
# CCI BIOMASS

# PRODUCT VALIDATION & INTERCOMPARISON REPORT VERSION 6.0

| DOCUMENT REF:    | CCI_BIOMASS_PVIR_V6 |
|------------------|---------------------|
| DELIVERABLE REF: | D4.1_PVIR           |
| VERSION:         | 6.0                 |
| CREATION DATE:   | 2025-05-23          |
| LAST MODIFIED    | 2025-06-04          |

#### **Document Authorship**

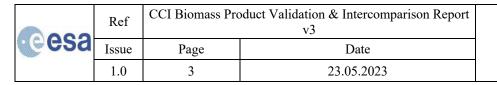
|          | NAME      | FUNCTION    | ORGANISATION | SIGNATURE | DATE |
|----------|-----------|-------------|--------------|-----------|------|
| Prepared |           |             |              |           |      |
| Prepared | A. Araza  | WP2         | WUR/GFZ      |           |      |
| Prepared | M. Herold | WP2 Co-lead | GFZ          |           |      |
| Prepared |           |             |              |           |      |





| VERIFIED | H.<br>Friendship-<br>Kay | Project Coordinator | Aberystwyth University |  |
|----------|--------------------------|---------------------|------------------------|--|
| Verified | R. Lucas                 | Project Manager     | Aberystwyth University |  |
| Verified | S. Quegan                | Science Leader      | Sheffield University   |  |
| Approved |                          |                     |                        |  |

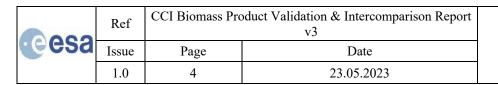
#### **Document Distribution**


| ORGANISATION | Name          | Quantity |
|--------------|---------------|----------|
| ESA          | Frank Seifert |          |

#### **Document History**

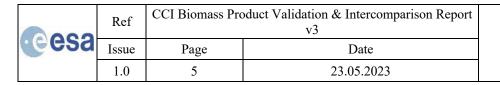
| VERSION | DATE       | DESCRIPTION          | APPROVED |
|---------|------------|----------------------|----------|
| 0.1     | 2025-06-04 | First draft version  |          |
| 1.0     | 2025-06-28 | Second draft version |          |

#### Document Change Record (from Year 1 to Year 2)


| VERSION | DATE | DESCRIPTION | APPROVED |
|---------|------|-------------|----------|
|         |      |             |          |
|         |      |             |          |



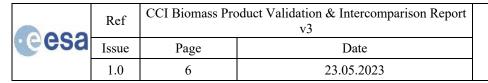



#### **TABLE OF CONTENTS**

| List of    | tables                                                                                                                                                               | 5        |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| List of    | figures                                                                                                                                                              | 8        |
| Symbo      | ols and acronyms                                                                                                                                                     | 10       |
| 1.         | Introduction                                                                                                                                                         | 11       |
| 2.         | Materials and methods                                                                                                                                                | 12       |
| 2.1.       | Forest plot data                                                                                                                                                     | 12       |
| 2.2.       | AGB estimates from LiDAR, Congo basin management inventories, and US Forest Service plots                                                                            |          |
| 2.3.       | Increase of reference data from version 5 to version 6                                                                                                               | 15       |
| 2.4<br>2.4 | Preparation of validation datasets 4.1. Temporal harmonization 4.2. Correction for forest fraction 4.3. Comparisons at 0.1° cell resolution 4.4. Ecoregions / biomes | 16<br>16 |
|            | Comparing AGB map pixels with reference data                                                                                                                         | 17       |
| 2.6.       | Spatial correlation of AGB                                                                                                                                           | 17       |
| 2.7.       | Effect of spatial support on sampling error and suggested map bias                                                                                                   | 18       |
| 3.         | Validation results for the global maps                                                                                                                               | 18       |
| 3.         | Global assessments per Tier of plot data  1.1. Tier 1 non-aggregated  1.2. Tier 2 non-aggregated  1.3. Tier 3 non-aggregated                                         | 18       |
| 3.2.       | Tier 1 plot data spatially aggregated to 0.1° cells                                                                                                                  | 44       |
| 3.3.       | Comparisons with LiDAR-based, 1-km pixel Congo basin Forests AGB and EMAP 25-km aggregates                                                                           | 50       |
| 3.4.       | Assessments by ecoregion                                                                                                                                             | 60       |
| 3.         | User-led validation                                                                                                                                                  | 63<br>64 |
| 3.6.       | Summary tables of the assessments by ecoregion                                                                                                                       | 70       |
| 3.         | AGB map intercomparison 7.1 Stability of AGB <sub>map</sub> – AGB <sub>ref</sub> differences among the 2007, 2010 and 2015-2022 AGB products                         | 72<br>75 |
| 3.8.       | Within-pixel sampling error                                                                                                                                          | 77       |
| 3.9.       | Next steps                                                                                                                                                           | 79       |
| Conclu     | usions                                                                                                                                                               | 80       |






| Acknowledgments                                   | ΧT |
|---------------------------------------------------|----|
| References (including references from Appendix A) | 82 |
| Appendix A - Details on the used forest plot data |    |





# LIST OF TABLES

| Table 1. Number of plots used in each Tier for the different AGB map reference years.                              | 13 |
|--------------------------------------------------------------------------------------------------------------------|----|
| Table 2. Number of LiDAR, CoFor and EMAP footprints used for the different AGB map reference years                 | 15 |
| Table 3. Validation results per biomass range for Tier 1 data at original resolution for the 2007 map.             | 22 |
| Table 4. Validation results per biomass range for Tier 1 data at original resolution for the 2010 map.             | 22 |
| Table 5. Validation results per biomass range for Tier 1 data at original resolution for the 2015 map.             | 23 |
| Table 6. Validation results per biomass range for Tier 1 data at original resolution for the 2016 map.             | 23 |
| Table 7. Validation results per biomass range for Tier 1 data at original resolution for the 2017 map.             | 24 |
| Table 8. Validation results per biomass range for Tier 1 data at original resolution for the 2018 map.             | 24 |
| Table 9. Validation results per biomass range for Tier 1 data at original resolution for the 2019 map.             | 25 |
| Table 10. Validation results per biomass range for Tier 1 data at original resolution for the 2020 map.            | 25 |
| Table 11. Validation results per biomass range for Tier 1 data at original resolution for the 2021 map.            | 26 |
| Table 12. Validation results per biomass range for Tier 1 data at original resolution for the 2022 map.            | 26 |
| Table 13. Validation results per biomass range for Tier 2 data at original resolution for the 2007 map.            | 31 |
| Table 14. Validation results per biomass range for Tier 2 data at original resolution for the 2010 map.            | 31 |
| Table 15. Validation results per biomass range for Tier 2 data at original resolution for the 2015 map.            | 32 |
| Table 16. Validation results per biomass range for Tier 2 data at original resolution for the 2016 map.            | 32 |
| Table 17. Validation results per biomass range for Tier 2 data at original resolution for the 2017 map.            | 33 |
| Table 18. Validation results per biomass range for Tier 2 data at original resolution for the 2018 map.            | 33 |
| Table 19. Validation results per biomass range for Tier 2 data at original resolution for the 2019 map             | 34 |
| Table 20. Validation results per biomass range for Tier 2 data at original resolution for the 2020 map.            | 34 |
| Table 21. Validation results per biomass range for Tier 2 data at original resolution for the 2021 map.            | 35 |
| Table 22. Validation results per biomass range for Tier 2 data at original resolution for the 2022 map.            | 35 |
| Table 23. Validation results per biomass range for Tier 3 data at the original resolution for the 2007 map         | 40 |
| Table 24. Validation results per biomass range for Tier 3 data at the original resolution for the 2010 map         | 40 |
| Table 25. Validation results per biomass range for Tier 3 data at the original resolution for the 2015 map         | 41 |
| Table 26 Validation results per biomass range for Tier 3 data at the original resolution for the 2016 map          | 41 |
| Table 27. Validation results per biomass range for Tier 3 data at the original resolution for the 2017 map         | 42 |
| Table 28. Validation results per biomass range for Tier 3 data at the original resolution for the 2018 map         | 42 |
| Table 29. Validation results per biomass range for Tier 3 data at the original resolution for the 2019 map         | 43 |
| Table 30. Validation results per biomass range for Tier 3 data at the original resolution for the 2020 map         | 43 |
| Table 31. Validation results per biomass range for Tier 3 data at the original resolution for the 2021 map         | 44 |
| Table 32. Validation results per biomass range for Tier 3 data at the original resolution for the 2022 map         | 44 |
| Table 33. Validation results per biomass range for Tier 1 data spatially aggregated to 0.1° cells for the 2007 map | 47 |
|                                                                                                                    |    |





| Table 34. Validation results per biomass range for Tier 1 data spatially aggregated to 0.1° cells for the 2010 map                                                              | 47 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Table 35. Validation results per biomass range for Tier 1 data spatially aggregated to 0.1° cells for the 2015 map                                                              | 47 |
| Table 36. Validation results per biomass range for Tier 1 data spatially aggregated to 0.1° cells for the 2016 map                                                              | 48 |
| Table 37. Validation results per biomass range for Tier 1 data spatially aggregated to 0.1° cells for the 2017 map                                                              | 48 |
| Table 38. Validation results per biomass range for Tier 1 data spatially aggregated to 0.1° cells for the 2018 map                                                              | 48 |
| Table 39. Validation results per biomass range for Tier 1 data spatially aggregated to 0.1° cells for the 2019 map                                                              | 49 |
| Table 40. Validation results per biomass range for Tier 1 data spatially aggregated to 0.1° cells for the 2020 map                                                              | 49 |
| Table 41. Validation results per biomass range for Tier 1 data spatially aggregated to 0.1° cells for the 2021 map                                                              | 49 |
| Table 42. Validation results per biomass range for Tier 1 data spatially aggregated to 0.1° cells for the 2022 map                                                              | 50 |
| Table 43. Validation results per biomass range using LiDAR-based and CoFor AGB data spatially aggregated to 0.1° cells for the 2007 map.                                        | 53 |
| Table 44. Validation results per biomass range using LiDAR-based and CoFor AGB data spatially aggregated to 0.1° cells for the 2010 map.                                        | 53 |
| Table 45. Validation results per biomass range using LiDAR-based and CoFor AGB data spatially aggregated to 0.1° cells for the 2015 map.                                        | 53 |
| Table 46. Validation results per biomass range using LiDAR-based and CoFor AGB data spatially aggregated to 0.1° cells for the 2016 map                                         | 54 |
| Table 47. Validation results per biomass range using LiDAR-based and CoFor AGB data spatially aggregated to 0.1° cells for the 2017 map                                         | 54 |
| Table 48. Validation results per biomass range using LiDAR-based and CoFor AGB data spatially aggregated to 0.1° cells for the 2018 map                                         | 54 |
| Table 49. Validation results per biomass range using LiDAR-based and CoFor AGB data spatially aggregated to 0.1° cells for the 2019 map                                         | 55 |
| Table 50. Validation results per biomass range using LiDAR-based and CoFor AGB data spatially aggregated to 0.1° cells for the 2020 map                                         | 55 |
| Table 51. Validation results per biomass range using LiDAR-based and CoFor AGB data spatially aggregated to 0.1° cells for the 2021 map                                         | 55 |
| Table 52. Validation results per biomass range using LiDAR-based and CoFor AGB data spatially aggregated to 0.1° cells for the 2022 map                                         | 56 |
| Table 53. Validation results per biomass range using EMAP AGB data spatially aggregated to 0.25° cells for the 2017 map                                                         | 57 |
| Table 54. AGB bias [Mg/ha] differentiated per Tier and per AGB bin. Colour shading is based on relative bias; legend in Figure 8.                                               | 59 |
| Table 55. Root mean square difference (RMSD) is differentiated per Tier and per AGB bin. Column headings are exactly the same table above (Table 48).                           |    |
| Table 56. Validation results using the Schelkovo reference dataset: comparison of CCI Biomass v5 and v6                                                                         | 63 |
| Table 57. Agreement between GEO-TREES research plots and CCI Biomass AGB data                                                                                                   | 64 |
| Table 58. AGB bias [Mg/ha] per biome and per AGB bin for the 2010 map. Colour shading is as in Figure 8                                                                         | 71 |
| Table 59. Root mean square difference (RMSD) per biome and per AGB bin for the 2010 map. Colour shading is based on the legend shown in Figure 8; column headings are as above. | 71 |
| Table 60. AGB bias [Mg/ha] per biome and per AGB bin for the 2021 map. Colour shading is as in Figure 8                                                                         | 72 |

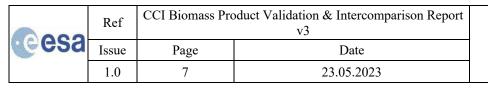
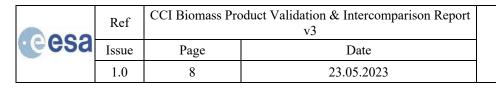






Table 61. Root mean square difference (RMSD) per biome and per AGB bin for the 2021 map. Colour shading is is as in Figure 8; column headings are as above.





58

64

65

### LIST OF FIGURES

Figure 1. Geographical locations of plots and footprints of the reference datasets used to assess the 2010 biomass map (CoFor = Congo basin Forests, LiDAR and EMAP = Environmental Monitoring and Assessment Program).

Figure 2. Plot-map comparisons for Tier 1 data at original resolution (i.e., without spatial aggregation) for the five AGB maps; left column: scatterplots; right column: binned over 25 Mg/ha wide biomass ranges with whiskers representing the interquartile range of mapped biomass values.  $AGB_{ref} > 350 Mg/ha$  data are grouped into a single bin. Note the different scales on the left and right graphs.

Figure 3. Plot-map comparisons for Tier 2 data at original resolution (i.e., without spatial aggregation); left column: scatterplots; rights column: binned over 25 Mg/ha wide AGB ranges with whiskers representing the interquartile range of mapped AGB values and symbol size representing the number of plots per AGB range.  $AGB_{ref} > 350 Mg/ha$  data are grouped into a single bin. Note the different scales on the left and right graphs.

Figure 4. Figure 4. Plot-map comparisons for Tier 3 data at original resolution (i.e., without spatial aggregation); left column: scatterplots; right column: binned over 25 Mg/ha wide AGB ranges with whiskers representing the interquartile range of mapped AGB

Figure 5. AGBref - AGBmap comparisons for Tier 1 data spatially aggregated to 0.1° and binned over 25 Mg/ha wide biomass ranges with whiskers representing the interquartile range of mapped AGB values and symbol size representing the number of 0.1° cells per AGB range. AGBref > 350 Mg/ha data are grouped into a single bin.

Figure 6. AGBref - AGBmap comparisons for LiDAR-based and CoFor AGB data spatially aggregated to 0.1° and binned over 25 Mg/ha wide AGB ranges with whiskers representing the interquartile range of mapped AGB values and symbol size representing the number of 0.1° cells per AGB range. AGBref > 350 Mg/ha data are grouped into a single bin.

Figure 7. AGBref - AGBmap comparisons for EMAP AGB data spatially aggregated to 0.25° and binned over 25 Mg/ha wide AGB ranges with whiskers representing the interquartile range of mapped AGB values and symbol size representing the number of 0.25° cells per AGB range. AGBref > 350 Mg/ha data are grouped into a single bin.

Figure 8. Legend for colour schemes used in summary tables of bias and RMSD.

Figure 9. Comparisons between  $AGB_{ref}$  and the 2010 AGB map per biome (Dinerstein et al., 2017) using all available data binned over 25 Mg/ha wide biomass ranges with whiskers representing the interquartile range of mapped biomass values and symbol size representing the number of 0.1° cells per biomass range.

Figure 10. Comparisons between AGB<sub>ref</sub> and the 2021 AGB map per biome (Dinerstein et al., 2017) using all available data binned over 25 Mg/ha wide AGB ranges with whiskers representing the interquartile range of mapped AGB values and symbol size representing the number of 0.1° cells per AGB range.

Figure 11. Binned scatterplots of the comparisons between Schelkovo reference dataset and the two CCI Biomass versions.

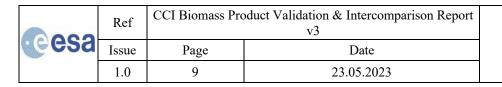

Figure 12. Binned scatterplots of the comparing the GEO-Trees reference dataset with CCI Biomass versions 5 and 6.

Figure 13. Plot design and spatial distribution of currently available NFI plots. The yellow area represents the total plot extent (4 ha), while the red rectangles indicate subplots covering  $20 \times 50$  m each.

Figure 14. plots (a); AGB distribution from the NFI at the plot (b) and at the subplot levels (c) with corresponding estimates from the CCI Biomass v6 2018 product.

Figure 15. Comparison between Brazilian NFI and the ESA CCI Biomass v6 2018 product at the plot level (top row) and subplot level (bottom row). To address the high frequency of low AGB values in the NFI data (<10 t/ha), comparisons are also shown for subsets where NFI AGB exceeds 10 t/ha (middle column) and 50 t/ha (right column).

Figure 16. Binned comparison of AGB between the Brazilian NFI and the ESA CCI Biomass v6 2018 product at the plot level (top row) and subplot level (bottom row). NFI values were divided into 100 equal-sized percentile bins; for each bin, median NFI and CCI AGB are plotted, with CCI standard deviations shown as error bars. Panels show (left) all data, (middle) NFI AGB > 10 t/ha, and (right) NFI AGB > 50 t/ha.





75

76

77

78

Figure 17. AGB residuals between harmonized Tier 1-3 plot data and mapped AGB at 0.1° cell level for each pair of map reference years. The red dashed line is the 1:1 line.

Figure 18. Locations of 0.1° cells with the most extreme differences between residuals in the 2010 and 2017 AGB products (2010 – 2017). The 5% cells with the most negative differences (i.e., 2017 > 2010) are indicated in red whilst the 5% largest positive differences (i.e., 2017 < 2010) are shown in blue.

Figure 19. Locations of 0.1° cells with the most extreme differences between residuals in the 2010 and 2018 AGB products (2010 – 2018). The 5% cells with the most negative differences (i.e., 2018 > 2010) are indicated in red whilst the 5% largest positive differences (i.e., 2018 < 2010) are shown in blue.

Figure 20. Locations of 0.1° cells with the most extreme differences between residuals in the 2017 and 2018 AGB products (2017 – 2018). The 5% cells with the most negative differences (i.e., 2018 > 2017) are indicated in red whilst the 5% largest positive differences (i.e., 2018 < 2017) are shown in blue.

Figure 21. Global  $AGB_{map}$  -  $AGB_{ref}$  comparisons for 2015 and 2020 based on inverse variance weighted Tier 0-3 plot data spatially aggregated to 0.1° cells.

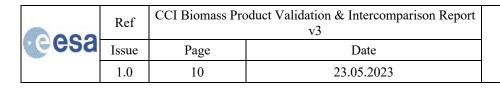

Figure 22. Spatial Agreement and Divergence Among CCI Biomass Product Versions (v4, v5, v6)

Figure 23. Compaisons among versions and other global AGB map products.

Figure 24. Variograms for the Remningstorp and Lope forest sites. Open dots indicate the experimental variogram and the solid lines represent the fitted models.

Figure 25. Scatterplot of 0.04 ha plot values conditioned on 1 ha pixel values (left) and binned over 30 Mg/ha wide biomass ranges with dots representing mean AGB and whiskers representing the interquartile range of pixel biomass values for plots inside the bins (right). The dashed red lines are 1:1 lines.

Figure 26. Scatterplot of the mean of 0.04 ha plot values conditioned on 1 ha pixel values (left) and binned over 30 Mg/ha wide biomass ranges with dots representing mean AGB and whiskers representing the interquartile range of pixel AGB values (right). The dashed red lines are 1:1 lines.





#### SYMBOLS AND ACRONYMS

AGB Aboveground biomass

AGB<sub>map</sub> Aboveground biomass according to the map

AGB<sub>ref</sub> Aboveground biomass from plot, corrected for plot inventory date and if plot size < 1 ha,

corrected for partial forest fraction at pixel level

CCI Climate Change Initiative

CoFor Congo basin Forests AGB dataset (Ploton et al., 2020)

GNSS Global Navigation Satellite System

IPCC Intergovernmental Panel on Clmate Change

 $I_{Var}$  Indicator variable: 1 if the SE<sub>CCI</sub> is consistent with (Plt), MD and MSD, and 0 otherwise. The

latter indicates that the SE<sub>CCI</sub> layer is overly pessimistic regarding AGB map precision.

LiDAR Light Detection And Ranging

MD Mean difference between AGB<sub>map</sub> and AGB<sub>ref</sub>

MSD Mean square difference (between  $AGB_{map}$  and  $AGB_{ref}$ )

NEON National Ecological Observatory Network, USA

NFI National Forest Inventory

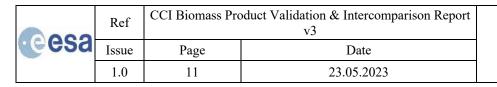
PUG Product User Guide (Santoro, 2020)

PVIR Product Validation and Inter-comparison Report

PVP CCI Biomass Product Validation Plan

RMSD Root mean square difference (between AGB<sub>map</sub> and AGB<sub>ref</sub>)

SE<sub>CCI</sub> Error layer (standard deviation) provided with the CCI Biomass product; if squared denoted


as SE<sub>CCI</sub>.

SLB Sustainable Landscape Brazil
SRTM Shuttle Radar Topography Mission

TERN Terrestrial Ecosystem Research Network, Australia

Var(Plt) Estimated variance of the plot measurement error

Var(S(x)) Estimated variance of the within-pixel sampling error (owing to smaller plot footprint)





# 1.Introduction

Validation is critical for increasing acceptance of satellite-derived products by user communities (e.g., carbon cycle science, climate modelling). To assess the accuracy of the aboveground biomass density (AGB; Mg/ha) estimates for the 2007, 2010 and 2015 - 2021 epochs of the refined CCI Biomass global products (Santoro, 2024), AGB predictions from the map have been compared with independent AGB data from plots and LiDAR campaigns, which were used as reference values. The main aim of this report is to provide an independent assessment of the quality of the CCI Biomass (Version 6) products generated in Year 5 of the project, with this primarily providing (climate) users with uncertainty information (including both precision and bias) when using the map, including for global and regional climate modelling and assessment purposes. A second purpose is to provide feedback to map producers to establish where the maps can be improved.

The reference AGB data are not error-free. *In situ* estimates of AGB are computed based on stem diameter (typically cm), tree height (m), wood density (g cm³) and allometric models, while geolocation is determined using Global Navigation Satellite System (GNSS) measurements that have variable and often limited accuracy. GNSS accuracy is degraded if the paths between the satellites and the GNSS receiver are partly blocked by vegetation cover, which is not uncommon in forests. An additional cause of discrepancies between plots and pixel-based AGB estimates is the difference in support (shape and size) between map pixels and plots. The latter are often much smaller than the areas of the pixels they are being compared with, which may introduce two types of error. The first is a sampling error, since an estimate of the AGB in only part of the pixel area (the plot) is being compared with that of the full pixel area. Secondly, and more subtly, a representation error can occur if plots are selected with particular properties, such as only being from mature forest despite being in a mixed age forest which results in them not being representative of the forest population. This type of representation error is often termed selection bias. Both types of error can occur even if the pixel's footprint is fully covered by forest, largely because of AGB heterogeneity inside the pixel. There may also be a representation error if, for example, a forest plot is used to represent a pixel that is only partially forested. Additionally, the plot inventory date often differs from the biomass map epoch, which gives a temporal mismatch between the compared AGB values.

LiDAR-based AGB estimates used as reference data can completely cover map pixels or even larger pixel blocks, which minimizes the sampling errors referred to above. However, as with *in situ* estimates of AGB, LiDAR-based AGB values are themselves predictions, so are subject to prediction errors that must be considered.

Each of the above-mentioned factors can introduce errors with a random or a systematic nature. The systematic error is of particular concern since it cannot be reduced by aggregating individual tree measurements over large plots or by averaging small plot data over many plots. Systematic errors in reference data have to be reduced as much as possible by adhering to a standardized measurement protocol (CEOS, 2021).

The five versions of the CCI Biomass Product Validation Plan (PVP; de Bruin et al., 2019a, 2020, 2021, 2022) presented approaches for addressing the temporal mismatch between plot and pixel data and partial forest fractions within map pixels. The reports also proposed methods for assessing the variance of the other error sources. In this fifth PVIR, the temporal mismatch between plot and pixel data and partial forest fractions within map pixel are handled similarly to the first four PVIRs. The proposed approaches for accounting for other error sources are partly implemented, up to the point supported by available data.

An extensive dataset of forest plot data across the world was acquired for the purpose of the validation (see Appendix A,

Figure 1 and Table 1). As before, the plots underwent a series of quality checks (see Section 2.1). Forest plot data and LiDAR were not used to calibrate the CCI Biomass map in order to guarantee full independence from the production process. The contributions of AGB measurement error and spatial representation error are known to be largest for small plots, such as those typical of National Forest Inventories (NFIs), while detailed measurements of all trees within large plots are expected to deliver the highest quality AGB data (Réjou-Méchain et al., 2019; Réjou-Méchain et al., 2014). To take into account expected differences in the accuracy of plot data, a tiered approach was chosen which comprised:

| esa | Ref   | CCI Biomass Pro | CCI Biomass Product Validation & Intercomparison Report v3 |  |
|-----|-------|-----------------|------------------------------------------------------------|--|
|     | Issue | Page            | Date                                                       |  |
|     | 1.0   | 12              | 23.05.2023                                                 |  |



- Tier 1 small plots (≤ 0.6 ha), including NFI data,
- Tier 2 larger plots (0.9-3 ha; Tier 2), and
- Tier 3- high-quality large super-plots (≥ 6 ha; mainly from Labrière et al. (2018)).

The Tiers were analysed separately in the plot-pixel comparisons. AGB map comparisons with data derived from LiDAR and aggregated plot data (see Section 2.2) were also analysed separately.

The map inter-comparison presented in this document concerns consistency of map-reference deviations amongst the CCI Biomass AGB products and comparisons with Version 5 of the CCI Biomass products of the same epochs (Santoro, 2021). Results from two external map inter-comparisons, as examples of user-led independent validation, are also included. Lastly, the CCI maps are inter-compared with other AGB map products.

## 2. Materials and methods

#### 2.1. Forest plot data

For CCI Biomass, new forest inventory and plot data from research networks were added to the previously established GlobBiomass reference database (Rozendaal et al., 2017). Additional reference data were collected during the span of the CCI Biomass project focusing on potentially under-represented areas (i.e., forests in boreal and mountainous regions). Reference data were only included if quality criteria, as described in the PVP, were met. Specifically, the plots needed:

- A citable reference source and metadata to assess the procedures and quality of biomass estimation.
- Precise coordinates (4-6 decimals for coordinates in decimal degrees of plot centroids).
- A census date within ten years of the reference year of the AGB map to avoid temporal inconsistency with the assessed maps.
- Inclusion of measurements of all trees of diameter at breast high ≥ 10 cm (or less).
- To have experienced no deforestation between the year of the inventory and the reference year of the CCI Biomass map (i.e., 2010; and 2017-2020). This was assessed based on the forest loss layer of the Hansen dataset (Hansen et al., 2013).

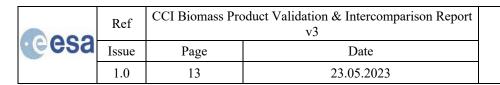





Table 1. Number of plots used in each Tier for the different AGB map reference years.

| Map<br>ref. year | Tier1  | Tier2 | Tier3 | Total  |
|------------------|--------|-------|-------|--------|
| 2007             | 150890 | 795   | 130   | 153822 |
| 2010             | 149844 | 879   | 130   | 152863 |
| 2015             | 108773 | 816   | 249   | 111853 |
| 2016             | 97812  | 752   | 249   | 100829 |
| 2017             | 82544  | 601   | 249   | 85411  |
| 2018             | 73118  | 512   | 247   | 75895  |
| 2019             | 68376  | 490   | 230   | 71115  |
| 2020             | 63919  | 466   | 228   | 66633  |
| 2021             | 59150  | 440   | 228   | 61839  |
| 2022             | 52747  | 251   | 211   | 55231  |

| <b>2</b> 000 | Ref   | CCI Biomass Pro | oduct Validation & Intercomparison Report<br>v3 |
|--------------|-------|-----------------|-------------------------------------------------|
| esa          | Issue | Page            | Date                                            |
|              | 1.0   | 14              | 23.05.2023                                      |



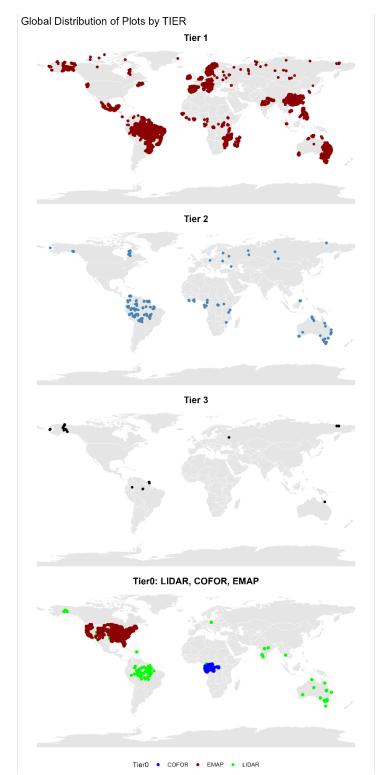


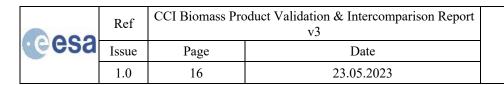

Figure 1. Geographical locations of plots and footprints of the reference datasets used to assess the 2010 biomass map (CoFor = Congo basin Forests, LiDAR and EMAP = Environmental Monitoring and Assessment Program).

| -   | Ref   | CCI Biomass Pro | oduct Validation & Intercomparison Report<br>v3 |  |
|-----|-------|-----------------|-------------------------------------------------|--|
| esa | Issue | Page            | Date                                            |  |
|     | 1.0   | 15              | 23.05.2023                                      |  |



# 2.2. AGB estimates from LiDAR, Congo basin management inventories, and US Forest Service plots

In addition to the plot data, we used LiDAR-based AGB data at 100 m resolution from the Sustainable Landscape Brazil project (SLB), the National Ecological Observatory Network, USA (NEON) and the Terrestrial Ecosystem Research Network, Australia (TERN), which were processed by Labrière and Chave (2020a, b, c); a dataset from the Piñon-Juniper woodlands in the USA; the Rodda *et al.* (2022) dataset from Africa and Asia ALS missions. The 1-km pixel forest management inventory data used in this report originated from the Congo basin Forests AGB (CoFor) dataset (Ploton et al., 2020). For the CoFor dataset, only pixels having at least five *in situ* forest management inventoried plots were used. Lastly, we used the Environmental Monitoring and Assessment Program (EMAP) AGB aggregates of 27-km hexagons estimated from the Forest Inventory and Analysis Program of the US Forest Service (Menlove and Healey, 2020), which was useful for the 2015-2022 comparative analysis.


Table 2. Number of LiDAR, CoFor and EMAP footprints used for the different AGB map reference years.

| Map<br>ref. year | CoFor | LiDAR  | EMAP | Total  |
|------------------|-------|--------|------|--------|
| 2007             | 33792 | 149412 | 2874 | 188085 |
| 2010             | 33792 | 381562 | 3874 | 421238 |
| 2015             | 24474 | 655122 | 3874 | 685485 |
| 2016             | 24268 | 655122 | 3874 | 685280 |
| 2017             | 18712 | 655122 | 3874 | 679725 |
| 2018             | 17554 | 655122 | 3874 | 678568 |
| 2019             | 15136 | 655122 | 3874 | 676151 |
| 2020             | 13162 | 655122 | 3874 | 674178 |
| 2021             | 8292  | 648636 | 3874 | 662823 |
| 2022             | 2206  | 619122 | 3874 | 627224 |

As described in the PVPs, we rely on opportunistic AGB plot data that were not specifically produced for validation purposes but were rather collected within the context of country NFIs and research efforts at local to regional scales.

#### 2.3. Increase of reference data from version 5 to version 6

The reference data used to assess CCI Biomass Version 6 has increased compared to the previous reference data used for the Version 5 maps. The validation team focused on acquiring new reference data in potentially under-represented regions (Labriere et al. 2022, Araza et al. Under review). The additions include NFI data from Brazil, Ireland, Italy; permanent plots in the Boreal region; and airborne LiDAR-based maps in Brazil, Africa and Asia. Unlike the previous additions acquired under data-use agreements, new additions now are mostly open-source data; see Appendix A for further information.





#### 2.4. Preparation of validation datasets

#### 2.4.1. Temporal harmonization

Differences between the inventory date of AGB plots and the reference year of the AGB map were harmonized using updated IPCC growth rates (IPCC, 2019; Requena Suarez et al., 2019) following the approach described in Version 1 of the PVP. For plots in tropical and subtropical ecological zones, age-category-dependent growth rates are available (IPCC, 2019; Requena Suarez et al., 2019). In these cases, plot AGB values in the range 0-99 Mg/ha were assumed to represent young secondary forest, AGB values in the range 100-128 Mg/ha were treated as old secondary forest (Van Breugel et al., 2007), and AGB above 129 Mg/ha was assumed to correspond to old-growth stands (Brown et al., 1989; Clark & Clark, 2000; Mello et al., 2016). Given the absence of data on plot forest age, mature forests of low biomass could not be distinguished from young stands with similarly low biomass, with potential implications for the growth rates applied. For temperate oceanic forests in Europe and boreal coniferous forests and tundra woodlands, no differentiation of growth rates over age categories was used. The temporal adjustments by growth rates were applied up to a difference of ten years between the inventory date and the map reference year. Plots having a longer temporal difference were discarded in the analyses. Some of the LiDAR dataset (NEON and SLB) were exempted from temporal adjustment because it contained repeated measurements between 2011 and 2018.

#### 2.4.2. Correction for forest fraction

As described in the PVP, correction for inclusion of non-forested areas within map pixels was undertaken by multiplying the temporally adjusted plot AGB by the forest fraction at the pixel level of 100 m. The forest fraction was computed by setting a 10 % threshold on the 2010 tree cover product (Hansen et al., 2013), which had a resolution of 1 arc-second per pixel, or approximately 30 meters per pixel at the equator. Moreover, tree cover datasets corresponding to 2015-2021 were produced for this purpose, removing associated deforestation pixels from annual tree cover data using the annual forest loss product of Hansen et al. (2013). In the rare case of more than one AGB plot within a hectare/CCI map pixel, the average of the adjusted AGB per plot was used. The correction for forest fraction was only applied to plots with area below 1 ha.

#### 2.4.3. Comparisons at 0.1° cell resolution

To reduce the effect of short-range AGB spatial variations in the map and their potential interaction with plot-map geolocation mismatches and to assess the CCI Biomass map at a resolution commonly used by climate modellers,  $AGB_{map}$  -  $AGB_{ref}$  comparisons from Tier 1 data were also made over multi-pixel blocks at 0.1° cell resolution. In this case, correction for partial forest fraction (see above) was undertaken at the level of the coarse resolution cells. The mean  $AGB_{ref}$  at 0.1° cell level was computed by multiplying the forest fraction at the 0.1° cell level by the mean temporally adjusted AGB of at least five plots in that cell. The procedure is illustrated in Figure 5 of the PVP (de Bruin et al., 2019a). The choice to use a minimum number of plots inside grid cells was motivated by previous and recent studies e.g., , Fazakas et al. (1999); Baccini et al., 2012, Baccini et al., 2017; Xu et al. (2021); and Araza et al. (2022a). The AGB reference values thus obtained were compared with the average map AGB spatially aggregated over the 0.1° cells. In the case of the EMAP dataset comparison, the map AGB was averaged to 0.25°.

The correction for forest fraction was not applied to the LiDAR dataset since the LiDAR footprints were assumed to representatively sample forest/non-forest fractions within the 0.1° cells, i.e., forested areas were not preferentially sampled.

#### 2.4.4. Ecoregions / biomes

AGB<sub>map</sub> - AGB<sub>ref</sub> comparisons at 0.1° cell resolution were also stratified according to ecoregions derived from a recent global ecoregion map (Dinerstein et al., 2017), which was downloaded from https://ecoregions2017.appspot.com/. The original vector maps were rasterized to 0.1° resolution. Resulting raster cells were assigned to the category covering the largest portion of the cell area. Comparisons were stratified from Tier 3 data at 0.1° cell resolution per biome.

|     | Ref   | CCI Biomass Pro | oduct Validation & Intercomparison Report<br>v3 |  |
|-----|-------|-----------------|-------------------------------------------------|--|
| esa | Issue | Page            | Date                                            |  |
|     | 1.0   | 17              | 23.05.2023                                      |  |

#### 2.5. Comparing AGB map pixels with reference data

#### 2.5.1. Assumptions

After adjustments for temporal discrepancies and partial forest fraction and having at least ten plots within a reference AGB range, the unweighted means computed from reference data in Tiers 1 and 2 were assumed to be unbiased given that plot data were used where AGB was estimated using the most appropriate allometries by the data providers (Araza et al. 2022a) The AGB ranges used are listed in the first column of Table 2. For Tier 3 data, the requirement of ten plots per AGB range was relaxed because these data were recorded over large plots (≥ 6 ha) and followed a strict measurement protocol. Under the unbiasedness assumption, mean differences between harmonized plot data and map values aggregated over bins covering ranges of reference AGB values are interpreted as map bias. To empirically verify the assumption of unbiased plot data, the analysis was conducted for each of the three tiers and assessed consistency of results between these, whenever this was allowed by the data volumes.

When reporting mean differences (MD) and (root) mean square difference ((R)MSD) over ecoregions, plot-map comparisons within ecoregions were assumed to be representative of those regions.

#### 2.5.2. Measures

Besides reporting mean differences between reference and map AGB per biomass range, which are interpreted as map bias (see above), RSMD between map values and plots are reported. At this stage, the MSD was not interpreted as error of the map since we will elaborate on the assessment of the variance of individual error components in later stages of the project. However, we did assess whether the mean variance of map error (mean(SE<sub>CCI</sub>))—where SE<sub>CCI</sub> is the standard error layer provided with the CCI Biomass AGB map—is consistent with MSD, MD and the mean variance of plot measurement error mean(Var(Plt)). The SEcci layer only represents the random part of AGB errors and the aggregated SEcci layer at 0.1° already accounts for spatially correlated map errors identified using LiDAR datasets (Santoro, 2023b). Leaving out three random error components listed in the PVP (positional error, within-pixel representation error and the harmonization error) and under the above, checked whether assumptions given  $mean(SE_{CCI}^2) \le MSD - MD^2 - mean(Var(Plt)).$ 

For this purpose, we defined an indicator variable Ivar, as follows:

$$I_{Var} = \begin{cases} 1 \text{ if mean}(SE_{CCI}^2) \leq MSD - MD^2 - mean(Var(Plt)) \\ 0 \text{ otherwise} \end{cases}$$

If  $I_{Var}$  has value zero, mean( $SE_{CCI}^2$ ) would be too large. In other words, the  $SE_{CCI}$  layer provided with the AGB product would be pessimistic about map precision, unless the variance of plot measurement error is greatly underestimated.

For plots having tree-level data, Var(Plt) was computed using the Réjou-Méchain et al. (2017) biomass R-package. For other plots lacking such data, Var(Plt) was predicted by a random forest model trained on the plots having tree-level data, using plot biomass, plot size, general and specific eco-zones and continent as explanatory variables.

#### 2.6. Spatial correlation of AGB

Experimental semi-variograms were computed and variogram models were fitted using gstat (Pebesma, 2004) based on LiDAR-AGB data acquired over two forest sites in Remningstorp, Sweden, and Lope, Gabon (i.e., a boreal and a tropical forest site). These ALS datasets were acquired in the framework of the airborne ESA BIOSAR (Ulander et al., 2011) and AfriSAR (Hajnsek et al., 2017) campaigns to provide detailed information on forest vertical structure and to produce high-resolution AGB maps. The AGB data have a spatial resolution of 10 m (Remningstorp) and 20 m (Lope) and were also used in Version 2 of the Product User Guide (PUG; Santoro, 2024). Non-forest areas (such as savanna in the Lope study area) were masked out after manually digitizing forested areas using high resolution Google Earth imagery. Accordingly, the variogram models represent spatial correlation of AGB within forested areas at the study sites.

| esa | Ref   | CCI Biomass Pro | oduct Validation & Intercomparison Report<br>v3 | biomass |
|-----|-------|-----------------|-------------------------------------------------|---------|
|     | Issue | Page            | Date                                            | cci     |
|     | 1.0   | 18              | 23.05.2023                                      |         |

#### 2.7. Effect of spatial support on sampling error and suggested map bias

The variogram models described above were used to assess the effects of the within-pixel sampling error (see Introduction) for the forest sites in Remningstorp and Lope. This was undertaken by two means:

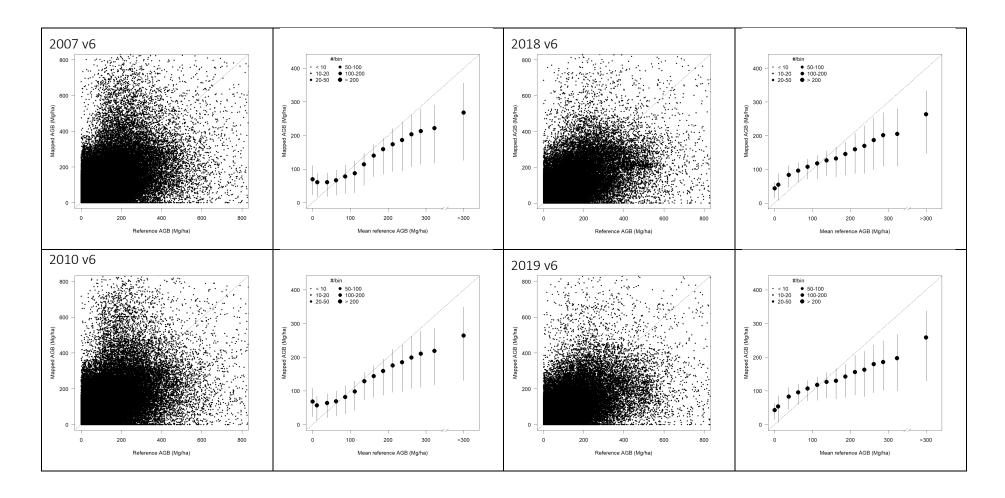
• By computing the variance of the difference between sub-pixel plots and plot configurations (i.e., for plots smaller than pixels) and AGB map pixels at locations x as:

$$Var(S(x)) = Var(AGB_{ref}(x) - AGB_{map}(x)) = Var(AGB_{ref}) + Var(AGB_{map}) - 2 * Cov(AGB_{ref}, AGB_{map}),$$

- where  $Var(AGB_{ref})$  is the sill of the variogram at the spatial support of the plots,  $Var(AGB_{map})$  is the within-pixel covariance, and  $Cov(AGB_{ref}, AGB_{map})$  is the plot to pixel covariance. Note that for brevity, reference to the location x is omitted in the right-hand side of the above equation. The latter two terms are computed using the geostatistical framework for change of support (Kyriakidis, 2010).
- By simulating possible plot AGB, conditional on given AGB values at the pixel level, using the  $Var(AGB_{ref} AGB_{map})$  computed in the above step. The aim of this simulation is to provide a proof of concept on the effect of within-pixel sampling error in the plot-map comparisons.

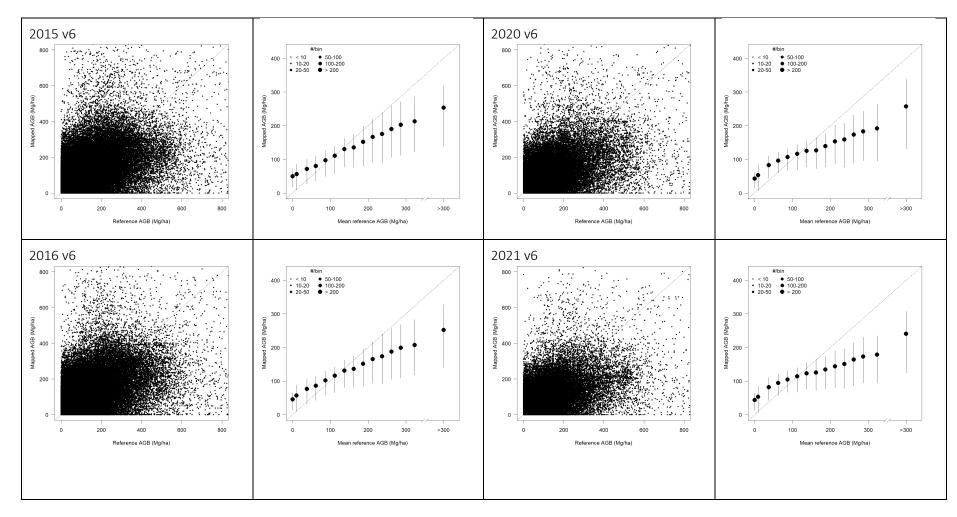
# 3. Validation results for the global maps

#### 3.1. Global assessments per Tier of plot data

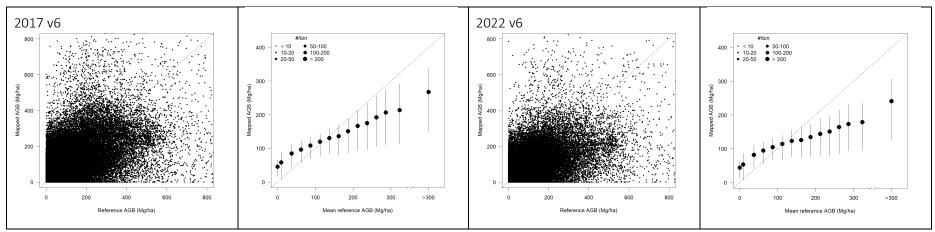

#### 3.1.1. Tier 1 non-aggregated

An overall feature of the comparisons is the large scatter (see Figure 2); this is expected, given that small reference plots are being compared to larger pixels without considering scaling effects. The plots for binned ranges (Fig. 2) show overprediction for the low reference biomass and under-prediction of higher reference AGB values, while relative accuracy is within 25 % in the middle range. On average, under-prediction by the map starts at a reference AGB of approximately 90 Mg/ha but the interquartile range of plot data still covers the 1:1 line between AGB<sub>ref</sub> and AGB<sub>map</sub> up to approximately 180 Mg/ha. All maps show under-prediction starting at 90 Mg/ha. The 2007 and 2010 results show that maps tend to overestimate more the lower biomass regions than the rest of the epochs probably due to more older plots being used. Moreover, the AGB<sub>ref</sub> values originate from small plots, some with exceptionally high AGB that is unlikely to cover extensive areas and is unlikely to be captured by the AGB retrieval algorithm. These plot data are also dominated by data from several countries from subtropical and temperate regions (Figure 1). The banding observed in the left column of Figure 2 especially for the 2010 map seems to be caused by a maximum AGB level set for particular regions in the retrieval algorithm. A first impression is that the accuracy of the current map versions has been affected by the maximum AGB and has improved in several regions compared to the previous edition reported in de Bruin *et al.* (2022b: Table 1 and Figure 4 therein). This is further analyzed in Section 3.7.

For AGB bins > 200 Mg/ha in Table 4 and > 250 Mg/ha in Tables 5-10, the indicator variable  $I_{Var}$  = 1, suggesting the SE<sub>CCI</sub> layer provided with the AGB product is optimistic about the precision of the CCI Biomass maps. The considerable mean variance of plot measurement error, mean(Var(Plt)), of the smallest plot size category, definitely contributes to this observation. Only for the highest reference AGB value does  $I_{Var}$  attain the value 1. Further analyses of the random error components are needed to assess whether the reported SE<sub>CCI</sub> for AGB<sub>ref</sub> > 400 Mg/ha is indeed reasonable.


| A A C A | Ref   | CCI Biomass Pro | oduct Validation & Intercomparison Report<br>v3 |
|---------|-------|-----------------|-------------------------------------------------|
| esa     | Issue | Page            | Date                                            |
|         | 1.0   | 19              | 23.05.2023                                      |






| A oca | Ref   | CCI Biomass Pro | oduct Validation & Intercomparison Report<br>v3 |
|-------|-------|-----------------|-------------------------------------------------|
| esa   | Issue | Page            | Date                                            |
|       | 1.0   | 20              | 23.05.2023                                      |





| Maca | Ref   | CCI Biomass Pro | oduct Validation & Intercomparison Report<br>v3 |
|------|-------|-----------------|-------------------------------------------------|
| esa  | Issue | Page            | Date                                            |
|      | 1.0   | 21              | 23.05.2023                                      |



biomass

Figure 2. Plot-map comparisons for Tier 1 data at original resolution (i.e., without spatial aggregation) for the five AGB maps; left column: scatterplots; right column: binned over 25 Mg/ha wide biomass ranges with whiskers representing the interquartile range of mapped biomass values.  $AGB_{ref} > 350 Mg/ha$  data are grouped into a single bin. Note the different scales on the left and right graphs.

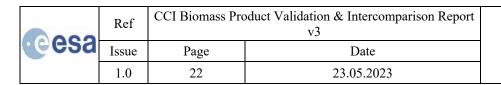





Table 3. Validation results per biomass range for Tier 1 data at original resolution for the 2007 map.

| AGB <sub>ref</sub> bin | # plots | AGB <sub>ref</sub> | $AGB_{map}$ | MD   | RMSD | Var(Plt) a           | SE <sub>CCI</sub> <sup>a</sup> | I <sub>Var</sub> |
|------------------------|---------|--------------------|-------------|------|------|----------------------|--------------------------------|------------------|
| [Mg/ha]                | count   |                    | [Mg/h       | na]  |      | [Mg/ha] <sup>2</sup> |                                |                  |
| 0-50                   | 39383   | 27                 | 61          | 34   | 68   | 10402                | 223                            | 0                |
| 50-100                 | 50954   | 73                 | 71          | -2   | 62   | 6868                 | 211                            | 0                |
| 100-150                | 28385   | 121                | 97          | -24  | 89   | 8931                 | 401                            | 0                |
| 150-200                | 10318   | 173                | 148         | -25  | 117  | 14900                | 886                            | 0                |
| 200-250                | 6160    | 223                | 179         | -44  | 141  | 13836                | 1243                           | 1                |
| 250-300                | 3727    | 273                | 207         | -66  | 159  | 15478                | 1525                           | 1                |
| 300-400                | 3743    | 342                | 226         | -116 | 194  | 31026                | 1835                           | 1                |
| >400                   | 3031    | 718                | 284         | -434 | 736  | 44839                | 3016                           | 1                |
| total                  | 145701  | 109                | 95          | -13  | 137  | 10719                | 476                            | 1                |

<sup>&</sup>lt;sup>a</sup> simplified notation; referring to means over biomass ranges

Table 4. Validation results per biomass range for Tier 1 data at original resolution for the 2010 map.

| AGB <sub>ref</sub> bin | # plots | $AGB_{ref}$ | $AGB_{map}$ | MD   | RMSI | D Var(Plt)ª          | $SE_{CCI}^2$ | I <sub>Var</sub> |
|------------------------|---------|-------------|-------------|------|------|----------------------|--------------|------------------|
| [Mg/ha]                | count   |             | [Mg/h       | a]   |      | [Mg/ha] <sup>2</sup> |              |                  |
| 0-50                   | 43602   | 25          | 61          | 35   | 68   | 9426                 | 217          | 0                |
| 50-100                 | 47841   | 72          | 74          | 2    | 63   | 7167                 | 227          | 0                |
| 100-150                | 23749   | 121         | 109         | -12  | 88   | 10173                | 468          | 0                |
| 150-200                | 10131   | 173         | 150         | -23  | 119  | 14887                | 901          | 0                |
| 200-250                | 6157    | 223         | 180         | -43  | 141  | 13951                | 1255         | 1                |
| 250-300                | 3779    | 273         | 204         | -69  | 157  | 15262                | 1509         | 1                |
| 300-400                | 3797    | 342         | 224         | -118 | 192  | 17845                | 1846         | 1                |
| >400                   | 3070    | 716         | 279         | -437 | 734  | 40329                | 3002         | 1                |
| total                  | 142126  | 106         | 98          | -8   | 139  | 10424                | 494          | 1                |

<sup>&</sup>lt;sup>a</sup> simplified notation; referring to means over biomass ranges

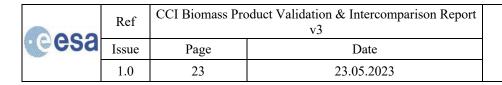





Table 5. Validation results per biomass range for Tier 1 data at original resolution for the 2015 map.

| AGB <sub>ref</sub> bin | # plots | $AGB_{ref}$ | $AGB_{map}$ | MD   | RMSD | Var(Plt) <sup>a</sup> | SE <sub>CCI</sub> <sup>a</sup> | I <sub>Var</sub> |
|------------------------|---------|-------------|-------------|------|------|-----------------------|--------------------------------|------------------|
| [Mg/ha]                | count   |             | [Mg/ha      | ]    | [    | Mg/ha] <sup>2</sup>   |                                |                  |
| 0-50                   | 36147   | 22          | 63          | 41   | 71   | 11307                 | 208                            | 0                |
| 50-100                 | 25897   | 72          | 87          | 15   | 69   | 12245                 | 294                            | 0                |
| 100-150                | 15917   | 123         | 119         | -4   | 85   | 14147                 | 520                            | 0                |
| 150-200                | 9338    | 174         | 143         | -30  | 107  | 15663                 | 741                            | 0                |
| 200-250                | 6012    | 223         | 170         | -53  | 130  | 14209                 | 995                            | 1                |
| 250-300                | 3825    | 273         | 196         | -77  | 147  | 15147                 | 1261                           | 1                |
| 300-400                | 4086    | 343         | 217         | -126 | 183  | 17942                 | 1475                           | 1                |
| >400                   | 3510    | 685         | 268         | -417 | 691  | 39396                 | 2269                           | 1                |
| total                  | 104732  | 119         | 109         | -10  | 155  | 13866                 | 527                            | 1                |

<sup>&</sup>lt;sup>a</sup> simplified notation; referring to means over biomass ranges

Table 6. Validation results per biomass range for Tier 1 data at original resolution for the 2016 map.

| AGB <sub>ref</sub> bin | # plots | AGB <sub>ref</sub> | $AGB_{map}$ | MD   | RMSD | Var(Plt) <sup>a</sup> | SE <sub>CCI</sub> <sup>a</sup> | I <sub>Var</sub> |
|------------------------|---------|--------------------|-------------|------|------|-----------------------|--------------------------------|------------------|
| [Mg/ha]                | count   |                    | [Mg/ha      | ]    | [    | Mg/ha] <sup>2</sup>   |                                |                  |
| 0-50                   | 33023   | 21                 | 64          | 43   | 30   | 1454                  | 120                            | 0                |
| 50-100                 | 21348   | 73                 | 93          | 20   | 30   | 2161                  | 220                            | 0                |
| 100-150                | 13921   | 123                | 123         | -1   | 77   | 2206                  | 699                            | 1                |
| 150-200                | 8699    | 174                | 143         | -31  | 117  | 1319                  | 1725                           | 1                |
| 200-250                | 5702    | 223                | 169         | -54  | 106  | 1270                  | 1722                           | 1                |
| 250-300                | 3681    | 273                | 193         | -81  | 109  | 1103                  | 2432                           | 1                |
| 300-400                | 3963    | 343                | 213         | -130 | 137  | 2086                  | 3070                           | 1                |
| >400                   | 3464    | 687                | 266         | -422 | 447  | 6542                  | 4738                           | 1                |
| total                  | 93801   | 122                | 112         | -11  | 65   | 1829                  | 416                            | 1                |

<sup>&</sup>lt;sup>a</sup> simplified notation; referring to means over biomass ranges

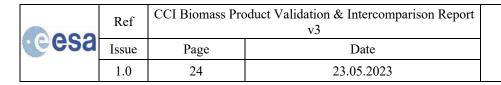





Table 7. Validation results per biomass range for Tier 1 data at original resolution for the 2017 map.

| AGB <sub>ref</sub> bin | # plots | $AGB_{ref}$ | $AGB_{map}$ | MD   | RMSD | Var(Plt) <sup>a</sup> | $SE_{CCI}^2$ | I <sub>Var</sub> |
|------------------------|---------|-------------|-------------|------|------|-----------------------|--------------|------------------|
| [Mg/ha]                | count   |             | [Mg/        | ′ha] |      | [Mg/ha] <sup>2</sup>  |              |                  |
| 0-50                   | 28310   | 19          | 67          | 48   | 75   | 12129                 | 205          | 0                |
| 50-100                 | 16740   | 74          | 102         | 28   | 73   | 15776                 | 333          | 0                |
| 100-150                | 12098   | 123         | 124         | 1    | 82   | 15254                 | 477          | 0                |
| 150-200                | 7683    | 174         | 143         | -31  | 105  | 15130                 | 669          | 0                |
| 200-250                | 4850    | 223         | 170         | -53  | 129  | 12431                 | 942          | 1                |
| 250-300                | 2998    | 273         | 198         | -75  | 147  | 11961                 | 1264         | 1                |
| 300-400                | 3195    | 343         | 222         | -121 | 182  | 13576                 | 1514         | 1                |
| >400                   | 3043    | 714         | 280         | -434 | 731  | 38457                 | 2307         | 1                |
| total                  | 78917   | 124         | 116         | -7   | 170  | 14760                 | 539          | 1                |

<sup>&</sup>lt;sup>a</sup> simplified notation; referring to means over biomass ranges

Table 8. Validation results per biomass range for Tier 1 data at original resolution for the 2018 map.

| AGB <sub>ref</sub> bin | # plots | $AGB_{ref}$ | $AGB_{map}$ | MD   | RMSD | Var(Plt) <sup>a</sup> | SE <sub>CCI</sub> <sup>a</sup> | I <sub>Var</sub> |
|------------------------|---------|-------------|-------------|------|------|-----------------------|--------------------------------|------------------|
| [Mg/ha]                | count   |             | [Mg/        | ha]  |      | [Mg/ha] <sup>2</sup>  |                                |                  |
| 0-50                   | 25410   | 18          | 64          | 45   | 69   | 11328                 | 175                            | 0                |
| 50-100                 | 14230   | 74          | 101         | 28   | 69   | 15726                 | 314                            | 0                |
| 100-150                | 10615   | 123         | 122         | -2   | 80   | 14800                 | 447                            | 0                |
| 150-200                | 6774    | 174         | 138         | -36  | 103  | 14644                 | 623                            | 0                |
| 200-250                | 4279    | 223         | 164         | -59  | 130  | 12266                 | 870                            | 1                |
| 250-300                | 2639    | 273         | 193         | -80  | 150  | 12237                 | 1200                           | 1                |
| 300-400                | 2851    | 344         | 215         | -128 | 184  | 14113                 | 1444                           | 1                |
| >400                   | 2919    | 723         | 277         | -446 | 745  | 39359                 | 2272                           | 1                |
| total                  | 69717   | 126         | 114         | -12  | 177  | 14456                 | 510                            | 1                |

<sup>&</sup>lt;sup>a</sup> simplified notation; referring to means over biomass ranges

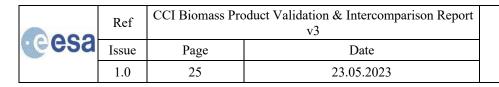





Table 9. Validation results per biomass range for Tier 1 data at original resolution for the 2019 map.

| AGB <sub>ref</sub> bin | # plots | AGB <sub>ref</sub> | $AGB_{map}$ | MD   | RMSD | Var(Plt) <sup>a</sup> | SE <sub>CCI</sub> <sup>a</sup> | $I_{Var}$ |
|------------------------|---------|--------------------|-------------|------|------|-----------------------|--------------------------------|-----------|
| [Mg/ha]                | count   |                    | [Mg/ha]     |      |      | [Mg/ha] <sup>2</sup>  |                                |           |
|                        |         |                    | -           |      |      |                       |                                |           |
| 0-50                   | 24251   | 18                 | 63          | 45   | 70   | 10358                 | 166                            | 0         |
| 50-100                 | 13266   | 74                 | 101         | 27   | 68   | 14698                 | 306                            | 0         |
| 100-150                | 9849    | 123                | 122         | -2   | 82   | 13877                 | 436                            | 0         |
| 150-200                | 6280    | 174                | 136         | -38  | 102  | 14066                 | 595                            | 0         |
| 200-250                | 3951    | 223                | 159         | -64  | 129  | 12120                 | 811                            | 1         |
| 250-300                | 2324    | 273                | 182         | -91  | 154  | 12650                 | 1114                           | 1         |
| 300-400                | 2452    | 343                | 207         | -137 | 193  | 15291                 | 1348                           | 1         |
| >400                   | 2708    | 739                | 272         | -467 | 766  | 41307                 | 2317                           | 1         |
| Total                  | 65081   | 124                | 111         | -13  | 180  | 13795                 | 484                            | 1         |

<sup>&</sup>lt;sup>a</sup> simplified notation; referring to means over biomass ranges

Table 10. Validation results per biomass range for Tier 1 data at original resolution for the 2020 map.

| AGB <sub>ref</sub> bin | # plots | $AGB_{ref}$ | $AGB_{map}$ | MD   | RMSD | Var(Plt) <sup>a</sup> | SE <sub>CCI</sub> <sup>a</sup> | I <sub>Var</sub> |
|------------------------|---------|-------------|-------------|------|------|-----------------------|--------------------------------|------------------|
| [Mg/ha]                | count   |             | [Mg/ha]     |      |      | [Mg/ha] <sup>2</sup>  |                                |                  |
| 0-50                   | 22962   | 18          | 62          | 45   | 70   | 9180                  | 158                            | 0                |
| 50-100                 | 12254   | 74          | 101         | 27   | 71   | 13478                 | 295                            | 0                |
| 100-150                | 9077    | 123         | 120         | -3   | 81   | 12746                 | 418                            | 0                |
| 150-200                | 5825    | 174         | 133         | -41  | 101  | 13219                 | 557                            | 0                |
| 200-250                | 3664    | 223         | 156         | -67  | 130  | 11847                 | 763                            | 1                |
| 250-300                | 2115    | 273         | 178         | -95  | 157  | 12936                 | 1053                           | 1                |
| 300-400                | 2240    | 343         | 203         | -141 | 194  | 15694                 | 1292                           | 1                |
| >400                   | 2488    | 730         | 271         | -459 | 757  | 40686                 | 2262                           | 1                |
| total                  | 60625   | 122         | 109         | -13  | 178  | 12797                 | 459                            | 1                |

<sup>&</sup>lt;sup>a</sup> simplified notation; referring to means over biomass ranges

| <b>2</b> 000 | Ref   | CCI Biomass Pro | oduct Validation & Intercomparison Report v3 |
|--------------|-------|-----------------|----------------------------------------------|
| esa          | Issue | Page            | Date                                         |
|              | 1.0   | 26              | 23.05.2023                                   |



Table 11. Validation results per biomass range for Tier 1 data at original resolution for the 2021 map.

| AGB <sub>ref</sub> bin | # plots | $AGB_{ref}$ | $AGB_{map}$ | MD   | RMSD | Var(Plt) <sup>a</sup> | SE <sub>CCI</sub> <sup>a</sup> | I <sub>Var</sub> |
|------------------------|---------|-------------|-------------|------|------|-----------------------|--------------------------------|------------------|
| [Mg/ha]                | count   |             | [Mg/h       | a]   |      | [Mg/ha] <sup>2</sup>  |                                |                  |
| 0-50                   | 21794   | 17          | 61          | 44   | 68   | 8153                  | 154                            | 0                |
| 50-100                 | 11276   | 74          | 99          | 25   | 67   | 11919                 | 286                            | 0                |
| 100-150                | 8352    | 123         | 118         | -6   | 77   | 11360                 | 403                            | 0                |
| 150-200                | 5413    | 174         | 130         | -45  | 99   | 12202                 | 510                            | 0                |
| 200-250                | 3403    | 223         | 147         | -76  | 127  | 11421                 | 661                            | 1                |
| 250-300                | 1920    | 273         | 168         | -105 | 156  | 12652                 | 918                            | 1                |
| 300-400                | 1943    | 343         | 188         | -155 | 200  | 16259                 | 1071                           | 1                |
| >400                   | 2055    | 721         | 255         | -467 | 764  | 39612                 | 1961                           | 1                |
| total                  | 56156   | 118         | 104         | -14  | 171  | 11560                 | 406                            | 1                |

<sup>&</sup>lt;sup>a</sup> simplified notation; referring to means over biomass ranges

Table 12. Validation results per biomass range for Tier 1 data at original resolution for the 2022 map.

| AGB <sub>ref</sub> bin | # plots | $AGB_{ref}$ | $AGB_{map}$ | MD   | RMSD | Var(Plt) <sup>a</sup> | SE <sub>CCI</sub> <sup>a</sup> | I <sub>Var</sub> |
|------------------------|---------|-------------|-------------|------|------|-----------------------|--------------------------------|------------------|
| [Mg/ha]                | count   |             | [Mg/        | ha]  |      | [Mg/ha] <sup>2</sup>  |                                |                  |
| 0-50                   | 19434   | 17          | 61          | 44   | 69   | 6997                  | 157                            | 0                |
| 50-100                 | 9863    | 74          | 99          | 26   | 68   | 10021                 | 271                            | 0                |
| 100-150                | 7451    | 124         | 118         | -5   | 77   | 9823                  | 390                            | 0                |
| 150-200                | 4908    | 174         | 130         | -44  | 99   | 10985                 | 495                            | 0                |
| 200-250                | 3075    | 222         | 146         | -77  | 125  | 10452                 | 621                            | 1                |
| 250-300                | 1684    | 273         | 164         | -109 | 157  | 11891                 | 859                            | 1                |
| 300-400                | 1737    | 343         | 184         | -159 | 199  | 15562                 | 963                            | 1                |
| >400                   | 1775    | 720         | 252         | -468 | 757  | 40223                 | 1819                           | 1                |
| total                  | 49927   | 117         | 104         | -14  | 168  | 10265                 | 387                            | 1                |

<sup>&</sup>lt;sup>a</sup> simplified notation; referring to means over biomass ranges

#### 3.1.2. Tier 2 non-aggregated

Here, a better agreement between plot and map estimates is observed compared to the Tier 1 results, which can be attributed to the decreasing spatial mismatch between plots and map pixels. The binned ranges (right-hand plots for each year in Figure 3) show most biomass bins overlapping the 1:1 line except for the 2007, 2010, 2015 and 2016 maps until 200 Mg/ha, while the rest of the years show better agreement throughout all of the bins.

The results for 2018-2022 are very similar due to minimal changes in the biomass estimates from reference data used and maps. Note that the 2018-2022 comparisons also used less reference data than the rest of the comparisons (see Table tropics 2). Most Tier plots are located in the

| esa | Ref   | CCI Biomass Pro | oduct Validation & Intercomparison Report v3 |  |
|-----|-------|-----------------|----------------------------------------------|--|
|     | Issue | Page            | Date                                         |  |
|     | 1.0   | 27              | 23.05.2023                                   |  |



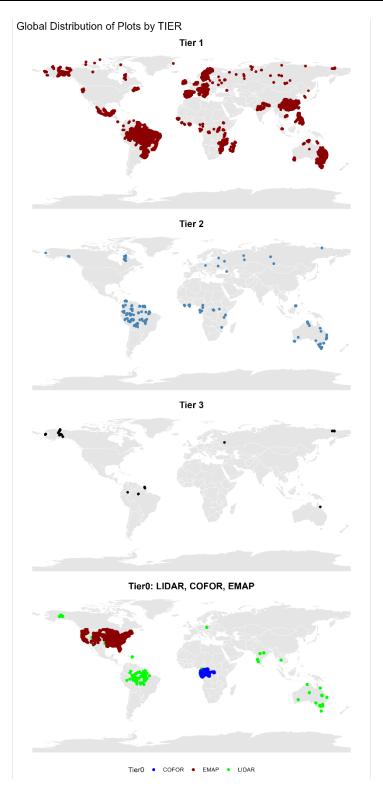
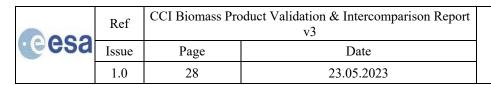
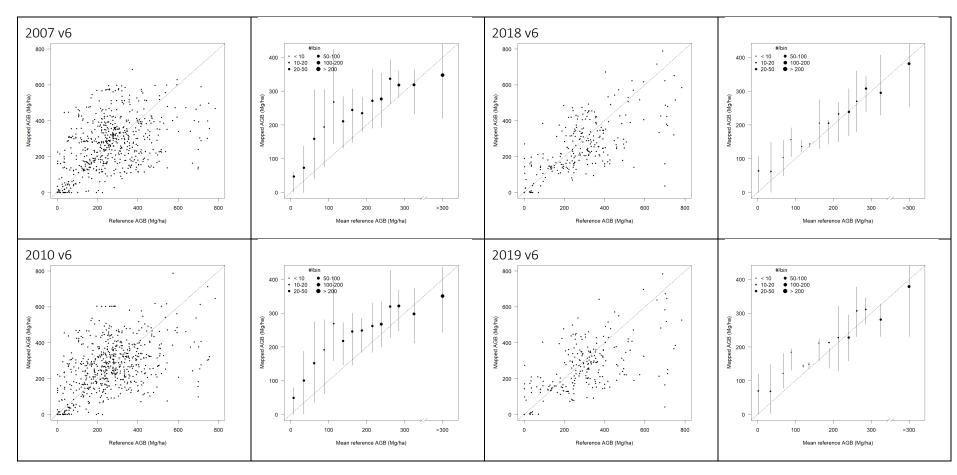
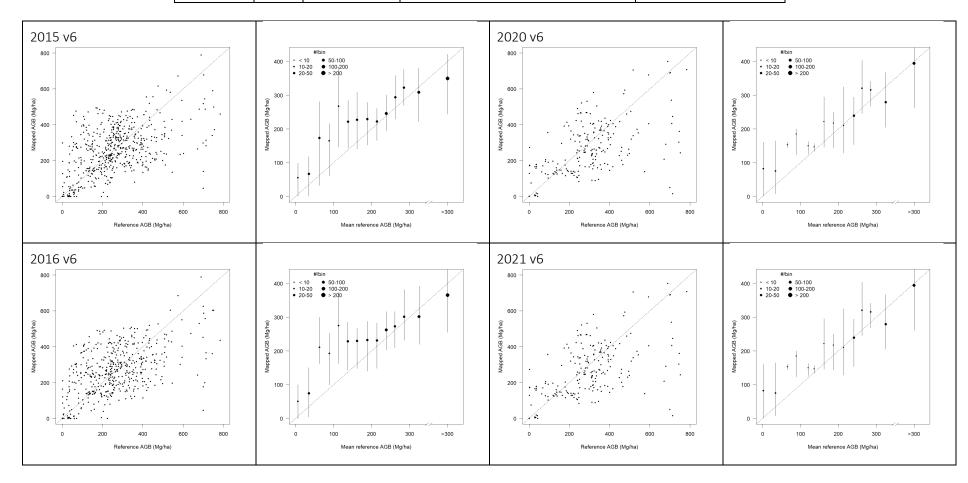
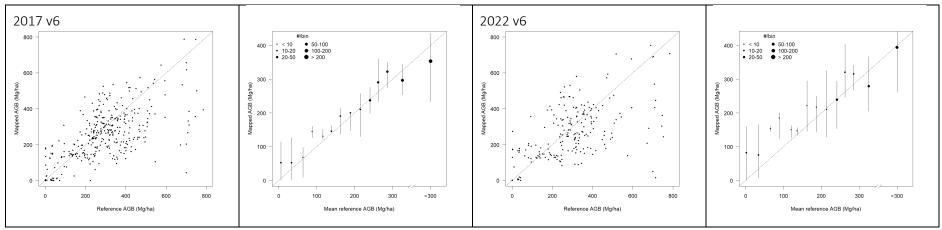





Figure 1).






| <b>2</b> 000 | Ref   | CCI Biomass Pro | oduct Validation & Intercomparison Report<br>v3 |
|--------------|-------|-----------------|-------------------------------------------------|
| esa          | Issue | Page            | Date                                            |
|              | 1.0   | 29              | 23.05.2023                                      |





| esa | Ref   | CCI Biomass Pro | oduct Validation & Intercomparison Report<br>v3 |
|-----|-------|-----------------|-------------------------------------------------|
|     | Issue | Page            | Date                                            |
|     | 1.0   | 30              | 23.05.2023                                      |



biomass

Figure 3. Plot-map comparisons for Tier 2 data at original resolution (i.e., without spatial aggregation); left column: scatterplots; rights column: binned over 25 Mg/ha wide AGB ranges with whiskers representing the interquartile range of mapped AGB values and symbol size representing the number of plots per AGB range. AGB<sub>ref</sub> > 350 Mg/ha data are grouped into a single bin. Note the different scales on the left and right graphs.

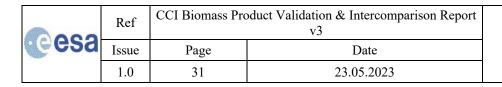





Table 13. Validation results per biomass range for Tier 2 data at original resolution for the 2007 map.

| AGB <sub>ref</sub> bin | #<br>plots | AGB <sub>ref</sub> | $AGB_{map}$ | MD   | RMSD | Var(Plt) <sup>a</sup> | SE <sup>2</sup> <sub>CCI</sub> <sup>a</sup> | I <sub>Var</sub> |
|------------------------|------------|--------------------|-------------|------|------|-----------------------|---------------------------------------------|------------------|
| [Mg/ha]                | count      |                    | [Mg/<br>    | /ha] |      | [Mg/ha]²              |                                             |                  |
| 0-50                   | 55         | 22                 | 61          | 39   | 96   | 2187                  | 980                                         | 1                |
| 50-100                 | 43         | 73                 | 173         | 101  | 168  | 270                   | 1982                                        | 1                |
| 100-150                | 50         | 128                | 233         | 104  | 164  | 366                   | 3589                                        | 1                |
| 150-200                | 63         | 175                | 240         | 65   | 139  | 1512                  | 2441                                        | 1                |
| 200-250                | 103        | 229                | 275         | 46   | 126  | 2116                  | 2654                                        | 1                |
| 250-300                | 97         | 274                | 327         | 52   | 127  | 746                   | 2980                                        | 1                |
| 300-400                | 121        | 347                | 308         | -39  | 142  | 692                   | 3184                                        | 1                |
| >400                   | 123        | 593                | 371         | -222 | 329  | 7590                  | 5016                                        | 1                |
| total                  | 655        | 285                | 276         | -10  | 188  | 2371                  | 3110                                        | 1                |

<sup>&</sup>lt;sup>a</sup> simplified notation; referring to means over biomass ranges

Table 14. Validation results per biomass range for Tier 2 data at original resolution for the 2010 map.

| # plots | AGB <sub>ref</sub>                       | AGB <sub>map</sub> | MD    | RMSD  | Var(Plt) <sup>a</sup> | SE <sub>CCI</sub> <sup>a</sup> | I <sub>Var</sub> |
|---------|------------------------------------------|--------------------|-------|-------|-----------------------|--------------------------------|------------------|
| count   |                                          | [Mg/l              | na]   |       | [Mg/ha] <sup>2</sup>  |                                |                  |
| 56      | 21                                       | 75                 | 53    | 116   | 2099                  | 969                            | 1                |
| 43      | 73                                       | 168                | 96    | 161   | 146                   | 1838                           | 1                |
| 50      | 128                                      | 237                | 109   | 164   | 306                   | 3309                           | 1                |
| 64      | 175                                      | 248                | 72    | 142   | 1474                  | 2324                           | 1                |
| 103     | 229                                      | 265                | 36    | 123   | 2079                  | 2614                           | 1                |
| 96      | 275                                      | 321                | 46    | 126   | 697                   | 2957                           | 1                |
| 121     | 347                                      | 299                | -49   | 113   | 632                   | 3186                           | 1                |
| 123     | 593                                      | 374                | -219  | 327   | 7558                  | 5011                           | 1                |
| 656     | 285                                      | 273                | -12   | 184   | 2318                  | 3052                           | 1                |
|         | count  56  43  50  64  103  96  121  123 | count              | count | count | count                 | count                          | count            |

<sup>&</sup>lt;sup>a</sup> simplified notation; referring to means over biomass ranges

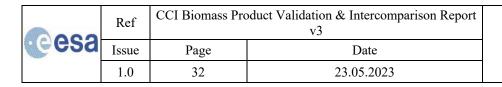





Table 15. Validation results per biomass range for Tier 2 data at original resolution for the 2015 map.

| # plots | AGB <sub>ref</sub>               | $AGB_{map}$ | MD    | RMSD  | Var(Plt) <sup>a</sup> | SE <sub>CCI</sub> <sup>a</sup> | I <sub>Var</sub> |
|---------|----------------------------------|-------------|-------|-------|-----------------------|--------------------------------|------------------|
| count   |                                  | [Mg/        | ha]   |       | [Mg/ha] <sup>2</sup>  |                                |                  |
| 46      | 23                               | 63          | 39    | 97    | 608                   | 1107                           | 1                |
| 42      | 73                               | 170         | 96    | 164   | 494                   | 1682                           | 1                |
| 46      | 128                              | 240         | 112   | 163   | 428                   | 3240                           | 1                |
| 53      | 174                              | 228         | 54    | 129   | 610                   | 2457                           | 1                |
| 95      | 229                              | 237         | 8     | 96    | 2272                  | 2717                           | 1                |
| 84      | 274                              | 308         | 35    | 86    | 833                   | 3049                           | 1                |
| 103     | 347                              | 297         | -50   | 110   | 749                   | 3290                           | 1                |
| 105     | 614                              | 378         | -236  | 339   | 8719                  | 4581                           | 1                |
| 574     | 286                              | 265         | -22   | 180   | 2403                  | 3023                           | 1                |
|         | count  46 42 46 53 95 84 103 105 | count       | count | count | count                 | count        [Mg/ha]           | count            |

<sup>&</sup>lt;sup>a</sup> simplified notation; referring to means over biomass ranges

Table 16. Validation results per biomass range for Tier 2 data at original resolution for the 2016 map.

| # plots | AGB <sub>ref</sub>                     | $AGB_{map}$ | MD    | RMSD  | Var(Plt)ª            | SE <sub>CCI</sub> <sup>a</sup> | I <sub>Var</sub> |
|---------|----------------------------------------|-------------|-------|-------|----------------------|--------------------------------|------------------|
| count   |                                        | [Mg         | /ha]  |       | [Mg/ha] <sup>2</sup> |                                |                  |
| 43      | 23                                     | 65          | 42    | 93    | 802                  | 1154                           | 1                |
| 32      | 75                                     | 202         | 127   | 175   | 715                  | 2075                           | 1                |
| 44      | 128                                    | 247         | 119   | 163   | 496                  | 3174                           | 1                |
| 47      | 175                                    | 231         | 57    | 128   | 618                  | 2576                           | 1                |
| 79      | 230                                    | 251         | 21    | 105   | 2601                 | 2913                           | 1                |
| 68      | 273                                    | 286         | 14    | 89    | 868                  | 3292                           | 1                |
| 97      | 347                                    | 302         | -45   | 113   | 814                  | 3301                           | 1                |
| 100     | 618                                    | 393         | -225  | 340   | 9116                 | 4560                           | 1                |
| 510     | 293                                    | 272         | -21   | 185   | 2673                 | 3151                           | 1                |
|         | count  43  32  44  47  79  68  97  100 | count       | count | count | count                | count                          | count            |

<sup>&</sup>lt;sup>a</sup> simplified notation; referring to means over biomass ranges

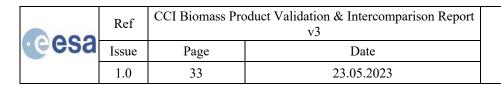





Table 17. Validation results per biomass range for Tier 2 data at original resolution for the 2017 map.

| AGB <sub>ref</sub> bin | # plots | AGB <sub>ref</sub> | $AGB_{map}$ | MD   | RMSD | Var(Plt) <sup>a</sup> | SE <sub>CCI</sub> <sup>a</sup> | I <sub>Var</sub> |
|------------------------|---------|--------------------|-------------|------|------|-----------------------|--------------------------------|------------------|
| [Mg/ha]                | count   |                    | [Mg/        | ha]  |      | [Mg/ha] <sup>2</sup>  |                                |                  |
| 0-50                   | 36      | 20                 | 53          | 33   | 77   | 1098                  | 865                            | 1                |
| 50-100                 | 14      | 80                 | 117         | 38   | 88   | 993                   | 419                            | 1                |
| 100-150                | 14      | 133                | 141         | 9    | 43   | 644                   | 195                            | 1                |
| 150-200                | 24      | 178                | 196         | 18   | 90   | 764                   | 800                            | 1                |
| 200-250                | 51      | 231                | 228         | -3   | 83   | 3692                  | 1386                           | 1                |
| 250-300                | 56      | 273                | 306         | 33   | 95   | 1001                  | 2514                           | 1                |
| 300-400                | 89      | 348                | 290         | -57  | 114  | 923                   | 2997                           | 1                |
| >400                   | 93      | 625                | 383         | -242 | 362  | 9749                  | 4206                           | 1                |
| total                  | 377     | 329                | 267         | -63  | 198  | 3485                  | 2462                           | 1                |

<sup>&</sup>lt;sup>a</sup> simplified notation; referring to means over biomass ranges

Table 18. Validation results per biomass range for Tier 2 data at original resolution for the 2018 map.

| AGB <sub>ref</sub> bin | # plots | AGB <sub>ref</sub> | $AGB_{map}$ | MD   | RMSD Var(Plt) <sup>a</sup> |                      | SE <sub>CCI</sub> <sup>a</sup> | I <sub>Var</sub> |
|------------------------|---------|--------------------|-------------|------|----------------------------|----------------------|--------------------------------|------------------|
| [Mg/ha]                | count   |                    | [Mg/l       | na]  |                            | [Mg/ha] <sup>2</sup> |                                |                  |
| 0-50                   | 28      | 20                 | 63          | 43   | 92                         | 1457                 | 1088                           | 1                |
| 50-100                 | 12      | 83                 | 143         | 60   | 111                        | 1361                 | 472                            | 1                |
| 100-150                | 12      | 131                | 141         | 11   | 28                         | 674                  | 144                            | 0                |
| 150-200                | 18      | 179                | 205         | 26   | 104                        | 752                  | 836                            | 1                |
| 200-250                | 41      | 231                | 237         | 6    | 99                         | 4408                 | 1243                           | 1                |
| 250-300                | 38      | 274                | 290         | 16   | 91                         | 1122                 | 2092                           | 1                |
| 300-400                | 70      | 346                | 298         | -47  | 108                        | 1023                 | 2869                           | 1                |
| >400                   | 69      | 683                | 416         | -268 | 391                        | 12733                | 4032                           | 1                |
| total                  | 288     | 339                | 275         | -64  | 210                        | 4348                 | 2300                           | 1                |

<sup>&</sup>lt;sup>a</sup> simplified notation; referring to means over biomass ranges

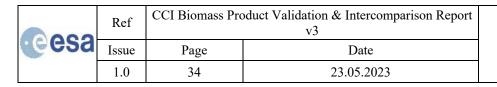





Table 19. Validation results per biomass range for Tier 2 data at original resolution for the 2019 map

| AGB <sub>ref</sub> bin | # plots | AGB <sub>ref</sub> | $AGB_{map}$ | MD   | RMSD | Var(Plt) <sup>a</sup> | SE <sub>CCI</sub> <sup>a</sup> | I <sub>Var</sub> |
|------------------------|---------|--------------------|-------------|------|------|-----------------------|--------------------------------|------------------|
| [Mg/ha]                | count   |                    | [Mg/        | ha]  |      | [Mg/ha] <sup>2</sup>  |                                |                  |
| 0-50                   | 24      | 19                 | 69          | 50   | 99   | 1928                  | 1260                           | 1                |
| 50-100                 | 10      | 82                 | 165         | 83   | 128  | 1836                  | 430                            | 1                |
| 100-150                | 10      | 131                | 148         | 16   | 22   | 753                   | 153                            | 0                |
| 150-200                | 15      | 180                | 212         | 33   | 117  | 854                   | 865                            | 1                |
| 200-250                | 35      | 233                | 228         | -5   | 114  | 3453                  | 1424                           | 1                |
| 250-300                | 36      | 273                | 309         | 35   | 90   | 1299                  | 2132                           | 1                |
| 300-400                | 69      | 345                | 290         | -55  | 109  | 1180                  | 2885                           | 1                |
| >400                   | 67      | 691                | 411         | -280 | 398  | 13151                 | 4179                           | 1                |
| total                  | 266     | 351                | 281         | -71  | 219  | 4568                  | 2461                           | 1                |
|                        |         |                    |             |      |      |                       |                                |                  |

<sup>&</sup>lt;sup>a</sup> simplified notation; referring to means over biomass ranges

Table 20. Validation results per biomass range for Tier 2 data at original resolution for the 2020 map.

| AGB <sub>ref</sub> bin | # plots | $AGB_{ref}$ | $AGB_{map}$ | MD   | RMSD | Var(Plt) <sup>a</sup> | $SE_{CCI}^2$ | I <sub>Var</sub> |
|------------------------|---------|-------------|-------------|------|------|-----------------------|--------------|------------------|
| [Mg/ha]                | count   |             | [Mg/ha]     |      |      | [Mg/ha] <sup>2</sup>  |              |                  |
| 0-50                   | 22      | 20          | 78          | 59   | 106  | 2425                  | 1368         | 1                |
| 50-100                 | 9       | 83          | 178         | 95   | 118  | 2115                  | 472          | 1                |
| 100-150                | 9       | 131         | 148         | 17   | 31   | 845                   | 159          | 0                |
| 150-200                | 13      | 177         | 219         | 42   | 113  | 952                   | 959          | 1                |
| 200-250                | 30      | 234         | 232         | -2   | 110  | 4010                  | 1306         | 1                |
| 250-300                | 33      | 275         | 318         | 43   | 108  | 1516                  | 2104         | 1                |
| 300-400                | 65      | 345         | 296         | -49  | 112  | 1377                  | 2958         | 1                |
| >400                   | 61      | 708         | 427         | -282 | 400  | 14370                 | 4443         | 1                |
| total                  | 242     | 357         | 290         | -67  | 222  | 5078                  | 2563         | 1                |
|                        |         |             |             |      |      |                       |              |                  |

<sup>&</sup>lt;sup>a</sup> simplified notation; referring to means over biomass ranges

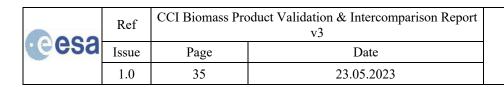
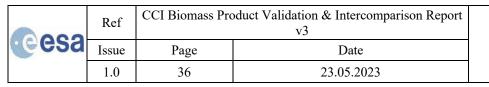





Table 21. Validation results per biomass range for Tier 2 data at original resolution for the 2021 map.


| AGB <sub>ref</sub> bin | # plots | $AGB_{ref}$ | $AGB_{map}$ | MD   | RMSD | Var(Plt) <sup>a</sup> | $SE_{CCI}^2$ | I <sub>Var</sub> |
|------------------------|---------|-------------|-------------|------|------|-----------------------|--------------|------------------|
| [Mg/ha]                | count   |             | [Mg/l       | na]  |      | [Mg/ha] <sup>2</sup>  |              |                  |
| 0-50                   | 22      | 20          | 86          | 67   | 123  | 2864                  | 1365         | 1                |
| 50-100                 | 9       | 83          | 168         | 84   | 115  | 2222                  | 460          | 1                |
| 100-150                | 8       | 131         | 141         | 11   | 39   | 1005                  | 159          | 1                |
| 150-200                | 12      | 177         | 212         | 35   | 117  | 1047                  | 864          | 1                |
| 200-250                | 12      | 233         | 235         | 1    | 130  | 1494                  | 1575         | 1                |
| 250-300                | 31      | 275         | 328         | 53   | 102  | 1746                  | 2081         | 1                |
| 300-400                | 62      | 344         | 286         | -59  | 105  | 1586                  | 2988         | 1                |
| >400                   | 60      | 712         | 432         | -280 | 416  | 14647                 | 4535         | 1                |
| total                  | 216     | 369         | 295         | -74  | 238  | 5337                  | 2716         | 1                |

<sup>&</sup>lt;sup>a</sup> simplified notation; referring to means over biomass ranges

Table 22. Validation results per biomass range for Tier 2 data at original resolution for the 2022 map.

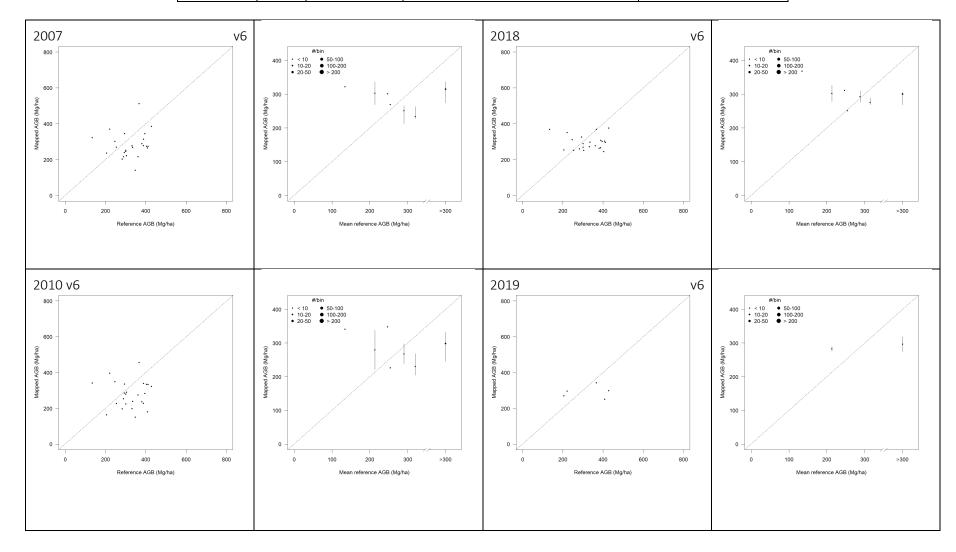
| AGB <sub>ref</sub><br>bin | # plots | AGB <sub>ref</sub> | $AGB_{map}$ | MD   | RMSD | Var(Plt) <sup>a</sup> | SE <sub>CCI</sub> <sup>a</sup> | I <sub>var</sub> |
|---------------------------|---------|--------------------|-------------|------|------|-----------------------|--------------------------------|------------------|
| [Mg/ha]                   | count   |                    | [Mg/        | ha]  |      | [Mg/ha] <sup>2</sup>  |                                |                  |
| 0-50                      | 19      | 19                 | 80          | 62   | 106  | 3540                  | 1546                           | 1                |
| 50-100                    | 7       | 87                 | 172         | 86   | 119  | 1879                  | 306                            | 1                |
| 100-150                   | 3       | 132                | 146         | 14   | 48   | 1995                  | 192                            | 1                |
| 150-200                   | 6       | 181                | 233         | 51   | 126  | 1284                  | 1307                           | 1                |
| 200-250                   | 11      | 232                | 215         | -17  | 124  | 1666                  | 1574                           | 1                |
| 250-300                   | 24      | 274                | 292         | 18   | 82   | 2058                  | 2244                           | 1                |
| 300-400                   | 37      | 342                | 316         | -27  | 126  | 2081                  | 3714                           | 1                |
| >400                      | 40      | 725                | 440         | -285 | 405  | 15378                 | 4549                           | 1                |
| total                     | 147     | 362                | 294         | -68  | 232  | 5809                  | 2928                           | 1                |

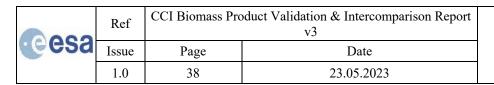
<sup>&</sup>lt;sup>a</sup> simplified notation; referring to means over biomass ranges



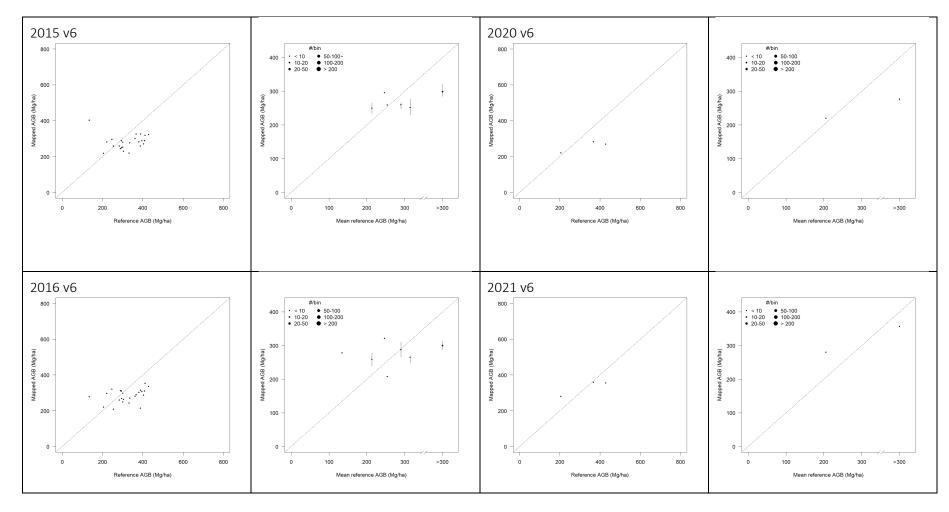


In most cases, the indicator variable  $I_{Var} = 1$ , indicating the CCI Biomass maps are optimistic about map precision.

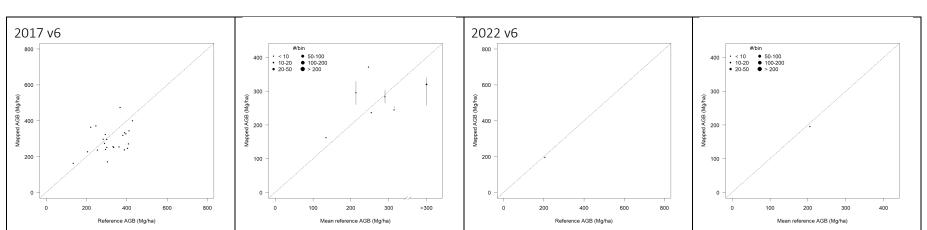

#### 3.1.3. Tier 3 non-aggregated


The non-aggregated results (i.e., at original plot level) of global plot-map comparisons using Tier 3 data (plot size ≥ 6 ha) are shown in Figure 4 and Tables 23-32. Similar to Tier 2, spatial aggregation to 0.1° cells was omitted because of the small number of available Tier 3 plots.

It is important to note that most Tier 3 plots are in the tropics and cover an AGB range of between 150 and 450 Mg/ha (i.e., the AGB range where the maximum AGB parameter of the AGB retrieval algorithm needs revision), and so lack low AGB densities. The small number of plots and the large scatter hardly allow conclusions to be drawn based on these data, except for the general trend of the map to under-predict AGB in the higher part of the assessed AGB range, which was also observed with the Tier 1 & 2 data. Note that 2015-2021 comparisons used fewer reference data.


| esa | Ref   | CCI Biomass Pro | oduct Validation & Intercomparison Report<br>v3 |
|-----|-------|-----------------|-------------------------------------------------|
|     | Issue | Page            | Date                                            |
|     | 1.0   | 37              | 23.05.2023                                      |












| esa | Ref   | CCI Biomass Pro | oduct Validation & Intercomparison Report<br>v3 |
|-----|-------|-----------------|-------------------------------------------------|
|     | Issue | Page            | Date                                            |
|     | 1.0   | 39              | 23.05.2023                                      |



biomass

Figure 4. Plot-map comparisons for Tier 3 data at original resolution (i.e., without spatial aggregation); left column: scatterplots; right column: binned over 25 Mg/ha wide AGB ranges with whiskers representing the interquartile range of mapped AGB

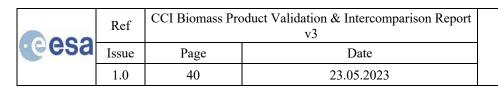





Table 23. Validation results per biomass range for Tier 3 data at the original resolution for the 2007 map.

| AGB <sub>ref</sub> bin | # plots | $AGB_{ref}$ | $AGB_{map}$ | MD   | RMSD | Var(Plt) <sup>a</sup> | SE <sub>CCI</sub> <sup>a</sup> | I <sub>Var</sub> |
|------------------------|---------|-------------|-------------|------|------|-----------------------|--------------------------------|------------------|
| [Mg/ha]                | count   |             | [Mg/ha      | a]   |      | [Mg/ha] <sup>2</sup>  |                                |                  |
| 0-50                   | -       | -           | -           | -    | -    | =                     | -                              | -                |
| 50-100                 |         |             |             |      |      |                       |                                |                  |
| 100-150                | 1       | 134         | 322         | 188  | 188  | 134                   | 1609                           | 1                |
| 150-200                | -       | -           | -           | -    | -    | -                     | -                              | -                |
| 200-250                | 3       | 225         | 302         | 78   | 93   | 690                   | 1422                           | 1                |
| 250-300                | 5       | 283         | 254         | -28  | 59   | 438                   | 2452                           | 1                |
| 300-400                | 12      | 350         | 280         | -70  | 105  | 314                   | 2986                           | 1                |
| >400                   | 4       | 413         | 300         | -113 | 120  | 302                   | 3541                           | 1                |
| total                  | 25      | 323         | 282         | -41  | 104  | 375                   | 2725                           | 1                |

<sup>&</sup>lt;sup>a</sup> simplified notation; referring to means over the biomass ranges

Table 24. Validation results per biomass range for Tier 3 data at the original resolution for the 2010 map.

| AGB <sub>ref</sub> bin | # plots | $AGB_{ref}$ | $AGB_{map}$ | MD   | RMSD | Var(Plt) <sup>a</sup> | SE <sub>CCI</sub> <sup>a</sup> | I <sub>var</sub> |
|------------------------|---------|-------------|-------------|------|------|-----------------------|--------------------------------|------------------|
| [Mg/ha]                | count   |             | [Mg/ha      | ]    |      | [Mg/ha] <sup>2</sup>  |                                |                  |
| 0-50                   | -       | -           | -           | -    | -    | -                     | -                              | -                |
| 50-100                 |         |             |             |      |      |                       |                                |                  |
| 100-150                | 1       | 134         | 341         | 207  | 207  | 123                   | 1623                           | 1                |
| 150-200                | -       | -           | -           | -    | -    | -                     | -                              | -                |
| 200-250                | 3       | 225         | 302         | 78   | 119  | 666                   | 1503                           | 1                |
| 250-300                | 5       | 283         | 259         | -23  | 47   | 402                   | 2418                           | 0                |
| 300-400                | 12      | 350         | 266         | -84  | 112  | 278                   | 2961                           | 1                |
| >400                   | 4       | 413         | 292         | -121 | 136  | 266                   | 3561                           | 1                |
| total                  | 25      | 323         | 276         | -47  | 113  | 341                   | 2713                           | 1                |

<sup>&</sup>lt;sup>a</sup> simplified notation; referring to means over the biomass ranges

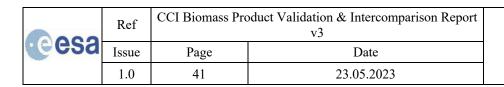





Table 25. Validation results per biomass range for Tier 3 data at the original resolution for the 2015 map.

| AGB <sub>ref</sub> bin | # plots | $AGB_{ref}$ | $AGB_{map}$ | MD   | RMSD | Var(Plt) <sup>a</sup> | SE <sub>CCI</sub> <sup>a</sup> | I <sub>Var</sub> |
|------------------------|---------|-------------|-------------|------|------|-----------------------|--------------------------------|------------------|
| [Mg/ha]                | count   |             | [Mg/h       | a]   |      | [Mg/ha] <sup>2</sup>  |                                |                  |
| 0-50                   | -       | -           | -           | -    | -    | -                     | -                              | -                |
| 50-100                 | -       | -           | -           | -    | -    | -                     | -                              | -                |
| 100-150                | -       | -           | -           | -    | -    | -                     | -                              | -                |
| 150-200                | 1       | 150         | 426         | 276  | 276  | 76035                 | 213                            | 1                |
| 200-250                | 2       | 220         | 252         | 32   | 37   | 1401                  | 985                            | 0                |
| 250-300                | 3       | 268         | 214         | -54  | 54   | 2950                  | 231                            | 1                |
| 300-400                | 12      | 344         | 265         | -79  | 94   | 8913                  | 381                            | 1                |
| >400                   | 5       | 416         | 296         | -120 | 123  | 15027                 | 294                            | 1                |
| total                  | 23      | 331         | 271         | -60  | 108  | 11730                 | 388                            | 1                |

<sup>&</sup>lt;sup>a</sup> simplified notation; referring to means over the biomass ranges

Table 26. . Validation results per biomass range for Tier 3 data at the original resolution for the 2016 map.

| AGB <sub>ref</sub> bin | # plots | $AGB_{ref}$ | $AGB_{map}$ | MD  | RMSD | Var(Plt) <sup>a</sup> | $SE_{CCI}^2$ | I <sub>Var</sub> |
|------------------------|---------|-------------|-------------|-----|------|-----------------------|--------------|------------------|
| [Mg/ha]                | count   |             | [Mg/ha      | i]  |      | [Mg/ha] <sup>2</sup>  |              |                  |
| 0-50                   | -       | -           | -           | -   | -    | -                     | -            | -                |
| 50-100                 | -       | -           | -           | -   | -    | -                     | -            | -                |
| 100-150                | 1       | 134         | 278         | 144 | 144  | 166                   | 1456         | 1                |
| 150-200                | -       | -           | -           | -   | -    | -                     | -            | -                |
| 200-250                | 3       | 225         | 279         | 55  | 62   | 762                   | 1377         | 1                |
| 250-300                | 5       | 283         | 272         | -11 | 29   | 546                   | 2185         | 0                |
| 300-400                | 11      | 350         | 276         | -74 | 84   | 367                   | 2741         | 1                |
| >400                   | 4       | 413         | 321         | -91 | 94   | 410                   | 3270         | 1                |
| total                  | 24      | 322         | 283         | -39 | 79   | 453                   | 2490         | 1                |

<sup>&</sup>lt;sup>a</sup> simplified notation; referring to means over the biomass ranges

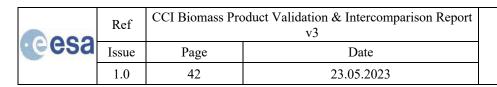





Table 27. Validation results per biomass range for Tier 3 data at the original resolution for the 2017 map.

| AGB <sub>ref</sub> bin | # plots | $AGB_{ref}$ | $AGB_{map}$ | MD  | RMSD | Var(Plt) <sup>a</sup> | SE <sub>CCI</sub> <sup>a</sup> | I <sub>Var</sub> |
|------------------------|---------|-------------|-------------|-----|------|-----------------------|--------------------------------|------------------|
| [Mg/ha]                | count   |             | [Mg/ha      | a]  |      | [Mg/ha] <sup>2</sup>  |                                |                  |
| 0-50                   | -       | -           | -           | -   | -    | -                     | -                              | -                |
| 50-100                 | -       | -           | -           | -   | -    | -                     | -                              | -                |
| 100-150                | 1       | 134         | 162         | 28  | 28   | 182                   | 1498                           | 0                |
| 150-200                | -       | -           | -           | -   | -    | -                     | -                              | -                |
| 200-250                | 3       | 225         | 320         | 96  | 110  | 796                   | 1431                           | 1                |
| 250-300                | 5       | 283         | 274         | -9  | 31   | 598                   | 2320                           | 0                |
| 300-400                | 11      | 350         | 288         | -62 | 91   | 419                   | 2963                           | 1                |
| >400                   | 4       | 413         | 314         | -98 | 111  | 462                   | 3453                           | 1                |
| total                  | 24      | 322         | 288         | -34 | 87   | 501                   | 2658                           | 1                |

<sup>&</sup>lt;sup>a</sup> simplified notation; referring to means over the biomass ranges

Table 28. Validation results per biomass range for Tier 3 data at the original resolution for the 2018 map.

| AGB <sub>ref</sub> bin | # plots | $AGB_{ref}$ | $AGB_{map}$ | MD   | RMSD | Var(Plt) <sup>a</sup> | SE <sub>CCI</sub> <sup>a</sup> | I <sub>Var</sub> |
|------------------------|---------|-------------|-------------|------|------|-----------------------|--------------------------------|------------------|
| [Mg/ha]                | count   |             | [Mg/h       | a]   |      | [Mg/ha] <sup>2</sup>  |                                |                  |
| 0-50                   | -       | -           | -           | -    | -    | -                     | -                              | -                |
| 50-100                 | -       | -           | -           | -    | -    | -                     | -                              | -                |
| 100-150                | 1       | 134         | 368         | 234  | 234  | 200                   | 1419                           | 1                |
| 150-200                | -       | -           | -           | -    | -    | -                     | -                              | -                |
| 200-250                | 3       | 225         | 305         | 81   | 88   | 836                   | 1462                           | 1                |
| 250-300                | 3       | 277         | 279         | 2    | 23   | 459                   | 2517                           | 0                |
| 300-400                | 11      | 350         | 287         | -63  | 74   | 479                   | 2812                           | 1                |
| >400                   | 4       | 413         | 304         | -108 | 115  | 522                   | 3329                           | 1                |
| total                  | 22      | 324         | 295         | -29  | 93   | 520                   | 2618                           | 1                |

<sup>&</sup>lt;sup>a</sup> simplified notation; referring to means over the biomass ranges

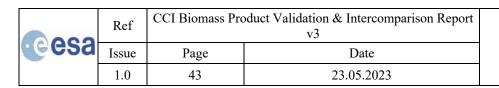





Table 29. Validation results per biomass range for Tier 3 data at the original resolution for the 2019 map.

| AGB <sub>ref</sub> bin | # plots | $AGB_{ref}$ | $AGB_{map}$ | MD   | RMSD | Var(Plt) <sup>a</sup> | SE <sub>CCI</sub> <sup>a</sup> | I <sub>Var</sub> |
|------------------------|---------|-------------|-------------|------|------|-----------------------|--------------------------------|------------------|
| [Mg/ha]                | count   |             | [Mg/h       | a]   |      | [Mg/ha] <sup>2</sup>  |                                |                  |
| 0-50                   | -       | -           | -           | -    | -    | -                     | -                              | -                |
| 50-100                 | -       | -           | -           | -    | -    | -                     | -                              | -                |
| 100-150                | -       | -           | -           | -    | -    | -                     | -                              | -                |
| 150-200                | -       | -           | -           | -    | -    | -                     | -                              | -                |
| 200-250                | 2       | 213         | 282         | 69   | 69   | 1058                  | 1146                           | 1                |
| 250-300                | -       | -           | -           | -    | -    | -                     | -                              | -                |
| 300-400                | 1       | 366         | 342         | -24  | 24   | 562                   | 5766                           | 0                |
| >400                   | 2       | 418         | 274         | -144 | 144  | 601                   | 4154                           | 1                |
| total                  | 5       | 326         | 291         | -35  | 102  | 776                   | 3273                           | 1                |

<sup>&</sup>lt;sup>a</sup> simplified notation; referring to means over the biomass ranges

Table 30. Validation results per biomass range for Tier 3 data at the original resolution for the 2020 map.

| AGB <sub>ref</sub> bin | # plots | AGB <sub>ref</sub> | $AGB_{map}$ | MD   | RMSD | Var(Plt) <sup>a</sup> | SE <sub>CCI</sub> <sup>a</sup> | I <sub>Var</sub> |
|------------------------|---------|--------------------|-------------|------|------|-----------------------|--------------------------------|------------------|
| [Mg/ha]                | count   |                    | [Mg/ha      | a]   |      | [Mg/ha] <sup>2</sup>  |                                |                  |
| 0-50                   | -       | -                  | -           | -    | -    | -                     | -                              | -                |
| 50-100                 | -       | -                  | -           | -    | -    | -                     | -                              | -                |
| 100-150                | -       | -                  | -           | -    | -    | -                     | -                              | -                |
| 150-200                | -       | -                  | -           | -    | -    | -                     | -                              | -                |
| 200-250                | 1       | 206                | 220         | 14   | 14   | 1113                  | 202                            | 0                |
| 250-300                | -       | -                  | -           | -    | -    | -                     | -                              | -                |
| 300-400                | 1       | 366                | 283         | -83  | 83   | 638                   | 5766                           | 1                |
| >400                   | 1       | 428                | 269         | -159 | 159  | 686                   | 5766                           | 1                |
| total                  | 21      | 333                | 257         | -76  | 104  | 812                   | 3911                           | 1                |

<sup>&</sup>lt;sup>a</sup> simplified notation; referring to means over the biomass ranges

| esa | Ref   | CCI Biomass Pro | oduct Validation & Intercomparison Report<br>v3 |
|-----|-------|-----------------|-------------------------------------------------|
|     | Issue | Page            | Date                                            |
|     | 1.0   | 44              | 23.05.2023                                      |



Table 31. Validation results per biomass range for Tier 3 data at the original resolution for the 2021 map.

| AGB <sub>ref</sub> bin | # plots | $AGB_{ref}$ | $AGB_{map}$ | MD  | RMSD | Var(Plt) <sup>a</sup> | SE <sub>CCI</sub> <sup>a</sup> | I <sub>Var</sub> |
|------------------------|---------|-------------|-------------|-----|------|-----------------------|--------------------------------|------------------|
| [Mg/ha]                | count   |             | [Mg/ha]     |     |      |                       |                                |                  |
| 0-50                   | -       | -           | -           | -   | -    | -                     | -                              |                  |
| 50-100                 | -       | -           | -           | -   | -    | -                     | -                              | -                |
| 100-150                | -       | -           | -           | -   | -    | -                     | -                              | -                |
| 150-200                | -       | -           | -           | -   | -    | -                     | -                              | -                |
| 200-250                | 1       | 206         | 280         | 74  | 74   | 1113                  | 171                            | 1                |
| 250-300                | -       | -           | -           | -   | -    | -                     | -                              | -                |
| 300-400                | 1       | 366         | 359         | -7  | 7    | 720                   | 5764                           | 0                |
| >400                   | 1       | 428         | 355         | -73 | 73   | 770                   | 5764                           | 0                |
| total                  | 3       | 333         | 331         | -2  | 60   | 868                   | 3900                           | 1                |

<sup>&</sup>lt;sup>a</sup> simplified notation; referring to means over the biomass ranges

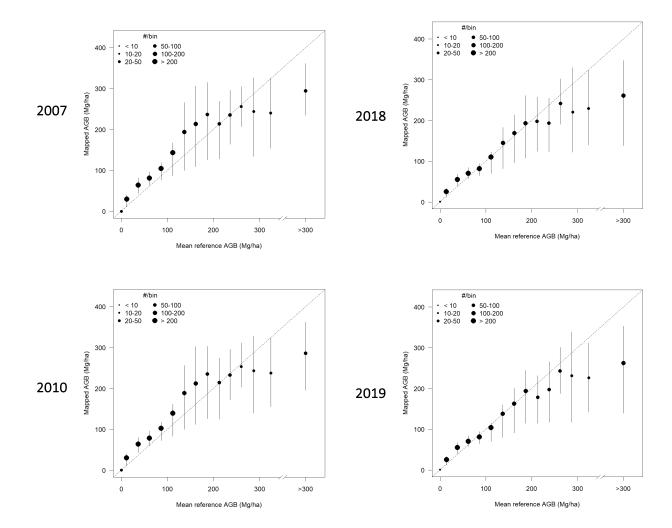
Table 32. Validation results per biomass range for Tier 3 data at the original resolution for the 2022 map.

| $AGB_{ref}$ | # plots | $AGB_{ref}$ | $AGB_{map}$ | MD    | RMSD | Var(Plt) <sup>a</sup> | $SE_{CCI}^2$ | $I_{Var}$ |
|-------------|---------|-------------|-------------|-------|------|-----------------------|--------------|-----------|
| bin         |         |             |             |       |      |                       |              |           |
| [Mg/ha]     | count   |             | [M          | g/ha] |      |                       |              |           |
| 0-50        | -       | -           | -           | -     | -    | -                     | -            | -         |
| 50-100      | -       | -           | -           | -     | -    | -                     | -            | -         |
| 100-150     | -       | -           | -           | -     | -    | -                     | -            | -         |
| 150-200     | -       | -           | -           | -     | -    | -                     | -            | -         |
| 200-250     | 1       | 206         | 195         | -11   | 11   | 1113                  | 181          | 0         |
| 250-300     | -       | -           | -           | -     | -    | -                     | -            | -         |
| 300-400     | -       | -           | -           | -     | -    | -                     | -            | -         |
| >400        | -       | -           | -           | -     | -    | -                     | -            | -         |
| total       | 3       | 333         | 331         | -2    | 60   | 868                   | 181          | 1         |

<sup>&</sup>lt;sup>a</sup> simplified notation; referring to means over the biomass ranges

# 3.2. Tier 1 plot data spatially aggregated to 0.1° cells

The results of global AGM<sub>map</sub> - AGB<sub>ref</sub> comparisons using Tier 1 data (plot size  $\leq$  0.6 ha) spatially aggregated to 0.1° cells are shown in Figure 5 and Tables 33-42. The rightmost variance columns shown in the non-aggregated results are omitted here because spatial correlation of errors within 0.1° cells may be non-negligible, but we lack data to assess such correlation for most biomes at the current stage of the project.


Spatial aggregation to  $0.1^{\circ}$  cells improved the fit between AGB<sub>ref</sub> and AGB<sub>map</sub> with absolute mean differences within 30 Mg/ha below 200 Mg/ha. Beyond 200 Mg ha<sup>-1</sup>, AGB values are still under-predicted and the  $0.1^{\circ}$  cells producing the most under-prediction are located in southeast Australia. These cells show lower estimates than the previous version of CCI

|     | Ref   | CCI Biomass Pro | oduct Validation & Intercomparison Report<br>v3 |   |
|-----|-------|-----------------|-------------------------------------------------|---|
| esa | Issue | Page            | Date                                            |   |
|     | 1.0   | 45              | 23.05.2023                                      | Ī |



Biomass products (not shown here). The results of the six years for Version 6 of the CCI maps show less consistency than their previous versions, particularly 2010 compared to the rest of the map epochs (see Section 3.7 for further analysis of consistency). In particular, the 2007, 2010, 2015-2017 maps show overestimation until 180 Mg/ha similar to the Tier 2 results observation. This could be an effect of using a different number of reference data (as many as 2500+ more than the reference data used for the 2018-2022 maps, see Table 2).

Spatial aggregation reduced the effect of localized AGB fluctuations in the map and their potential interaction with plot-map geolocation mismatches. These results (Figure 5, Tables 33-42) suggest the CCI Biomass predictions at 0.1° cell size are more precise than at the original pixel resolution. Note that at 0.1°, averages from both plots and maps correspond to the same forest definition (Section 2.4). Most 0.1° cells meeting the criterion of at least five plots per cell happen to be located in the temperate region (Section 3.5). The spatial aggregation also resulted in minimizing inconsistency between the 2010 and the 2015-2021 comparisons except for the 300 Mg ha<sup>-1</sup> bin. The latter years are nearly identical, including the number of 0.1° grid cells used.



| <b>1</b> 3000 | Ref   | CCI Biomass Pro | oduct Validation & Intercomparison Report<br>v3 |
|---------------|-------|-----------------|-------------------------------------------------|
| esa           | Issue | Page            | Date                                            |
|               | 1.0   | 46              | 23.05.2023                                      |



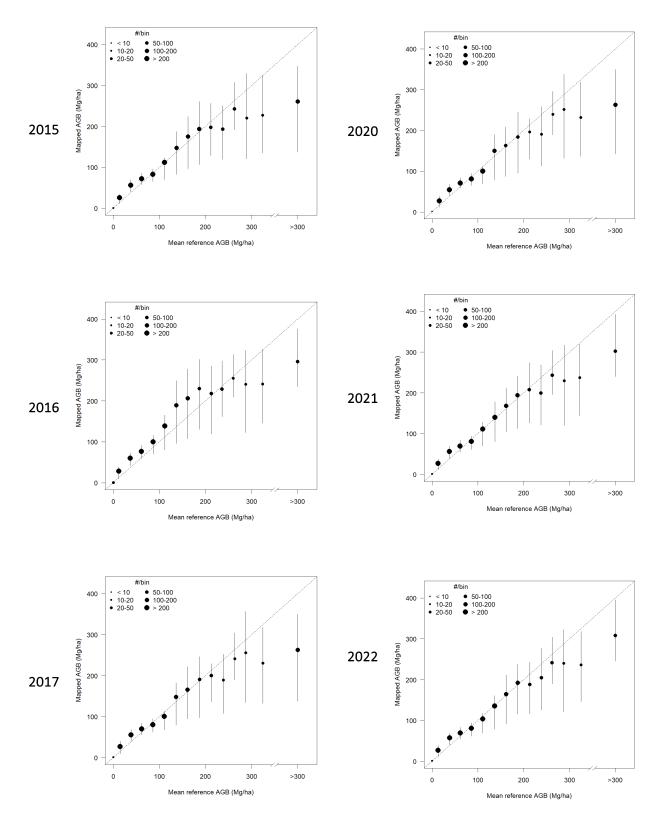



Figure 5. AGBref - AGBmap comparisons for Tier 1 data spatially aggregated to 0.1° and binned over 25 Mg/ha wide biomass ranges with whiskers representing the interquartile range of mapped AGB values and symbol size representing

| 2000 | Ref   | CCI Biomass Product Validation & Intercomparison Report v3 |            |   |  |  |
|------|-------|------------------------------------------------------------|------------|---|--|--|
| esa  | Issue | Page                                                       | Date       | 5 |  |  |
|      | 1.0   | 47                                                         | 23.05.2023 |   |  |  |



the number of 0.1° cells per AGB range. AGBref > 350 Mg/ha data are grouped into a single bin.

Table 33. Validation results per biomass range for Tier 1 data spatially aggregated to 0.1° cells for the 2007 map.

| AGB <sub>ref</sub> | # cells | $AGB_{ref}$ | $AGB_{map}$ | MD   | RMSD |
|--------------------|---------|-------------|-------------|------|------|
| bin                |         |             |             |      |      |
| [Mg/ha]            | count   |             | [Mg/        | /ha] |      |
| 0-50               | 5802    | 23          | 45          | 22   | 34   |
| 50-100             | 2008    | 69          | 88          | 19   | 41   |
| 100-150            | 478     | 121         | 162         | 41   | 110  |
| 150-200            | 236     | 172         | 223         | 51   | 146  |
| 200-250            | 124     | 224         | 224         | 0    | 121  |
| 250-300            | 65      | 272         | 251         | -22  | 105  |
| 300-400            | 66      | 343         | 243         | -100 | 144  |
| >400               | 62      | 658         | 312         | -346 | 425  |

Table 34. Validation results per biomass range for Tier 1 data spatially aggregated to 0.1° cells for the 2010 map.

| AGB <sub>ref</sub> bin | # cells | $AGB_{ref}$ | $AGB_{map}$ | MD   | RMSD |
|------------------------|---------|-------------|-------------|------|------|
| [Mg/ha]                | count   |             | [Mg/h       | a]   |      |
| 0-50                   | 5781    | 23          | 45          | 22   | 34   |
| 50-100                 | 2103    | 69          | 87          | 17   | 42   |
| 100-150                | 510     | 121         | 158         | 37   | 109  |
| 150-200                | 242     | 172         | 222         | 50   | 144  |
| 200-250                | 130     | 224         | 223         | -1   | 117  |
| 250-300                | 66      | 272         | 249         | -23  | 104  |
| 300-400                | 72      | 345         | 235         | -110 | 152  |
| >400                   | 63      | 654         | 311         | -343 | 420  |

Table 35. Validation results per biomass range for Tier 1 data spatially aggregated to 0.1° cells for the 2015 map.

| AGB <sub>ref</sub> bin | # cells | AGB <sub>re</sub> | f AGB <sub>map</sub> | MD   | RMSD |
|------------------------|---------|-------------------|----------------------|------|------|
| [Mg/ha]                | count   |                   | [Mg/ha               | ]    |      |
| 0-50                   | 3023    | 29                | 44                   | 16   | 26   |
| 50-100                 | 2107    | 69                | 75                   | 6    | 28   |
| 100-150                | 538     | 120               | 125                  | 4    | 82   |
| 150-200                | 230     | 173               | 184                  | 11   | 120  |
| 200-250                | 142     | 223               | 196                  | -28  | 110  |
| 250-300                | 86      | 273               | 234                  | -38  | 109  |
| 300-400                | 76      | 342               | 238                  | -103 | 148  |
| >400                   | 66      | 635               | 210                  | -425 | 514  |
| total                  | 6267    | 79                | 76                   | -3   | 66   |

| <b>2000</b> | Ref   | CCI Biomass Product Validation & Intercomparison R v3 |            |  |
|-------------|-------|-------------------------------------------------------|------------|--|
| esa         | Issue | Page                                                  | Date       |  |
|             | 1.0   | 48                                                    | 23.05.2023 |  |



Table 36. Validation results per biomass range for Tier 1 data spatially aggregated to 0.1° cells for the 2016 map.

| AGB <sub>ref</sub> bin | # cells | $AGB_{ref}$ | $AGB_{map}$ | MD   | RMSD |
|------------------------|---------|-------------|-------------|------|------|
| [Mg/ha]                | count   |             | [Mg/h       | a]   |      |
| 0-50                   | 2628    | 29          | 47          | 17   | 30   |
| 50-100                 | 2296    | 70          | 74          | 5    | 30   |
| 100-150                | 570     | 120         | 117         | -3   | 77   |
| 150-200                | 234     | 173         | 183         | 10   | 117  |
| 200-250                | 133     | 225         | 197         | -28  | 106  |
| 250-300                | 89      | 272         | 244         | -28  | 109  |
| 300-400                | 68      | 341         | 248         | -93  | 137  |
| >400                   | 53      | 688         | 322         | -367 | 447  |

Table 37. Validation results per biomass range for Tier 1 data spatially aggregated to 0.1° cells for the 2017 map.

| AGB <sub>ref</sub> bin | # cells | AGB <sub>ref</sub> | $AGB_{map}$ | MD   | RMSD |
|------------------------|---------|--------------------|-------------|------|------|
| [Mg/ha]                | count   |                    | [Mg/ha]     |      |      |
| 0-50                   | 2628    | 29                 | 47          | 17   | 30   |
| 50-100                 | 2296    | 70                 | 74          | 5    | 30   |
| 100-150                | 570     | 120                | 117         | -3   | 77   |
| 150-200                | 234     | 173                | 183         | 10   | 117  |
| 200-250                | 133     | 225                | 197         | -28  | 106  |
| 250-300                | 89      | 272                | 244         | -28  | 109  |
| 300-400                | 68      | 341                | 248         | -93  | 137  |
| >400                   | 53      | 688                | 322         | -367 | 447  |

Table 38. Validation results per biomass range for Tier 1 data spatially aggregated to 0.1° cells for the 2018 map.

| AGB <sub>ref</sub> bin | # cells | AGB <sub>ref</sub> | $AGB_{map}$ | MD   | RMSD |
|------------------------|---------|--------------------|-------------|------|------|
| [Mg/ha]                | count   |                    | [Mg/h       | a]   |      |
| 0-50                   | 2628    | 29                 | 47          | 17   | 30   |
| 50-100                 | 2296    | 70                 | 74          | 5    | 30   |
| 100-150                | 570     | 120                | 117         | -3   | 77   |
| 150-200                | 234     | 173                | 183         | 10   | 117  |
| 200-250                | 133     | 225                | 197         | -28  | 106  |
| 250-300                | 89      | 272                | 244         | -28  | 109  |
| 300-400                | 68      | 341                | 248         | -93  | 137  |
| >400                   | 53      | 688                | 322         | -367 | 447  |

| 2000 | Ref   | CCI Biomass Product Validation & Intercomparison Repor |            |  |  |
|------|-------|--------------------------------------------------------|------------|--|--|
| esa  | Issue | Page                                                   | Date       |  |  |
|      | 1.0   | 49                                                     | 23.05.2023 |  |  |



Table 39. Validation results per biomass range for Tier 1 data spatially aggregated to 0.1° cells for the 2019 map.

| AGB <sub>ref</sub> bin | # cells | $AGB_{ref}$ | $AGB_{map}$ | MD   | RMSD |
|------------------------|---------|-------------|-------------|------|------|
| [Mg/ha]                | count   | [Mg/ha      |             | a]   |      |
| 0-50                   | 2554    | 30          | 44          | 15   | 25   |
| 50-100                 | 2144    | 70          | 74          | 4    | 28   |
| 100-150                | 540     | 120         | 116         | -4   | 74   |
| 150-200                | 222     | 173         | 177         | 4    | 116  |
| 200-250                | 131     | 225         | 187         | -38  | 106  |
| 250-300                | 92      | 272         | 238         | -34  | 113  |
| 300-400                | 76      | 343         | 238         | -106 | 149  |
| >400                   | 89      | 721         | 264         | -457 | 579  |

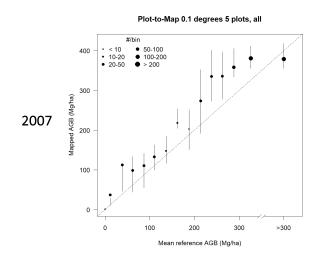
Table 40. Validation results per biomass range for Tier 1 data spatially aggregated to 0.1° cells for the 2020 map

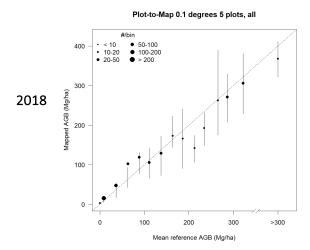
| AGB <sub>ref</sub> bin | # cells | $AGB_{ref}$ | $AGB_{map}$ | MD   | RMSD |
|------------------------|---------|-------------|-------------|------|------|
| [Mg/ha]                | count   |             | [Mg/ha      | a]   |      |
| 0-50                   | 1914    | 32          | 47          | 15   | 25   |
| 50-100                 | 1999    | 70          | 74          | 4    | 27   |
| 100-150                | 415     | 118         | 115         | -4   | 75   |
| 150-200                | 185     | 173         | 172         | -1   | 114  |
| 200-250                | 92      | 225         | 193         | -32  | 112  |
| 250-300                | 72      | 273         | 244         | -29  | 108  |
| 300-400                | 69      | 343         | 249         | -94  | 142  |
| >400                   | 93      | 724         | 259         | -465 | 618  |

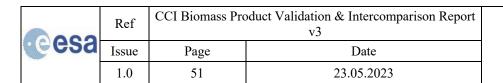
Table 41. Validation results per biomass range for Tier 1 data spatially aggregated to 0.1° cells for the 2021 map

| AGB <sub>ref</sub> bin | # cells | AGB <sub>ref</sub> | $AGB_{map}$ | MD   | RMSD |
|------------------------|---------|--------------------|-------------|------|------|
| [Mg/ha]                | count   |                    | [Mg/h       | ıa]  |      |
| 0-50                   | 3101    | 28                 | 45          | 17   | 29   |
| 50-100                 | 2255    | 69                 | 73          | 4    | 30   |
| 100-150                | 572     | 120                | 121         | 1    | 76   |
| 150-200                | 244     | 172                | 180         | 7    | 108  |
| 200-250                | 140     | 223                | 204         | -19  | 108  |
| 250-300                | 81      | 272                | 238         | -34  | 107  |
| 300-400                | 70      | 340                | 247         | -94  | 141  |
| >400                   | 53      | 692                | 320         | -372 | 452  |

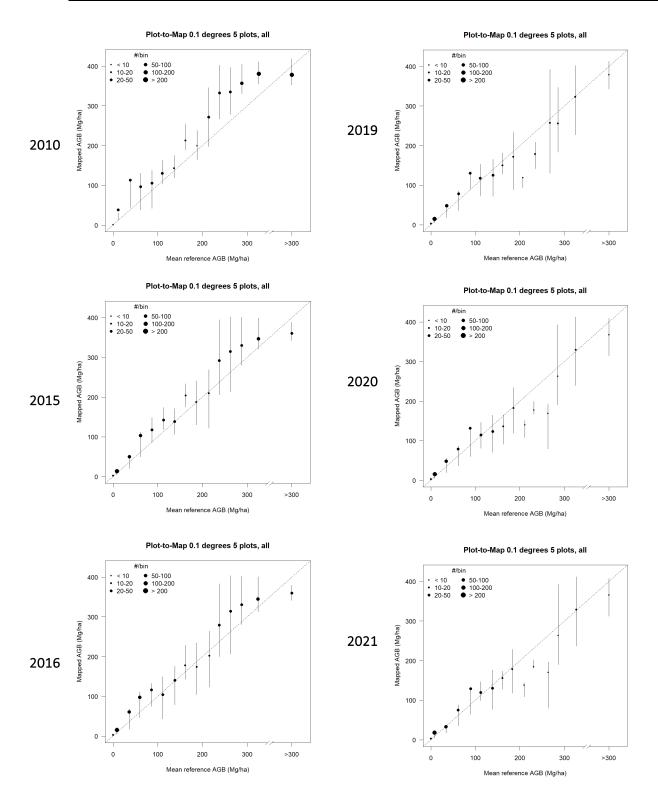
|     | Ref   | CCI Biomass Pro | CCI Biomass Product Validation & Intercomparison Report v3 |  |  |  |  |
|-----|-------|-----------------|------------------------------------------------------------|--|--|--|--|
| esa | Issue | Page            | Date                                                       |  |  |  |  |
|     | 1.0   | 50              | 23.05.2023                                                 |  |  |  |  |





Table 42. Validation results per biomass range for Tier 1 data spatially aggregated to 0.1° cells for the 2022 map


| AGB <sub>ref</sub> | # cells | AGB <sub>ref</sub> | $AGB_{map}$ | MD   | RMSD |
|--------------------|---------|--------------------|-------------|------|------|
| [Mg/ha]            | count   |                    | [Mg/l       | ha]  |      |
| 0-50               | 2628    | 29                 | 46          | 17   | 30   |
| 50-100             | 2296    | 70                 | 73          | 4    | 30   |
| 100-150            | 570     | 120                | 115         | -5   | 74   |
| 150-200            | 234     | 173                | 177         | 4    | 112  |
| 200-250            | 133     | 225                | 195         | -29  | 103  |
| 250-300            | 89      | 272                | 241         | -31  | 109  |
| 300-400            | 68      | 341                | 248         | -92  | 138  |
| >400               | 53      | 688                | 321         | -367 | 448  |

# 3.3. Comparisons with LiDAR-based, 1-km pixel Congo basin Forests AGB and EMAP 25-km aggregates


The results of the global  $AGM_{map}$  -  $AGB_{ref}$  comparisons at 0.1° resolution using LiDAR-based and CoFor AGB as reference data are shown in Figure 6 and Tables 43-52. The key observation is map overestimation in almost all the AGB bins for the 2007 and 2010 maps and consistently good agreement between reference data and map estimates for 2015-2022. This can be a result of key modifications of the AGB retrieval algorithm in the wet tropics in the current CCI maps. Previous assessments did not have LiDAR data in temperate woodlands (USA) unlike this current assessment. The 2010 results may also be influenced by the CoFor data having a dense plot network in the forest management areas of the Congo Basin. Since the original plot data inside the 1-km aggregates of the CoFor dataset are not available, we were unable to account for partly deforested areas. Such areas are likely to exist given the active forestry activities in the area. On the other hand, similar results were observed using the plot data (Tier 2 plots in particular), which builds confidence in using LiDAR and CoFor data for accuracy assessments.











|     | Ref   | CCI Biomass Product Validation & Intercomparison Reported v3 |            |  |  |  |
|-----|-------|--------------------------------------------------------------|------------|--|--|--|
| esa | Issue | Page                                                         | Date       |  |  |  |
|     | 1.0   | 52                                                           | 23.05.2023 |  |  |  |



>300

300

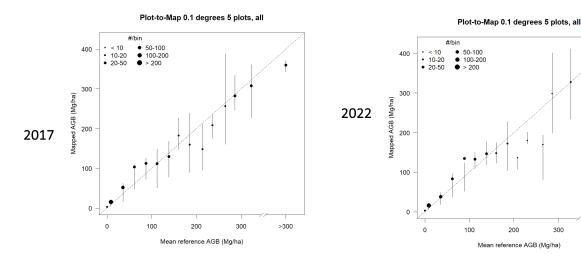



Figure 6. AGBref - AGBmap comparisons for LiDAR-based and CoFor AGB data spatially aggregated to 0.1° and binned over 25 Mg/ha wide AGB ranges with whiskers representing the interquartile range of mapped AGB values and symbol size representing the number of 0.1° cells per AGB range. AGBref > 350 Mg/ha data are grouped into a single bin.

| 2000 | Ref   | CCI Biomass Product Validation & Intercomparison Report v3 |            |  |  |  |
|------|-------|------------------------------------------------------------|------------|--|--|--|
| esa  | Issue | Page                                                       | Date       |  |  |  |
|      | 1.0   | 53                                                         | 23.05.2023 |  |  |  |



Table 43. Validation results per biomass range using LiDAR-based and CoFor AGB data spatially aggregated to 0.1° cells for the 2007 map.

| AGB <sub>ref</sub> | # cells | $AGB_{ref}$ | $AGB_{map}$ | MD  | RMSD |
|--------------------|---------|-------------|-------------|-----|------|
| [Mg/ha]            | count   |             | [Mg/h       | na] |      |
| 0-50               | 79      | 19          | 59          | 40  | 104  |
| 50-100             | 45      | 74          | 104         | 31  | 74   |
| 100-150            | 35      | 121         | 139         | 18  | 60   |
| 150-200            | 20      | 173         | 212         | 39  | 74   |
| 200-250            | 51      | 229         | 311         | 82  | 123  |
| 250-300            | 100     | 277         | 348         | 71  | 109  |
| 300-400            | 210     | 345         | 379         | 34  | 72   |
| >400               | 30      | 429         | 389         | -39 | 78   |
| total              | 570     | 241         | 281         | 41  | 89   |

Table 44. Validation results per biomass range using LiDAR-based and CoFor AGB data spatially aggregated to 0.1° cells for the 2010 map.

| AGB <sub>ref</sub> bin | # cells | $AGB_{ref}$ | $AGB_{map}$ | MD  | RMSD |
|------------------------|---------|-------------|-------------|-----|------|
| [Mg/ha]                | count   |             | [Mg/ha      | a]  |      |
| 0-50                   | 79      | 19          | 60          | 40  | 103  |
| 50-100                 | 45      | 74          | 101         | 27  | 73   |
| 100-150                | 35      | 121         | 135         | 15  | 56   |
| 150-200                | 20      | 173         | 207         | 35  | 70   |
| 200-250                | 51      | 229         | 309         | 80  | 121  |
| 250-300                | 100     | 277         | 347         | 70  | 108  |
| 300-400                | 210     | 345         | 378         | 33  | 72   |
| >400                   | 30      | 429         | 389         | -39 | 78   |
| total                  | 570     | 241         | 280         | 39  | 88   |

Table 45. Validation results per biomass range using LiDAR-based and CoFor AGB data spatially aggregated to 0.1° cells for the 2015 map.

| $AGB_{ref}$ bin | # cells | $AGB_{ref}$ | $AGB_{map}$ | MD  | RMSD |
|-----------------|---------|-------------|-------------|-----|------|
| [Mg/ha]         | count   |             | [Mg/ha      | a]  |      |
| 0-50            | 254     | 15          | 22          | 7   | 35   |
| 50-100          | 91      | 72          | 109         | 37  | 88   |
| 100-150         | 46      | 126         | 141         | 15  | 61   |
| 150-200         | 25      | 177         | 194         | 17  | 68   |
| 200-250         | 41      | 230         | 264         | 35  | 109  |
| 250-300         | 76      | 274         | 322         | 48  | 113  |
| 300-400         | 75      | 335         | 350         | 15  | 68   |
| >400            | 9       | 437         | 356         | -81 | 109  |
| total           | 617     | 130         | 149         | 19  | 72   |

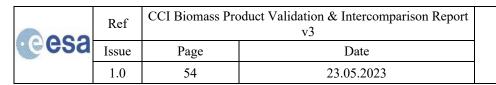





Table 46. Validation results per biomass range using LiDAR-based and CoFor AGB data spatially aggregated to 0.1° cells for the 2016 map

| AGB <sub>ref</sub> bin | # cells | AGB <sub>ref</sub> | $AGB_{map}$ | MD  | RMSD |
|------------------------|---------|--------------------|-------------|-----|------|
| [Mg/ha]                | count   |                    | [Mg/ha]     |     |      |
| 0-50                   | 79      | 19                 | 59          | 40  | 104  |
| 50-100                 | 45      | 74                 | 96          | 22  | 65   |
| 100-150                | 35      | 121                | 133         | 12  | 54   |
| 150-200                | 20      | 173                | 204         | 31  | 68   |
| 200-250                | 51      | 229                | 303         | 74  | 119  |
| 250-300                | 100     | 277                | 344         | 68  | 107  |
| 300-400                | 210     | 345                | 376         | 31  | 72   |
| >400                   | 30      | 429                | 389         | -40 | 77   |
| total                  | 570     | 241                | 278         | 37  | 88   |

Table 47. Validation results per biomass range using LiDAR-based and CoFor AGB data spatially aggregated to 0.1° cells for the 2017 map

| AGB <sub>ref</sub> bin | # cells | $AGB_{ref}$ | $AGB_{map}$ | MD  | RMSD |
|------------------------|---------|-------------|-------------|-----|------|
| [Mg/ha]                | count   | [Mg/ha      |             | a]  |      |
| 0-50                   | 247     | 14          | 23          | 8   | 31   |
| 50-100                 | 89      | 73          | 108         | 35  | 97   |
| 100-150                | 46      | 124         | 120         | -4  | 59   |
| 150-200                | 26      | 172         | 172         | 0   | 70   |
| 200-250                | 26      | 227         | 183         | -44 | 82   |
| 250-300                | 39      | 276         | 270         | -6  | 108  |
| 300-400                | 51      | 340         | 328         | -12 | 69   |
| >400                   | 9       | 440         | 362         | -78 | 108  |
| total                  | 533     | 109         | 114         | 4   | 66   |

Table 48. Validation results per biomass range using LiDAR-based and CoFor AGB data spatially aggregated to 0.1° cells for the 2018 map

|                        |         | 101 the 2010 | Пар         |     |      |
|------------------------|---------|--------------|-------------|-----|------|
| AGB <sub>ref</sub> bin | # cells | $AGB_{ref}$  | $AGB_{map}$ | MD  | RMSD |
| [Mg/ha]                | count   |              | [Mg/ha      | a]  |      |
| 0-50                   | 250     | 15           | 23          | 8   | 31   |
| 50-100                 | 74      | 76           | 111         | 35  | 105  |
| 100-150                | 57      | 122          | 115         | -7  | 56   |
| 150-200                | 26      | 173          | 170         | -3  | 66   |
| 200-250                | 26      | 226          | 173         | -53 | 77   |
| 250-300                | 38      | 276          | 267         | -9  | 109  |
| 300-400                | 34      | 332          | 318         | -14 | 83   |
| >400                   | 3       | 460          | 395         | -65 | 143  |
| total                  | 508     | 98           | 102         | 3   | 67   |
|                        |         |              |             |     |      |

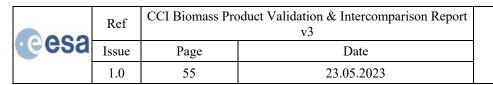





Table 49. Validation results per biomass range using LiDAR-based and CoFor AGB data spatially aggregated to 0.1° cells for the 2019 map

| AGB <sub>ref</sub> bin | # cells | AGB <sub>ref</sub> | $AGB_{map}$ | MD  | RMSD |
|------------------------|---------|--------------------|-------------|-----|------|
| [Mg/ha]                | count   |                    | [Mg/ha      | а]  |      |
| 0-50                   | 246     | 15                 | 23          | 8   | 31   |
| 50-100                 | 79      | 76                 | 106         | 30  | 103  |
| 100-150                | 53      | 123                | 121         | -2  | 56   |
| 150-200                | 26      | 171                | 159         | -12 | 68   |
| 200-250                | 15      | 225                | 159         | -66 | 82   |
| 250-300                | 29      | 276                | 257         | -19 | 126  |
| 300-400                | 23      | 337                | 335         | -2  | 89   |
| >400                   | 3       | 461                | 400         | -61 | 147  |
| total                  | 474     | 87                 | 91          | 5   | 68   |

Table 50. Validation results per biomass range using LiDAR-based and CoFor AGB data spatially aggregated to 0.1° cells for the 2020 map

|                        |         | 101 1110 2020 | лпар        |     |      |
|------------------------|---------|---------------|-------------|-----|------|
| AGB <sub>ref</sub> bin | # cells | $AGB_{ref}$   | $AGB_{map}$ | MD  | RMSD |
| [Mg/ha]                | count   |               | [Mg/ha      | a]  |      |
| 0-50                   | 246     | 14            | 23          | 8   | 26   |
| 50-100                 | 74      | 76            | 108         | 32  | 111  |
| 100-150                | 54      | 123           | 118         | -4  | 53   |
| 150-200                | 28      | 171           | 153         | -18 | 65   |
| 200-250                | 13      | 224           | 163         | -61 | 73   |
| 250-300                | 12      | 278           | 232         | -46 | 146  |
| 300-400                | 15      | 342           | 338         | -3  | 92   |
| >400                   | 2       | 461           | 396         | -65 | 177  |
| total                  | 444     | 74            | 79          | 5   | 65   |

Table 51. Validation results per biomass range using LiDAR-based and CoFor AGB data spatially aggregated to 0.1° cells for the 2021 map.

|                        |         | 101 the 202. | т шар       |     |      |
|------------------------|---------|--------------|-------------|-----|------|
| AGB <sub>ref</sub> bin | # cells | $AGB_{ref}$  | $AGB_{map}$ | MD  | RMSD |
| [Mg/ha]                | count   |              | [Mg/ha      | a]  |      |
| 0-50                   | 79      | 19           | 61          | 41  | 111  |
| 50-100                 | 45      | 74           | 97          | 23  | 69   |
| 100-150                | 35      | 121          | 130         | 9   | 53   |
| 150-200                | 20      | 173          | 197         | 25  | 67   |
| 200-250                | 51      | 229          | 299         | 70  | 118  |
| 250-300                | 100     | 277          | 343         | 66  | 107  |
| 300-400                | 210     | 345          | 376         | 31  | 73   |
| >400                   | 30      | 429          | 389         | -40 | 76   |
| total                  | 570     | 241          | 277         | 36  | 89   |

|     | Ref   | CCI Biomass Pro | oduct Validation & Intercomparison Report v3 |
|-----|-------|-----------------|----------------------------------------------|
| esa | Issue | Page            | Date                                         |
|     | 1.0   | 56              | 23.05.2023                                   |

Table 52. Validation results per biomass range using LiDAR-based and CoFor AGB data spatially aggregated to 0.1° cells for the 2022 map

| AGB <sub>ref</sub> bin | # cells | AGB <sub>ref</sub> | AGB <sub>map</sub> | MD  | RMSD |
|------------------------|---------|--------------------|--------------------|-----|------|
| [Mg/ha]                | count   |                    | [Mg/ha]            |     |      |
| 0-50                   | 237     | 15                 | 20                 | 6   | 18   |
| 50-100                 | 75      | 77                 | 112                | 35  | 121  |
| 100-150                | 57      | 124                | 139                | 16  | 52   |
| 150-200                | 23      | 171                | 159                | -12 | 64   |
| 200-250                | 13      | 222                | 163                | -59 | 72   |
| 250-300                | 11      | 278                | 251                | -27 | 128  |
| 300-400                | 15      | 344                | 337                | -7  | 93   |
| >400                   | -       | -                  | -                  | -   | -    |
| total                  | 431     | 73                 | 81                 | 8   | 65   |

The 0.25° results using the 2017 EMAP dataset as reference data are shown in Figure **7** and Table 53. The rest of the epochs were opted out due to result similarities. All maps show underestimation starting from AGB<sub>ref</sub>  $\approx$  300 Mg/ha as indicated by six 0.1° grid cells. Note that fewer reference data are available as AGB increases.

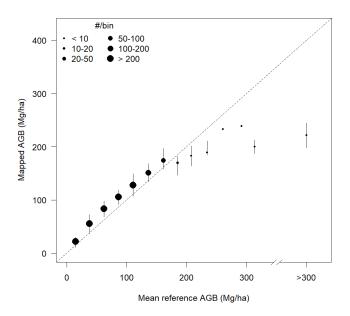



Figure 7. AGBref - AGBmap comparisons for EMAP AGB data spatially aggregated to 0.25° and binned over 25 Mg/ha wide AGB ranges with whiskers representing the interquartile range of mapped AGB values and symbol size representing the number of 0.25° cells per AGB range. AGBref > 350 Mg/ha data are grouped into a single bin.

|     | Ref   | CCI Biomass Pro | oduct Validation & Intercomparison Report v3 |  |  |  |  |  |
|-----|-------|-----------------|----------------------------------------------|--|--|--|--|--|
| esa | Issue | Page            | Date                                         |  |  |  |  |  |
|     | 1.0   | 57              | 23.05.2023                                   |  |  |  |  |  |



Table 53. Validation results per biomass range using EMAP AGB data spatially aggregated to 0.25° cells for the 2017 map.

| AGB <sub>ref</sub> bin | # cells | $AGB_{ref}$ | $AGB_{map}$ | MD   | RMSD |
|------------------------|---------|-------------|-------------|------|------|
| [Mg/ha]                | count   |             | [Mg/h       | a]   |      |
| 0-50                   | 1617    | 28          | 41          | 13   | 24   |
| 50-100                 | 1691    | 73          | 93          | 20   | 30   |
| 100-150                | 481     | 119         | 135         | 17   | 33   |
| 150-200                | 67      | 167         | 173         | 6    | 37   |
| 200-250                | 12      | 225         | 187         | -38  | 57   |
| 250-300                | 2       | 276         | 236         | -40  | 42   |
| 300-400                | 4       | 339         | 211         | -128 | 132  |
| total                  | 3874    | 62          | 79          | 16   | 29   |

To facilitate interpretation, the bias and RMSD estimates per map for different  $AGB_{ref}$  bins differentiated by Tier are shown in Table 54 and Table 55, respectively.

Figure 8. Legend for colour schemes used in summary tables of bias and RMSD.

| 2000 | Ref   | CCI Biomass Pro | oduct Validation & Intercomparison Report<br>v3 | biomass |
|------|-------|-----------------|-------------------------------------------------|---------|
| esa  | Issue | Page            | Date                                            | cci     |
|      | 1.0   | 58              | 23.05.2023                                      |         |

Figure 8 provides the legend for the colour schemes used in these tables.

Table 54 and Table 55 shows that for the mid-range of  $AGB_{ref}$ , bias is within 20% of  $AGB_{ref}$  for Tier 1 data (which is consistent with GCOS requirements (GCOS, 2015)) but not for Tier 2 or 3 data. For the range between 250 and 400 Mg/ha the bias is usually less than 30% of  $AGB_{ref}$ . At the lower and upper ends of the AGB range considered, bias always exceeds 20%. The RMSD exceeds 20% in all cases except for Tier 3 in 2015-2021 when  $AGB_{ref}$  exceeds 250-300 Mg/ha (Table 55). This means map error is dominated by the random component rather than the bias.

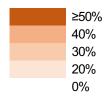



Figure 8. Legend for colour schemes used in summary tables of bias and RMSD.

| 2000 | Ref   | CCI Biomass Pro | oduct Validation & Intercomparison Report<br>v3 |
|------|-------|-----------------|-------------------------------------------------|
| esa  | Issue | Page            | Date                                            |
|      | 1.0   | 59              | 23.05.2023                                      |



Table 54. AGB bias [Mg/ha] differentiated per Tier and per AGB bin. Colour shading is based on relative bias; legend in Figure 8.

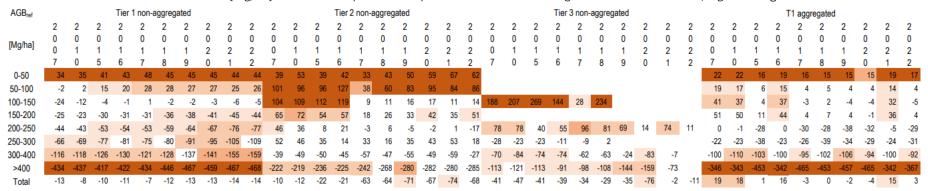
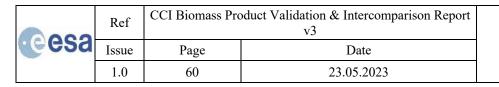




Table 55. Root mean square difference (RMSD) is differentiated per Tier and per AGB bin. Column headings are exactly the same as table above (Table 48)

|                    |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  | _                |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |
|--------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| AGB <sub>ref</sub> |                  |                  |                  | Tie              | r 1 non-aç       | ggregated        | i                |                  |                  |                  |                  |                  |                  | Tier             | 2 non-aç         | ggregate         | i                |                  |                  |                  |                  |                  |                  | Tie              | r 3 non-a        | aggregate        | ed               |                  |                  |                  |                  |                  |                  |                  | T1 aggre         | egated           |                  |                  |                  |                  |
| [Mg/ha]            | 2<br>0<br>0<br>7 | 2<br>0<br>1<br>0 | 2<br>0<br>1<br>5 | 2<br>0<br>1<br>6 | 2<br>0<br>1<br>7 | 2<br>0<br>1<br>8 | 2<br>0<br>1<br>9 | 2<br>0<br>2<br>0 | 2<br>0<br>2<br>1 | 2<br>0<br>2<br>2 | 2<br>0<br>0<br>7 | 2<br>0<br>1<br>0 | 2<br>0<br>1<br>5 | 2<br>0<br>1<br>6 | 2<br>0<br>1<br>7 | 2<br>0<br>1<br>8 | 2<br>0<br>1<br>9 | 2<br>0<br>2<br>0 | 2<br>0<br>2<br>1 | 2<br>0<br>2<br>2 | 2<br>0<br>0<br>7 | 2<br>0<br>1<br>0 | 2<br>0<br>1<br>5 | 2<br>0<br>1<br>6 | 2<br>0<br>1<br>7 | 2<br>0<br>1<br>8 | 2<br>0<br>1<br>9 | 2<br>0<br>2<br>0 | 2<br>0<br>2<br>1 | 2<br>0<br>2<br>2 | 2<br>0<br>0<br>7 | 2<br>0<br>1<br>0 | 2<br>0<br>1<br>5 | 2<br>0<br>1<br>6 | 2<br>0<br>1<br>7 | 2<br>0<br>1<br>8 | 2<br>0<br>1<br>9 | 2<br>0<br>2<br>0 | 2<br>0<br>2<br>1 | 2<br>0<br>2<br>2 |
| 0-50               | 68               | 68               | 71               | 72               | 75               | 69               | 70               | 70               | 68               | 69               | 96               | 116              | 97               | 93               | 77               | 92               | 99               | 106              | 123              | 106              |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  | 34               | 34               | 26               | 31               | 27               | 25               | 25               | 25               | 31               | 30               |
| 50-100             | 62               | 63               | 69               | 70               | 73               | 69               | 68               | 71               | 67               | 68               | 168              | 161              | 164              | 175              | 88               | 111              | 128              | 118              | 115              | 119              |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  | 41               | 42               | 28               | 40               | 28               | 28               | 28               | 27               | 40               | 30               |
| 100-150            | 89               | 88               | 85               | 84               | 82               | 80               | 82               | 81               | 77               | 77               | 164              | 164              | 163              | 163              | 43               | 28               | 22               | 31               | 39               | 48               | 188              | 207              | 269              | 144              | 28               | 234              |                  |                  |                  |                  | 110              | 109              | 82               | 110              | 75               | 79               | 74               | 75               | 104              | 74               |
| 150-200            | 117              | 119              | 107              | 105              | 105              | 103              | 102              | 101              | 99               | 99               | 139              | 142              | 129              | 128              | 90               | 104              | 117              | 113              | 117              | 126              |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  | 146              | 144              | 120              | 141              | 115              | 117              | 116              | 114              | 130              | 112              |
| 200-250            | 141              | 141              | 130              | 128              | 129              | 130              | 129              | 130              | 127              | 125              | 126              | 123              | 96               | 105              | 83               | 99               | 114              | 110              | 130              | 124              | 93               | 119              | 45               | 62               | 110              | 88               | 69               | 14               | 74               | 11               | 121              | 117              | 110              | 123              | 113              | 111              | 106              | 112              | 121              | 103              |
| 250-300            | 159              | 157              | 147              | 145              | 147              | 150              | 154              | 157              | 156              | 157              | 127              | 126              | 86               | 89               | 95               | 91               | 90               | 108              | 102              | 82               | 59               | 47               | 31               | 29               | 31               | 23               |                  |                  |                  |                  | 105              | 104              | 109              | 106              | 111              | 108              | 113              | 108              | 106              | 109              |
| 300-400            | 194              | 192              | 183              | 183              | 182              | 184              | 193              | 194              | 200              | 199              | 142              | 113              | 110              | 113              | 114              | 108              | 109              | 112              | 105              | 126              | 105              | 112              | 80               | 84               | 91               | 74               | 24               | 83               | 7                |                  | 144              | 152              | 148              | 147              | 142              | 148              | 149              | 142              | 147              | 138              |
| >400               | 736              | 734              | 691              | 700              | 731              | 745              | 766              | 757              | 764              | 757              | 329              | 327              | 339              | 340              | 362              | 391              | 398              | 400              | 416              | 405              | 120              | 136              | 114              | 94               | 111              | 115              | 144              | 159              | 73               |                  | 425              | 420              | 600              | 423              | 618              | 600              | 579              | 618              | 423              | 448              |
| Total              | 137              | 139              | 155              | 162              | 170              | 177              | 180              | 178              | 171              | 168              | 188              | 184              | 180              | 185              | 198              | 210              | 219              | 222              | 238              | 232              | 104              | 113              | 93               | 79               | 87               | 93               | 102              | 104              | 60               | 11               | 64               | 64               | 87               | 62               | 97               | 87               | 86               | 98               | 61               | 64               |





## 3.4. Assessments by ecoregion

To allow assessments of validation results over different ecoregions, spatially aggregated comparisons of  $AGB_{ref}$  and  $AGB_{map}$  were stratified by biomes (Dinerstein et al., 2017). The 2010 and 2021 results are presented in Figure 9 and Figure 10, while the 2015-2020 results are omitted due to their similarity with the 2021 results. Several strata had limited data or no data at all (e.g., deserts, flooded grassland, etc.). These cases are not included here.

For the boreal forests, mangroves, temperate grassland savannas and shrublands and tundra biomes, reasonable fits with minor over-predictions are found in the lower AGB ranges. A few plots in the boreal and tundra (arctic zones) exhibit high biomass while the map is depicting very low biomass. A reason for this is the new arctic dataset which with a few plots having high biomass estimates. Map over- and under-prediction are mostly present in tropical and subtropical dry broadleaf forest and and temperate broadleaf and mixed forest. Note that data in the dry tropical regions are limited, which hampers drawing solid conclusions. Spikes of map under-prediction are also found in tropical and subtropical grasslands, which is the opposite of the previous version where over-prediction was observed in these biomes. Under-prediction was also observed in Mediterranean forests, woodland and scrub around the 120 Mg/ha bin. The AGB<sub>ref</sub> density at which under-prediction starts differs by biome. For boreal forests, saturation of AGB<sub>map</sub> occurs at approximately 110 Mg/ha, for example. The strong similarity of results for the temperate broadleaf and mixed forests biome (Figures 9-10) with those of the spatially aggregated results obtained with the Tier 1 data (Figure 5) was already mentioned above. Such similarity is also present between results from tropical and subtropical moist broadleaf forest and results from Tier 2 and LiDAR/CoFor.





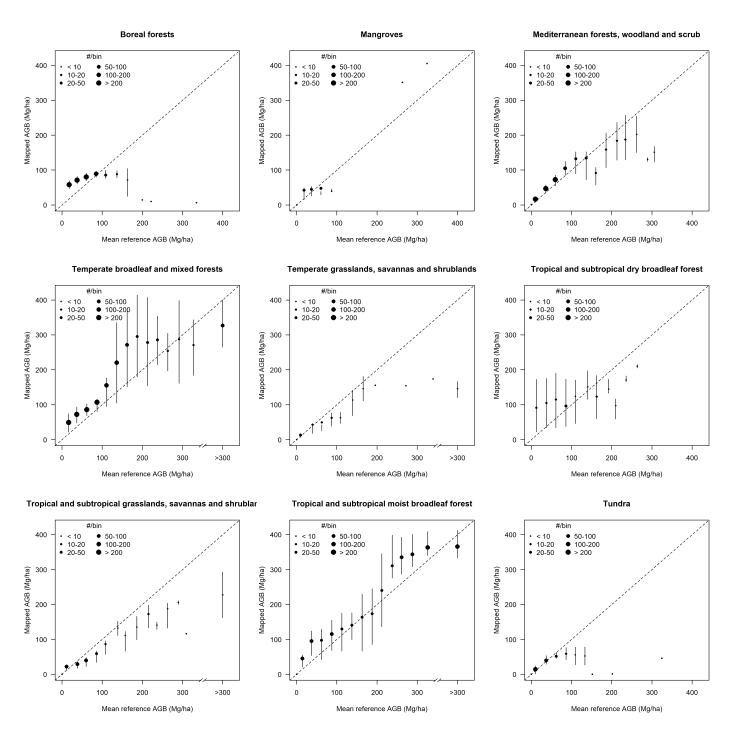
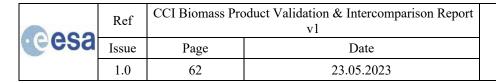




Figure 9. Comparisons between  $AGB_{ref}$  and the 2010 AGB map per biome (Dinerstein et al., 2017) using all available data binned over 25 Mg/ha wide biomass ranges with whiskers representing the interquartile range of mapped biomass values and symbol size representing the number of 0.1° cells per biomass range.





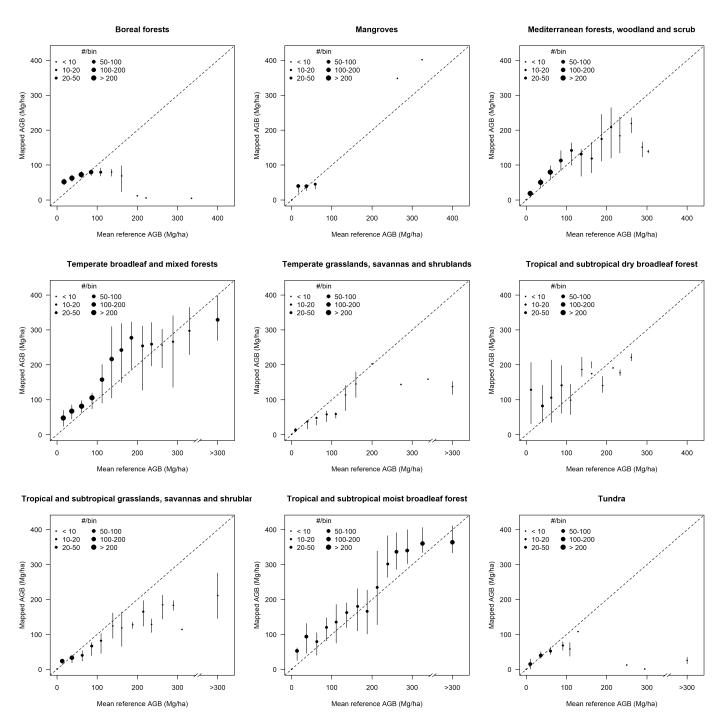
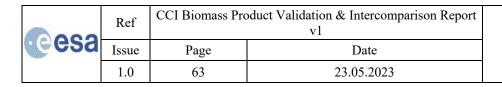




Figure 10. Comparisons between  $AGB_{ref}$  and the 2021 AGB map per biome (Dinerstein et al., 2017) using all available data binned over 25 Mg/ha wide AGB ranges with whiskers representing the interquartile range of mapped AGB values and symbol size representing the number of 0.1° cells per AGB range.

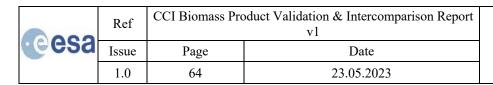




### 3.5. User-led validation

Two recent user-led independent map validations using own country data are reported here.

#### 3.5.1. Forest Enterprise, near Moscow, Russia


The Schelkovo Forest Enterprise lies northeast of Moscow (37.7°-38.5° E, 55.8°-56.2° N). A stand-wise forest management inventory was completed in 2020. Forest inventory professionals compared the previous inventory's forest map (2004) to recent very high-resolution imagery, updating polygons where canopy changes were detected. During the field campaign, every polygon (whether changed or stable) was visited to record updated forest descriptions, including species composition and growing stock volume, with a target error of  $\leq$  15%.

Aboveground biomass (AGB) for each forest stand (polygon) was calculated from growing stock volume, species, site index and stand age. These stand level polygons were then rasterised to 10 m pixels and aggregated to a 100 m grid, retaining only pixels entirely covered by ground-truth data. This process yielded approximately 28,000 CCI Biomass pixels.

Notably, a series of bark beetle outbreaks in the area caused significant tree mortality followed by partial recovery, complicating mapping efforts. There is some temporal mismatch between forest loss recorded with CCI AGB and very high-resolution imagery.

Table 56. Validation results using the Schelkovo reference dataset: comparison of CCI Biomass v5 and v6.

| Inventory A | AGB     | CCI-AGB_ | _v5  | CCI-AGB_ | # pixels |       |
|-------------|---------|----------|------|----------|----------|-------|
| range       | Average | AGB      | RMSD | AGB      | RMSD     |       |
| 1-25        | 16      | 82       | 85   | 86       | 89       | 1604  |
| 26-50       | 38      | 108      | 90   | 112      | 94       | 2487  |
| 51-75       | 64      | 135      | 91   | 139      | 96       | 3312  |
| 76-100      | 89      | 148      | 81   | 155      | 88       | 4409  |
| 101-125     | 113     | 151      | 64   | 160      | 72       | 5303  |
| 126-150     | 138     | 155      | 54   | 162      | 60       | 5449  |
| 151-175     | 162     | 166      | 47   | 174      | 54       | 3995  |
| 176-200     | 184     | 175      | 44   | 187      | 49       | 1281  |
| Total       | 107     | 145      | 99   | 152      | 107      | 28033 |





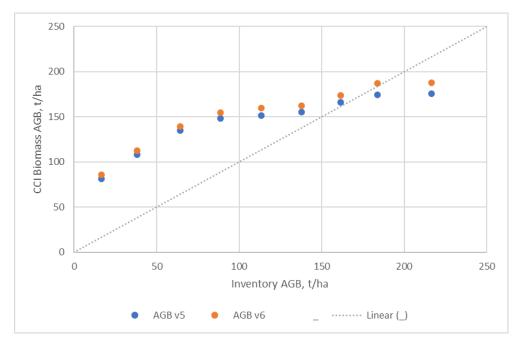
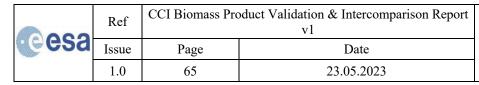



Figure 11. Binned scatterplots of the comparisons between Schelkovo reference dataset and the two CCI Biomass versions.


Both AGB estimations overstate biomass across most of the range, except at the highest values. This overestimation is slightly greater in v6, although v6 more accurately captures high-biomass stands.

## 3.5.2. GEO-TREES plots in Russia

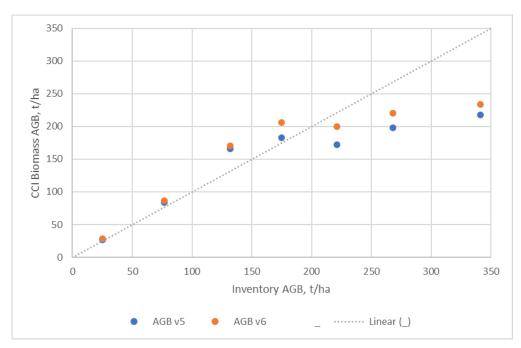
The GEO-TREES network (https://data.geo-trees.org/) provides open access to large (> 0.25 ha) research plots with accurate geolocation. In Russia, 184 plots are available. Validation results (Table 57) show that CCI-Biomass underestimates AGB above 200 t/ha, although this bias is reduced in v6 compared to v5.

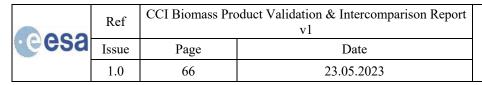
Table 57. Agreement between GEO-TREES research plots and CCI Biomass AGB data

| Inventory AGB |         | CCI-AGB_v5 |      | CCI-AG | #    |        |
|---------------|---------|------------|------|--------|------|--------|
| Range         | Average | AGB        | RMSD | AGB    | RMSD | pixels |
| 1-50          | 25      | 26         | 22   | 28     | 21   | 16     |
| 51-100        | 77      | 84         | 63   | 86     | 62   | 20     |
| 101-150       | 132     | 166        | 68   | 170    | 70   | 38     |
| 151-200       | 175     | 183        | 49   | 206    | 52   | 44     |
| 201-250       | 221     | 172        | 75   | 200    | 60   | 41     |
| 251-300       | 268     | 198        | 84   | 221    | 64   | 20     |
| 301-380       | 341     | 218        | 127  | 233    | 112  | 5      |
| Total         | 167     | 155        | 95   | 171    | 86   | 184    |









Figure 12. Binned scatterplots of the comparing the GEO-Trees reference dataset with CCI Biomass versions 5 and 6. CCI-Biomass version 6 provides higher Above Ground Biomass estimates and a smaller RMSD than Version 5. However, it still overestimates in low biomass forests and underestimates in high biomass forests.

#### 3.5.3. Comparison with the Brazil National Forest Inventory

#### Data and methods

The Brazilian National Forest Inventory (Inventário Florestal Nacional – IFN) is an ongoing, nationwide survey coordinated by the Serviço Florestal Brasileiro. It is based on a systematic sampling design using a 20 × 20 km grid that spans all Brazilian biomes, comprising more than 10,000 sampling points. As of December 2024, the IFN has surveyed approximately 513 million hectares of both natural and planted forests across Brazil. This effort includes measurements of over 900,000 individual trees, the identification of around 8,400 species—including 13 newly described ones—and socio-environmental interviews with more than 38,000 community members. Biome-level coverage currently includes 100% of the Pampa, 78% of the Cerrado, 71% of the Caatinga, 58% of the Atlantic Forest (Mata Atlântica), and 44% of the Amazon, with the Pantanal scheduled for complete coverage next (Serviço Florestal Brasileiro, n.d.)

Each standard plot consists of four subplots, positioned 50 meters from the plot center in cardinal directions. Within each subplot, ten sampling parcels are established, each measuring  $10 \times 10$  meters (0.01 hectares). This results in a sampling area of 0.1 hectares per subplot, and consequently 0.4 hectares per plot under the standard design (Figure 13). In the Amazon biome, the sampling intensity is increased to account for the presence of larger trees. An additional ten parcels per subplot are established specifically to sample trees with a diameter at breast height (DBH) greater than 40 cm. This expansion doubles the sampling area to 0.2 hectares per subplot, resulting in a total of 0.8 hectares per plot. The total plot area (including both sampled and unsampled ground) is  $200 \times 200$  meters (4 hectares) under the standard configuration, and  $300 \times 300$  meters (9 hectares) in the Amazon biome, where larger plots accommodate the increased sampling effort (Serviço Florestal Brasileiro, 2021).





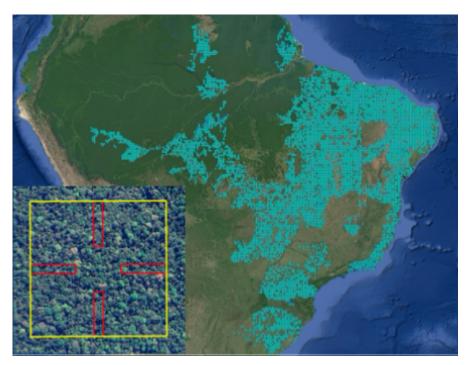



Figure 13. Plot design and spatial distribution of currently available NFI plots. The yellow area represents the total plot extent (4 ha), while the red rectangles indicate subplots covering 20 × 50 m each.

In this exercise, we used tree-level data available through the web-portal of the Serviço Florestal Brasileiro. Using tree measurements (DBH and tree height) we estimated the aboveground biomass of individual trees based on Chave *et al.* (2014) pan-tropical allometric equation:

For wood density (wd), we applied a mean value of 0.632 g/cm<sup>3</sup>, representative for South American Tropical forests of Chave et al. (2009). Total biomass was then calculated by summing the estimated tree-level AGB within each subplot or plot and normalized to a per-hectare basis.

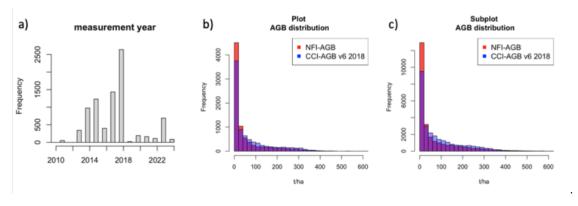
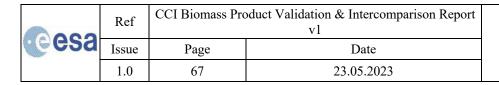




Figure 14. plots (a); AGB distribution from the NFI at the plot (b) and at the subplot levels (c) with corresponding estimates from the CCI Biomass v6 2018 product.

Since the majority of NFI plots were sampled in 2018 (Figure 14a), we used the CCI Biomass Version 6 product from the same year for comparison.

The pixel size of CCI Biomass product (100x100 m) does not match the dimensions of a plot or subplot, therefore, we extracted the mean value of the CCI biomass map over each corresponding (sub)plot area.





#### Results

Agreement between the NFI data and the ESA CCI product improves from the subplot- to plot-level estimates. Aggregating subplot data to the plot-level reduces the variability associated with smaller sampling units and helps to mitigate the impact of outliers (

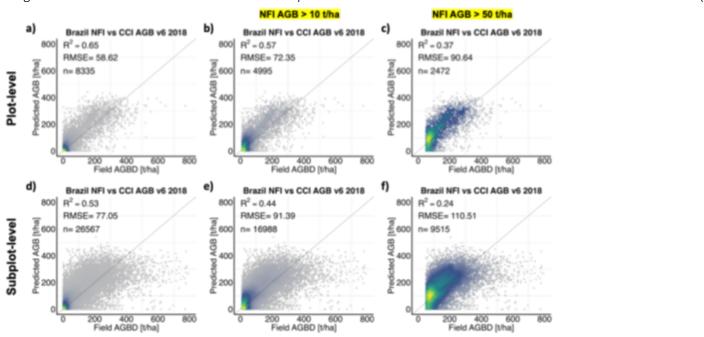
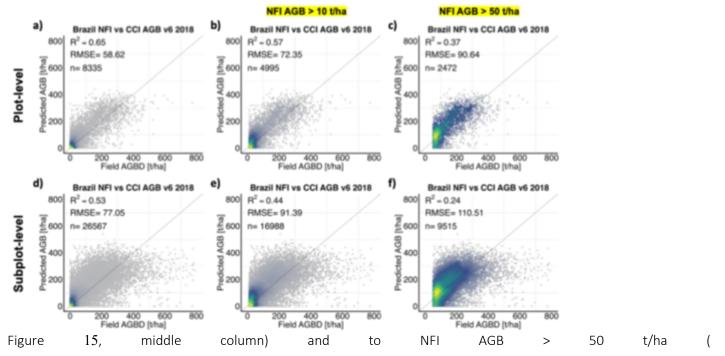
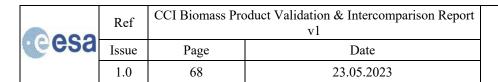





Figure 15). As many NFIs plots possess low AGB values (<10 t/ha), we truncated the data to NFI AGB > 10 t/ha (







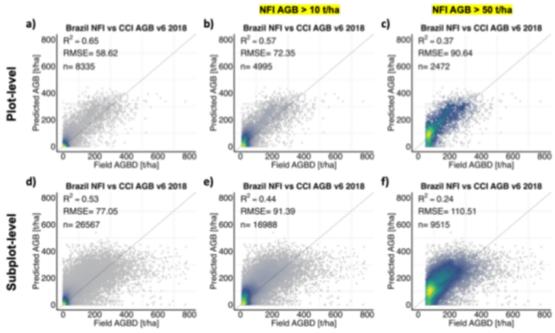
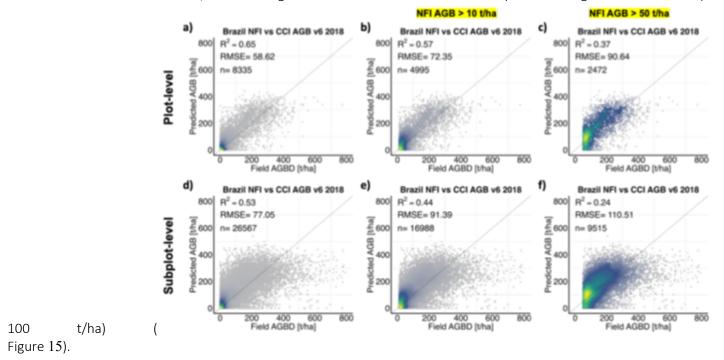
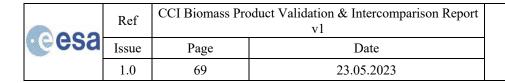





Figure 15, right column). The relatively high correlation observed when using the full dataset is likely driven by the large number of plots with low biomass (<50 t/ha). When these low biomass plots are excluded, the correlation between NFI and ESA CCI estimates decreases, and show a general overestimation of the ESA CCI product at higher biomass levels (>







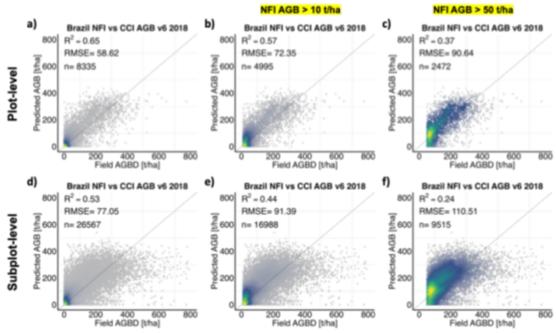



Figure 15. Comparison between Brazilian NFI and the ESA CCI Biomass v6 2018 product at the plot level (top row) and subplot level (bottom row). To address the high frequency of low AGB values in the NFI data (<10 t/ha), comparisons are also shown for subsets where NFI AGB exceeds 10 t/ha (middle column) and 50 t/ha (right column).

Finally, we evaluated the ESA CCI-Biomass product on an aggregated, binned scale. For this, we first divided the NFI values into 100 equal-sized percentile bins. For each bin, we then calculated the median NFI value, the median CCI estimate, and the standard deviation of the CCI values (displayed as error bars) (Figure 16). As in the full-data scatterplot

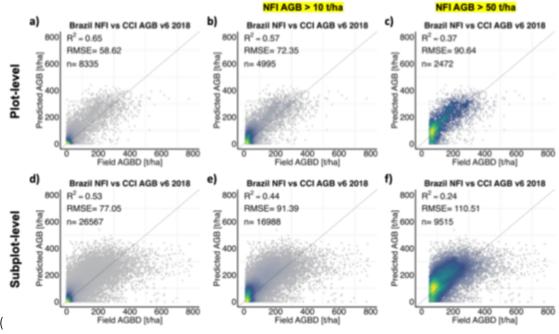
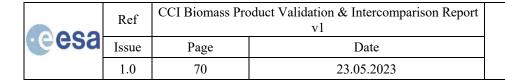




Figure 15), the ESA CCI product slightly overestimates AGB in the low-to-mid range (<200 t/ha). In contrast, it underestimates biomass at very high values (>250 t/ha), although those estimates are based on relatively few samples.





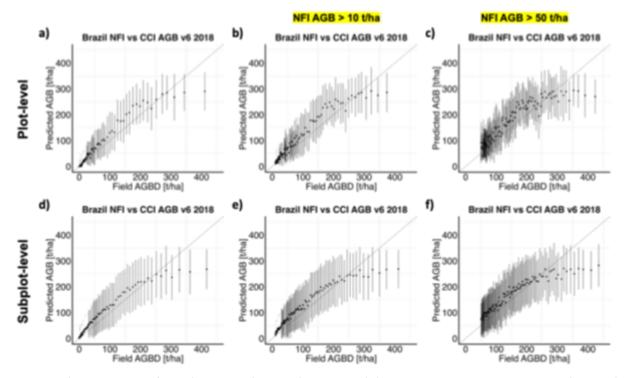



Figure 16. Binned comparison of AGB between the Brazilian NFI and the ESA CCI Biomass v6 2018 product at the plot level (top row) and subplot level (bottom row). NFI values were divided into 100 equal-sized percentile bins; for each bin, median NFI and CCI AGB are plotted, with CCI standard deviations shown as error bars. Panels show (left) all data, (middle) NFI AGB > 10 t/ha, and (right) NFI AGB > 50 t/ha.

Bearing in mind that the Brazilian NFI represents a fully independent reference dataset, the ESA CCI biomass product shows a strong agreement in the low-to-mid biomass range (0-200 t/ha), with only a very slight positive bias. As expected, at very high biomass range (250-300 t/ha), it is challenging to resolve the full biomass distribution. Currently, only a limited number of field plots exist in undisturbed Amazonian forests; as more plots are collected and made available over time, sampling density will increase and our understanding of the limitations of global remote-sensing biomass maps will improve.

# 3.6. Summary tables of the assessments by ecoregion

To facilitate interpretation of the AGB maps, we here summarise the bias and RMSD estimates for different  $AGB_{ref}$  bins by biome. Given the similarity in the results of the 2015-2020 maps, only the 2010 and the 2021 comparisons are shown, see Tables 58-61.

The tables re-emphasize our overall finding that in the lower and higher AGB ranges the bias and RMSD are larger than in the mid-ranges. The bias for the mid-ranges for most biomes is around or below 20%, while the RMSD is above 20%.

The quantity of available reference information differs for different regions and there is lower confidence for some with limited reference data, including the (sub-)tropical dry forests and grasslands, mangroves, temperate grasslands and tundra.

| 2000 | Ref   | CCI Biomass Pro | oduct Validation & Intercomparison Report<br>v1 | biomass |
|------|-------|-----------------|-------------------------------------------------|---------|
| esa  | Issue | Page            | Page Date                                       |         |
|      | 1.0   | 71              | 03.11.2019                                      |         |

Table 58. AGB bias [Mg/ha] per biome and per AGB bin for the 2010 map. Colour shading is as in Figure 8.

AGB<sub>ref</sub>

| [Mg/ha] | Ange & | Werdore | Medieranear | Termelate Michael | Terrographs state that | ads Hidrorical substitution less | (triple and place and | (cold art choid not be | \$ Turks |
|---------|--------|---------|-------------|-------------------|------------------------|----------------------------------|-----------------------|------------------------|----------|
| 0-50    | 35     | 414     | 7           | 34                | 3                      | 73                               | 0                     | 46                     | 3        |
| 50-100  | 16     | -18     | 14          | 22                | -20                    | 430                              | -23                   | 431                    | -17      |
| 100-150 | -30    |         | 11          | 60                | -35                    | 13                               | -16                   | 11                     | -59      |
| 150-200 | -102   |         | -47         | 109               | -27                    | -42                              | -48                   | -6                     | -152     |
| 200-250 | -212   |         | -38         | 58                |                        | -89                              | -58                   | 55                     | -200     |
| 250-300 |        | 88      | -89         | -6                | -118                   | -53                              | -77                   | 64                     |          |
| 300-400 | -328   | 81      | -154        | -62               | -218                   |                                  | -159                  | 22                     | -279     |
| >400    |        |         |             | -369              | -226                   |                                  |                       | -85                    |          |
| Total   | 26     | 5       | 7           | 29                | -24                    | 22                               | 42                    | 43                     | -5       |

Table 59. Root mean square difference (RMSD) per biome and per AGB bin for the 2010 map. Colour shading is based on the legend shown in Figure 8; column headings are as above.

AGB<sub>ref</sub>

| [Mg/ha] | <b>Pade</b> sy | Moragone | Mediteranean | Terrelate dirited | Temperate scheme | ands atthropical strategical s | Topica and place and | cold and product for | si<br>Ludio |
|---------|----------------|----------|--------------|-------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------|-------------|
| 0-50    | 39             | 41       | 13           | 49                | 20               | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20                   | 67                   | 15          |
| 50-100  | 23             | 47       | 27           | 44                | 43               | 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 38                   | 68                   | 30          |
| 100-150 | 38             |          | 83           | 123               | 55               | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 48                   | 68                   | 72          |
| 150-200 | 114            |          | 86           | 173               | 59               | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 79                   | 94                   | 152         |
| 200-250 | 212            |          | 88           | 151               |                  | 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 80                   | 124                  | 200         |
| 250-300 |                | 88       | 117          | 117               | 118              | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 92                   | 101                  |             |
| 300-400 | 328            | 81       | 160          | 115               | 220              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 191                  | 75                   | 279         |
| >400    |                |          |              | 451               | 226              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 139                  |             |
| Total   | 36             | 44       | 24           | 98                | 66               | 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 43                   | 88                   | 34          |

| <b>13000</b> | Ref   | CCI Biomass Pro | oduct Validation & Intercomparison Report<br>v1 | biomass |  |
|--------------|-------|-----------------|-------------------------------------------------|---------|--|
| esa          | Issue | Page            | Date                                            | cci     |  |
|              | 1.0   | 72              | 03.11.2019                                      |         |  |

Table 60. AGB bias [Mg/ha] per biome and per AGB bin for the 2021 map. Colour shading is as in Figure 8.

| AGD <sub>ref</sub> |      |         |             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                        |                      |               |
|--------------------|------|---------|-------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------|----------------------|---------------|
| [Mg/ha]            | Adea | Mardone | Medierarear | Terrolitie de linited | And the state of t | and Topical production | A TOO CO SUITO GO SAND | registand broked for | set<br>Tundto |
| 0-50               | 28   | 11      | 10          | 31                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 68                     | 3                      | 48                   | 4             |
| 50-100             | 8    | -14     | 21          | 19                    | -23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 49                     | -21                    | 25                   | -12           |
| 100-150            | -35  |         | 13          | 58                    | -38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25                     | -23                    | 25                   | -46           |
| 150-200            | -103 |         | -28         | 85                    | -10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -16                    | -49                    | -3                   |               |
| 200-250            | -216 |         | -21         | 33                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -48                    | -66                    | 47                   | -237          |
| 250-300            |      | 85      | -84         | -15                   | -128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -40                    | -83                    | 62                   | -294          |
| 300-400            | -330 | 77      | -164        | -51                   | -227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        | -172                   | 19                   | -384          |
| >400               |      |         |             | -371                  | -232                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |                        | -85                  | -531          |
| Total              | 19   | 8       | 10          | 25                    | -24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 44                     | 41                     | 43                   | -10           |
|                    |      |         |             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                        |                      |               |

Table 61. Root mean square difference (RMSD) per biome and per AGB bin for the 2021 map. Colour shading is is as in Figure 8; column headings are as above.

| [Mg/ha] | <b>Boles</b> | Weldone | Mediteranear | Terrotede allrived | ndere state state state | ode tolical production | d coird and place and | logist story hodes for | şi. |
|---------|--------------|---------|--------------|--------------------|-------------------------|------------------------|-----------------------|------------------------|-----|
| 0-50    | 32           | 31      | 16           | 46                 | 18                      | 103                    | 19                    | 74                     | 16  |
| 50-100  | 18           | 32      | 36           | 48                 | 42                      | 96                     | 40                    | 61                     | 27  |
| 100-150 | 42           |         | 87           | 62                 | 59                      | 62                     | 56                    | 71                     | 57  |
| 150-200 | 115          |         | 81           | 64                 | 50                      | 77                     | 82                    | 82                     |     |
| 200-250 | 216          |         | 91           | 85                 |                         | 52                     | 89                    | 119                    | 237 |
| 250-300 |              | 85      | 118          | 149                | 128                     | 45                     | 98                    | 100                    | 294 |
| 300-400 | 330          | 77.     | 165          | 181                | 229                     |                        | 200                   | 75                     | 384 |
| >400    |              |         |              | 581                | 232                     |                        |                       | 139                    | 531 |
| Total   | 31           | 32      | 26           | 98                 | 64                      | 92                     | 42                    | 87                     | 62  |

## 3.7. AGB map intercomparison

AGR .

AGB<sub>ref</sub>

In this section, we assess the stability of map error among the current (Version 6) seven CCI-Biomass AGB products, compare Version 6 with the Version 5 products, and compare the CCI maps with other AGB map products.

## 3.7.1 Stability of AGB<sub>map</sub> – AGB<sub>ref</sub> differences among the 2007, 2010 and 2015-2022 AGB products

According to the World Meteorological Organization (2011), the user requirement for stability is in general a requirement on the extent to which the error of a product remains constant over a longer period. To assess stability of plot-map differences over the map years, Figure 17 illustrates the residuals between plot-based and mapped AGB aggregated to 0.1° for all combinations of map years. Most pairs, particularly 2007 and 2010 and 2015 to 2018 and 2019 to 2022, show

| 2000 | Ref   | CCI Biomass Pro | oduct Validation & Intercomparison Report<br>v1 | biomass |
|------|-------|-----------------|-------------------------------------------------|---------|
| esa  | Issue | Page            | Date                                            | cci     |
|      | 1.0   | 73              | 03.11.2019                                      |         |

strong agreement with R<sup>2</sup> values above 0.90, indicating high temporal consistency. In contrast, the 2020 map shows lower correlation with other years, including adjacent ones like 2021 and 2022. This suggests a disruption in stability specific to 2020, possibly due to changes in input data or processing methods. Outside of this anomaly, the remaining maps show a generally stable behavior over time.

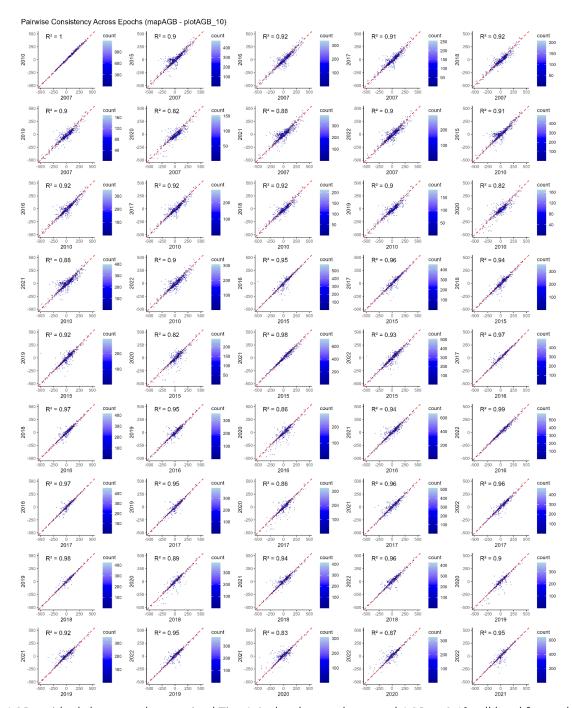



Figure 17. AGB residuals between harmonized Tier 1-3 plot data and mapped AGB at 0.1° cell level for each pair of map reference years. The red dashed line is the 1:1 line.

The map producer may want to know where the largest instabilities in the residuals occur. Such information is provided in Figure 17 where the locations of the 5% most negative differences between the 2010 and 2017 products (2010 - 2017;

|     | Ref   | CCI Biomass Product Validation & Intercomparison Report v1 |            |  |  |
|-----|-------|------------------------------------------------------------|------------|--|--|
| esa | Issue | Page                                                       | Date       |  |  |
|     | 1.0   | 74                                                         | 03.11.2019 |  |  |



i.e., points above the 1:1 diagonal in Figure 17) are plotted as red circles whilst the 5% largest positive differences (i.e., points below the 1:1 diagonal) are shown by blue crosses. Several sites have entirely either large positive or large negative differences but in other places, such as east Australia, Madagascar, the northern Balkans and Mexico (Yucatán), both extremes occur close to one another. Figure 19 is a virtually identical figure showing the locations of cells with the most extreme differences between 2010 and 2018 residuals while Figure 20 does so for the 2017 and 2018 residuals. This analysis is part of the previous PVIR.

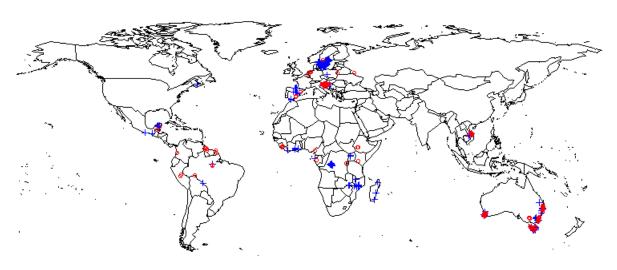



Figure 18. Locations of  $0.1^{\circ}$  cells with the most extreme differences between residuals in the 2010 and 2017 AGB products (2010 – 2017). The 5% cells with the most negative differences (i.e., 2017 > 2010) are indicated in red whilst the 5% largest positive differences (i.e., 2017 < 2010) are shown in blue.

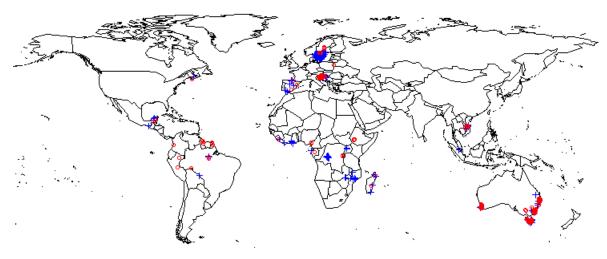



Figure 19. Locations of  $0.1^{\circ}$  cells with the most extreme differences between residuals in the 2010 and 2018 AGB products (2010 - 2018). The 5% cells with the most negative differences (i.e., 2018 > 2010) are indicated in red whilst the 5% largest positive differences (i.e., 2018 < 2010) are shown in blue.

|     | Ref   | CCI Biomass Pro | oduct Validation & Intercomparison Report<br>v1 |  |
|-----|-------|-----------------|-------------------------------------------------|--|
| esa | Issue | Page            | Date                                            |  |
|     | 1.0   | 75              | 03.11.2019                                      |  |



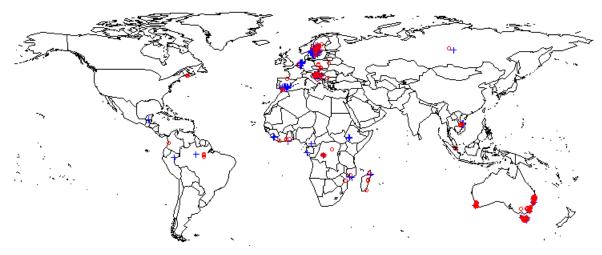



Figure 20. Locations of  $0.1^{\circ}$  cells with the most extreme differences between residuals in the 2017 and 2018 AGB products (2017 – 2018). The 5% cells with the most negative differences (i.e., 2018 > 2017) are indicated in red whilst the 5% largest positive differences (i.e., 2018 < 2017) are shown in blue.

### 3.7.2. Comparison of current maps with previous 2010, 2017 and 2018 AGB products

Figure 21 shows the global  $AGB_{map}$  -  $AGB_{ref}$  comparisons spatially aggregated to 0.1° and binned over 25 Mg/ha wide AGB ranges for CCI Biomass Versions 5 and 6 in two epochs. The new map version exhibits less underestimation in the highest AGB bins and a very slight overestimation from 110 to 310 Mg/ha bins.

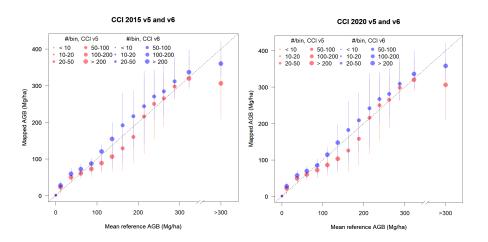



Figure 21. Global  $AGB_{map}$  -  $AGB_{ref}$  comparisons for 2015 and 2020 based on inverse variance weighted Tier 0-3 plot data spatially aggregated to 0.1° cells.

Figure 22 presents a visual intercomparison of AGB estimates from versions 4, 5, and 6 of the CCI Biomass product. Colors represent spatial agreement or divergence among the versions: white indicates strong agreement in high biomass areas, while dark tones indicate agreement in low biomass regions. Regions with reddish hues suggest that Version 6 differs from Versions 4 and 5, while green and blue highlight where Versions 5 and 4, respectively, deviate. Purple and brownish zones show closer alignment between specific version pairs, notably v6 with v4 or v5.

| <b>2</b> 000 | Ref   | CCI Biomass Product Validation & Intercomparison R v1 |            |  |  |
|--------------|-------|-------------------------------------------------------|------------|--|--|
| esa          | Issue | Page                                                  | Date       |  |  |
|              | 1.0   | 76                                                    | 03.11.2019 |  |  |



CCI 2020: R=v6, G=v5, B=v4

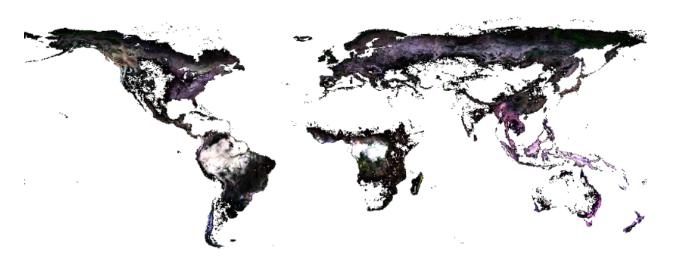



Figure 22. Spatial Agreement and Divergence Among CCI Biomass Product Versions (v4, v5, v6)

#### 3.7.3. Comparison of the CCI maps with other AGB products

Figure 23 shows the global  $AGB_{map}$  -  $AGB_{ref}$  comparisons spatially aggregated to 0.1° using Tier 1-3 data and binned over 25 Mg/ha wide AGB ranges for CCI 2020 map and other AGB products. Comparison with the 2020 JPL AGB map (Xu et al. 2021) is in the left plot and with the 2020 AGB GEDI map on the right (Duncanson et al. 2022). Both show the non-CCI maps have higher overestimation at the lower biomass ranges and slightly lesser underestimation >300 Mg/ha. The GEDI map needed reprojection into WGS 84 and resamping from 0.001° to 0.1° using the average of all pixels. The JPL map by default has a spatial resolution of 0.1° so no pre-processing was needed.

| <b>A</b> 000 | Ref   | CCI Biomass Product Validation & Intercomparison Report v1 |            |  |  |  |
|--------------|-------|------------------------------------------------------------|------------|--|--|--|
| esa          | Issue | Page                                                       | Date       |  |  |  |
|              | 1.0   | 77                                                         | 03.11.2019 |  |  |  |



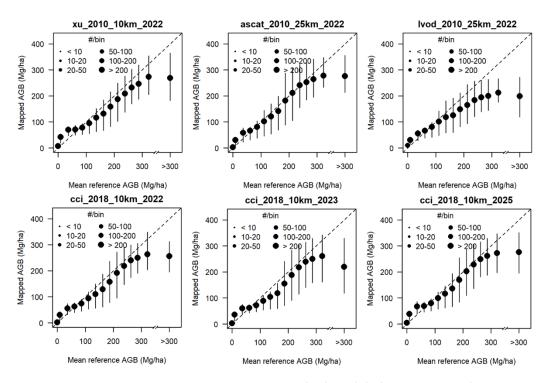



Figure 23. Compaisons among versions and other global AGB map products.

### 3.8. Within-pixel sampling error

Using the forest-only LiDAR-derived AGB data from forest sites in Remningstorp, Sweden (Ulander et al., 2011), and Lope, Gabon (Hajnsek et al., 2017), the variograms shown in Figure 24 were estimated. The Remningstorp variogram was modelled by two exponential structures with partial sills of 3579 and 1899 Mg² ha⁻² and range parameters of 95 and 531 m, respectively. The Lope variogram was modelled by a 4053 Mg² ha⁻² nugget and a single exponential structure with partial sill of 10553 Mg² ha⁻² and a range parameter of 85 m. Note that the effective range of an exponential variogram is approximately three times the range parameter.

Not surprisingly, the tropical high biomass Lope site has much larger short-range spatial variation than the boreal Remningstorp site (note the different scales on the y-axes).

|     | Ref   | CCI Biomass Pro | CCI Biomass Product Validation & Intercomparison Report v1 |  |  |
|-----|-------|-----------------|------------------------------------------------------------|--|--|
| esa | Issue | Page            | Date                                                       |  |  |
|     | 1.0   | 78              | 03.11.2019                                                 |  |  |



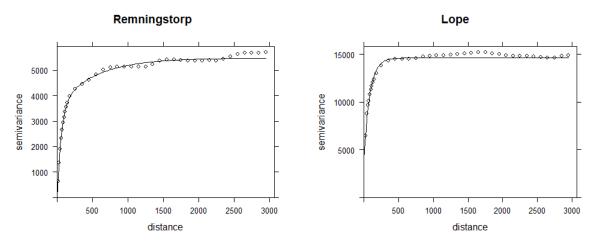



Figure 24. Variograms for the Remningstorp and Lope forest sites. Open dots indicate the experimental variogram and the solid lines represent the fitted models.

Based on the variograms, and assuming single plots with the size of the LiDAR footprints (i.e., 0.01 ha for Remningstorp and 0.04 ha for Lope) centred in 1 ha AGB map pixels, the variance of the plots was found to be 1421 and 6714  $Mg^2$  ha<sup>2</sup> for the two sites. Hence, the standard deviations amount to 38 and 82 Mg/ha, respectively, which is not negligible.

As demonstrated in the PUG (Santoro, 2020), within-pixel sampling error may suggest map bias even if the map provides a perfect representation of mean AGB at 1 ha spatial support. To replicate this issue using a geostatistical approach, Figure 25 shows a scatterplot of 0.04 ha plot AGB values on the x-axis centred and conditioned on 1 ha pixels that are plotted on the y-axis. The pixel values are in the range 10 to 400 Mg/ha and the plot values are drawn from Gaussian populations with mean given by the pixel value and variance and spatial correlation given by the Lope variogram. Any negative value drawn from a Gaussian population was set to zero.

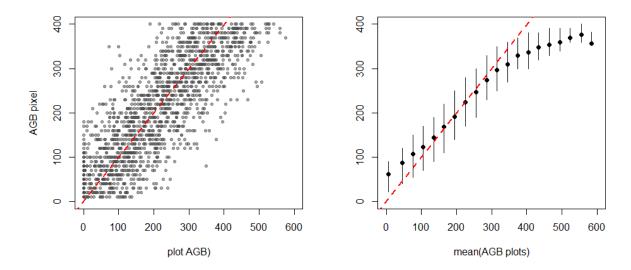
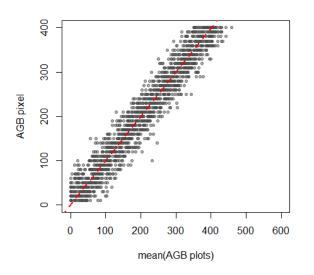



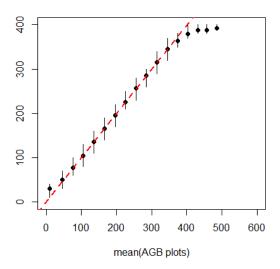

Figure 25. Scatterplot of 0.04 ha plot values conditioned on 1 ha pixel values (left) and binned over 30 Mg/ha wide biomass ranges with dots representing mean AGB and whiskers representing the interquartile range of pixel biomass values for plots inside the bins (right). The dashed red lines are 1:1 lines.

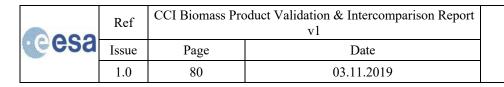
The scatterplot and the interquartile whisker plot in Figure 25 suggest the pixel overestimates low AGB and underestimates high AGB at plot level. However, the plot data were conditioned on the pixel data. Therefore, the observed effect is entirely due to the within-pixel sampling error.

| 2000 | Ref   | CCI Biomass Pro | oduct Validation & Intercomparison Report<br>v1 | biomass |
|------|-------|-----------------|-------------------------------------------------|---------|
| esa  | Issue | Page            | Date                                            | cci     |
|      | 1.0   | 79              | 03.11.2019                                      |         |

The above effect reduces substantially if multiple plots are used to represent a pixel. To demonstrate this, the above experiment was repeated with five plots regularly spread over the pixel. In Figure 26, the means of the AGB from five plots are on the x-axis, while the conditioning pixel values are on the y-axis. In this figure, the bias observed in Figure 25 is mostly absent, except for the far ends of the AGB range.







Figure 26. Scatterplot of the mean of 0.04 ha plot values conditioned on 1 ha pixel values (left) and binned over 30 Mg/ha wide biomass ranges with dots representing mean AGB and whiskers representing the interquartile range of pixel AGB values (right). The dashed red lines are 1:1 lines.

The reasons for including this section in the PVIR are: (1) to corroborate the experiment shown in the PUG (Santoro, 2020) and (2) to demonstrate a method for diagnosing the within-pixel sampling error and show the importance of taking it into account when validating map pixels with data from small plots. For the latter, we need variography for the different environmental circumstances (e.g., biomes), which can be obtained from small footprint (0.01-0.04 ha) LiDAR-derived AGB data, such as the data used in this section. Currently, we have such data only for a single boreal forest site and one site in a tropical forest. More data in these biomes as well as other biomes are needed to routinely account for the within-pixel sampling variance in  $AGB_{map} - AGB_{ref}$  comparisons.

### 3.9. Next steps

For the upcoming map validation exercises the following can be prioritized:

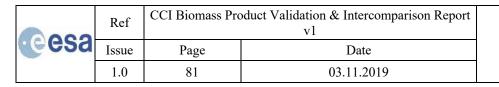
- Continuous updating of the reference database to include additional years
- Scope a concept for collecting and comparing reference and map-based estimates for biomass change
- Use of country forest masks for user-led validation in Section 3.6 (i.e. detailed 10 m resolution maps of land cover and semi-natural habitats in Wales).
- Revisit of certain biomass allometric models used in Appendix A, e.g. for AUS1.





### Conclusions

Fully reported and transparent validation is important for increasing the acceptance of satellite-derived products in the user community. To assess the accuracy of the AGB estimates of the new 2007, 2010, 2015-2022 CCI Biomass global AGB maps, AGB predictions were compared with independent plot data, LiDAR-based AGB estimates and recently released CoFor and EMAP data, which were used as reference data.


The plot data were adjusted for temporal discrepancies and partial forest fraction (see PVP). Three tiers of plot data were defined, ranging from a large set of data, depending on the reference year of the AGB map) from small plots (on average 0.15 ha and including small NFI plots), to a small set of data from large (> 6 ha) research plots (21-27 plots). The latter Tier 3 data mainly consist of plots in the tropics that, though of high quality, are so few that they barely allow conclusions to be drawn about the quality of the CCI Biomass maps. Tier 2 plots (413-655 plots), with an average size of 1 ha, revealed that globally the CCI Biomass maps at their original 1 ha resolution tend to over-predict AGB<sub>ref</sub> up to 180 Mg/ha for <2016 maps. For the Tier 1 data, the map under-prediction starts at a reference AGB of approximately 200 Mg/ha. It should be noted that part of the observed underestimation of high AGB and overestimation of low AGB observed for small plots can be attributed to within-pixel sampling error.

Spatial aggregation of plot and map data to  $0.1^{\circ}$  cells (a level of aggregation suitable for most climate modellers) considerably improved the agreement between AGB<sub>ref</sub> and AGB<sub>map</sub>, though over-prediction was still observed in the low and mid AGB range and higher reference AGB was under-predicted. Similar results were obtained with LiDAR-based AGB estimates and 1-km pixel Congo basin Forests AGB (CoFor) which suggests their suitability to serve as reference data for assessing global AGB products. The spatial aggregation also allowed 2010 results to be more consistent with the 2015-2021 result unlike in the non-aggregated results.

In general, between 50 Mg/ha and 400 Mg/ha, mean differences between AGB<sub>map</sub> and AGB<sub>ref</sub> were found to be well within 20% of AGB<sub>ref</sub> at 0.1° cell level. This does not hold for the RMSD, which over the entire AGB range exceeds 20% of AGB<sub>ref</sub> for the three maps. Nevertheless, it is concluded that spatial aggregation reduces the effect of localized AGB fluctuations in the map and plot-map geolocation mismatches. The AGB<sub>map</sub> - AGB<sub>ref</sub> comparisons at 0.1° resolution differentiated by biome (Dinerstein et al., 2017) produced patterns similar to the global comparison for many biomes and particularly highlighted the confidence in the regional AGB estimations up to 300 Mg/ha for the different tropical forest regions. The correspondence between AGB<sub>ref</sub> and AGB<sub>map</sub> was lower for the tropical and subtropical dry broadleaf forest biome. Similarly, the AGB<sub>ref</sub> and AGB<sub>map</sub> comparisons for tropical and subtropical grassland showed map underestimation > 35 Mg/ha. Lack of access to a larger set of reference data for these biomes may have affected this finding.

The overall analysis at 0.1° cell level revealed that Version 6 of the CCI Biomass AGB maps provides better estimates in the high AGB range than previous versions and other global AGB maps. The 2007 and 2010 maps were also less consistent with AGB<sub>ref</sub> than the 2015-2022 maps, which can be attributed to the different number of reference data used and also differences in the remote sensing input data of the CCI maps. Comparison with AGB<sub>ref</sub> data revealed that all maps exhibit underestimation in the high biomass bins.

This PVIR demonstrated a geostatistical method for assessing the variance of within-pixel sampling error using variography derived from small-footprint LiDAR-based AGB estimates from forest sites in Sweden and Gabon. Additional datasets are needed to extend this analysis and use it for error budgeting when using (small) plot data for AGB map assessment.





# Acknowledgments

We are grateful to all data contributors (see Appendix A) for providing forest plot data for the independent validation of the CCI Biomass maps. We are also thankful to Forest Research (in conjunction with the European Regional Development Fund/Welsh Government funded Ser Cymru Living Wales project) and the Russian Forest Federal Agency in conjunction with the team of Dmitry Schepaschenko for the user-led independent validation using country data.

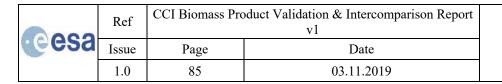
| <b>2</b> 000 | Ref   | CCI Biomass Pro | oduct Validation & Intercomparison Report<br>v1 |  |
|--------------|-------|-----------------|-------------------------------------------------|--|
| esa          | Issue | Page            | Date                                            |  |
|              | 1.0   | 82              | 03.11.2019                                      |  |



## References (including references from Appendix A)

- Araza, A., De Bruin, S., Herold, M., Quegan, S., Labriere, N., Rodriguez-Veiga, P., ... & Lucas, R. (2022a). A comprehensive framework for assessing the accuracy and uncertainty of global above-ground biomass maps. Remote Sensing of Environment, 272, 112917.
- Araza, A., De Bruin, S., & Herold, M. (2022b). Plot-to-map: an open-source r workflow for above-ground biomass independent validation. In IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium (pp. 5575-5577). IEEE.
- Avitabile, V., Baccini, A., Friedl, M. A., & Schmullius, C. (2012). Capabilities and limitations of Landsat and land cover data for aboveground woody biomass estimation of Uganda. Remote Sensing of Environment, 117, 366-380. https://doi.org/10.1016/j.rse.2011.10.012.
- Avitabile, V., Schultz, M., Herold, N., de Bruin, S., Pratihast, A. K., Manh, C. P., . . . Herold, M. (2016). Carbon emissions from land cover change in Central Vietnam. Carbon Management, 7(5-6), 333-346. doi:10.1080/17583004.2016.1254009
- Baccini, A. G. S. J., Goetz, S. J., Walker, W. S., Laporte, N. T., Sun, M., Sulla-Menashe, D., ... & Houghton, R. (2012). Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nature climate change, 2(3), 182-185.
- Baccini, A., Walker, W., Carvalho, L., Farina, M., Sulla-Menashe, D., & Houghton, R. A. (2017). Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science, 358(6360), 230-234.
- Bilolo, J. J., Dida, J. V., & Araza, A. (2024). COMPARISON OF THE USE OF SENTINEL-1 SAR AND ALOS-2 PALSAR-2 IN MANGROVE ABOVEGROUND BIOMASS ESTIMATION IN SAN JUAN, BATANGAS, PHILIPPINES. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 48, 53-60.
- Brown, S., Gillespie, A. J. R., & Lugo, A. E. (1989). Biomass Estimation Methods for Tropical Forests with Applications to Forest Inventory Data. Forest Science, 35(4), 881-902. https://doi.org/10.1093/forestscience/35.4.881.
- Bai, Jiankun, Meng, Yuchen, Gou, Ruikun, Lyu, Jiacheng, Dai, Zheng, Diao, Xiaoping, Zhang, Hongsheng, Luo, Yiqi, Zhu, Xiaoshan, & Lin, Guanghui. (2021). Mangrove diversity enhances plant biomass production and carbon storage in Hainan Island, China [Data set]. https://doi.org/10.5061/dryad.c866t1g5s
- Campbell, M. J., Eastburn, J. F., Mistick, K. A., Smith, A. M., & Stovall, A. E. (2023). Mapping individual tree and plot-level biomass using airborne and mobile lidar in piñon-juniper woodlands. International Journal of Applied Earth Observation and Geoinformation, 118, 103232.
- Carreiras, J. M. B., Vasconcelos, M. J., & Lucas, R. M. (2012). Understanding the relationship between aboveground biomass and ALOS PALSAR data in the forests of Guinea-Bissau (West Africa). Remote Sensing of Environment, 121, 426-442. https://doi.org/10.1016/j.rse.2012.02.012.
- Castillo, J. A. A., Apan, A. A., Maraseni, T. N., & Salmo III, S. G. (2017). Estimation and mapping of above-ground biomass of mangrove forests and their replacement land uses in the Philippines using Sentinel imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 134, 70-85.CEOS (2021). Aboveground Woody Biomass Product Validation Good Practices Protocol, Version 1.0 (ed. Duncanson, L., Armston, J., Disney, M., Nickeson, J., Minor, D. & Camacho, F.)
- Chave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G., & Zanne, A. E. (2009). Towards a worldwide wood economics spectrum. Ecology letters, 12(4), 351-366.
- Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M. S., Delitti, W. B., ... & Vieilledent, G. (2014). Improved allometric models to estimate the aboveground biomass of tropical trees. Global change biology, 20(10), 3177-3190.
- Clark, D. B., & Clark, D. A. (2000). Landscape-scale variation in forest structure and biomass in a tropical rain forest. Forest Ecology and Management, 137(1), 185-198. https://doi.org/10.1016/S0378-1127(99)00327-8.
- de Bruin, S., Herold, M., & Araza, A. (2019a). CCI Biomass Product Validation Plan, Year 1, Version 1. Retrieved from http://cci.esa.int/sites/default/files/biomass%20D2.5%20Product%20Validation%20Plan%20%28PVP%29%20V1.0.pdf.
- de Bruin, S., Herold, M., & Araza, A. (2019b). CCI Biomass Product Validation & Intercomparison Report Year 1 Version 1.0. https://climate.esa.int/sites/default/files/biomass\_D4.1\_Product\_Validation\_%26\_Intercomparison\_Report\_V1.1.pdf.
- de Bruin, S., Herold, M., & Araza, A., Lucas, R. (2020). CCI Biomass Product Validation Plan, Year 2, Version 2 https://climate.esa.int/sites/default/files/Biomass D2.5 Product Validation Plan V2.0.pdf.
- de Bruin, S., Herold, M., & Araza, A., Lucas, R. (2021). CCI Biomass Product Validation Plan, Year 3, Version 3. https://climate.esa.int/sites/default/files/Biomass D2.5 Product Validation Plan V3.0.pdf.
- DeVries, B., Avitabile, V., Kooistra, L., & Herold, M. (2012). Monitoring the impact of REDD+ implementation in the Unesco Kafa biosphere reserve, Ethiopia. Paper presented at the Sensing a Changing World, Wageningen. http://www.wageningenur.nl/upload\_mm/9/d/c/f80b6db7-9c3c-4957-8717-6fdc6e46e60f\_deVries.pdf.
- Dinerstein, E., Olson, D., Joshi, A., Vynne, C., Burgess, N. D., Wikramanayake, E., Saleem, M. (2017). An Ecoregion-Based Approach to Protecting Half the Terrestrial Realm. BioScience, 67(6), 534-545. https://doi.org/10.1093/biosci/bix014.
- Duncanson, L., Kellner, J. R., Armston, J., Dubayah, R., Minor, D. M., Hancock, S., ... & Zgraggen, C. (2022). Aboveground biomass density models for NASA's Global Ecosystem Dynamics Investigation (GEDI) lidar mission. Remote Sensing of Environment, 270, 112845.
- Fazakas, Z., Nilsson, M., & Olsson, H. (1999). Regional forest biomass and wood volume estimation using satellite data and ancillary data. Agricultural and Forest Meteorology, 98, 417-425.
- GCOS (2015). Status of the Global Observing System for Climate, GCOS-195, WMO.
- Hajnsek, I., Pardini, M., Jäger, M., Horn, R., Kim, J.S., Jörg, H., Papathanassiou, K., Dubois-Fernandez, P., Dupuis, X., Wasik, V. (2017). Technical Assistance for the Development of Airborne SAR and Geophysical Measurements During the AFRISAR Experiment. Final Report, Deliverable DD-4. pp. 152.

| 2000 | Ref   | CCI Biomass Pro | biomass    |     |
|------|-------|-----------------|------------|-----|
| esa  | Issue | Page            | Date       | cci |
|      | 1.0   | 83              | 03.11.2019 |     |


- Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., . . . Townshend, J. R. G. (2013). High-Resolution Global Maps of 21st-Century Forest Cover Change. Science, 342(6160), 850-853. https://doi.org/10.1126/science.1244693.
- Hijmans, R. J. (2017). raster: Geographic Data Analysis and Modeling (Version 2.6). Retrieved from https://CRAN.R-project.org/package=raster.
- Hirsh, F., Jourget, J. G., Feintrenie, L., Bayol, N., & Ebaá Atyi, R. (2013). Projet pilote REDD+ de la Lukénie. Retrieved from Bogor, Indonesia: https://agritrop.cirad.fr/572060/1/document 572060.pdf.
- Horn, B. (1981). Hill shading and the reflectance map. Proceedings of the IEEE, 69, 14-47. doi:10.1109/PROC.1981.11918
- IPPC. (2006). IPCC Guidelines for National Greenhouse Gas Inventories. https://www.ipcc.ch/report/2006-ipcc-guidelines-for-national-greenhouse-gas-inventories/
- IPCC. (2019). 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. (table 4.9). https://www.ipcc.ch/report/2019-refinement-to-the-2006-ipcc-guidelines-for-national-greenhouse-gas-inventories/
- Kamah Pascal Bumtu, Nkwatoh Athanasius Fuashi, & Longonje Simon Ngomba. (2020). Structure, Biomass Carbon Stock and Sequestration Rate of Mangroves in the Bakassi Peninsula, S W Cameroon. International Journal of Trend in Scientific Research and Development, 4(2), 843–854. https://doi.org/10.5281/zenodo.3843122
- Khanal, S., Nolan, R. H., Medlyn, B. E., & Boer, M. M. (2023). Mapping soil organic carbon stocks in Nepal's forests. Scientific Reports, 13(1), 8090.
- Kyriakidis, P.C. (2004). A Geostatistical Framework for Area-to-Point Spatial Interpolation. Geographical Analysis, 36: 259-289. https://doi.org/10.1111/j.1538-4632.2004.tb01135.x.
- Labrière, N., Tao, S., Chave, J., Scipal, K., Toan, T. L., Abernethy, K., . . . Saatchi, S. (2018). In SituReference Datasets From the TropiSAR and AfriSAR Campaigns in Support of Upcoming Spaceborne Biomass Missions. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(10), 3617-3627. doi:10.1109/JSTARS.2018.2851606
- Labrière, N., & Chave, J. (2020a) CCI Biomass project In situ datasets: Processing and validation of Sustainable Landscape Brazil data (CCI Biomass internal report).
- Labrière, N., & Chave, J. (2020b) CCI Biomass project In situ datasets: Processing and validation of NEON data (USA) (CCI Biomass internal report). Labrière, N., & Chave, J. (2020c) In situ datasets: Processing and validation of TERN data (CCI Biomass internal report).
- Labrière, N., Davies, S. J., Disney, M. I., Duncanson, L. I., Herold, M., Lewis, S. L., ... & Chave, J. (2023). Toward a forest biomass reference measurement system for remote sensing applications. Global Change Biology, 29(3), 827-840.
- Lewis, S. L., Sonké, B., Sunderland, T., Begne, S. K., Lopez-Gonzalez, G., van der Heijden, G. M. F., . . . Zemagho, L. (2013). Above-ground biomass and structure of 260 African tropical forests. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1625), 20120295. https://doi.org/10.1098/rstb.2012.0295.
- Mello, L. N. C., Sales, M. H. R., & Rosa, L. P. (2016). Analysis of results of biomass forest inventory in northeastern Amazon for development of REDD+ carbon project. Anais da Academia Brasileira de Ciências, 88, 55-64.
- Menlove, J., & Healey, S. P. (2020). A Comprehensive Forest Biomass Dataset for the USA Allows Customized Validation of Remotely Sensed Biomass Estimates. Remote Sensing, 12(24), 4141. https://doi.org/10.3390/rs12244141.
- Mitchard, E. T. A., Saatchi, S. S., Lewis, S. L., Feldpausch, T. R., Gerard, F. F., Woodhouse, I. H., & Meir, P. (2011). Comment on 'A first map of tropical Africa's above-ground biomass derived from satellite imagery'. Environmental Research Letters, 6(4), 049001. https://doi.org/10.1088/1748-9326/6/4/049001.
- Mitchard, E. T. A., Saatchi, S. S., Woodhouse, I. H., Nangendo, G., Ribeiro, N. S., Williams, M., . . . Meir, P. (2009). Using satellite radar backscatter to predict above-ground woody biomass: A consistent relationship across four different African landscapes. Geophysical Research Letters, 36(23). https://doi.org/10.1029/2009gl040692.
- Morel, A. C., Saatchi, S. S., Malhi, Y., Berry, N. J., Banin, L., Burslem, D., . . . Ong, R. C. (2011). Estimating aboveground biomass in forest and oil palm plantation in Sabah, Malaysian Borneo using ALOS PALSAR data. Forest Ecology and Management, 262(9), 1786-1798. https://doi.org/10.1016/j.foreco.2011.07.008.
- Paul, K. I., Roxburgh, S. H., Chave, J., England, J. R., Zerihun, A., Specht, A., . . . Sinclair, J. (2016). Testing the generality of above-ground biomass allometry across plant functional types at the continent scale. Global Change Biology, 22(6), 2106-2124. https://doi.org/10.1111/gcb.13201.
- Pebesma, E.J. (2004). Multivariable geostatistics in S: the gstat package. Computers & Geosciences, 30: 683-691.
- Planque, C, Punalekar, S, Lucas, R, Chognard, S, Owers, CJ, Clewley, D, Bunting, P, Sykes, H and Horton, C. (2020). Living Wales: Automatic and routine environmental monitoring using multi-source earth observation data. In K Schulz, U Michel and KG Nikolakopoulos (eds), Earth Resources and Environmental Remote Sensing/GIS Applications XI., 115340C, Proceedings of SPIE The International Society for Optical Engineering, 11534, SPIE, Earth Resources and Environmental Remote Sensing/GIS Applications XI 2020. https://doi.org/10.1117/12.2573763
- Ploton, P., MorTier, F., Barbier, N. et al. (2020). A map of African humid tropical forest aboveground biomass derived from management inventories. Sci Data 7, 221. https://doi.org/10.1038/s41597-020-0561-0.
- Réjou-Méchain, M., Barbier, N., Couteron, P., Ploton, P., Vincent, G., Herold, M., . . . Pélissier, R. (2019). Upscaling Forest Biomass from Field to Satellite Measurements: Sources of Errors and Ways to Reduce Them. Surveys in Geophysics. https://doi.org/10.1007/s10712-019-09532-0.
- Réjou-Méchain, M., Muller-Landau, H. C., Detto, M., Thomas, S. C., Le Toan, T., Saatchi, S. S., . . . Chave, J. (2014). Local spatial structure of forest biomass and its consequences for remote sensing of carbon stocks. Biogeosciences, 11(23), 6827-6840. https://doi.org/10.5194/bg-11-6827-2014.

| <b>2</b> 000 | Ref   | CCI Biomass Pro | oduct Validation & Intercomparison Report<br>v1 |  |
|--------------|-------|-----------------|-------------------------------------------------|--|
| esa          | Issue | Page            | Date                                            |  |
|              | 1.0   | 84              | 03.11.2019                                      |  |



- Réjou-Méchain, M., Tanguy, A., Piponiot, C., Chave, J., & Hérault, B. (2017). biomass: an r package for estimating above-ground biomass and its uncertainty in tropical forests. Methods in Ecology and Evolution, 8(9), 1163-1167. https://doi.org/10.1111/2041-210X.12753.
- Requena Suarez, D., Rozendaal, D. M. A., De Sy, V., Phillips, O. L., Alvarez-Dávila, E., Anderson-Teixeira, K., . . . Herold, M. (2019). Estimating aboveground net biomass change for tropical and subtropical forests: Refinement of IPCC default rates using forest plot data. Global Change Biology, 25(11), 3609-3624. doi:10.1111/gcb.14767
- Rodda, S. R., Fararoda, R., Gopalakrishnan, R., Jha, N., Réjou-Méchain, M., Couteron, P., ... & Ploton, P. (2024). LiDAR-based reference aboveground biomass maps for tropical forests of South Asia and Central Africa. Scientific Data, 11(1), 334.
- Rodriguez-Veiga et al. (unpublished). NCEO Africa Aboveground Woody Biomass (AGB) map for the year 2017 at 100 m spatial resolution.
- Rozendaal, D. M. A., M. Santoro, D. Schepaschenko, V. Avitabile and M. Herold (2017). DUE GlobBiomass D17 Validation Report, European Space Agency (ESA-ESRIN): 26.
- Ryan, C. M., Berry, N. J., & Joshi, N. (2014). Quantifying the causes of deforestation and degradation and creating transparent REDD+ baselines: A method and case study from central Mozambique. Applied Geography, 53, 45-54. https://doi.org/10.1016/j.apgeog.2014.05.014.
- Santoro, M., 2024. CCI Biomass Product User Guide, Version 5. (CCI Biomass internal report).
- Santoro, M., 2023b. End-to-end Uncertainty Budget Version 4. (CCI Biomass internal report).
- Schepaschenko, D., Chave, J., Phillips, O. L., Lewis, S. L., Davies, S. J., Réjou-Méchain, M., . . . Zo-Bi, I. C. (2019). The Forest Observation System, building a global reference dataset for remote sensing of forest biomass. Scientific Data, 6(1), 198. https://doi.org/10.1038/s41597-019-0196-1.
- Schepaschenko, D., Moltchanova, E., Fedorov, S., Karminov, V., Ontikov, P., Santoro, M., ... & Kraxner, F. (2021). Russian forest sequesters substantially more carbon than previously reported. Scientific reports, 11(1), 1-7. https://doi.rog/10.1038/s41598-021-92152-9.
- Serviço Florestal Brasileiro. (n.d.). Sistema Nacional de Informações Florestais (SNIF). https://snif.florestal.gov.br/pt-br/
- Serviço Florestal Brasileiro. (2021, November). Manual de campo: Procedimentos para coleta de dados biofísicos e socioambientais (Versão 7.4.1).

  Serviço Florestal Brasileiro. Serviço Florestal Brasileiro. https://snif.florestal.gov.br/images/pdf/publicacoes/publicacoes\_ifn/manual\_de\_campo/Manual\_de\_Campo\_IFN\_\_Versao\_7\_4\_1.pdf
- Ulander, L.M.H., Gustavsson, A., Flood, B., Murdin, D., Dubois-Fernandez, P., Dupuis, X., Sandberg, G., Soja, M.J., Eriksson, L.E.B., Fransson, J.E.S., Holmgren, J., Wallerman, J. (2011). BioSAR 2010 Technical assistance for the development of airborne SAR and geophysical measurements during the BioSAR 2010 experiment.
- Vaglio Laurin, G., Hawthorne, W., Chiti, T., Di Paola, A., Cazzolla Gatti, R., Marconi, S., . . . Valentini, R. (2016). Does degradation from selective logging and illegal activities differently impact forest resources? A case study in Ghana. [Does degradation from selective logging and illegal activities differently impact forest resources? A case study in Ghana]. iForest Biogeosciences and Forestry, 9(3), 354-362. https://doi.org/10.3832/ifor1779-008.
- Van Breugel, M., Bongers, F., & Martínez-Ramos, M. (2007). Species Dynamics During Early Secondary Forest Succession: Recruitment, Mortality and Species Turnover. Biotropica, 39(5), 610-619. https://doi.org/10.1111/j.1744-7429.2007.00316.x.
- Vieilledent, G., Gardi, O., Grinand, C., Burren, C., Andriamanjato, M., Camara, C., . . . Rakotoarijaona, J.-R. (2016). Bioclimatic envelope models predict a decrease in tropical forest carbon stocks with climate change in Madagascar. Journal of Ecology, 104(3), 703-715. https://doi.org/10.1111/1365-2745.12548.
- Xu, L., Saatchi, S. S., Yang, Y., Yu, Y., Pongratz, J., Bloom, A. A., ... & Schimel, D. (2021). Changes in global terrestrial live biomass over the 21st century. Science Advances, 7(27), eabe9829.
- Willcock, S., Phillips, O. L., Platts, P. J., Balmford, A., Burgess, N. D., Lovett, J. C., . . . Lewis, S. L. (2014). Quantifying and understanding carbon storage and sequestration within the Eastern Arc Mountains of Tanzania, a tropical biodiversity hotspot. Carbon Balance and Management, 9(1), 2. https://doi.org/10.1186/1750-0680-9-2.
- World Meteorological Organization (2011). Systematic observation requirements for satellite-based data products for climate: Supplemental details to the satellite-based component of the Implementation Plan for the Global Observing System for Climate in Support of the UNFCCC (2010 Update). https://library.wmo.int/doc\_num.php?explnum\_id=3710.
- Zhao, Y., Chen, R. H., Bakian-Dogaheh, K., Whitcomb, J., Yi, Y., Kimball, J. S., & Moghaddam, M. (2022, July). Mapping Boreal Forest Species and Canopy Height using Airborne SAR and Lidar Data in Interior Alaska. In IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium (pp. 4955-4958). IEEE.





| <b>2000</b> | Ref   | CCI Biomass Product Validation & Intercomparison v1 |            |  |  |
|-------------|-------|-----------------------------------------------------|------------|--|--|
| esa         | Issue | Page                                                | Date       |  |  |
|             | 1.0   | 86                                                  | 23.05.2023 |  |  |



# Appendix A - Details on the used forest plot data

| ID      | Tier | Average<br>year | Average<br>size (ha) | Count | Biome                       | URL                                                                                                                     | Paper/<br>source                | Data access             |
|---------|------|-----------------|----------------------|-------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------|
| AFR_L   | 3    | 2011            | 25.00                | 1     | Tropical rainforest         | https://dspace.stir.ac.uk/retrieve/74d3b352-fa46-418f-ba95-728bb33f4cfc/08417912.pdf                                    | (Labrière et al.,<br>2018)      | open                    |
| EU_FOS  | 3    | 2014            | 16.25                | 1     | Tropical rainforest         | https://wwwture.com/articles/s41597-019-0196-<br>1?fbclid=lwAR08vLoOm4xEQo4EUdLtoKsnP6nsNIY5CYnfcoqGcS5Z0_UcyaNIr-jcdDg | (Schepaschenko et al., 2019)    | open                    |
| SAM_L   | 3    | 2010            | 7.65                 | 20    | Tropical rainforest         | https://dspace.stir.ac.uk/retrieve/74d3b352-fa46-418f-ba95-728bb33f4cfc/08417912.pdf                                    | (Labrière et al.,<br>2018)      | open                    |
| AUS1    | 3    | 2009            | 25.00                | 1     | Tropical dry forest         | http://data.auscover.org.au/xwiki/bin/view/Product+pages/Biomass+Plot+Library                                           | (Paul et al., 2016)             | source-WUR<br>agreement |
| SAM_RF  | 3    | 2008            | 5.3                  | 10    | Tropical rainforest         | http://www.rainfor.org/en/project/about-rainfor                                                                         | Lopez-Gonzales<br>et al., 2011  | Open                    |
| AFR_FOS | 2    | 2013            | 1.00                 | 44    | Tropical rainforest         | https://wwwture.com/articles/s41597-019-0196-<br>1?fbclid=IwAR08vLoOm4xEQo4EUdLtoKsnP6nsNIY5CYnfcoqGcS5Z0_UcyaNIr-jcdDg | (Schepaschenko et al., 2019)    | open                    |
| AFR_L   | 2    | 2016            | 1.00                 | 56    | Tropical rainforest         | https://dspace.stir.ac.uk/retrieve/74d3b352-fa46-418f-ba95-728bb33f4cfc/08417912.pdf                                    | (Labrière et al.,<br>2018)      | open                    |
| AUS_FOS | 2    | 2008            | 1.00                 | 2     | Tropical dry forest         | https://wwwture.com/articles/s41597-019-0196-<br>1?fbclid=lwAR08vLoOm4xEQo4EUdLtoKsnP6nsNIY5CYnfcoqGcS5Z0_UcyaNIr-jcdDg | (Schepaschenko et al., 2019)    | open                    |
| CAM_FOS | 2    | 2012            | 1.01                 | 18    | Tropical rainforest         | https://wwwture.com/articles/s41597-019-0196-<br>1?fbclid=IwAR08vLoOm4xEQo4EUdLtoKsnP6nsNIY5CYnfcoqGcS5Z0_UcyaNIr-jcdDg | (Schepaschenko et al., 2019)    | open                    |
| EU_FOS  | 2    | 2010            | 2.23                 | 2     | Boreal coniferous<br>forest | https://wwwture.com/articles/s41597-019-0196-<br>1?fbclid=IwAR08vLoOm4xEQo4EUdLtoKsnP6nsNIY5CYnfcoqGcS5Z0_UcyaNIr-jcdDg | (Schepaschenko et<br>al., 2019) | open                    |

| <b>P</b> | Ref   | CCI Biomass Product Validation & Intercomparison Report v1 |            |  |  |  |
|----------|-------|------------------------------------------------------------|------------|--|--|--|
| esa      | Issue | Page                                                       | Date       |  |  |  |
|          | 1.0   | 87                                                         | 23.05.2023 |  |  |  |



| Г       | ı | ı    | I    |     | Т                   |                                                                                                                         | T                                      | T                       |
|---------|---|------|------|-----|---------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------|
| SAM_FOS | 2 | 2011 | 1.00 | 23  | Tropical rainforest | https://wwwture.com/articles/s41597-019-0196-<br>1?fbclid=IwAR08vLoOm4xEQo4EUdLtoKsnP6nsNIY5CYnfcoqGcS5Z0_UcyaNIr-jcdDg | (Schepaschenko et al., 2019)           | open                    |
| SAM_L   | 2 | 2013 | 1.04 | 28  | Tropical rainforest | https://dspace.stir.ac.uk/retrieve/74d3b352-fa46-418f-ba95-728bb33f4cfc/08417912.pdf                                    | (Labrière et al.,<br>2018)             | open                    |
| SAM_BAJ | 2 | 2017 | 1    | 3   | Tropical rainforest | https://ieeexplore.ieee.org/abstract/document/8518871                                                                   | Pacheco-<br>Pasccagaza et al.,<br>2020 | source-WUR<br>agreement |
| SAM_RF  | 2 | 2008 | 1    | 374 | Tropical rainforest | http://www.rainfor.org/en/project/about-rainfor                                                                         | Lopez-Gonzales<br>et al., 2011         | Open                    |
| UK_FOS  | 2 | 2015 | 1.20 | 1   | Tropical rainforest | https://wwwture.com/articles/s41597-019-0196-<br>1?fbclid=IwAR08vLoOm4xEQo4EUdLtoKsnP6nsNIY5CYnfcoqGcS5Z0_UcyaNIr-jcdDg | (Schepaschenko et al., 2019)           | open                    |
| AFR10   | 2 | 2007 | 1.00 | 7   | Tropical rainforest | https://iopscience.iop.org/article/10.1088/1748-9326/6/4/049001/meta                                                    | (Mitchard et al.,<br>2011)             | source-WUR<br>agreement |
| AFR13   | 2 | 2008 | 1.00 | 2   | Tropical rainforest | https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2009GL040692                                                   | (Mitchard et al.,<br>2009)             | source-WUR<br>agreement |
| AFR14   | 2 | 2009 | 1.63 | 4   | Tropical rainforest | https://www.sciencedirect.com/science/article/abs/pii/S014362281400109X                                                 | (Ryan, Berry, &<br>Joshi, 2014)        | source-WUR<br>agreement |
| AFR6    | 2 | 2009 | 1.00 | 12  | Tropical rainforest | https://cbmjour-l.biomedcentral.com/articles/10.1186/1750-0680-9-2                                                      | (Willcock et al.,<br>2014)             | source-WUR<br>agreement |
| AFR7    | 2 | 2012 | 1.00 | 19  | Tropical rainforest | https://royalsocietypublishing.org/doi/full/10.1098/rstb.2012.0295                                                      | (Lewis et al., 2013)                   | source-WUR<br>agreement |
| ASI3    | 2 | 2007 | 1.00 | 92  | Tropical rainforest | https://www.sciencedirect.com/science/article/abs/pii/S0378112711004361                                                 | (Morel et al., 2011)                   | source-WUR<br>agreement |
| AUS1    | 2 | 2012 | 1.01 | 63  | Subtropical steppe  | http://data.auscover.org.au/xwiki/bin/view/Product+pages/Biomass+Plot+Library                                           | (Paul et al., 2016)                    | source-WUR<br>agreement |

| <b>1</b> 3000 | Ref   | CCI Biomass Product Validation & Intercomparison Report v1 |            |  |  |
|---------------|-------|------------------------------------------------------------|------------|--|--|
| esa           | Issue | Page                                                       | Date       |  |  |
|               | 1.0   | 88                                                         | 23.05.2023 |  |  |



| SAM2    | 2 | 2012 | 1.00 | 40   | Tropical rainforest      | http://geoinfo.cnpm.embrapa.br/geonetwork/srv/ eng/main.home                                                            |                                                              | source-WUR<br>agreement |
|---------|---|------|------|------|--------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------|
| SAM_FOS | 1 | 2011 | 0.25 | 142  | Tropical rainforest      | https://wwwture.com/articles/s41597-019-0196-<br>1?fbclid=lwAR08vLoOm4xEQo4EUdLtoKsnP6nsNIY5CYnfcoqGcS5Z0_UcyaNIr-jcdDg | (Schepaschenko et al., 2019)                                 | open                    |
| AFR15   | 1 | 2013 | 0.25 | 136  | Tropical rainforest      | https://besjour-ls.onlinelibrary.wiley.com/doi/full/10.1111/1365-<br>2745.12548%4010.1111/%28ISSN%291365-2745.FORESTRY  | (Vieilledent et al.,<br>2016)                                | source-WUR<br>agreement |
| AFR1    | 1 | 2008 | 0.50 | 1152 | Tropical rainforest      | https://agritrop.cirad.fr/572060/1/document_572060.pdf                                                                  | (Hirsh, Jourget,<br>Feintrenie, Bayol, &<br>Ebaá Atyi, 2013) | source-WUR<br>agreement |
| AFR10   | 1 | 2007 | 0.50 | 11   | Tropical rainforest      | https://iopscience.iop.org/article/10.1088/1748-9326/6/4/049001/meta                                                    | (Mitchard et al.,<br>2011)                                   | source-WUR<br>agreement |
| AFR12   | 1 | 2008 | 0.16 | 108  | Tropical rainforest      | https://www.sciencedirect.com/science/article/abs/pii/S0034425711003609                                                 | (Avitabile, Baccini,<br>Friedl, &<br>Schmullius, 2012)       | source-WUR<br>agreement |
| AFR13   | 1 | 2008 | 0.50 | 23   | Tropical rainforest      | https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2009GL040692                                                   | (Mitchard et al.,<br>2009)                                   | source-WUR<br>agreement |
| AFR14   | 1 | 2009 | 0.51 | 70   | Tropical dry forest      | https://www.sciencedirect.com/science/article/abs/pii/S014362281400109X                                                 | (Ryan et al., 2014)                                          | source-WUR<br>agreement |
| AFR4    | 1 | 2012 | 0.13 | 110  | Tropical mountain system | http://www.geo-informatie.nl/workshops/scw2/papers/deVries.pdf                                                          | (DeVries, Avitabile,<br>Kooistra, & Herold,<br>2012)         | source-WUR<br>agreement |
| AFR5    | 1 | 2012 | 0.08 | 71   | Tropical rainforest      | https://pure.mpg.de/pubman/faces/ViewItemOverviewPage.jsp?itemId=item_2281402                                           | (Vaglio Laurin et al.,<br>2016)                              | source-WUR<br>agreement |
| AFR6    | 1 | 2009 | 0.33 | 12   | Tropical dry forest      | https://cbmjour-l.biomedcentral.com/articles/10.1186/1750-0680-9-2                                                      | (Willcock et al.,<br>2014)                                   | source-WUR<br>agreement |
| AFR8    | 1 | 2008 | 0.13 | 105  | Tropical moist forest    | https://www.sciencedirect.com/science/article/abs/pii/S0034425712001058                                                 | (Carreiras,<br>Vasconcelos, &                                | source-WUR<br>agreement |

| 2000 | Ref   | CCI Biomass Product Validation & Intercomparison Report v1 |            |  |  |  |
|------|-------|------------------------------------------------------------|------------|--|--|--|
| esa  | Issue | Page                                                       | Date       |  |  |  |
|      | 1.0   | 89                                                         | 23.05.2023 |  |  |  |



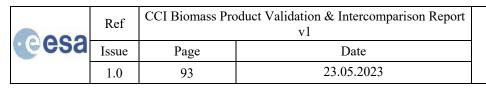
|         |   |      |      |       |                                                                |                                                                                                                                         | Lucas, 2012)                 |                                |
|---------|---|------|------|-------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------------|
| AFR9    | 1 | 2016 | 0.13 | 9642  | Tropical dry forest                                            | https://www.mdpi.com/2072-4292/5/4/1524 https://fndsmoz.maps.arcgis.com/apps/MapSeries/index.html?appid=6602939f39ad4626a10f87bf6253af1 | (Carreiras et al.,<br>2012)  | open, source-<br>WUR agreement |
| AFR_KEN | 1 | 2011 | 0.09 | 362   | Tropical and subtropical grasslands, savannas and shrublands   |                                                                                                                                         |                              | source-WUR<br>agreement        |
| ASI1    | 1 | 2008 | 0.05 | 2903  | Tropical mountain<br>system and<br>rainforest                  | https://www.tandfonline.com/doi/full/10.1080/17583004.2016.1254009                                                                      | (Avitabile et al.,<br>2016)  | source-WUR<br>agreement        |
| ASI10   | 1 | 2008 | 0.10 | 1268  | Subtropical<br>mountain system                                 | https://www.sciencedirect.com/science/article/abs/pii/S0034425719303608                                                                 | Zhang et al. 2019            | source-WUR<br>agreement        |
| ASI2    | 1 | 2011 | 0.11 | 119   | Tropical dry forest                                            | http://www.leafasia.org/sites/default/files/public/resources/WWF-REDD-pres-July-2013-v3.pdf                                             | WWF and OBf,<br>2013         | source-WUR<br>agreement        |
| ASI4    | 1 | 2010 | 0.02 | 70    | Tropical dry forest                                            | http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.972.708&rep=rep1&type=pdf                                                      | Wijaya et al., 2015          | source-WUR<br>agreement        |
| ASI9    | 1 | 2012 | 0.13 | 74    | Tropical rainforest                                            | http://leutra.geogr.uni-jede/vgtbRBIS/metadata/start.php                                                                                | Avitabile et al.,<br>2014    | source-WUR<br>agreement        |
| ASI_FOS | 1 | 2014 | 0.25 | 2     | Tropical rainforest                                            | https://wwwture.com/articles/s41597-019-0196-<br>1?fbclid=IwAR08vLoOm4xEQo4EUdLtoKsnP6nsNIY5CYnfcoqGcS5Z0_UcyaNIr-jcdDg                 | (Schepaschenko et al., 2019) | open                           |
| AUS1    | 1 | 2011 | 0.12 | 5611  | Tropical dry forest                                            | http://data.auscover.org.au/xwiki/bin/view/Product+pages/Biomass+Plot+Library                                                           | Paul et al. 2016             | source-WUR<br>agreement        |
| EU1     | 1 | 2011 | 0.01 | 16819 | Temperate broadleaf<br>and mixed forests<br>and Boreal forests | https://www.slu.se/en/collaborative-centres-and-projects/swedishtio-l-forest-inventory/                                                 | Sweden NFI                   | source-WUR<br>agreement        |

| <b>2</b> 000 | Ref   | CCI Biomass Product Validation & Intercomparison Report v1 |            |  |  |
|--------------|-------|------------------------------------------------------------|------------|--|--|
| esa          | Issue | Page                                                       | Date       |  |  |
|              | 1.0   | 90                                                         | 23.05.2023 |  |  |



| EU2    | 1 | 2007 | 0.20 | 7177 | Mediterranean<br>forests                                                 | lem:http://www.magrama.gob.es/es/desarrollo-rural/temas/politica-forestal/inventario-cartografia/inventario-forestalcio-l/ | Spain NFI                       | source-WUR<br>agreement        |
|--------|---|------|------|------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------|
| EU3    | 1 | 2013 | 0.06 | 3021 | Temperate oceanic forest                                                 | https://library.wur.nl/WebQuery/wurpubs/454875                                                                             | Netherlands NFI                 | source-WUR<br>agreement        |
| EU4    | 1 | 2007 | 0.06 | 5967 | Temperate broadleaf<br>and mixed forests<br>and Mediterranean<br>forests | https://www.agriculturejour-ls.cz/publicFiles/01003.pdf                                                                    | Cienciela et al.<br>2008        | source-WUR<br>agreement        |
| EU_FOS | 1 | 2015 | 0.28 | 514  | Boreal forests                                                           | https://wwwture.com/articles/s41597-019-0196-<br>1?fbclid=IwAR08vLoOm4xEQo4EUdLtoKsnP6nsNIY5CYnfcoqGcS5Z0_UcyaNIr-jcdDg    | (Schepaschenko et<br>al., 2019) | open, source-<br>WUR agreement |
| NAM1   | 1 | 2010 | 0.04 | 586  | Boreal coniferous<br>forest                                              | https://www.p-s.org/content/112/18/5738.short                                                                              | Liang et al., 2015              | source-WUR<br>agreement        |
| NAM2   | 1 | 2004 | 0.04 | 75   | Temperate mountain system                                                | https://www.nature.com/articles/nature07276                                                                                | Luyssaert et al.,<br>2008       | source-WUR<br>agreement        |
| NAM3   | 1 | 2010 | 0.03 | 588  | Temperate<br>continental forest                                          |                                                                                                                            |                                 | source-WUR<br>agreement        |
| NAM4   | 1 | 2010 | 0.04 | 2794 | Temperate mountain system                                                |                                                                                                                            | Alaska NFI                      | source-WUR<br>agreement        |
| SAM2   | 1 | 2013 | 0.23 | 241  | Tropical rainforest                                                      | https://www.paisagenslidar.cnptia.embrapa.br/webgis/                                                                       | Embrapa, undated                | source-WUR<br>agreement        |
| SAM3   | 1 | 2011 | 0.13 | 111  | Tropical rainforest                                                      |                                                                                                                            | CIFOR, undated                  | source-WUR<br>agreement        |
| SAM4   | 1 | 2014 | 0.15 | 7    | Tropical rainforest                                                      |                                                                                                                            | CIFOR, undated                  | source-WUR<br>agreement        |
| SAM5   | 1 | 2014 | 0.60 | 23   | Tropical rainforest                                                      |                                                                                                                            | CIFOR, undated                  | source-WUR<br>agreement        |

| <b>P</b> 000 | Ref   | CCI Biomass Pro | oduct Validation & Intercomparison Report<br>v1 |
|--------------|-------|-----------------|-------------------------------------------------|
| esa          | Issue | Page            | Date                                            |
|              | 1.0   | 91              | 23.05.2023                                      |




|          | 1 |      | 1    |        |                                                                          |                                                                                                                                                                              |                                                   |                         |
|----------|---|------|------|--------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------|
| SAM_BAJ  | 1 | 2017 | 0.25 | 363    | Tropical rainforest                                                      | https://ieeexplore.ieee.org/abstract/document/8518871                                                                                                                        | Pacheco-<br>Pasccagaza et al.,<br>2020            | source-WUR<br>agreement |
| SAM_RF   | 1 | 2008 | 1    | 125    | Tropical rainforest                                                      | http://www.rainfor.org/en/project/about-rainfor                                                                                                                              | Lopez-Gonzales<br>et al., 2011                    | Open                    |
| SAM_TAPA | 1 | 2009 | 0.5  | 138    | Tropical rainforest                                                      | https://www.tandfonline.com/doi/full/10.1080/07038992.2014.913477?casa_token=EZxeZoegekkAAAAA%3AZHCN98XtpZRrsS9KoGTBhPy1_yzhAkkLZHfck3fomwSnvSaO7YDiuPV_hne6Mj1Wdn-7ME_sPChP | (Bispo et al.,<br>2014)                           | source-WUR<br>agreement |
| AFR_COF  | 0 | 2009 | 100  | 35029  | Tropical moist forest,                                                   | https://www.nature.com/articles/s41597-020-0561-0                                                                                                                            | (Ploton et al., 2020)                             | open                    |
| LIDAR    | 0 | 2014 | 1    | 744397 | Tropical rainforest                                                      |                                                                                                                                                                              | SLB, TERN, NEON                                   | Open                    |
| LIDAR_SP | 0 | 2017 | 1    | 54058  | Temperate broadleaf<br>and mixed forests<br>and Mediterranean<br>forests |                                                                                                                                                                              | (Gonzales et al.,<br>under preparation)           | source-WUR<br>agreement |
| EU_BEL   | 1 | 2013 | 0.1  | 688    | Temperate broadleaf<br>and mixed forests                                 |                                                                                                                                                                              | Belgium TreeMort                                  | source-WUR<br>agreement |
| EU_BUL   | 1 | 2019 | 0.1  | 22     | Temperate broadleaf and mixed forests                                    |                                                                                                                                                                              | Dmitrov et al.,<br>under preparation              | source-WUR<br>agreement |
| EU_CZR   | 1 | 2014 | 0.1  | 25     | Temperate conifer forests                                                | https://www.sciencedirect.com/science/article/pii/S0925857416307182<br>https://www.mdpi.com/1999-4907/11/3/268                                                               | Brovkina et al.,<br>2017; Novotny et<br>al., 2020 | source-WUR<br>agreement |
| AFR_GHA  | 1 | 2010 | 0.1  | 94     | Tropical rainforest                                                      | https://www.sciencedirect.com/science/article/pii/S0378112720310057                                                                                                          | Brown et al., 2020                                | source-WUR<br>agreement |
| EU_WLS   | 1 | 2016 | 0.5  | 134    | Temperate broadleaf                                                      | https://www.forestresearch.gov.uk/tools-and-resources/national-forest-inventory/                                                                                             | Wales NFI                                         | source-WUR              |

| <b>1</b> 3000 | Ref   | CCI Biomass Product Validation & Intercomparison Report v1 |            |  |  |
|---------------|-------|------------------------------------------------------------|------------|--|--|
| esa           | Issue | Page                                                       | Date       |  |  |
|               | 1.0   | 92                                                         | 23.05.2023 |  |  |



|            |   |      |     |        | and mixed forests                             |                                                        |                                | agreement               |
|------------|---|------|-----|--------|-----------------------------------------------|--------------------------------------------------------|--------------------------------|-------------------------|
| ASI_ind    | 2 | 2015 | 0.5 | 420    | Tropical rainforest                           |                                                        | Kumar et al. 2023              | source-WUR<br>agreement |
| ASI_nep    | 2 | 2015 | 0.5 | 2004   | Tropical<br>mountainous forest                |                                                        | Khanal et al. 2023             | open                    |
| LIDAR_JUNI | 0 | 2016 | 1   | 132405 | Temperate<br>woodlands                        |                                                        | Campbell et al.<br>2023        | source-WUR<br>agreement |
| LIDAR_LVIS | 0 | 2016 | 1   | 148051 | Boreal forest                                 | https://lvis.gsfc.nasa.gov/Data/Maps/ABoVE2017Map.html | Zhao et al. 2022               | Open                    |
| EU_FOS     | 1 | 2016 | 0.2 | 264    | Different biomes                              |                                                        | (Schepaschenko et al., 2019)   | source-WUR<br>agreement |
| SAM_guy    | 1 | 2019 | 0.1 | 473    | Tropical rainforest                           |                                                        | Sukhadeo et l. /<br>Guyana NFI | source-WUR<br>agreement |
| NAM_TUND   | 0 | 2012 | 0.3 | 222    | Tundra                                        |                                                        | Open                           |                         |
| ASI_IND    | 1 | 2018 | 0.5 | 412    | Tropical and subtropical dry broadleaf forest |                                                        | source-WUR                     |                         |
| ASI_NEP1   | 1 | 2022 | 0.1 | 2009   | Temperate broadleaf                           |                                                        | source-WUR<br>agreement        |                         |
| ASI_NEP2   | 1 | 2022 | 0.1 | 1010   | Temperate broadleaf and mixed forests         |                                                        | Open                           | Khanal et al. 2023      |





| NAM_JUNI | 0 | 2022 | 1   | 132405 | Woodlands           | source-WUR<br>agreement | Campbell et al. 2024 |
|----------|---|------|-----|--------|---------------------|-------------------------|----------------------|
| SAM_KEL  | 0 | 2019 | 1   | 10000  | Tropical rainforest | source-WUR<br>agreement | Ometto et al. 2023   |
| ASI_PAK  | 1 | 2022 | 0.1 | 268    | Temperate broadleaf | source-WUR              |                      |
| ASI_MANG | 1 | 2022 | 0.1 | 100    | Mangroves           | source-WUR<br>agreement | Bilolo et al. 2024   |