to be unrealistic
and discarded from the retrieval.

To visualize the difference between this approach and the approach that retrieves GSV, we also
illustrate the model fit obtained with Equation (4-2), i.e., not exploiting functions that relate forest
variables, in Figure 4-9. For a measurement of the backscatter, the integrated Water Cloud Model
allows a higher AGB to be estimated for high AGB. This is an improvement considering the
observation that BIOMASAR-C for GSV retrieval can be locally underestimated for high biomass
forests.

Because of the limited sensitivity of C-band backscatter to biomass, the biomass map obtained
from a single backscatter image is often characterized by the extreme values 0 and maximum
biomass. For this reason, the performance of maps obtained with the two BIOMASAR-C
implementations described in this document cannot be compared.

AGB = NaN

sigma0 [dB]

AGB = NaN
16 . . . . . . .
0 50 100 150 200 250 300 350
AGB [Mg/ha]

Figure 4-9: AGB retrieval rules depending on the level of the backscatter measurement.

4.3.4 Multi-temporal retrieval

Given N individual estimates of AGB from inversion of Equation (4-4), a weighted linear
combination of the estimates is used to obtain the final estimate of AGB, AGBmn, with Equation (4-
5). This reduces the retrieval error with respect to each of the individual estimates (Kurvonen et
al,, 1999; Santoro et al.,, 2002; Santoro et al., 2011).

*N  WiAGB;

N
Yis1 Wi

AGB,,, = (4-5)

The weights, wi, in Equation (4-5) are defined as the vegetation-to-ground backscatter difference
in dB, 09%g - 6%, normalized by the maximum backscatter difference:

0 0

o i—0 ;
w; = ve%,l gr,(z) (4-6)
max(aveg,i—agr‘i)
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4.4 The BIOMASAR-L algorithm

Many studies have documented the sensitivity, as well as the limitations, of L-band backscatter to
forest biophysical parameters, such as GSV or AGB, across a wide range of forest ecosystems. The
existing studies generally report a higher sensitivity of L-band to GSV or AGB than shorter
wavelength because of its increased ability to penetrate forest canopies. The highest sensitivity
was usually reported for the L-band cross-polarized intensity. While an increase of L-band
backscatter with increasing GSV or AGB was consistently observed, as well as with increasing
canopy density and height, the backscatter contribution from the forest floor decreases and the
volume scattering contribution from the canopy increases, and forest structural differences have
been shown to affect the functional relationship between backscatter and GSV or AGB. Although
not as evident as in the case of C-band, L-band backscatter is affected by environmental conditions
at the time of acquisition.

Algorithms aiming to exploit the sensitivity of L-band backscatter to biomass for large-scale
retrieval therefore need to be calibrated adaptively to local forest structure as well as the
prevalent imaging conditions. The limited availability of in situ information (e.g., inventory plots)
prevents adaptive calibration of retrieval algorithms using conventional approaches. In many
areas, particularly the tropics, the number of available plots is very limited so that models may
only be calibrated using reference information collected over large areas (Bouvet et al., 2018).
Conventional approaches generally necessitate working with mosaics of L-band backscatter
imagery that are compiled in such a way that potential differences in the imaging conditions
between the orbits/acquisition dates used for generating the backscatter mosaic are minimized.
When multi-temporal observations are available, mosaicking entails careful selection of imagery
to minimize between-orbit radiometric differences. Alternatively, empirical inter-orbit
normalization techniques may be applied (e.g., De Grandi et al., 2011; Shimada et al.,, 2010).

BIOMASAR-L is here used to retrieve biomass globally from L-band backscatter. Like BIOMASAR-
C, multi-temporal stacks of SAR backscatter observations are modelled individually, and biomass
is obtained by integrating the estimates from the individual data takes. Major improvements in
retrieval performance have been reported at C-band (Santoro et al,, 2011, 2019; Cartus et al,,
20193, 2019b), but improvements could also be achieved at L-band (Santoro et al., 2006, 2015b;
Cartus et al., 2012; Cartus et al,, 2019a, 2019b), albeit less pronounced than at C-band.

To model the relationship between L-band backscatter observations and biomass, we use the
same Water Cloud type of models as for C-band. One of the underlying assumptions of this model
is that higher order scattering can be neglected. Although under typical conditions (rough forest
floor, substantial attenuation in the canopy) stem-ground interactions can be neglected at L-band
(Dobson et al,, 1992; Pulliainen et al, 1999), a significant contribution from higher order
scattering may arise from the canopy. Models indicate that higher order scattering effects are
negligible for co-polarization, but not necessarily for cross-polarization. In Wang et al. (1998),
higher order scattering increased the modelled L-HV backscatter from pine forest by 1.5 to 2 dB
(at ~ 35° incidence angle). Karam et al. (1992) noted that higher order scattering from walnut
orchards had a significant effect at HV polarization only for X-band, not L-band, regardless of the
incidence angle. For a forested site in France, Picard et al. (2004) observed underestimation of L-
HV backscatter when only first order scattering in a model was considered. However, when
multiple scattering effects were included, the backscatter was overestimated compared to SIR-C
L-HV measurements at 26° and 54° incidence angle. Picard et al. concluded that the improvements
in modelling by including multiple scattering were minor compared to the overall uncertainty in
the modelling and that, in contrast to C-HV, the modelled relationship between L-HV backscatter
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and biomass containing only first order scattering depicted well the observed relationship of SIR-
C L-HV intensity and biomass.

As in the case of BIOMASAR-C, Equation (4-1) combined with Equation (4-3) was used to support
v1 of the CCI Biomass CRDP. Since v2, we considered the original WCM with gaps in Equation (4-
1) and the same set of functional dependencies between canopy density, tree height and above-
ground biomass to express the WCM as a function of AGB, i.e., Equation (4-4).

As for BIOMASAR-C, we seek to adapt the modelling and model calibration framework so that:

e AGB can be retrieved directly,
e incidence angle effects in the L-band backscatter to AGB relationship can be accounted for.

The adapted BIOMASAR-L retrieval approach generally complies with the modelling basis and
workflow presented for BIOMASAR-C. In this section, we therefore focus on differences between
BIOMASAR-C and BIOMASAR-L, which are a consequence of differences in the response of L-band
backscatter to canopy density, height and, eventually, AGB.

The retrieval approach comprises three main steps:

1) calibration of the model in Equation (4-1) with the aid of a Landsat canopy density map,
considering differences in the relationship between backscatter and canopy density
dependent on incidence angle,

2) retrieval of AGB for each single acquisition in a multi-temporal stack of L-band
observations by inverting Equation (4-4),

3) weighted multi-temporal combination of single image AGB estimates.

4.4.1 Model calibration

The model relating L-band backscatter to AGB is based on Equation (4-1). This relates backscatter
to canopy density, n, while considering that backscatter may not only be affected by the level of
canopy closure but also the depth (i.e., height) of the canopy and the strength of the signal
attenuation while passing through the canopy. In contrast to C-band, the two-way transmissivity
term in the model (exp(-ah)) significantly affects the backscatter to n relationship (Cartus et al.,
2018) as illustrated in Figure 4-10. Assuming a two-way attenuation of 0.5 dB/m, i.e., a value
considered realistic for boreal forests (Praks et al., 2012; Askne et al., 2003), simulations based
on Equation (4-1) demonstrate that the two-way transmissivity term is not negligible for L-band
since the response of backscatter to changes in 1 depends strongly on the canopy height, in
particular in low canopy height ranges (<15m).
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Figure 4-10: Simulated differences in the L-band HV backscatter response to changes in n for forests with
canopy heights between 5 and 35 m.

Given knowledge of the local relationships between canopy density, 7, and height h, the unknown
model parameters 0%, g%, and a can be estimated for each individual L-band backscatter
observation with the aid of existing global maps of canopy density only (Hansen et al., 2013) when
reformulating the original model in Equation (4-1) with height expressed as function of canopy
density:

0-}901” = (1 - 77)0:(?1” + Uﬂgre_“h(") + 77019eg(1 - e—ah(n)) (4'8)
where
h=— w (4-9)

Equation (4-9) is derived from Equation (3-4), where q characterizes the relationship between 1
and height.

The model in Equation (4-8) is calibrated for each orbit contained in a 1x1° tile of the ALOS-1/2
PALSAR-1/2 backscatter data provided by JAXA. To capture the dependence of the parameters on
the local incidence angle, models are fitted separately for 10° wide ranges of the local incidence
angle (i.e., 20-30°, 30-40°, 40-50°, 50-60°, 60-70°, 70-80°). In previous versions of the BIOMASAR-
L algorithm (up to version 5 of the CRDP), the model in Equation (4-8) was calibrated by fitting it
to observed relationships between L-band backscatter and Landsat canopy density using least-
squares regression. In this way, estimates for 0%, 0%, and a could be obtained. To produce
version 6 of the CCI Biomass CRDP, we adopted a modified calibration approach like that
originally implemented for the ESA GlobBiomass product (Santoro et al., 2021).. In this approach,
estimates for 0%, and 9., are obtained by identifying areas of sparse and dense forest cover and
calculating the mean observed backscatter in such regions, respectively. The thresholds for
identifying areas of low and high canopy density are defined adaptively for each 1° x 1° tile and
backscatter image so that the average backscatter can be estimated across a minimum of 200
pixels. Before calculating the average backscatter in areas of low and high canopy density, areas
are masked for which:

e land cover maps report cropland, bare ground, wetland or built-up areas,
e layover/shadow has been detected,
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e annual Landsat-based forest cover change maps (Hansen et al.,, 2013) report gains or
losses of forest cover between 2010, i.e., the year of the Landsat canopy density map
(Section 3.8), and the year of the L-band backscatter image acquisition.

After masking out the aforementioned areas, the average backscatter in areas with sparse
vegetation cover according to the Landsat canopy density is considered a direct estimate of 9.
The model parameter 09,4, instead represents the backscatter from an ideal opaque forest canopy
whereas the average backscatter observed over dense forest canopies, here referred to as o?%;,
may still include significant ground contributions due to a forest layer with finite depth, remaining
gaps in the canopy, and hence a two-way transmissivity larger than zero. To derive g%,4, 0%rneeds
to be compensated for residual ground contributions with:

0o _ Ugf_(l_ndf+ndfe_ahdf)agr
Opeg = Udf(l—e_ahdf)

(4-10)

In Equation (4-10), n4 and hg denote the canopy density and height of forests for which the
average backscatter o%s has been calculated. nqr is derived with the average Landsat canopy
density of pixels considered for the estimation of 6% The average height of dense forests, hyy, is
inferred from the gridded dataset of IceSAT-2 LiDAR heights representative of the densest forests.

In previous implementations of the BIOMASAR-L algorithm, the two-way tree attenuation
coefficient was either defined with a global constant value of 0.5 dB/m or estimated when fitting
the model in Equation (4-8) to observations of canopy density and L-band backscatter. In the
latest version of the algorithm, used to produce version 6 of the CCI Biomass CRDP, we relied on
spatially explicit estimates of the one-way tree transmissivity at nadir, aiw, produced from SMOS
and SMAP L-band radiometer data (Cartus et al., submitted). The two-way attenuation o in
Equation (4-8) can be derived from the one-way attenuation aiw coefficient with 201w /cos(8;oc)-
The radiometer-based estimates for aiw are generally in the range of 0.2 to 0.3 dB/m, which
translates to values for a of 0.5 to 0.75 dB/m.

The decision to estimate oY%, and a9, via a self-calibration approach was motivated by the
validation of previous releases of the CCI Biomass CRDP indicating that in semi-arid forest regions
the CCI Biomass maps tended to underestimate the AGB in the lower AGB ranges. In most forest
areas, the two different model calibration approaches, i.e.,, the regression-based approach
deployed until version 5 of the CRDP, and the approach described above, lead to very similar
results. This is exemplified in Figure 4-12a for a 1° x 1° large area in the Amazon Basin and all
PALSAR-2 ScanSAR observations in 2018. The two model calibration approaches lead to almost
identical results (red and blue curves). In contrast, in semi-arid forest regions such as Southern
California (4-12b) and Mozambique (4-12c), the regression-based calibration approach tends to
result in higher estimates for the parameter 0%, and thus underestimation of the AGB particularly
in low AGB ranges. The main advantage of a regression-based model calibration is the possibility
to obtain estimates for 0%, and 0%, even when in the region of interest there are no forests with
very sparse or dense canopies. However, there are major drawbacks to a regression-based
parameter estimation:

o The latest Landsat canopy density map is available for the year 2010. Even when masking
out areas where Landsat change products report gains or losses in canopy density, the
uncertainty of the 2010 canopy density map, particularly in intermediate density ranges,
is high. For model calibration via regression, such uncertainties in intermediate density
ranges were found to affect the estimation of the model parameters. The requirement of
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having a timely density map is clearly relaxed when focussing on sparse and dense forest
only.

o Even when up to date, the reliability of optical density products has been reported to be
lower in intermediate canopy density ranges and the estimates obtained in some
ecoregions, e.g., semi-arid regions, tend to be biased, i.e., too low.

Once 0%, and o0Y%.y have been estimated for each local incidence angle range, second order
polynomials are fitted to the observed relationships between the parameters and the local
incidence angle (Figure 4-13). These polynomials are subsequently used to obtain spatially
explicit estimates of the parameters using the local incidence angle maps (Figure 4-14). The initial
model calibration is performed for each orbit on a 1x1° tile-by-tile basis. Since, within a given tile,
only part of the incidence angle range in an ALOS-2 image may be represented, we here also
consider derived estimates for the model parameters obtained for the backscatter images
acquired from same orbit in adjacent tiles (in a 5x5° window). To increase the robustness of the
polynomial fit, the polynomial coefficients are estimated by means of a weighted regression with
weights calculated based on the inverse of the standard error of the fit of the model in Equations
(4-8) and (4-9) to the observed relationship between L-band backscatter and Landsat canopy
density.

L 0.5

arc [dB m~1]

0.4

- 0.3

- 0.2
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0.0
Figure 4-11. The average annual one-way attenuation at L-band derived from SOMS and SMAP L-band
radiometer data (Cartus et al., submitted).

(a)

This document is the property of the CCI-Biomass partnership, no part of it shall be reproduced or transmitted
without the express prior written authorization of Aberystwyth University and Gamma Remote Sensing AG.



CCI Biomass Algorithm Theoretical Basis .
Ref - A biomass
Document N i
WS C
.=CSd
w Issue Page Date
6.0 97 19.12.2024
Year 2018 - Cycle 091 Year 2018 - Cycle 093 Year 2018 - Cycle 094 Year 2018 - Cycle 096 Year 2018 - Cycle 097
—_ — =101 4t
o T il A ey p it " R
° H LS 3PS e it i o AT S _ |||||||||||"" MOITS
£ - il (paiEnn & s
> b A 20 {W
t T 1 =25
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1q
n n n n
Year 2018 - Cycle 099 Year 2018 - Cycle 100 Year 2018 - Cycle 103 Year 2018 - Cycle 104
o M (ingtetititls - e o PRI | dvhithtel n ] it |
KRR 11 s = M S .. gl S Wi
2 0 NS 2 < il i L TN
0.0 0.5 1.0 0.0 05 10 0.0 05 1.0 0.0 0.5 1.0 0.0 0.5 1.9
n n n n n
Year 2018 - Cycle 107
o h e o e o e o i I A .,,.m...,
o ”"““”|||||!|!J|H”|U|mmu”“u:m"l 5 o |l! I!}:““::::“mnml E { .H:J.Ui[!!!_”H::::::m,'u'lduiulnl fli,L!I'HHJI:H:::Hmlwhu:::l'u:mm E |‘vI,'|||i"I!!!!!!J:“IHumlu:“uunuub
> > > > v

(b)

¥° [dB]
¥° [dB]

20181111

¥° [dB]
¥° [dB]

Year 2018 - Cycle 094 Year 2018 - Cycle 108

T
!!!{!Hﬂ{ﬂﬂulllﬂlﬂll-u
!

([TI[LLg
I!!!l!l""{{mmhu !
e ! “{u_ulll

(v
! |Ll"L Y

y° [dB]
y° [dB]
y° [dB]
y° [dB]

~10{ i
— — ik
o o o
=) 3 -15 =)
x L HAP U*

Figure 4-12. Observations of Landsat canopy density (Hansen et al., 2013) and ALOS-2 PALSAR-2 Fine-Beam and
ScanSAR L-band HV polarization backscatter observations for three different 1° x 1° tiles covering the Amazon
Basin (a), Southern California, USA (b), and Eastern Mozambique (c). The curves represent the fit of the model in
Equation 4-8 when estimating 0% and 0%, via least-squares regression to the observed relationship between
backscatter and Landsat canopy density (blue curves) or based on thresholds of canopy density to calculate the
average backscatter in correspondence of sparse (0%) and dense (0°%eg) forest vegetation (red curves). In the
case of Fine-Beam imagery, the figure reports the acquisition date. In the case of ALOS-2 ScanSAR data the
observation cycle is indicated.

This document is the property of the CCI-Biomass partnership, no part of it shall be reproduced or transmitted
without the express prior written authorization of Aberystwyth University and Gamma Remote Sensing AG.



Ref CCI Biomass Algorithm Theoretical Basis .
Document ‘lomass

Issue Page Date

6.0 98 19.12.2024

~10
~104

—~15

y° [dB]

2‘0 Bb 4‘0 Sb 6‘0 7‘0 8‘0 9‘0 2‘0 3‘0 4‘0 5‘0 6‘0 7‘0 8‘0 9‘0
Local Incidence Angle [degree] Local Incidence Angle [degree]
Figure 4-13: Estimates for the model parameters 6% (red dots) and o%e. (green dots) as function of the local
incidence angle for ALOS-2 orbits covering the Swiss Alps (left) and the Pacific Northwest of the United States
(right). The curves represent the corresponding fit of a second order polynomial.
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Figure 4-14: Spatially explicit estimates for the model parameters 0% and 0%, for a 1x1° ALOS-2 tile (year
2016) covering the Swiss Alps.

4.4.2 Single image retrieval

Once the unknown parameters 6% and 0.z are known, estimates for the parameter g, p; and p:
relating canopy density, height and AGB may be used to retrieve AGB for each L-band backscatter
image in the multi-temporal stack of observations using Equation (4-7). However, direct inversion
of the model is not possible, and a numerical minimization approach is required. As in the case of
the retrieval of BIOMASAR-C, the retrieval is constrained to a maximum AGB.

4.4.3 Multi-temporal retrieval

Single image derived estimates are subsequently combined in a weighted multi-temporal
combination. The weighted combination and the definition of weights have already been
described for BIOMASAR-C.
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4.5 Methods to derive a merged biomass dataset

C- and L-band derived estimates of biomass are expected to present specific advantages and
disadvantages in terms of the sensitivity to biomass, the number of images available for multi-
temporal combination, or the quality of the pre-processing (calibration, topographic correction,
geocoding). It is therefore advisable to combine the estimates that were obtained independently
considering the respective strengths and weaknesses of each dataset.

In general, the purpose of integrating datasets is to increase the accuracy of each estimate. The
simplest approach is to take the average. This, however, is useful only when the estimates being
combined do not have biases, which is not true in our case. A more suitable approach is to consider
a weighted average of the kind proposed in the multi-temporal combination of BIOMASAR-C when
combining single-image estimates. Here, the weighted average would be applied to two values
only, from BIOMASAR-L and BIOMASAR-C. This still retains the bias, though possibly weakened.

An elegant way of defining the weights is to use a measure of how well estimates and reference
values agree (Avitabile et al., 2016). If all biomass estimates have the same error, the weights
would be similar. If one of the estimates is characterized by a larger error, the weight associated
with this estimate would be smaller. The definition of the weights relies on a measure of the error
of the estimate. Quantifying the error at the level of a single pixel is likely to generate weights with
strong fluctuations in space because the estimates of biomass have large uncertainties and they
typically do not match the biomass estimated within a plot at the spatial resolution of the
BIOMASAR-L and BIOMASAR-C maps (~100 m). In addition, the weights could only be defined in
areas where reference data are available, causing the weights to be highly uncertain in other areas.

Based on a systematic assessment of differences in global biomass estimates derived from C-
(ENVISAT ASAR) and L-band (ALOS PALSAR) backscatter data in the GlobBiomass project, a
merging scheme was developed that accounted for:

e systematic differences in the sensitivity of C- and L-band data to biomass
e the number of observations used for estimating biomass

A weighting scheme focusing on full resolution (i.e., weights defined at the ~100 m pixel size of
the maps) entails the risk of strong fluctuations in the weights between adjacent pixels and the
generation of artefacts. The weights are therefore produced at a scale of 0.01° and then
oversampled to the full resolution of the biomass maps. In that way, the weighting is more geared
towards identification of systematic regional differences in the biomass maps.

4.5.1 C-and L-band sensitivity to biomass

The modelling of C- and L-band backscatter suggests that their respective sensitivities to biomass
change with increasing biomass. In the lower ranges of biomass, we expect a higher sensitivity at
C-band, whereas in the higher ranges, L-band is expected to present higher sensitivity. In the semi-
empirical model used in BIOMASAR-C and BIOMASAR-L, this is reflected in the forest
transmissivity, which is considered a function of canopy density, 1, canopy height, h, and two-way
attenuation coefficient, o:

Tror =1 —1(1—e ) =1 —n(h(AGB)(1 — e~ *h(4CE)) (4-10)

and may be formulated as function of AGB when relating n and h to AGB using Equations (3-4)
and (3-5). As a consequence of the stronger attenuation of the C-band signal in the canopy, and

This document is the property of the CCI-Biomass partnership, no part of it shall be reproduced or transmitted
without the express prior written authorization of Aberystwyth University and Gamma Remote Sensing AG.



Ref CCI Biomass Algorithm Theoretical Basis B biomass
Document
esa Issue Page Date ]
6.0 100 19.12.2024

thus a faster decrease of the transmissivity with increasing biomass, higher values for the
attenuation terms, , are generally required to describe the transmissivity as a function of biomass
at C-band than at L-band. This is exemplified in Figure 4-15, which shows the transmissivity as a
function of AGB for two different values of a to represent attenuation at C- and L-band. The
derivative of Equation (4-10), which may be considered an indicator of the sensitivity of the
signals to biomass, is therefore more negative for higher values of a (i.e. for C-band) in the lower
ranges of AGB. In the higher ranges of AGB, instead, the derivative is higher for the lower values
of a (i.e., for L-band).

A simple weighting scheme that reflects the difference in sensitivity between C- and L-band may
therefore be defined by calculating the difference in the derivatives of Equation (4-10), which in
the case of AGB is written as:

aTy,
dAGB

| aT¢
d0AGB

Wy = | (4-11)

The transmissivities at L- and C-band, Ti. and T, are determined using values for a of 2 and 0.5
dB/m for C- and L-band, respectively, the local models relating forest variables, and a reference
AGB map produced by converting a gridded dataset of the of the average canopy height according
to I[ceSAT-2 LiDAR data at 0.01° x 0.01° resolution to AGB using Eq. 3-5.
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Figure 4-15: Forest transmissivity at C-band and L-band modelled as a function of AGB using forest structural
parameters (g, p1, p2) appropriate to tropical forests of the Amazon Basin.

4.5.2 Number of observations

The performance of the retrieval of biomass with C- or L-band imagery depends on the number of
backscatter observations available. In the case of BIOMASAR-L, a limited number of observations
per year and within a few seasons (primarily summer) acquired in the FB modes of ALOS-1
PALSAR-1 and ALOS-2 PALSAR-2 were available for most of the northern hemisphere, which is a
limitation on the performance of the approach, since locally adverse imaging conditions or a failed
model calibration cannot be compensated by combining estimates from a large multi-temporal
stack of observations. Only for the tropics and sub-tropics could a larger stack of images be
considered because of the availability of ALOS-2 ScanSAR observations. For BIOMASAR-C, instead,
many Sentinel-1 and Envisat ASAR images were available across most forest areas worldwide.
The largest number of observations (>100) was generally available for Europe, whereas for large
areas in boreal Asia, most of Brazil, most of Africa, and Australia, the number of observations
tended to be in the range of 25 to 30 images. Note that most of the acquisitions were in dual-
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polarization mode so that, for instance, 100 observations correspond to 200 backscatter images.
Although the Sentinel-1 dataset was reduced to monthly averages, the number of observations
per pixel was still higher than the L-band datasets. Previous experience with retrieval of biomass
using multi-temporal C-band data acquired by Envisat ASAR (Santoro et al,, 2011) suggested that,
ideally, dozens of observations should be used to achieve high retrieval performance. Although
the number of images required for the retrieval also depends on the ecosystem, the coverage
available from Sentinel-1 might be close to the required minimum locally.

The number of images used in BIOMASAR-L (N) and BIOMASAR-C (N¢) is therefore added to the

weighting by scaling the original weight defined in Equation (4-12) by the square root of the
number of observations available at C- and L-band at a given pixel location:

Wi = [5ag/Ve| = [z Vel (12)

This weight can then be rescaled to the range 0 to 1 to obtain normalized weights:

_ _ (wy—min(wy)) (4-13)

w =
Mnorm max(wy—min(wy) )

The rescaling is undertaken separately for each FAO ecoregion. Given the way Equations (4-12)
and (4-13) are defined, wu is greater in higher ranges of biomass and low in lower ranges of
biomass (i.e., Wy, norm Serves as a weight for BIOMASAR-L). Since only two maps are to be
combined, the corresponding weight for BIOMASAR-C can simply be defined as 1-Wwnorm.

4.5.3 Final weight for merging

The individual AGB maps produced with BIOMASAR-C and BIOMASAR-L do contain artefacts
because of processing related issues in the calibration and topographic correction of the C- and L-
band SAR data. Furthermore, an incomplete multi-seasonal coverage, particularly in the case of
the L-band imagery, may lead to local differences in the annual AGB maps produced with either of
the two datasets that exceed the possible range of biomass changes on the ground due to growth,
mortality, degradation, etc. To maximize the inter-annual agreement between the maps, the
weights for each year, calculated as described above, were refined locally considering the stack of
C- and L-band derived biomass maps for the years 2007, 2010, and 2015 to 2022. A refined weight
for each of the ten years was obtained by minimizing a cost function (CF):

2021 yi+2

CF = Z Z |(BC,y1 + Wiy1(Buys = Beyr)) = (Beyz + Weyz (Buyz - BC,yz))|2
y1=2007 y2=y1+1

(4-14)

based on the differences between the merged C- and L-band derived biomass maps for any given
year and the merged biomass estimates for the following (one or two years). In the minimization,
the weights determined as described in Section 4.5.2 serve as starting point for the optimization.
The search space for the new weights is constrained to a range of +/- 10% of the initial value.
Since this is computationally demanding, the weight refinement is carried out at an aggregated
scale of 0.01°, i.e., after aggregating all C- and L-band derived maps to 0.01° resolution. In the
weight refinement, however, tropical evergreen forests, as classified in the CCI Land Cover maps
for the given year, were not considered because of potential biases in the BIOMASAR-C maps in
this type of forest. Instead, the weights were locally adjusted so that all weight was assigned to
the BIOMASAR-L maps. In addition, weights were over-ruled in areas where land cover maps
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report cropland, since the BIOMASAR-L maps tend to exhibit less erroneous biomass assignments
over crops.

The approach followed for weight refinement may be seen as a temporary, rather conservative,
solution with respect to the quantification of biomass changes throughout the time series of
biomass maps (2007, 2010, 2015 to 2022) since the resulting series of maps present biomass
changes only when unequivocally detected by both the C- and L-band derived products.

An example of weights that have been determined for the BIOMASAR-L map produced for the year
2020 is illustrated in Figure 4-16. Although the illustration was derived for the previous version
of the CORE retrieval algorithm (v5), the distribution of the weights was not altered in the current
version of the CORE algorithm. The merging weighted the C- and L-band datasets almost equally
except for: (i) tropical rainforests, where it relied exclusively on the BIOMASAR-L AGB estimates
due to under-prediction by BIOMASAR-C and (ii) short forests and vegetation, where the
proportion of BIOMASAR-L AGB estimates dominated. In other parts of the world the merged map
represents a mix of BIOMASAR-C and BIOMASAR-L with generally increasing weights assigned to
BIOMASAR-L in low and high biomass forests.
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Figure 4-16: Map of the weights used to merge the BIOMASAR-C and BIOMASAR-L maps for the year 2020. The
map shown represents the weights applied for the L-band products. The inset shows the distribution of the

weights as a function of canopy height from the ICESat-2 dataset. For each bin of canopy height, the circle and

the vertical bar represent the median and the interval between the 5th and the 95th percentile of the weights.
5 AGB change estimation methods

AGB changes between two epochs can be quantified either by differencing signals assumed to be
sensitive to AGB or by differencing estimates of AGB. Differencing signals is viable if a change in
the signals can be attributed to a change in biomass. The specifications of the data products to be
delivered by the CCI Biomass project can only be achieved through a combination of high-
resolution satellite data. In addition, for each epoch to be mapped, the satellite dataset consists of
a different set of observations. A biomass change product based on signal differences is therefore
not feasible.
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The AGB change estimates obtained in CCI Biomass are defined as the difference between AGB
estimates at two points in time (AGB,z and AGB,:). Since each value is an estimate of the true AGB,
an additional term, representing the AGB bias (Bias,z and Biasy:) needs to be accounted for. The
bias term is relevant when the set of predictors used to estimate AGB at each point in time is not
the same, as in the case of the three epochs targeted in CCI Biomass

AAGB = (AGB,, — Bias,,) — (AGB,, — Bias,,) (5-1)

In principle, the bias may vary in space and with AGB value, so it is hard to characterise and
remove.

6 AGB bias estimation

The evaluation of the AGB maps against plot-based values of AGB [RD-8] revealed that the CCI
Biomass maps are affected by biases. The cause of these biases is often an interplay of multiple
factors, including the weak sensitivity of the EO data to biomass, the models relating biomass to
the EO data and the uncertainty of the auxiliary layers used to calibrate the retrieval model.

The AGB bias is estimated with the non-parametric Random Forest (RF) regression approach
(Breiman, 2001), which is an ensemble model of decision trees from bootstrapped samples of
training data that produces averaged predictions (Araza et al., 2022).

Several RF models were initially tested with a set of many covariates that could possibly influence
the bias (Chave et al,, 2004; Rejou-Mechain et al,, 2014), including the AGB estimates themselves
and their standard deviation [RD-5], terrain elevation, slope and aspect angles, tree cover,
precipitation, temperature, biome, longitude and latitude. Using all and partial combinations of
the covariates, multiple RF models using the default RF hyper-parameters were tested. The
models were evaluated using a randomly held out 30% of the 0.1° data to assess the proportion
of the variance of residuals explained by the model. We then visually inspected the bias for
indications of geographic correlation among covariates, as suggested in Meyer et al. (2019). After
this initial investigation, the covariates were limited to AGB, AGB uncertainty, tree cover and
slope.

The predictive power of the covariates in the RF model is assessed by the Variable Importance
Measure (VIM) and Partial Dependence Plots (PDP). VIM is the mean decrease in accuracy of an
RF model after data permutation of a covariate. When evaluated against the CCI Biomass dataset
of 2017 produced in year 1, the VIM ranked the AGB estimates as the most important predictor,
followed by tree cover density, AGB standard deviation, slope and aspect angle, with a proportion
that decreased from 26% to 17%(Figure 6-1).
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Figure 6-1: PDP of predicted bias as a function of CCl Biomass 2017 AGB and tree cover at 0.1° (a) and slope and
aspect angle (b). A PDP shows the marginal effect of covariates on bias prediction. The PDPs are displayed as
matrices, color-coded with bias and with the axes labelled by the values of a covariate pair, e.g., bias plotted
against AGB map and tree cover.

In CCI Biomass, the bias is modelled at 0.1° to form weighted bootstrap samples. Refer to [RD-7]
for the rationale underpinning the choice of this spatial scale in the process of bias evaluation and
bias modelling.

7 Results

This Section presents mapping results based on the current version (v6) of the CORE algorithm
(from C- and L-band data separately and merged estimates) and compares them with results
obtained with previous versions of the CORE algorithm.

7.1 AGB estimation

7.1.1 BIOMASAR-C

In previous versions of this ATBD, we compared the performance of the CCI Biomass CORE
algorithm with the GlobBiomass algorithm (https://climate.esa.int/en/projects/biomass/key-
documents/). For AGB maps based on Sentinel-1, we demonstrated the improved performance of
BIOMASAR-C, thanks to the higher spatial resolution of the C-band data (20 m vs. 1,000 m) and
the availability of cross-polarized backscatter. We then compared the performance of BIOMASAR-
C with the semi-empirical terms in the WCM and with the models relating forest variables. The
accuracy of the AGB estimates improved when these models were integrated into the forest
backscatter model, confirming the plausibility of the integrated modelling framework.

The performance of BIOMASAR-C using Sentinel-1 data is shown in the examples in Figure
7-1Error! Reference source not found.. The area in the panel on the left-hand side is intensively
managed boreal forest with frequent clear-cuts (rectangular shapes) and regenerating forests
(light green areas). The level of detail is high, as demonstrated by the linear features (deforested
corridors), despite the moderate resolution of the Sentinel-1 data used in CCI Biomass (150 m).
This is a consequence of the multi-temporal approach followed in BIOMASAR-C, which filters out
temporally uncorrelated noise and maximizes the part of the backscatter signal related to forest
structure. The area in the panel on the right-hand side includes undisturbed rainforests in the
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Brazilian Amazon to the north and disturbed forests to the south (fishbone pattern). The multi-
temporal features of the Sentinel-1 dataset allowed clear distinction of the two levels of biomass.
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Figure 7-1: Examples of AGB estimates obtained with BIOMASAR-C applied to 1° x 1° tiles of Sentinel-1 data
acquired in 2017.

The performance of BIOMASAR-C for an extended region is shown in Figure 7-2, with an AGB map
of the Alpine range. Artefacts are infrequent and the map is in line with the impression given by
the Sentinel-1 colour composite in Figure 3-2 that suggested a spatially consistent representation
of SAR backscatter globally. Topography disturbs the estimates of AGB only locally, whereas the
spatial distribution appears to be well captured in such a patchy landscape consisting of forests,
cropland, lakes and urban areas. The latter are a systematic issue because they are associated with
the highest possible AGB because of the very high backscatter. The same occurs over moraines in
the Alps where the soil roughness occasionally causes high backscatter, depending on the local
incidence angle. This experimental evidence highlights the necessity of masking non-forest areas
or accounting for the different levels of reliability of BIOMASAR-C and BIOMASAR-L in the
merging process.
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Figure 7-2: Estimates of AGB for the region of the European Alps from Sentinel-1 imagery acquired in 2017
using BIOMASAR-C.
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The global AGB map for 2017 obtained with BIOMASAR-C is shown in Figure 7-3Error!
Reference source not found.. The coverage is almost global with a few minor gaps in north
Canada and Russia. Extended unvegetated regions (Greenland, Canadian Isles, Sahara) were not
mapped because the computing efforts required to process the Sentinel-1 images would have
been disproportionate with respect to the real benefit to the global map. Note that in such regions
BIOMASAR-L produced reliable estimates of AGB from ALOS-2 data using however only a minor
fraction of the computing resources that would have been needed to process the Sentinel-1
dataset.
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Figure 7-3: Map of AGB obtained with the BIOMASAR-C algorithm applied to the multi-temporal dataset of
Sentinel-1 backscatter observations of 2017. Pixel size: 150 m.

The spatial distribution of AGB is consistent with known patterns. High biomass was estimated in
the wet tropics as well as along the Pacific Northwest coast, the Andes, and Southwest Australia.
Low biomass was estimated in dry regions of the world (savannas and tundra). The gradient of
decreasing AGB from the Equator to the North Pole is also well represented. Abrupt variations of
AGB occurred occasionally along the edge of two adjacent Sentinel-1 orbits or swaths. Figure 7-4
shows two examples of AGB offsets. The left panel of Figure 7-4 covers an area in the Southeast
U.S. The AGB offset is due to an incorrect estimate of the noise floor, which appears as banding in
the Sentinel-1 IWS images. This banding was also observed over Southeast China and cannot be
undone. The right panel of Figure 7-4 instead includes an area in Gabon characterized by dense
tropical forest where slight differences in the estimates of the model parameter in adjacent scenes
translated to clear offsets. Even though we tried to adapt the WCM to the local incidence angle,
such artefacts appeared because the sensitivity of the SAR backscatter to AGB was a fraction of a
dB so that even a slightly incorrect estimate of one of the WCM parameters in images from
adjacent orbits resulted in an AGB offset.
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Figure 7-4: Examples of AGB estimates obtained with BIOMASAR-C for 1° x 1° tiles and characterized by AGB
offsets across seams in Sentinel-1 imagery.

Figure 7-5 shows a quantitative assessment of the AGB estimates obtained with BIOMASAR-C. The
reference consists of NFI-based averages of AGB per administrative or ecological unit, which were
used to set up the model between canopy height and AGB. Accordingly, we computed the AGB
average for each unit included in the reference dataset. The comparison is not per se a validation
of the BIOMASAR-C estimates but helps to assess the quality of the output of BIOMASAR-C as
regards the occurrence of systematic biases. The spatial patterns of AGB appear to have been
reproduced with overpredictions in regions with AGB < 200 Mg ha-l, primarily in Europe. The
wide range of backscatter values for unvegetated terrain affected the estimation of 0% leading to
smaller values than in reality and a modelled backscatter lower than the measured values in the
low-to-moderate range of AGBs. The regions most distant from the identity line mainly
correspond to small administrative units in Asia and Central Europe, with a small forest fraction
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Figure 7-5: Scatterplot comparing averages of AGB from NFIs at administrative or ecological region with
corresponding averages from the BIOMASAR-C AGB map of 2017 (v6). The red markers report the median AGB
from the BIOMASAR-C AGB map for 50 Mg ha wide bins of reference AGB.

7.1.2 Comparing BIOMASAR-C versions in CCI CORE algorithms
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Similar to what was reported for the BIOMASAR-C v6 AGB map, the scatterplot in Figure 7-6
compares the NFI-based averages of AGB with the corresponding average values from the last set
of estimates of the BIOMASAR-C map. The overall trend remains unchanged with overall lower
AGB estimates. These results relate to the fact that no major structural change was introduced
except for a new definition of the starting value for the regression of the WCM to estimate ¢’y
Because of the weak sensitivity of the C-band backscatter to AGB in many regions of the world,
this slight change caused a substantial increase of the AGB estimates. Modifications introduced in
v6 concerned the function relating height to AGB in Southeast Asia and Australia and, thereof,
maximum AGB, which likely caused some changes in data points characterized by high biomass.
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Figure 7-6: Same as in Figure 7-5 but based on v5 of the BIOMASAR-C algorithm.

7.1.3 BIOMASAR-L

An analysis of previous BIOMASAR-L estimates compared to the GlobBiomass dataset was
reported in earlier versions of this document. As for BIOMASAR-C, we first show two full
resolution maps (Figure 7-7) of the AGB estimates for the same 1° x 1° areas used in Figure 7-1.
The L-and C-band estimates present similar spatial patterns but the former exhibits stronger
contrast between unvegetated regions and dense forests. With BIOMASAR-L, the estimated AGBs
were closer to zero in unvegetated regions and closer to the maximum biomass in dense forests.
The comparison of the C- and L-band estimates indicates that the two datasets (i.e., Sentinel-1 and
ALOS-2) do not produce the same levels of AGB, which corroborates our view that merging the
datasets is necessary to overcome systematic biases in one or other AGB dataset.
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Figure 7-7: Example of AGB estimates obtained with BIOMASAR-L applied to the same 1° x 1° tile shown in
Figure 7-1.

Figure 7-8 shows the AGB map from BIOMASAR-L for the Alpine region and the year 2018, which
can be compared with the output from BIOMASAR-C in Figure 7-2. This extended AGB map has
more contrast than the map obtained with BIOMASAR-C and confirms the indications reported
for Figure 7-7.
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Figure 7-8: AGB map of the Alpine region obtained with BIOMASAR-L using ALOS-2 data acquired in 2018.

An example of a global map from BIOMASAR-L is displayed in Figure 7-9. The spatial distribution
of AGB is similar to that obtained with BIOMASAR-C, but the contrast is stronger, which means
that BIOMASAR-L can resolve the highest and lowest biomasses better than BIOMASAR-C. The
map in Figure 7-9 shows that the spatial distribution of AGB estimated from ALOS-2 PALSAR-2
data is more homogeneous than from C-band thanks to the filtering during the pre-processing of
the data. Nonetheless occasional striping occurs, corresponding to the overlap between adjacent
SAR images in regions where the sensitivity of the backscatter to AGB is weak and even small
calibration errors of few tenths of a dB lead to significant differences in the estimated AGB (Figure
7-10).
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Figure 7-9: AGB map obtained with BIOMASAR-L using ALOS-2 data acquired in 2017.

The scatterplot comparing NFI-based averages of AGB at the level of administrative or ecological
units with AGB averages from the BIOMASAR-L map of 2017 shows strong agreement and no
apparent loss of sensitivity of the retrieved AGB. The red circles indicate that, on average,
BIOMASAR-L tends to slightly overestimate AGB below 200 Mg ha-! and underestimate in the high
biomass range (> 300 Mg ha-1). This tendency was also identified in BIOMASAR-C, although the L-
band estimates appear to be more in line with the NFI-based averages, except for several outliers
that did not occur in the BIOMASAR-C map. These results suggest merging of the two maps to

Figure 7-10: AGB estimates from ALOS-2 data for the southwestern Amazonian region.

~

mitigate systematic biases in each single map.
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Figure 7-11: Scatterplot comparing averages of AGB from NFls at administrative or ecological region with
corresponding averages from the BIOMASAR-L AGB map of 2017. The red markers report the median AGB from
the BIOMASAR-C AGB map for 50 Mg ha! wide bins of reference AGB.

7.1.4 Comparing BIOMASAR-L versions in CCI CORE algorithms

The BIOMASAR-L algorithm has undergone several modifications to produce v6 of the CCI
Biomass maps, so the maps produced with v5 and v6 of the algorithm exhibit differences. Figure
7-12 illustrates these differences for the maps produced for 2020. They occur for three main
reasons:

1. Changes in the height-to-biomass model (locally).
2. Changes in the maximum retrievable biomass (globally).
3. Changes in the estimation of the model parameters (globally).

The current AGB maps produced from ALOS-1 PALSAR-1 or ALOS-2 PALSAR-2 data tend to have
a higher AGB across dense forest areas in the humid tropical, temperate, and boreal forest regions.
AGB is instead lower than in previous versions across forests in the Pacific Northwest of the
United States and British Columbia, Canada, as well as for forest regions in Central Chile
dominated by pine and eucalyptus plantations. These differences are primarily associated with
differences in the IceSAT-2 LiDAR-based map of maximum forest heights and, consequently, the
maximum retrievable AGB. Also, across semi-arid forest regions in Southern Africa and South
America, the new version presents a moderately higher AGB in low AGB ranges. These differences
are associated with the modified approach for estimating the model parameter 0%, in Equation
(4-8) (Section 4.4.1). The new estimates for 0% tend to be lower and hence the AGB estimates
higher in low AGB ranges.

This document is the property of the CCI-Biomass partnership, no part of it shall be reproduced or transmitted
without the express prior written authorization of Aberystwyth University and Gamma Remote Sensing AG.




Ref CCI Biomass Algorithm Theoretical Basis — [T
esa Document
- Issue Page Date

6.0 112 19.12.2024

AGB, 2020, CCI Bi v5 - v6 [Mg ha']
I T

0°N

0°S
180°W 120°W 60°W 0°E 60°E 120°E 180°E

Figure 7-12: Differences between the AGB maps for the year 2020 produced with v5 and v6 of BIOMASAR-L,
respectively.

Finally, we show an assessment of the BIOMASAR-L estimates from v5 with respect to NFI-based
averages (Figure 7-13). Figure 7-13). The distribution of the AGB averages is almost unaltered
compared to v6 in Figure 7-11.
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Figure 7-13: Same as Figure 7-11 but based on v5 of the BIOMASAR-L algorithm.

7.1.5 Merging AGB estimates

The merging approach, which had already been implemented for generating the GlobBiomass
product, was also found to improve the estimates of biomass derived from the C- and L-band
datasets in v1 to v5 of the CCI Biomass AGB maps. It was therefore applied also to produce v6 of
the CRDP. Overall, the merging approach favours the L-band derived AGB over values from C-band
for forests with low or high AGB. In forests with moderate AGB, instead, L-band derived estimates
are given more weight. However, deviations from this simple rule (Equation (4-11)) were
required to account for the varying number of annual backscatter observations available, i.e., in
particular the variable number of Fine-Beam observations from ALOS-1 PALSAR-1 and ALOS-2
PALSAR-2 (Equation (4-12)). With the focus of the CCI Biomass project moving towards
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quantification of AGB changes, the merging of maps from C- and L-band data acquired in multiple
years since v5 of the CRDP also considers the interannual consistency of the resulting merged AGB
maps (Equation (4-14)), i.e., the weights for combining C- and L-band derived biomass maps from
a given year are adjusted so that the interannual variability between merged AGB maps for
consecutive years is minimized. As can be seen in Figure 7-10, the individual C- and L-band based
AGB maps do present local artifacts due to calibration errors as well as an inconsistent annual
coverage with observations from different seasons locally. Because of these imperfections in the
individual C- and L-band products, a harmonization across multiple years is performed to produce
a temporal series of maps which allow for assessing annual and decadal changes in AGB. As
illustrated in Figure 7-14, the harmonization leads to a better interannual consistency (i.e., higher
correlation, lower RMSD) between the AGB maps (compared to v4 of the CRDP), a fundamental
requirement for an analysis of biomass trends.

Figure 7-15 presents the difference in AGB between the v6 maps for the years 2010 and 2020 for
Central Canada, the Northern United States and Central Brazil. The map clearly shows the areas
of deforestation and forest fires (red). However, the AGB differences also indicate areas of
increasing biomass (green to blue). These increases are not verified and at this stage suggest
changes between the maps produced for 2007, 2010, and 2015-2022 need to be interpreted with
care (see also Section 7.2).
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Figure 7-14: Comparison of merged AGB maps for 2010, 2017 and 2020 per continent and at kilometric scale for
the CRDP v4 and v6, produced without and with interannual harmonization of weights for merging C- and L-band
AGB maps, respectively.
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Figure 7-15: Difference between CCl Biomass v6 AGB maps for 2020 and 2010 in Central Canada/Northern USA
(a) and Brazil (b). Forests subject to biomass loss show up in red, potential biomass increase in blue.

7.2 AGB change estimation

The CCI Biomass project targets estimation of AGB changes for annual intervals between 2015
and 2022 and for a decadal interval, i.e., between 2010 and 2020. Verification of the global AGB
maps produced for v5 of the CRDP reveals a consistent spatial distribution of AGB but different
levels, particularly in the dense tropics. This is due to the different EO datasets available in 2010
(multi-temporal moderate resolution Envisat ASAR observation and a few ALOS PALSAR
observations) compared to years starting with 2015 (multi-temporal, high resolution
observations from Sentinel-1 and ALOS-2 PALSAR-2).
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Since global AGB change maps are not ready at the time of finalizing this document, the discussion
is centred around problems that were evident in older releases of the CRDP and that may still
affect the biomass change maps included in the CRDP following this report.

Figure 7-16 shows an example of the AGB difference between AGB maps of 2020 and 2010 from
v5 of the CRDP and a latitudinal profile of the AGB difference. In this example, we compare maps
averaged to 0.1° to identify major patterns of change and to judge the overall quality of a change
product derived from the difference of two maps.

The latitudinal pattern indicates constant AGB or slight decrease. In the absence of a truly global
reference dataset of AGB differences, these trends cannot be confirmed. Compared to v4, where
the magnitude of the changes was larger and some of the detected changes were dubious, here we
see a more constrained range of changes between 2010 and 2020. Northern latitudes are
characterized by increase of AGB and local strong losses. Widespread losses in tropical regions
were detected in the Amazon and the Congo Basin. However, we also detected some increases in
both regions, as well as in China and in temperate South America. The result is an improvement
of the AGB merging step where temporal consistency of the AGB estimates was introduced in v5.

AGB difference, 2020 - 2010, v5 [Mg ha™]
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Figure 7-16: Difference between the 2020 and the 2010 AGB datasets (left) and latitudinal profile of the AGB
difference (right). The AGB maps were averaged to 0.1° before taking the difference. The colour ramp is
constrained between +/- 50 Mg ha to enhance contrast. The latitudinal profile shows the average AGB
difference as a function of latitude (thick line) and the interquartile range of AGB difference at a given latitude
(horizontal bars). The AGB maps used in this example are part of the CRDP v5 of the CCI Biomass project.

The variability of the AGB changes is, however, much stronger when considering the full
resolution of the maps. An example is shown by Figure 7-17 with the AGB difference map obtained
at full resolution from the 2020 and 2010 maps of v5. The 10° x 10° region in Figure 7-17 covers
tropical rainforests along the Amazon River, with significant deforestation occurring south of the
river (fishbone pattern). The AGB difference map shows both positive and negative values, some
of them substantially larger than would be expected. Further evidence for the low reliability of
these AGB change estimates is the strong variability of the AGB difference between adjacent pixels.
We interpret this to mean that the AGB difference is dominated by errors and uncertainties in the
individual maps. In summary, the interpretation of CCI Biomass change maps at full resolution
must be very cautious. There is, however, one exception, which concerns areas affected by
deforestation. Figure 7-17 shows several red-coloured spots at the edges of previous
deforestation. The strong loss of biomass between 2010 and 2020 can be explained with the
expansion of deforestation into intact rainforests.
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Figure 7-17: Difference between the AGB estimates obtained for 2020 and 2010 (left) and index of reliability of
the AGB difference estimate (right).

To quantify the reliability of an estimate of AGB difference, we followed the approach developed
in the GlobBiomass project for mapping AGB changes at regional scale. Each of the two estimates
contributing to an AGB difference may have a substantial standard deviation, typically 40%-60%
of the estimated value [RD-5]. The standard error of the AGB difference is therefore even larger
because the variances of the individual estimates are summed. As a result, even a large AGB
difference obtained from the maps may not be significant. In the GlobBiomass project, two
scenarios were depicted. Let us assume that AGB; is the estimate at the first point in time and
AGB:; is the estimate for the same pixel at the second point in time. Let us then assume that SD;
and SD; are the standard deviations of the two estimates, respectively. The probability that the
AGB difference corresponds to a high or low probability of true change depends on whether the
intervals AGB; £ 1 SD; are disjoint (Figure 7-18, upper graphic) or overlap (Figure 7-18, lower
graphic). Because of the rather large intervals of AGB, we also introduce a moderate level of
reliability referred to as potential change. Potential change occurs when the intervals overlap but
the estimate at one point in time is outside the interval AGB; 1 SD; for the second interval in time
(Figure 7-19).

Though this approach oversimplifies the issue, it is a valuable way to generate a simple auxiliary
layer that can inform map users about the reliability of the difference estimate.
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Figure 7-18: Upper graphic: disjoint intervals of AGB estimates at points in time 1 and 2 indicating high reliability
of an AGB change defined as AGB difference. Lower graphic: overlapping intervals of AGB estimates at points in
time 1 and 2 indicating low reliability of AGB change defined as AGB difference.
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Figure 7-19: Partial overlap of intervals AGBi+/-SDi corresponding to a definition of potential AGB loss (AGBx<
AGB;-SD1, upper graphic) or potential AGB gain (lower graphic, AGB,> AGB;+SD1).

Figure 7-20 shows an example of a reliability map corresponding to the AGB difference between
2020 and 2010. Low reliability corresponds to having overlapping AGB distributions and
characterizes most of the area, even if the AGB change is non-negligible. Very few areas are
characterized by an intermediate reliability, corresponding to a definition of potential AGB
change. Areas with a high reliability, i.e., with disjoint AGB distributions, occur seldom but always
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correspond to areas where AGB dropped from the level of a mature forest to a level close to 0 Mg
hal.

AGB difference, quality flag, 2020-2010, 1 ha

AGB difference, 2020-2010 [Mg ha"], 1 ha

8.22°S 200 8.22°S

gain

100 S ‘ 4 potential gair

improbable

potential loss

SRAN'es 37 | 200
58.22°W

Figure 7-20: Zoom of Figure 7-17 in an area characterized by expanding deforestation into intact forests.

We conclude that an AGB difference map should be handled with care and a layer indicating its
reliability should accompany the AGB differences to decide whether such differences are
meaningful. In this context, we do not consider the effect of spatial averaging to reduce the
variance of the error in an AGB estimate. Nonetheless, the concept developed here for the maps
at full resolution applies to maps obtained after spatial averaging to coarser resolution.

It should finally be noted that, regardless of the spatial scale at which the AGB difference is
obtained, this approach does not account for biases affecting each AGB map. Should the two maps
be affected by different biases, the AGB change obtained by differencing AGBs at the two points in
time will have an additional bias term (difference of biases) which will affect the accuracy of the
estimate of AGB change.
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9 Annex A

To assess the dependency of SAR backscatter on local orientation of terrain, observations at C-
band (Sentinel-1) and L-band (ALOS PALSAR) were stratified in terms of canopy density and
aspect angle or incidence angle. In addition, we analysed the same sets of observations as a
function of canopy density, stratifying in terms of local incidence angle. Here, we show two
examples. The first example corresponds to a 1° x 1° large tile characterized by high biomass
forest, pasture, agriculture, and mountainous terrain with steep slopes between Austria and
Slovenia. This is representative for the behaviour of the backscatter in case of strong topography.
The second corresponds to a tropical landscape in Gabon, including both dry and wet forest types,
with hilly terrain. This example is representative for the behaviour of the backscatter in case of
moderate topography. In both examples, we use the Hansen percent tree cover data product
(Hansen et al,, 2013) as reference for the canopy density.

9.1 Alpine terrain, temperate forests

Figure A1 shows the relationship between Sentinel-1 SAR backscatter (VV- and VH-polarization)
and terrain aspect angle for the 1° x 1° tile between Austria and Slovenia and characterized by
local terrain slopes well above 40°. Observations are stratified by canopy density to better
understand scattering patterns. The backscatter presents a quasi-sinusoidal pattern, being more
accentuated in the case of sparsely vegetated terrain The results are in line with other
experimental results shown in Hoekman and Reiche, 2015. The highest backscatter was obtained
for slopes facing the radar. A slightly different pattern was obtained for the ALOS SAR backscatter
(Figure A2). Although we observe more sensitivity to the orientation of the terrain in case of
unvegetated or sparsely vegetated terrain, we do not observe the same sinusoidal pattern but
rather a peak at about 150°. Interestingly the range of aspect angles at which we observe a
maximum backscatter corresponds to slopes facing away from both ALOS PALSAR and Sentinel-
1. It can be assumed that the topographic correction introduced during pre-processing over-
corrected the backscatter, introducing artefacts in the final image product.

The plot in Figure A1 and A2 do not distinguish between pixels located on steep terrain or flat
terrain. A 3-dimensional plot of observations where backscatter is plotted as a function of terrain
slope and terrain orientation is difficult to interpret. A more straightforward visualisation that
combines slope and aspect and can still be considered to well synthesize landscape-specific
scattering patterns and terrain conditions is provided in Figures A3 and A4. There, the C- and L-
band backscatter, respectively, is plotted as a function of local incidence angle. The plots show a
minimum in correspondence of the incidence angle for flat terrain conditions and higher
backscatter for sloped terrain, following a quadratic pattern. The sensitivity of the backscatter
upon incidence angle differed depending on canopy density and, in addition, to polarization and
frequency. Although one would have expected that the highest backscatter corresponded to the
smallest incidence angles (i.e.,, slopes facing the radar), we see high backscatter also in
correspondence of the largest incidence angles for steep slopes facing away from the radar. This
is another way of showing the over-correction applied during pre-processing, i.e., a "global"
correction for pixel area and incidence angle that did not account for the specific landscape.

To then understand the impact of terrain slope on a retrieval of a forest variable, we plotted the
same observations of Figures A3-A4, as a function of canopy density after stratifying by local
incidence angle. Figures A5 and A6 show that there is a clear difference in terms of functional
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dependence between backscatter and canopy density when considering observations for different
incidence angles. The strongest sensitivity was obtained for flat terrain (incidence angles between
30° and 40°), the weakest for steep slopes with large incidence angles.

This document is the property of the CCI-Biomass partnership, no part of it shall be reproduced or transmitted
without the express prior written authorization of Aberystwyth University and Gamma Remote Sensing AG.




Ref CCI Biomass Algorithm Theoretical Basis — [T
Document o

Issue Page Date

6.0 129 19.12.2024

194_043_01B6D2_20170512_

-10 © 0-20%
Q  21-40%

11 41-60%
© 61-80%

12 O 81-100%

Backscatter VV-pol [dB]
Backscatter VH-pol [dB]

0 100 200 300 0 100 200 300
Aspect angle Aspect angle

Figure A 1: Observations of Sentinel-1 backscatter as a function of terrain aspect angle for the 1° x 1° tile with
top left coordinate: 14°E, 47°N. The tile includes temperate forests and alpine terrain between Austria and
Slovenia. Aspect angle is defined as being zero when the normal to the surface is oriented northwards.
Observations are stratified per canopy density. Each circle represents the median backscatter for a given canopy
density interval (see legend) and aspect angle interval (10° interval).

N47E014 Y91 sl

-12

N
w

N
3

Backscatter HV-pol [dB]
> =

Backscatter HH-pol [dB]

N
3

O 0-20% O 21-40%
4160% © 61-80%
©  81-100%

0 100 200 300 0 100 200 300
Aspect angle Aspect angle

N
®

Figure A 2: Observations of ALOS PALSAR backscatter as a function of terrain aspect angle for the same 1° x 1°
tile as in Figure Al. Observations are stratified per canopy density. Each circle represents the median
backscatter for a given canopy density interval (see legend) and aspect angle interval (10° interval).
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Figure A 3: Observations of Sentinel-1 backscatter as a function of local incidence angle for the same dataset and
tile in Figure Al. Observations are stratified per canopy density. Each circle represents the median backscatter
for a given canopy density interval (see legend) and incidence angle interval (10° interval).
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Figure A 4: Observations of ALOS PALSAR backscatter as a function of local incidence angle for the same dataset
and tile in Figure A2. Observations are stratified per canopy density. Each circle represents the median
backscatter for a given canopy density interval (see legend) and incidence angle interval (10° interval).
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Figure A 5: Observations of Sentinel-1 backscatter as a function of canopy density (Landsat VCF) for the same
dataset and tile in Figure Al. Observations are stratified per incidence angle. Each circle represents the median
backscatter for a given incidence angle interval (see legend) and canopy density interval (10° interval). The
vertical bars represent the interquartile range of backscatter measurements in each VCF range and incidence
angle interval of flat terrain.
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Figure A 6: Observations of ALOS PALSAR backscatter as a function of canopy density (Landsat VCF) for the same
dataset and tile in Figure A2. Observations are stratified per incidence angle. Each circle represents the median
backscatter for a given incidence angle interval (see legend) and canopy density interval (10° interval).
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9.2 Flat to hilly terrain, tropical forest

The analysis was repeated for a more moderate topography and a different forest type. The results
are in line with previous observations, showing less variability though because of the smaller
range of incidence angles. The relationship between aspect angle and SAR backscatter (Figures
A7 and A8) show the same sinusoidal pattern. For canopy density ranges where this is not as clear,
the reason is the small number of pixels. Similar, plotting the SAR backscatter as a function of local
incidence angle and stratifying by canopy density (Figures A9 and A10) confirms that the smallest
backscatter is obtained in correspondence of flat terrain whereas steep slopes are characterized
by higher values. When reversing the plots by expressing the SAR backscatter as a function of
canopy density after stratifying by local incidence angle (Figures A11 and A12), we see different
backscatter levels for different ranges of incidence angle for canopy density up to 70%. Thereafter
the almost negligible sensitivity of short-wavelength backscatter to forest variable appears to set
in and the differences are of the order of a fraction of dB. Still, there appear to be systematic
differences related to local incidence angle. This is confirmed when looking at Figures A13 and
A14, where we plotted the SAR backscatter as a function of AGB for a subset of the 1° x 1°
corresponding to the area covered by the LiDAR-based dataset of AGB at the test site of Lope,
Gabon (Labriere et al., 2018), Interestingly, the SAR backscatter presented some variation for
increasing AGB even at the highest levels of AGB whereas there was hardly any variability when
the same observations were plotted against canopy density. This seems to indicate that the
reliability of the percent tree cover values above 80% can be questioned as no sensitivity of the
backsscatter to canopy density was evident above 80%.
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Figure A 7: Observations of Sentinel-1 backscatter as a function of terrain aspect angle for the 1° x 1° tile with
top left coordinate: 11°E, 0°N. The tile includes the forest site of Lope, Gabon. Aspect angle is defined as being
zero when the normal to the surface is oriented northwards. Observations are stratified per canopy density. Each
circle represents the median backscatter for a given canopy density interval (see legend) and aspect angle

interval (10° interval).

Backscatter HH-pol [dB]

NOOEO11 Y91 sl

100

200
Aspect angle

300

-10
-12
o y
B 14t
5
&
> 16}
T
o)
-§-18|-
%]

@ © 020% © 6180%
221 O 2140% O 81-100%
41-60%

-24 : : :

0 100 200 300

Aspect angle

Figure A 8: Observations of ALOS PALSAR backscatter as a function of terrain aspect angle for the same 1° x 1°
tile as in Figure A7. Observations are stratified per canopy density. Each circle represents the median backscatter
for a given canopy density interval (see legend) and aspect angle interval (10° interval).
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Figure A 9: Observations of Sentinel-1 backscatter as a function of local incidence angle for the same dataset and
tile in Figure A7. Observations are stratified per canopy density. Each circle represents the median backscatter
for a given canopy density interval (see legend) and incidence angle interval (10° interval).
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Figure A 10: Observations of ALOS PALSAR backscatter as a function of local incidence angle for the same dataset
and tile in Figure A8. Observations are stratified per canopy density. Each circle represents the median
backscatter for a given canopy density interval (see legend) and incidence angle interval (10° interval).
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Figure A 11: Observations of Sentinel-1 backscatter as a function of canopy density (Landsat VCF) for the same
dataset and tile in Figure A7. Observations are stratified per incidence angle. Each circle represents the median
backscatter for a given incidence angle interval (see legend) and canopy density interval (10° interval). The
vertical bars represent the interquartile range of backscatter measurements in each VCF range and incidence
angle interval of flat terrain.

NOOEO011 Y91 sl

4 10
e O
67 WEEXL 2 ge®®ce
T 000’3‘9 o o ©
= o 8 = o 8
T >
T 1010 e T -16f0 &
) o [} o
= 8 = 8
S 129 S 18t
2 o © 2 o
(] O [5}
R 141 & 2010 8
o O 10deg © 50deg
O 20deg 60 deg
-16 ¢ 221 30deg © 70deg
O  40deg
-18 : : ; : : 24 , - ' : -
0 20 40 60 80 100 0 20 40 60 80 100
Landsat VCF [%] Landsat VCF [%]

Figure A 12: Observations of ALOS PALSAR backscatter as a function of canopy density (Landsat VCF) for the same
dataset and tile in Figure A8. Observations are stratified per incidence angle. Each circle represents the median
backscatter for a given incidence angle interval (see legend) and canopy density interval (10° interval).

This document is the property of the CCI-Biomass partnership, no part of it shall be reproduced or transmitted
without the express prior written authorization of Aberystwyth University and Gamma Remote Sensing AG.




Ref CCI Biomass Algorithm Theoretical Basis N
~@sa Document lomass
.- Issue Page Date
6.0 136 19.12.2024
Sentinel-1
6 O 127
o 0 o
6.5 125t o
-] 8 ° o o o © g ©
m' 1T fe) o o -13 1 o o o
T, O O o, o]
> 75 o c -135F ©
> >
o) I o I O  10deg
= -8 8 £ 14 O  20deg
[&] (&
@ & | 30 deg
¥ 985 ¥ 145 ©  40deg
3 ol 3 15 O 50deg
B - 60 deg
9.5 155} O 70deg
-10 : - : : ; -16 : : : : ;
0 100 200 300 400 500 100 200 300 400 500

AGB [Mg ha™"]

AGB [Mg ha"]

Figure A 13: Observations of Sentinel-1 backscatter as a function of AGB over Lope, Gabon, (Labriere et al.,
2018) for the same dataset in Figure A7. Observations are stratified per incidence angle. Each circle represents
the median backscatter for a given incidence angle interval (see legend) and AGB interval (50 Mg hal).
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Figure A 14: Observations of ALOS PALSAR backscatter as a function of AGB over Lope, Gabon, (Labriere et al.,
2018) for the same dataset in Figure A8. Observations are stratified per incidence angle. Each circle represents
the median backscatter for a given incidence angle interval (see legend) and AGB interval (50 Mg hal).
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10Annex B

In this Annex, we present a comparison of percent tree cover datasets with the objective of
drawing some conclusion on the quality of canopy density datasets to be used in the model
training phase of the BIOMASAR algorithm. Several regions of the Earth were analysed; the
examples below are indicative for an area of frequent cloud cover throughout the year. Cloud
cover was indeed identified the major factor to cause artefacts in global maps of canopy density.

Figure B1 shows four percent tree cover datasets with spatial resolution between 30 m and 1,000
m of potential interest to support the model training. For reference, we included the optical image
in Google Earth. This area (100 km x 60 km) is in Equatorial Guinea. The nearly horizontal,
repeated segments in the two Landsat canopy density datasets are a consequence of the SLC-off
artefacts in Landsat imagery due to scanning. Because of the poor Landsat coverage in recent
years, the annual Landsat VCF datasets by Sexton et al. (2013), are often characterized by SLC-off
effects and missing data because of cloud cover. The MODIS VCF dataset shows strong variability
because of frequent cloud cover, which introduced several artefacts and reduced the overall
quality of the canopy density estimates. The Proba-V tree cover fraction appears to be reliable in
terms of artefacts but seems to classify tree cover as being 100% everywhere there is vegetation.
This feature was noticed in boreal forests as well, where forests are sparser.

As a result, the percent Landsat-based tree cover appears to be the most reliable dataset globally
whereas the others suffer from artefacts and missing values due to cloud cover and haze with
some quite destructive impact on model training and, thereof, biomass retrieval.
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Figure B1l. Comparing four percent tree cover datasets for a 100 km x 60 km large area in
Equatorial Guinea. The image at the top of this Figure was taken from Google Earth. Each percent
tree cover image is scaled between 0 and 100. The white features in the Landsat VCF dataset by

Sexton et al. (2013) represent invalid locations and are caused either by SLC-off artefacts
(segments) or clouds.
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11Annex C

From the GlobBiomass dataset, we derived averages at 0.25° and compared with the average AGB
from plot inventory measurements described in the Product Validation Plan [RD-7]. The
agreement was strong below 250 Mg ha-! (Figure C1). Above this level, the map-based AGBs were
underestimated, the discrepancy between map-based and plot-based AGB averages increasing
with increasing AGB. This difference explains the negative bias and the rather high relative root
mean squared difference between map-based and plot-based averages (Figure C1).
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Figure C 1: Scatter plot comparing average AGB from plot inventory observations and map-based average AGB
from the GlobBiomass dataset at 0.25°. Circles and bars represent the median and inter-quartile ranges of
map-based averages for 50 Mg ha! wide bins of plot-based average AGB. Individual pairs of AGB values are

represented by crosses. Retrieval statistics reported in this figure include the number of grid cells, i.e., pixels,
the RMSD relative to the average plot-based AGB, the bias and the coefficient of determination R2.
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Country No.units  Type of unit Reported biomass Year URL
Albania 1 Country AGs ~2015  Avitabile etal, 2018

American Samoa 1 Country Acs 2012 https://apps.fs.usda.gov/fiadb-api/evalidator

Argentina 6 Ecoregion AcB 2017

Australia 8 Territory G 2016 he

Bangladesh 5 Socioeconomic zone AGB 20162019 1 odf

Belarus 6 Province asv. 2010 hetp:// tl df

Belize 1 Country AGB 2018 Inventarios Forestales Nacionales de America Latina y el Caribe: Hacia la armonizacion de la informacion forestal
Bhutan 20 Province asv 20122015 hutp:/ 1 pf
Bosnia 1 Country AGe ~2015  Avitabile etal, 2018

Brazil 6 Ecoregion Acs 2018 Brazilian Forest at a glance 2019, Ministry of Agriculture, Livestock and Food Supply, Brazilian Forest Service
Bulgaria 1 Country AGB ~2015  Avitabile etal, 2018

Burkina Faso 13 Province AGc 2014 http//cns bf/IMG/pd/rapport_second inventaire_forestier_national2.pdf

Cabo Verde 9 istand AGB 2012 hetp://wwrw.caboverdeifn.ifer.cz/ ?page_id=79

Cambodia 3 Ecoregion AGB 014 redd.org/wp. biomass-in-Cambodia-from. field:plots-to-national-estimates.pdf
Canada 12 Ecozone AcB 20062017 https://nfi.nfis.org/en/standardreports

chile 11 Region Gsv. 2

china 31 Province AGB 20142018  China forest resources report, Sth forest inventory.

Colombia 5 Biogeografic region AGB 20152019 Inventarios Forestales Nacionales de America Latina y el Caribe: Hacia la armonizacion de Ia informacién forestal
Comores AGe 2010 FAO FRA country report 2020

Congo 5 Ecoregion €02 equivalent 2014 https://www.fao.ore/3/cb2941fr/ch2941fr.pdf

Costarica 11 Life zone 02 equivalent 20142015 -t

Croatia 1 Country A 15 Avitabile et al, 2018

Cyprus 1 Country AGB ~2015  Avitabile etal, 2018

Democratic Republic of the Congo 26 Province Ace 20112016 it (based on Xu et al, 2021]
Dominican Republic 4 Ecoregion AcB humi

Ecuador 9 Ecoregion AGC 2009-2013  http://enf.ambiente gob.ec/web_enf/?page_id=1239

€l Salvador 4 coregion Acs 2018

Estonia 1 Country AGB ~2015  Aitabile etal, 2018

Ethiopia 4 Ecoregion AGB. 2010 https://redd.unfccc.int/files/ethiopia_frel_3.2_final_modified_submission.pdf

i 1 Country aGa 2006 ot

i 19 NPl unit aca 20162020 htps//statdb, _0a%20Metsa_( 9_pusston_biomassa_metsa,ja_ktumaslla px/
French Guyana 1 Country Aca 2015 Inventarios Forestales Nacionales de America Latina y el Caribe: Hacia la armonizacidn de Ia nformacién forestal

Guam 1 Country Ace 2013 heeps://apps.f.usca.govfadb-apifevalicator

Guatemala 3 Forest type AG8 2002-2003 _ Iventarios Forestales Nacionales de America Latinay e Caribe: Hacia a armonizacién de la informatcion forestal

Honduras 4 Forest type AGC 2020 https://icf.gob.hn/wp-content/uploads/2021/08/Anuario_Estadistico_Forestal_de_Honduras_2021.pdf

Iceland 1 Country AGB ~2015  Aitabile etal, 2018

India 41 State AGC 2016 https://fsi.nic.in/isfr-2021/chapter-9.pdf

Indonesia 7 Island AGB 2014 http://ditjenppi.menlhk.go.id/kepi/dokumen/national_frel_final%20revisi_10des.pdf

Ivory Coast 3 Ecoregion AGB. 2014 https://www.fao.org/3/i8019f/i8019f.pdf

Japan 47 prefecture Gsv 2013.2007 pof

Kosovo 1 Country Ace ~2015  Atabile etal, 2018

Laos 4 Forest type AcB 2019 hutps://nfms.mat govla

Lawia 1 Country AGe ~2015  Aitabile etal, 2018

Uberia 15 Province Total biomass 2018 hitps://

Lechtenstein 1 Country AGB ~2015  Aitabile etal, 2018

Luembourg 1 Country AGs <2015 Aitabile etal, 2018

Madagascar 4 Ecoregion aGs 2017 hitps:/Jredd _frel_mdg_modified_su f

Malawi 2 Region Total biomass 2018 hitps:/ )

Marshall Islands 1 Country AGB 2018 https://apps.fs.usda.gov/fiadb-api/evalidator

Mexico 32 state Ace 2005-2009 e Jong et al, 2010

Micronesia 1 Countn AcB 2016 et/ /v f.usd

Mongolia 4 Ecoregion AGB 2017 http://forest-atlas.gov.mn/DataSetResults.aspx.

Montenegro 1 Country AGB ~2015  Avitabile etal, 2018

Mozambiaue 10 Province AGB 2018 & 5 ot
Nepal 3 Physiographic region AGB 2017 hitps://nepalindata.com) resource/ STATE-OF -NEPAL275-FORESTS/

Nicaragua 4 Forest ty 4G 2007-2008 o
Nigeria 6 Ecozone aGa 2019 hitpsi/ /. fao.0rg/3/cb003en/cbo03T7en

North Macedonia 1 Country Aca ~2015  Adtabile etal, 2018

Northern Mariana tslands 1 Country Ace 2015 s/ "

Paldstan 12 Forest type Asc 20082012 httpsi/redd.unfecc.int/files/1._unfcce_frel_pakistan_final_with_proofread -finalpe

Palau 1 Country A8 2014 hutps://apps.fs.usda gov/fiadb-api/evalidator

Panama 1 Country AGB 2013-2015  hetpsi//ch pat
Papua New Guinea 1 Country. AGB. > 2010 Proceedings_of_the_second_NFI_Research_Conference_compressed.pdf

Paraguay. 6 Ecoregion AGC 2014 http://www.infona.gov.py/index.php?ciD=296

Peru 6 Ecozone AGa 20132018  Inventarios Forestales Nacionales de America Latina y e Caribe: Hacia la armonizacion de la informacion forestal

Puerto Rica 1 Country aca 2019 Inventarios Forestales Nacionales de America Latina y el Caribe: Hacia Ia armonizacidn de a informacian forestal

Republic o Korea 10 Province v 2014 hitps://: I  OHHEGSCTHQFNOEC
Russia 83 province v 2011-2020  private data sharing, D. Schepaschenko (IASA)

Sudan 3 State GSV. 2017 https://redd.unfccc.int/files/sudan_frl_submission_to_unfccc_january_2020.pdf

Suriname 2 Ecorone Asc 2017 04 . CarbonStocks.pdf

Taiwan 8 Province GSV. 2021 https://www.forest.gov.tw/EN/0001465

Tanzania 25 province Gsv 2015 hitps://www.tfs 80.12/uploads/NAFORMA_REPORT.pelf

Thailand 3 Forest type AGB. 2013-2018  https://redd.unfccc.int/files/thailand_frel_frl_report.pdf

Togo. 4 Ecoregion AGB. 2015-2016  https://redd.unfccc.int/files/nrf_togo_06_1_20_rev_18_08_20_finale.pdf

Turkey 1 Country aca ~2015  Atabile etal, 2018

Uganda 80 Province (district)  AGB 2005

Ukraine 25 province Gsv 2010 Private data sharing, D. Schepaschenko (IASA)

United Kingdom 1 Country AG8 ~2015  Atabile etal, 2018

United States 50 State AGB. 2010-2021 _ https://apps.fs.usda.gov/fiadb-api/evalidator

United States Virgin Ilands 1 Country AGB 2014 Inventarios Forestales Nacionales de America Latinay el Caribe: Hacia a armonizacien de la informacion forestal

Uruguay 1 Country Acs 20092016 _ Iventarios Forestales Nacionales de America Latina y e Caribe: Hacia la armonizacion de la informacion forestal

Vietnam 5 Forest type Total carbon 2016 https://redd.unfccc.int/files/2016_submission_frel_viet_nam.pdf

Zambia 1 Country aca 2009-2016  hetps//red X ¥ ot pof
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