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Figure 2-1 Forest state in Europe during the historical period. (A) Above-ground biomass for the year 2019, 
averaged from two products: CCI-ESA (solid lines in the histograms) and PlanetScope (dashed lines), both bias-
corrected with NFI data at a sub-national scale. Histograms show the distributions within five biogeographical 
regions indicated in the miniature. (B) Trends in the mean percentage of forest cover loss at 18 km. The annual 
forest cover loss has been aggregated from 30 m to 18 km, divided by the forest area at 18 km. Then, a moving 
average (30-year window) has been computed to produce the mean percentage of forest cover loss (six values 
from 2000 to 2005). A linear trend has been computed at 18 km based on these six values (no trend 
corresponds to p > 0.05). Scatterplots display the annual percentage of forest cover loss due to all 
disturbances (natural and anthropogenic) in each biogeographical region. They were obtained by spatially 
aggregating the forest cover loss (at 30 m) across each biogeographical region, and then dividing by the total 
forest cover of the region. (C) Disturbance partitioning assessed from ground-based (1) and Landsat-based (2) 
data. The disturbance agents “bark beetles” and “others” have been merged with “storms” and “harvests” 
(respectively) due to Landsat’s limited sensitivity. The ground-based partitioning was first established 
between harvests and natural disturbances (period 2001-2019, natural disturbances accounted for 16% of the 
mean annual harvest in Europe), then the natural disturbances was further partitioned following numbers 
given in (1) corresponding to the period 1950-2019 (D) Country reports to UNFCCC giving ground-based 
estimations from 2010 to 2021 of forest area (FA, Mha) and the forest sink (FS in MgC/haF), which is the sum 
of the net carbon stock change in the AGC, belowground-biomass, organic and mineral soils, deadwood, litter 
and harvested wood products. Four groups are separated based on the national forest sink trends: small 
decrease (in orange), large decrease (in red), and increase (in green) and no trend (in gray). The unit haF 
stands for hectares of forests. 11 

Figure 2-2 Flowchart of the DDCM procedure. This flowchart explains the DDCM procedure from raw data to 
forest sink estimates. The variable s refers to the percentage of AGC loss, and τ to the return interval of the 
disturbances (for a 30-year window), both defined at 18 km. The correction factors (α,β) are defined at a 
country or a biogeographical region scale. ........................................................14 

Figure 2-3 Detailed example of the DDCM procedure for a given forested pixel at 18 km. Use of the flowchart 
presented in Fig. 2-2 on a forested pixel at 18 km. The parametrization is a bootstrap conducted on the scale 
of a country or a biogeographical region to adjust the correction factors (α,β) so that the difference between 
simulated and observed (UNFCCC) annual changes in AGC is minimized across the historical period (2010-
2021). Each forest sink component (ΔHWP, ΔSoil, ΔBGC and ΔDWL in panel B) is computed based on ΔAGC 
with the linear relationships. ...................................................................15 

Figure 2-4 UNFCCC reports, computation of the BGC & AGC components, and linear relationships between 
forest sink components and annual changes in AGC. A, Ratio of belowground biomass (BGC) to AGC calculated 
based on the FAO-FRA reports of 2020 (The year 2015 has been used instead for Serbia, Albania, Portugal and 
Greece as the year 2020 was not available yet). This ratio is used to partition the annual carbon stock change 
in living biomass into the annual carbon stock change in AGC & BGC. B, Contribution of the forest area of each 
country to each bioregion, which allows to calculate each component of the forest sink (from the country 
reports to UNFCCC) for each biogeographical region. C, Linear relationships obtained from the UNFCCC 
reports associated with each biogeographical region of the forest sink FS (sum of annual carbon stock changes 
in AGC, BGC, Harvested Wood Products (HWP), Deadwood and Litter (DWL) and organic and mineral soil (soil)) 
versus annual carbon stock changes in AGC for 12 data points (years from 2010 to 2021). D,E,F,G, Similar 
relationships but for ΔHWP, ΔSoil, ΔBGC and ΔDWL versus ΔAGC, respectively. The mean is calculated instead 
if the relationship is non-significant (p > 0.05). .....................................................16 

Figure 2-5 Forest growth in Europe. (A) AGC recovery curves computed at 18 km based on a Chapman-Richard 
equation: AGCCRt = AGCpot(1-e-bt)c using two AGC datasets (CCI-ESA in blue, and PlanetScope in red) 
harmonized with NFI data on a sub-national scale. See supplementary Fig. 2-6 for a map of coefficients b, c, 
and AGCpot. The representative growth curve (thick line) is obtained with the median of all valid curves 
associated with a r2 > 0.5 in a specific biogeographical region. Points represent the median of the AGC after 
a stand-replacing disturbance (limited to 5-30 years based on the Landsat range) or the median of the 
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 potential AGC (AGCpot displayed for the age = 250 years for visualization purposes only. AGC approaches 
AGCpot asymptotically, never reaching it fully) across all 18 km pixels (whiskers show the 95% variability, from 
2.5% to 97.5% percentile). AGCpot is scaled from the AGC of forests undisturbed since 1986 with a bootstrap 
analysis that minimizes the difference between simulated and observed (UNFCCC) changes in AGC from 2010 
to 2021. The 90% AGC recovery interval (t90) is retrieved at 18 km with AGCCRt90 = 0.9AGCpot , and then 
the median of all 18 km pixels is calculated. The shaded areas and the range of t90 (horizontal black line) 
represent the variability from the bootstrap conducted on the scale of a country or a biogeographical region. 
(B) In situ validation with the age and AGC of trees measured from 383 European sites. For each site, 
fcAGCCRage-AGCin	situ	age has been computed using the nearest growth curve parameters, and fc is the 
forest fraction estimated at 90 m around the site from our forest mask. The thick curve represents the moving 
mean (loess) of all available anomalies, with a variability indicated by the mean absolute error for all available 
samples. The Mediterranean anomalies are discarded due to a small sample size (13 sites).  (C) Location of 
the in situ sites and the biogeographical regions. The unit haF stands for hectares of forests. ................17 

Figure 2-6 Chapman-Richards coefficients from the recovery curves. The Chapman-Richards growth function 
is decribed as AGC(t)=AGCpot (1-e(-b*t))^c. A, Growth coefficients obtained from the parameterization of the 
DDCM at a country scale for the PlanetScope AGC map. B, Growth coefficients obtained from the 
parameterization of the DDCM at a country scale for the CCI-ESA AGC maps. C, growth coefficients obtained 
from the parameterization of the DDCM at a regional scale for the PlanetScope AGC map. D, growth 
coefficients obtained from the parameterization of the DDCM at a regional scale for the CCI-ESA AGC maps. 
Missing values in these maps will be filled with spatial interpolations before simulating the AGC from 2010 to 
2030. ......................................................................................18 

Figure 2-7. Changes in forest growth and disturbances, DDCM procedure, and remote sensing 
inconsistencies in biomass change. (A) Comparison across Europe of the mean AGC (CCI-ESA, bias-corrected 
with NFI data on a sub-national scale) of forests from 5 to 30 years old (Landsat range) between the periods 
2015-2017 and 2019-2021. For each year (2015,2016,2017,2019,2020,2021), the mean AGC of forests (for a 
given age class) has been aggregated from 30 m to 18 km. One point in panel A corresponds to the mean 
value of all 18 km pixels across Europe for the given period (2015-2017 for the X axis and 2019-2021 for the Y 
axis) and a given age class. (B) The volume of wood loss is shown in blue (1)and the percentage of forest cover 
loss is shown in red (2) due to natural disturbances in the EU-27 from 2010 to 2019. (C) Roundwood removals 
are shown in blue (3) and the percentage of forest cover loss is shown in red (2) due to harvest or salvage 
logging in the EU-27 from 2010 to 2020. The percentage of forest cover loss has been aggregated from the 
same sub-sample of Europe described in panel B.  (D) Example of AGC simulations from the data-driven carbon 
model (DDCM) for a forested pixel at 18 km, from two AGC datasets (the year 2019 for PlanetScope and mean 
of 2017-2021 for CCI-ESA) and one parameterization (bootstrap conducted on each country). See Fig. 2-3 for 
more details. The simulated AGC is the mean of 50 replicates. For each replicate, the period of growth is equal 
to the return interval, which is the average time between two mean disturbances aggregated at 18 km across 
30-year windows (typically between 1 and 5 years). Each replicate has a different starting time of the first 
disturbance. The mean percentage of AGC loss at 18 km is scaled from the mean percentage of forest cover 
loss with a bootstrap analysis that minimizes the difference between simulated and observed (UNFCCC) 
annual changes in AGC from 2010 to 2021. (E) Annual AGC changes from CCI-ESA maps (2015 to 2021), 
UNFCCC reports, and DDCM simulations from 2010 to 2021 (PlanetScope has only one year of data and 
changes cannot be assessed). Annual AGC changes for CCI-ESA (2016-2021) have been aggregated across each 
biogeographical region, regardless of the quality flag of the CCI-ESA product or possible 0 values emerging 
from a mismatch with our forest cover mask. ......................................................19 

Figure 2-8 Spatial and temporal changes in the carbon sink of European forests. (A) Forest sinks for the five 
biogeographical regions and the EU-27 are based on two forest management scenarios: business as usual and 
a 26% decrease in harvest in addition to the 3 billion trees planted by 2030 (their total forest sink is pink). The 
forest sink is the sum of five components: net carbon stock change in the AGC, below-ground biomass (BGC), 
deadwood and litter, soils and harvested wood products. The EU-27 forest sink target has been estimated at 
392 MtCO2eq, the average for the years 2016-2018. The black-shaded area represents the total variability 
obtained from using PlanetScope or CCI-ESA maps with the parameterization conducted per country or      
biogeographical region. (B) Map of the difference between 2030 and 2010 of the AGC simulated by the DDCM. 
Forests losing AGC from 2010 to 2030 are in yellow. (C) Map of the difference between 2030 and 2010 of the 
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 forest carbon stocks composed of AGC, BGC, deadwood and litter, soil and harvested wood products (values 
have been divided by 2 to match the legend). Forests losing carbon (acting as a source) from 2010 to 2030 are 
in yellow. For both panels B and C, inconsistencies between CCI-ESA and PlanetScope are in gray (when one 
product predicts a carbon source and the other a carbon sink). .......................................21 
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Figure 3-2 Global distribution of disturbed forests and forest age structure in 2020. a) Fraction of forest area 
disturbed during 1985-2020 within each 1° grid cell. b) Forest age composition in 2020, with each donut chart 
showing the proportion of young forests that regenerated following disturbances during 1985–2020 and 
ageing forests that remained undisturbed over the same period. Young forests are classified into four age 
groups (0–10, 11–20, 21–30, and 31–40 years) based on the time since the last disturbance, derived from 
regional disturbance datasets. Regional boundaries correspond to those shown in Fig. 2c. ..................36 

Figure 3-3 Forest aboveground carbon (AGC) accumulation changes with time. (a) Forest AGC accumulation 
as a function of forest age for each study region. (b) Comparison of AGC accumulation rates over first 0-100 
years after regrowth with estimates from naturally regenerating forests reported by Cook-Patton et al. (2020)2. 
(c) Regional map used in the analysis. Each color-coded region corresponds to those used in panels a and b. 
AGC growth curves at 1° grid cell were fitted using the Richards-Chapman function (AGC = AGCₘₐₓ × (1 − 
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2020. (a) Spatial patterns of gross AGC gains, gross AGC losses, and net AGC changes. (b) Temporal dynamics 
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1 Summary 
 

In the previous Climate Assessment Report (CAR) report from Phase I, we addressed the use of 
the European Space Agency (ESA) Climate Change Initiative (CCI) BIOMASS data on the Above 
Ground Biomass (AGB; Mg ha-1) of woody vegetation for evaluation of TRENDYV8 DGVMs, the 
inference of tropical land carbon cycle parameters by combining CCI BIOMASS AGB estimates, 
L-band Volumetric Optical Depth (LVOD) from Soil Moisture and Ocean Salinity (SMOS), Leaf 
Area Index (LAI) data, and the change of tropical AGB  inferred from LVOD calibrated to AGB, 
with a focus on the recovery of AGB from the most recent El Niño. 

In the Phase II CAR report, we applied CCI BIOMASS AGB data to infer forest biomass changes in 
three regional studies 1) the forest biomass loss caused by plantation area expansion in 
Southeast Asia, 2) the deficit and loss of AGB across forest edges in Africa, 3) the net carbon 
balance of boreal forests, with a focus on fire disturbances and post-fire AGB recovery.   

In this Phase III CAR report, we applied CCI BIOMASS AGB data to infer the forest biomass losses 
and gains associated with fire, degradation, deforestation, and regrowth within tropical forests 
during 1990-2020. In this case study, we provided spatially explicit, long-term analysis of the 
carbon balance dynamics within disturbed tropical humid and dry forests, offering critical 
insights for accurate resource assessment, land management, and the formulation and 
monitoring of land use emission reduction policies.   

In the initial version of the CAR from CCI BIOMASS Phase IV, we applied CCI BIOMASS AGB data 
to two studies aimed at quantifying carbon changes in forest ecosystems—one focusing on 
European forests and the other on global disturbed forests. For Europe, we modeled the EU-27 
forest carbon sink from 2010–2030 using UNFCCC carbon data, disturbance maps and available 
AGB modeling. We found that, without intervention, the EU forest carbon sink will decline by 
44% by 2030—falling 29% short of climate targets. The decline is primarily driven by increased 
disturbances and harvests, and the study concludes that reducing harvest levels by 26% is critical 
to reversing the trend. This study is currently under review and the full preprint is available at 
https://www.researchsquare.com/article/rs-3671432/v1. In the second study, we integrated 
CCI BIOMASS AGB data with the disturbance history (1985–2020) and regionally calibrated 
above-ground carbon (AGC; Mg ha-1) regrowth curves at 1° spatial resolution. Our analysis shows 
that forests disturbed since 1985 account for 30% of global forest area. These disturbed forests 
resulted in a net global AGC loss of −8.5 PgC, comprising −27.3 PgC from disturbance-related 
losses and +18.9 PgC from regrowth. Notably, 83% of the carbon losses occurred in tropical 
regions. AGC turnover rates varied globally, with the highest observed in Australia (1.17%) and 
the lowest in boreal regions such as Russia and Alaska (0.09%).  
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2 Alarming decline in the carbon sink of European 
forests driven by disturbances 

 

European forests have gradually recovered from major timber exploitation during and following 
the two World Wars 1. Today, they cover 33% of the continent and hold 12.1 PgC of above-
ground biomass carbon (AGC, Fig. 2-1A), based on a recent dataset established from National 
Forest Inventories (NFIs) at sub-national scale for 2020 2. Forests constitute the main carbon sink 
of the European Union (EU-27), which has implemented a revised regulation aiming to achieve 
an annual carbon sink of 310 MtCO2eq in the land use sector by 2030 3. In this study, we define 
the forest carbon sink as the sum of five components: the net carbon stock change in AGC, 
below-ground biomass, soils (organic and mineral), deadwood and litter, and harvested wood 
products. 

Despite their importance for carbon sequestration, Europe’s forests are facing increasing 
pressure from timber harvest 4,5, as well as from natural disturbances such as wildfires, storms, 
bark beetle outbreaks 6, and drought and heatwave events 7. Timber harvest is the most 
significant disturbance in Europe, accounting for 83-86% of all the forest area losses from 2001 
to 2019, followed by storms (6-7%), fires (3-5%) and bark-beetles (less than 3%) based on the 
data from two independent studies 6,8. The increasing rate of forest disturbances was already 
predicted in the 1990s 9 and has been confirmed by recent in situ 6 and satellite 10 observations. 
Over the past three decades, the mortality of forest trees has almost doubled in Europe 11, 
raising concerns about the future resilience of forests to disturbances 12 and their capacity to 
maintain their role as major carbon sinks 13-15. Annual summaries of country reports under the 
UNFCCC indicate that the carbon sink of 69% of European forests has declined from 2010 to 
2021, despite the forest area of Europe increasing by 1.6% (Fig. 2-1D). 

NFIs routinely monitor forest wood stocks through regular measurements of numerous field 
plots with statistical sampling schemes specific to each country 16. However, inventories typically 
have a revisit cycle of five years, which complicates the tracking of changes in forest growth or 
stocks, and individual plot observations are not easily accessible to the scientific community due 
to economic interests and legislative issues (e.g., 47% of forests are privately owned 4). 
Spaceborne remote sensing offers an attractive data source for obtaining spatially explicit 
estimates of forest carbon stocks. We used two state-of-the-art annual AGB maps: one from CCI-
ESA v5 17 (100 m resolution, 2015 to 2021) and another from PlanetScope imagery v0.1 18 (30 m 
resolution aggregated from 3 m nanosatellite images, available for 2019). The AGB density is 
converted to AGC density using a scaling factor of 0.5 19 . The two map products are independent, 
allowing for the assessment of uncertainties, and have been bias-corrected to align with the 
forest cover and AGC levels reported by NFIs at a sub-national scale 2. 
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Figure 2-1 Forest state in Europe during the historical period. (A) Above-ground biomass for the 
year 2019, averaged from two products: CCI-ESA (solid lines in the histograms) and PlanetScope 
(dashed lines), both bias-corrected with NFI data at a sub-national scale. Histograms show the 
distributions within five biogeographical regions indicated in the miniature. (B) Trends in the 
mean percentage of forest cover loss at 18 km. The annual forest cover loss has been aggregated 
from 30 m to 18 km, divided by the forest area at 18 km. Then, a moving average (30-year 
window) has been computed to produce the mean percentage of forest cover loss (six values 
from 2000 to 2005). A linear trend has been computed at 18 km based on these six values (no 
trend corresponds to p > 0.05). Scatterplots display the annual percentage of forest cover loss 
due to all disturbances (natural and anthropogenic) in each biogeographical region. They were 
obtained by spatially aggregating the forest cover loss (at 30 m) across each biogeographical 
region, and then dividing by the total forest cover of the region. (C) Disturbance partitioning 
assessed from ground-based 6 and Landsat-based 8 data. The disturbance agents “bark beetles” 
and “others” have been merged with “storms” and “harvests” (respectively) due to Landsat’s 
limited sensitivity. The ground-based partitioning was first established between harvests and 
natural disturbances (period 2001-2019, natural disturbances accounted for 16% of the mean 
annual harvest in Europe), then natural disturbances was further partitioned following numbers 
given in 6 corresponding to the period 1950-2019 (D) Country reports to UNFCCC giving ground-
based estimates from 2010 to 2021 of forest area (FA, Mha) and the forest sink (FS in MgC/haF), 
which is the sum of the net carbon stock change in the AGC, belowground biomass, organic and 
mineral soils, deadwood, litter and harvested wood products. Four groups are separated based 
on the national forest sink trends: small decrease (in orange), large decrease (in red), and 
increase (in green) and no trend (in gray). The unit haF stands for hectares of forests.  

2.1  Method 

2.1.1 Model the forest regrowth  

To assess current and predict future AGC changes, we leveraged a recent European disturbance 
map based on 30 m resolution Landsat data from 1986 to 2020 10. This map allowed us to 
estimate trends in AGC loss due to disturbances by spatially and temporally aggregating forest 
cover loss data from 30 m to 18 km. We also used two AGB maps (converted to AGC using a 
factor of 0.5 19), one CCI-ESA maps 17 (2015 to 2021, version 5, at 100 m resolution) and the 2019 
PlanetScope-based AGC map 18 (30 m, version 0.1). All AGC maps have been bias-corrected to 
match the AGC reported at the sub-national scale in the harmonized NFI dataset for the year 
2020 2. The correction for each European departmental unit is a multiplicative factor 
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 corresponding to the ratio between the AGC reported by NFIs and the mean raw AGC of 2020 
for CCI-ESA or 2019 for PlanetScope. The median correction across all units (288) is 1.30 ±	0.27 
(± 1 Mean Absolute Deviation) for CCI-ESA, and 1.06 ±	0.24 (± 1 MAD) for PlanetScope. 

Then, we estimated AGC gains from forest regrowth following disturbances 20 using a space-for-
time methodology following the approach originally developed for tropical forests 21. We 
extended their approach and derived spatially explicit local recovery curves at 18 km across all 
Europe from two AGB maps (CCI-ESA Biomass and PlanetScope) instead of continental-average 
curves used in their work. The year of the disturbance is first subtracted from the year of the 
AGC map to obtain post-disturbance years. The AGC maps are then normalized by dividing them 
with 𝐴𝐺𝐶𝑝𝑜𝑡 defined here as 𝐴𝐺𝐶𝑝𝑜𝑡 = 	𝛼𝐴𝐺𝐶75%, with 𝐴𝐺𝐶75% the 75% percentile of the AGC 
of all 30 m forests undisturbed since 1986 inside an 18 km pixel, and 𝛼  a correction factor 
calculated on the scale of a country or biogeographical region. For each AGC dataset (average of 
AGC maps from 2017-2021 for CCI-ESA, or PlanetScope map of 2019), values of (𝛼) have been 
estimated on a country-level or a biogeographical region-level using a bootstrap analysis that 
minimizes the RMSE between DDCM simulations and observations of ΔAGC from UNFCCC 
reports across the recent historical period (2010-2021). Then these (𝛼) correction maps have 
been smoothed at 100 km to reduce the discrepancies at the border between two countries or 
two biogeographical regions.  For each normalized AGC map (2015-2021 for CCI-ESA and 2019 
for PlanetScope) and each 18 km pixel, five mean AGCs are calculated within five-time windows 
([5-10 years], [10-15 years],..,[25-30 years]). For each time window, the average of the seven 
products of CCI-ESA (2015-2021) is computed to reduce uncertainties. A Chapman-Richard 
growth curve (𝐴𝐺𝐶𝐶𝑅(𝑡) =	𝐴𝐺𝐶𝑝𝑜𝑡(1 − 𝑒−𝑏𝑡)

𝑐) is fitted through the five values to estimate the 
𝑏 and 𝑐 coefficients. Growth curves with non-physical inputs are discarded (AGC[5-10 years] > 
AGC[25-30 years]), and outliers in 𝑏 and 𝑐 populations across Europe are removed using the 
Logbox method. Growth curves associated with 𝑟2 < 0.5  are finally discarded. The time 𝑡90 

required to recover 90% of the 𝐴𝐺𝐶𝑝𝑜𝑡  after a stand-replacing disturbance corresponds to 

𝐴𝐺𝐶𝐶𝑅(𝑡90) = 0.9𝐴𝐺𝐶𝑝𝑜𝑡  which leads to 𝑡90 = − 1
𝑏 𝑙𝑜𝑔(1 − 0.9

1
𝑐) . The median 𝑡90  has been 

calculated from all 18 km pixels with valid growth curves.  These curves have been validated with 
an independent in situ dataset on forest age and AGC 22.  

2.1.2 DDCM model overview 

The data-driven carbon model (DDCM Version 1.1, Fig. 2-2 and Fig. 2-3) simulates annual AGC 
stocks from 2010 to 2030 at 18 km resolution. The net carbon stock change in AGC for a year y 
is computed as Δ𝐴𝐺𝐶(𝑦) = 𝐴𝐺𝐶(𝑦) − 𝐴𝐺𝐶(𝑦 − 1). According to UNFCCC reports, the carbon 
sink of forests across all five European biogeographical regions (miniature in Fig. 1A) is primarily 
driven by the net carbon stock change in AGC rather than in soils, deadwood, and harvested 
wood products. The net carbon stock changes in belowground biomass (Δ𝐵𝐺𝐶), soils (Δ𝑆), 
harvested wood products (Δ𝐻𝑊𝑃) , and deadwood (including litter, Δ𝐷𝑊𝐿 ) are therefore 
estimated based on	Δ𝐴𝐺𝐶 with linear relationships derived from UNFCCC data in five different 
biogeographical regions (Fig. 2-4). This gives access to the annual forest sink at 18 km, defined 
as 𝐹𝑆(𝑦) = Δ𝐴𝐺𝐶(𝑦) + Δ𝐵𝐺𝐶(𝑦) + Δ𝑆(𝑦) + Δ𝐻𝑊𝑃(𝑦) + Δ𝐷𝑊𝐿(𝑦) . Remote-sensing and 
ground-based data have been integrated into our study to reconcile differences that have 
sparked debate in these last years (see Matters Arising in Nature 23). 

The 𝐴𝐺𝐶(𝑦) is computed from the imbalance between AGC gain due to forest growth and AGC 
loss due to disturbances. The annual percentage of AGC loss (𝑠(𝑦) ) is modeled at 18 km 
resolution based on a linear relationship to capture long-term (30 years) trends in disturbance 
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 rates (Fig. 2-1B). This linear relationship is obtained by applying a scaling factor 𝛼 (constant over 
a country or a biogeographical region) to forest cover loss data aggregated spatially and 
temporally from a Landsat-based disturbance map. AGC gains are modeled using an analytical 
growth curve at 18 km resolution (Fig. 2-1A) (Section 2.1.1). The growth curve is constrained by 
an upper limit, referred to as potential AGC (𝐴𝐺𝐶012), which is obtained by applying a scaling 
factor 𝛽  (constant over a country or a biogeographical region) to AGC values of forests 
undisturbed since 1986. Then the two coefficients of the forest growth curve (b,c, see details in 
Section 2.1.1) are retrieved at 18 km knowing the age (obtained from the disturbance map, from 
5 to 30 years old) and the AGC (obtained from the remote-sensing maps CCI-ESA or PlanetScope) 
of thousands of 30 m forested pixels inside each 18 km pixel. The two upscaling factors 𝛼 and 𝛽 
are parameterized at the scale of a country (or a biogeographical region) so that DDCM 
simulations match the UNFCCC observations (2010-2021, see Fig. 2-7E).  

In particular, Version 1.1 of the DDCM (i) matches the forest cover and the AGC of European 
countries based on NFI data for the year 2020 , (ii) does not simulate land-use change (the forest 
cover is constant), (iii) does not account for changes in the growth curves (for example CO2 
fertilization effects are ignored), (iv) captures long-term trends (30-year periods) at 18 km in 
natural disturbances and harvests (Fig. 2-1B), and finally (v) ignores the AGC changes according 
to the maps from CCI-ESA (2015-2021, these are contaminated with artefacts, see Fig. 2-7E). A 
single year of AGC data (2019 for PlanetScope and mean of 2017-2021 for CCI-ESA) is used to 
run the DDCM from 2010 to 2030. 
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Figure 2-2 Flowchart of the DDCM procedure. This flowchart explains the DDCM procedure from 
raw data to forest sink estimates. The variable s refers to the percentage of AGC loss, and τ to 
the return interval of the disturbances (for a 30-year window), both defined at 18 km. The 
correction factors (α,β) are defined at a country or a biogeographical region scale. 
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Figure 2-3 Detailed example of the DDCM procedure for a given forested pixel at 18 km. Use of 
the flowchart presented in Fig. 2-2 on an 18 km forested pixel. The parametrization is a bootstrap 
conducted on the scale of a country or a biogeographical region to adjust the correction factors 
(α,β) so that the difference between simulated and observed (UNFCCC) annual changes in AGC 
is minimized across the historical period (2010-2021). Each forest sink component (ΔHWP, ΔSoil, 
ΔBGC and ΔDWL in panel B) is computed based on ΔAGC using linear relationships. 
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Figure 2-4 UNFCCC reports, computation of the BGC & AGC components, and linear relationships 
between forest sink components and annual changes in AGC. A, Ratio of belowground biomass 
(BGC) to AGC calculated based on the FAO-FRA reports of 2020 (the year 2015 has been used 
instead for Serbia, Albania, Portugal and Greece as the year 2020 was not yet available). This 
ratio is used to partition the annual carbon stock change in living biomass into the annual carbon 
stock change in AGC & BGC. B, Contribution of the forest area of each country to each bioregion, 
which allows to calculate each component of the forest sink (from the country reports to 
UNFCCC) for each biogeographical region. C, Linear relationships obtained from the UNFCCC 
reports associated with each biogeographical region of the forest sink FS (sum of annual carbon 
stock changes in AGC, BGC, Harvested Wood Products (HWP), Deadwood and Litter (DWL) and 
organic and mineral soil (soil)) versus annual carbon stock changes in AGC for 12 data points 
(years from 2010 to 2021). D,E,F,G, Similar relationships but for ΔHWP, ΔSoil, ΔBGC and ΔDWL 
versus ΔAGC, respectively. The mean is calculated instead if the relationship is non-significant 
(p > 0.05).  

2.1.3 Future projection   

To project the future forest carbon sink, we conservatively assumed that future disturbances 
would follow the same local trends as in the past 35 years while future AGC recovery curves 
would remain unchanged. Our projections for carbon sink trajectories are spatially explicit and 
can be aggregated at the national level for each EU-27 country. This allows comparison with the 
2030 carbon sink target for the forest sector, which contributes to the broader land-use sector 
mitigation goal set by the European Commission. By partitioning harvests and natural 
disturbances based on their constant ratio at 18 km and adjusting the harvest trends in the 
DDCM, we infer the reduction in harvesting necessary to meet the 2030 target (while accounting 
for the observed increase in natural disturbances).  

2.2  Forest biomass recovery 

Forest recovery after disturbance shows significant variations across different biogeographical 
regions of Europe 20 (Fig. 2-5A). In the Boreal region, forests typically need 118 [93,163] years on 
average to regain 90% of their maximum reachable AGC (AGCpot) after a stand-replacing 
disturbance event. The confidence intervals in brackets show the range obtained from model 
parameterization conducted on different AGC maps at different scales. Forests in the Atlantic 
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 also take about a century to recover (101 [64,181] years), while recovery in the Alpine and 
Continental regions is twice as slow (239 [157,312] years). Their recovery is slower because it is 
defined here as a percentage of AGCpot, which is much higher in the Alpine and Continental 
regions (184 [162,223] MgC/haF, with haF standing for hectares of forest) compared to the 
Boreal and Atlantic regions (104 [85,147] MgC/haF). However, the Mediterranean region has the 
longest recovery time (more than 300 years) with the lowest potential AGC (72 [59,92] MgC/haF) 
due to it being water-limited. The accuracy of local recovery curves is confirmed by the small 
mean anomalies between satellite-derived and field-observed AGC (Fig. 2-5B) when the sample 
size is large enough for a given age. However, the precision of these curves is limited (large 
variability seen in the anomalies) due to the influence of varying factors (e.g., climate, soil, forest 
management) as well as the inherent uncertainties in in situ measurements. 

 

 

Figure 2-5 Forest growth in Europe. (A) AGC recovery curves computed at 18 km based on a 
Chapman-Richard equation: 𝐴𝐺𝐶34(𝑡) = 𝐴𝐺𝐶012(1 − 𝑒562)7  using two AGB datasets (CCI-ESA 
in blue, and PlanetScope in red) harmonized with NFI data on a sub-national scale. See 
supplementary Fig. 2-6 for a map of coefficients b, c, and 𝐴𝐺𝐶012. The representative growth 
curve (thick line) is obtained with the median of all valid curves associated with a 𝑟8 > 0.5 in a 
specific biogeographical region. Points represent the median of the AGC after a stand-replacing 
disturbance (limited to 5-30 years based on the Landsat range) or the median of the potential 
AGC ( 𝐴𝐺𝐶012  displayed for the 𝑎𝑔𝑒 = 250  years for visualization purposes only. AGC 
approaches 𝐴𝐺𝐶012  asymptotically, never reaching it fully) across all 18 km pixels (whiskers 
show the 95% variability, from 2.5% to 97.5% percentile). 𝐴𝐺𝐶012  is scaled from the AGC of 
forests undisturbed since 1986 with a bootstrap analysis that minimizes the difference between 
simulated and observed (UNFCCC) changes in AGC from 2010 to 2021. The 90% AGC recovery 
interval (𝑡9:) is retrieved at 18 km with 𝐴𝐺𝐶34(𝑡9:) = 0.9𝐴𝐺𝐶012, and then the median of all 18 
km pixels is calculated. The shaded areas and the range of 𝑡9: (horizontal black line) represent 
the variability from the bootstrap conducted on the scale of a country or a biogeographical 
region. (B) In situ validation with the age and AGC of trees measured from 383 European sites. 
For each site, 𝑓7𝐴𝐺𝐶34(𝑎𝑔𝑒) − 𝐴𝐺𝐶;<	>;2?(𝑎𝑔𝑒) has been computed using the nearest growth 
curve parameters, and 𝑓7  is the forest fraction estimated at 90 m around the site from our forest 
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 mask. The thick curve represents the moving mean (loess) of all available anomalies, with a 
variability indicated by the mean absolute error for all available samples. The Mediterranean 
anomalies are discarded due to a small sample size (13 sites).  (C) Location of the in situ sites 
and the biogeographical regions. The unit haF stands for hectares of forests. 

 

Figure 2-6 Chapman-Richards coefficients from the recovery curves. The Chapman-Richards 
growth function is decribed as AGC(𝑡) = 𝐴𝐺𝐶012(1 − 𝑒562)7  .  A. Growth coefficients obtained 
from the parameterization of the DDCM at a country scale for the PlanetScope AGC map. B. 
Growth coefficients obtained from the parameterization of the DDCM at a country scale for the 
CCI-ESA AGC maps. C. Growth coefficients obtained from the parameterization of the DDCM at 
a regional scale for the PlanetScope AGC map. D. growth coefficients obtained from the 
parameterization of the DDCM at a regional scale for the CCI-ESA AGC maps. Missing values in 
these maps will be filled with spatial interpolations before simulating the AGC from 2010 to 
2030. 

 
 
2.3 Carbon storage potential in a world without disturbance 

On a global scale, studies have suggested that forests could significantly increase their biomass 
if allowed to regrow partially or fully 24-28. We estimate that Europe could potentially increase its 
AGC stock by 15.8 [11.9,19.0] PgC, corresponding to a ~130% increase in AGC carbon stocks 
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 relative to the period 2017-2020 (for the same forest area). This result is consistent with the 
conclusions of a recent study based on old-growth forests in Europe 29. Being far from their 
saturation point, these forests reflect a broader shift in forest dynamics 5,30 characterized by a 
rapid increase in forest turnover rates. Mature forests steadily decline due to increased tree 
mortality, leading to significant ecological consequences 31. Repeated disturbances affecting 
forests are not accounted for in these estimations, therefore the disturbance trends are 
implemented in the DDCM to provide more realistic projections of future AGC stocks (Fig. 2-7D). 

 
Figure 2-7. Changes in forest growth and disturbances, DDCM procedure, and remote sensing 
inconsistencies in biomass change. (A) Comparison across Europe of the mean AGC (CCI-ESA, 
bias-corrected with NFI data on a sub-national scale) of forests from 5 to 30 years old (Landsat 
range) between the periods 2015-2017 and 2019-2021. For each year (2015, 2016, 2017, 2019, 
2020, 2021), the mean AGC of forests (for a given age class) has been aggregated from 30 m to 
18 km. One point in panel A corresponds to the mean value of all 18 km pixels across Europe for 
the given period (2015-2017 for the X axis and 2019-2021 for the Y axis) and a given age class. 
(B) The volume of wood loss is shown in blue 6 and the percentage of forest cover loss is shown 
in red 8 due to natural disturbances in the EU-27 from 2010 to 2019. (C) Roundwood removals 
are shown in blue 32 and the percentage of forest cover loss is shown in red 8 due to harvest or 
salvage logging in the EU-27 from 2010 to 2020. The percentage of forest cover loss has been 
aggregated from the same sub-sample of Europe described in panel B.  (D) Example of AGC 
simulations from the data-driven carbon model (DDCM) for a forested pixel at 18 km, from two 
AGC datasets (the year 2019 for PlanetScope and mean of 2017-2021 for CCI-ESA) and one 
parameterization (bootstrap conducted on each country). See Fig. 2-3 for more details. The 
simulated AGC is the mean of 50 replicates. For each replicate, the period of growth is equal to 
the return interval, which is the average time between two mean disturbances aggregated at 18 
km across 30-year windows (typically between 1 and 5 years). Each replicate has a different 
starting time of the first disturbance. The mean percentage of AGC loss at 18 km is scaled from 
the mean percentage of forest cover loss with a bootstrap analysis that minimizes the difference 
between simulated and observed (UNFCCC) annual changes in AGC from 2010 to 2021. (E) 
Annual AGC changes from CCI-ESA maps (2015 to 2021), UNFCCC reports, and DDCM simulations 
from 2010 to 2021 (PlanetScope has only one year of data and changes cannot be assessed). 
Annual AGC changes for CCI-ESA (2016-2021) have been aggregated across each biogeographical 
region, regardless of the quality flag of the CCI-ESA product or possible 0 values emerging from 
a mismatch with our forest cover mask. 
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2.4 Inconsistencies in biomass change detection using remote sensing 

While the CCI-ESA biomass maps correctly capture the spatial variability of AGC (converted from 
AGB to AGC using a ratio of 0.5) among young, mature, and old forests (Fig. 2-5B), calculating 
AGC changes as the year-on-year difference between two consecutive AGC maps is unsuitable, 
as it produces AGC changes that are inconsistent with UNFCCC reports across the recent 
historical period (Fig. 2-7E, blue triangles versus black dots). For instance, this approach 
produces a net loss of AGC in the Continental region from 2017 to 2021 (except in 2020), 
contradicting the AGC accumulation reported by the UNFCCC for that period. In contrast, the 
AGC change simulations from the DDCM closely match UNFCCC data across all biogeographical 
regions (Fig. 2-7E). The NFI data used in the UNFCCC reports provide robust national-scale 
estimates of biomass carbon stock changes over time with a ~30% uncertainty 35-38. However, 
they cannot provide insights into fine-scale spatial patterns; a gap effectively addressed by the 
DDCM that is spatially explicit (see next sections). 

2.5 Future carbon sink of Europe’s forests   

According to the DDCM, the net carbon sink of EU-27 forests is projected to decrease from 496 
[459,521] MtCO2eq/year in 2010 to 279 [269,294] MtCO2eq/year by 2030 (Fig. 2-8A). This 
projection assumes that forest recovery curves remain unchanged in the near future (Fig. 2-5A) 
and that forest management and natural disturbances will continue linearly until 2030, following 
past trends observed in the mean percentage of AGC loss across 18 km grids (Fig. 2-7D). The 
largest decrease in the forest carbon sink is expected in the Boreal region, with a decline of 62%, 
while the Mediterranean region is predicted to maintain a stable sink. The forest carbon sink 
consists of five components, each with different significance and behavior (Fig. 2-8A). The net 
carbon stock change in living above- and below-ground biomass (ΔAGC + ΔBGC) will see a large 
decrease of 63% from 2010 to 2030 in the EU-27, which is the primary driver of the overall 
decline. However, this decline will be partially offset by increases in the net carbon stock changes 
of harvested wood products 39 (ΔHWP, +96%) and deadwood and litter resulting from recent 
disturbances (ΔDWL, +71%). The net carbon stock change in soils is expected to decrease by 17%, 
consistent with our current understanding of the impact of harvests on soil carbon dynamics 40. 
While ΔHWP and ΔDWL only accounted for ~11% of the forest carbon sink in 2010, they are 
projected to contribute ~35% by 2030, acting as a temporary buffer against the declining carbon 
sink of living biomass and soils.  

The resolution of the DDCM allows for the detailed computation of spatial variations in the AGC 
sink (Fig. 2-8B) in addition to the overall forest carbon budget (Fig. 2-8C) from 2010 to 2030. 
Regions such as Southern Germany, Northern Belarus, Northern Sweden, Southern Romania, 
Central Spain, the Pyrenees, and the Dinaric mountains are expected to continue to accumulate 
large proportions of AGC from 2010 to 2030 (Fig. 2-8B). These gains are attributed to either 
stationary or decreasing trends in disturbance levels (partly due to recovery from old 
disturbances like in Southern Germany), unlike other parts of the continent (Fig. 2-1B), where 
12% of forests are projected to experience a net AGC loss (agreement between CCI-ESA and 
PlanetScope). Particularly, forests in Portugal, Slovenia, Southern France, Austria, Czechia, 
Estonia, Latvia, Northern Ukraine, Northern Germany, the Eastern Alps, and parts of Scandinavia 
are projected to face reductions in AGC (Fig. 2-8B). However, the impacts of these losses will be 
partially offset by increases in the net carbon stock changes in HWP and DWL (Fig. 2-8A), which 
will help compensate for the AGC loss in about half of these areas. Overall, our estimates indicate 
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 that at least 6% of European forests will become net carbon sources between 2010 and 2030 
(Fig. 2-8C, agreement between CCI-ESA and PlanetScope). 

 
Figure 2-8 Spatial and temporal changes in the carbon sink of European forests. (A) Forest sinks 
for the five biogeographical regions and the EU-27 are based on two forest management 
scenarios: business as usual and a 26% decrease in harvest in addition to the 3 billion trees 
planted by 2030 (their total forest sink is pink). The forest sink is the sum of five components: 
net carbon stock change in the AGC, below-ground biomass (BGC), deadwood and litter, soils 
and harvested wood products. The EU-27 forest sink target has been estimated at 392 MtCO2eq, 
the average for the years 2016-2018. The black-shaded area represents the total variability 
obtained from using PlanetScope or CCI-ESA maps with the parameterization conducted per 
country or      biogeographical region. (B) Map of the difference between 2030 and 2010 of the 
AGC simulated by the DDCM. Forests losing AGC from 2010 to 2030 are in yellow. (C) Map of the 
difference between 2030 and 2010 of the forest carbon stocks composed of AGC, BGC, 
deadwood and litter, soil and harvested wood products (values have been divided by 2 to match 
the legend). Forests losing carbon (acting as a source) from 2010 to 2030 are in yellow. For both 
panels B and C, inconsistencies between CCI-ESA and PlanetScope are in gray (when one product 
predicts a carbon source and the other a carbon sink).  

 
 
2.6 Challenges and mitigation strategies   

A common assumption is that sustainable harvests carry a low carbon cost according to the 
rationale that (i) HWPs serve as a reliable long-term carbon sequestration asset, and (ii) young 
stands replacing mature forests are compensating for the carbon deficit because they are more 
productive 41. Based on these premises, the EU-27 has endorsed wood use for bioenergy, which 
now represents 59% of renewable energy 42. Regarding point (i), 69% of global HWPs have very 
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 short lifespans, significantly reducing their contribution to the forest carbon sink 41. For instance, 
estimates from the French NFIs show that 68% of HWPs are used as bioenergy 43. Concerning 
point (ii), the DDCM demonstrates that the recovery of young and productive stands is 
insufficient to offset carbon losses from current natural and anthropogenic disturbances (Fig. 2-
8A). These projections also address point (i) as they implicitly incorporate carbon transfers 
across different pools (especially HWPs and DWLs). The EU-27 plan could be made more 
effective by extending HWP lifespans (for example, using wood for construction material) and 
reducing wood use for bioenergy (by promoting other renewable energies) to lower harvest 
rates, especially as natural disturbances continue to increase dramatically (Fig. 2-7B). The impact 
of reducing harvest rates on the forest carbon sink is estimated below. 

We estimate that the forest carbon sink of the EU-27 will be 29% lower than the 2030 sink target 
(forest state of 2016-2018), resulting in a carbon deficit of -113 MtCO2eq/year for the target 
sink in the forest sector. Despite the EU-27's plan to plant 3 billion trees by 2030, this initiative 
will only contribute an additional 15 MtCO2eq/year to the carbon sink 44, which is insufficient to 
close the gap. According to DDCM simulations, a 26 [20,31]% decrease in harvest from 2025 to 
2030, in addition to the 3 billion new trees, would be sufficient for the EU-27 to reach the target 
(Fig. 2-8A). This estimate is a first-order assessment and should be refined in future studies by 
examining other forest management options than simply reducing harvest 45,46. Forest biomass 
expansion could, for instance, be promoted by regenerating forests with thinning, changing 
rotations, considering biodiversity restoration versus monocultures, or choosing non-
intervention versus salvage logging after a disturbance 34. All these solutions need to be explored, 
as a continent-wide reduction in harvests will increase carbon market leakage, with harvests 
increasing outside Europe to meet European demand. Three recent studies predict that the 
forest sink values in 2030 will fall below the EU-27 target, based on different modeling 
approaches: large-scale simulations from a forestry carbon model (CBM) with business-as-usual 
forest management assumptions 46, multiple statistical extrapolations of current trends 39, and 
land-climate models under different Representative Concentration Pathway scenarios 47. Our 
data-driven model assumes that disturbances will evolve in the next six years as they did in the 
past, forecasting a less optimistic carbon sink for living biomass (ΔAGC and ΔBGC) than CBM 
predictions: 152 MtCO2eq/year (DDCM) versus 240 MtCO2eq/year (CBM) by 2030 for the EU-27. 
However, it is important to note that the CBM forestry model did not capture the recent declines 
in forest carbon sinks reported in the latest UNFCCC data from 2023 46. 

Several limitations are acknowledged in our study. First, shifts in disturbance trends or changes 
in the growth rates of recovering forests 19, whether due to natural or anthropogenic reasons, 
will impact the simulated trajectories. This is why we chose not to extend forecasts beyond 2030. 
Secondly, land-use changes such as deforestation and reforestation are not factored in, with the 
reasonable assumption that forest cover remains largely constant (only +1.6% increase from 
2000 to 2021, Fig. 2-1D). Thirdly, we assumed that forests would continue to recover as they 
have in the past, regardless of disturbance frequency and severity (or increasing droughts). 
Notably, our model does not capture non-linear processes such as cascading effects in 
disturbance interactions (e.g., bark beetle outbreaks after a heatwave). This overlooks the 
potential for ecological tipping points 12, beyond which the resilience of ecosystems is altered. 
Finally, the type and severity of disturbance (fires, storms, harvests) or the disturbance patch 
size, along with variations in forest structure (e.g., old versus young, coniferous versus deciduous, 
plantations versus natural forests), might change the way forests recover 48. We plan to address 
these factors and their potential legacy effects in future studies. 
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 2.7 Conclusion 

We present evidence that Europe’s forests are increasingly at risk of losing their role as carbon 
sinks, primarily due to a dramatic increase in natural disturbances alongside a moderate increase 
in harvests. Although these forests have the potential to double their AGC stocks within the 
same forest area, disturbances are currently outpacing AGC recovery in 12% of European forests. 
Alarmingly, half of these endangered forests are projected to become net carbon sources by 
2030. The carbon sequestration capacity of the remaining forests is progressively deteriorating, 
a trend exacerbated by business-as-usual forest management practices. Our projections for the 
near future are less optimistic than the EU-27’s target, which will significantly impact European 
climate change mitigation plans that rely on increasing forest area. Over the past two decades, 
forest expansion has been limited. By November 2024, only 22 million trees had been planted 
in Europe 49, falling short of the ambitious pledge to plant 3 billion trees by 2030. Even if this 
pledge were met, we estimate that a 26% decrease in forest harvest from 2025 to 2030 would 
be necessary for the EU-27 to reach their target. Historically, forest management in Europe has 
accumulated a substantial carbon debt 50, further exacerbated by recent natural disturbances. 
To mitigate the decline in the European carbon sink, a major shift in forest management 
practices is essential, focusing on increasing resilience and better adapting to natural 
disturbances. 
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 3. Disturbance-recovery dynamics drive global 
forest biomass change 

 

Forests constitute the largest carbon reservoirs in the terrestrial biosphere. The capacity of 
forests to sequester and store carbon is closely linked to their age structure, disturbance regimes, 
and post-disturbance recovery dynamics 1,2. However, increasing anthropogenic pressures and 
climate-related extremes are intensifying the frequency, extent, and severity of forest 
disturbances 3. These disturbances, including wildfires, insect outbreaks, storms, and logging, 
although not necessarily resulting in forest land-use change, can alter forest structure, disrupt 
carbon dynamics, and threaten the long-term stability of the terrestrial carbon sink. 

Recent advances in Earth observation (EO) have substantially enhanced our ability to monitor 
forest disturbances across large spatial and temporal scales. In particular, the Landsat satellite 
archive provides a continuous multi-decadal record that enables the reconstruction of 
disturbance histories and the modeling of post-disturbance forest recovery. Several satellite-
derived datasets now track forest age dynamics 4–6, but their spatial coverage remains limited. 
The recently updated Global Age Mapping Inventory (GAMIv2.0) represents a notable 
improvement, refining spatial resolution from 1 km to 100 m by integrating Landsat-derived 
stand-replacement events over the past two decades 7,8. Nevertheless, it tends to overestimate 
the age of younger forests, due to the lack of disturbance records before the 2000s and the 
omission of non-stand-replacing events 7. These limitations constrain our ability to fully 
characterize forest age structures and disturbance patterns 5,6,9, which are critical for accurately 
quantifying the spatial and temporal patterns of aboveground carbon (AGC) fluxes and 
understanding forest carbon recovery trajectories. 

Despite these observational advances in forest monitoring, integration with existing modeling 
frameworks remains limited, as current models often fail to fully utilize the spatiotemporal detail 
available in EO products. Bookkeeping models (BMs) 10–12, as used in the Global Carbon Budget 
(GCB), were originally developed to estimate land-use change emissions and rely on prescribed 
carbon densities and fixed temporal response curves tied to specific land-use transitions. These 
models are driven by historical land-use reconstructions and generally exclude natural 
disturbances and forest age dynamics. In contrast, process-based Dynamic Global Vegetation 
Models (DGVMs), which are used in the GCB framework to quantify gross forest carbon uptake, 
often lack explicit representation of age-dependent growth processes and the disturbance-
induced carbon losses such as wildfire, windthrow, and insect outbreaks 13,14. National 
Greenhouse Gas Inventories (NGHGIs), which follow IPCC guidelines,  offer a bottom-up 
alternative but differ conceptually from global models by including indirect effects on managed 
lands and broader definitions of anthropogenic influence 15.  Collectively, these approaches have 
provided critical insights into forest carbon dynamics, yet they show substantial discrepancies 
in the treatment of forest extent (e.g., definitions of managed land), representation of 
disturbance types, and the attribution of indirect effects such as CO₂ fertilization and climate 
variability. These inconsistencies result in divergent estimates of forest carbon fluxes and hinder 
reconciliation between observational data and model outputs. As such, there is an increasing 
need for spatially explicit approaches that directly link observed disturbance histories with 
biomass changes to improve model-data consistency. 
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 In this study, we address this gap by integrating global and region-specific datasets of forest 
disturbance and biomass. We examine how historical disturbances during the Landsat era have 
shaped current forest age structures and influenced carbon dynamics across eight major global 
regions: Canada, Europe, other boreal regions, the United States, China, the tropics, Australia, 
and the remaining areas. By coupling a spatially explicit carbon bookkeeping framework with 
gridded forest biomass recovery curves, we aim to: (1) quantify forest AGC changes associated 
with fire and non-fire disturbances, (2) evaluate the regional contributions to the global forest 
carbon budget, and (3) assess carbon residence times under prevailing disturbance regimes. 

3.1 Method  

3.1.1 Delineation of forest disturbances   

We separated the global forested area into 8 subregions, including Canada, Europe, other boreal 
regions, the United States (mainland), China, the tropics, Australia, and other remaining regions 
(Fig. 3-2c). The 8 regions were delineated due to the availability of disturbance datasets (Table 
3-1), which are introduced in detail in the following paragraphs. 

 

Figure 3-1 Conceptual diagram 
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 Table 3-1 Disturbance datasets used in the analysis 

Region Time Period Original type 
Harmonized 
disturbance type Dataset Name Reference 

Canada 1985-2020 Harvest, fire Fire, Non-fire 

Canada’s 
disturbance 
datasets 

Hermosilla et al. 
(2019)16,17 

Europe 1985-2023 
Wind/bark beetle, 
fire, harvest Fire, Non-fire 

European Forest  
Disturbance Atlas 
(EFDA) 

Viana-Soto and Senf 
(2025)18 

US  
1985-2020 
1985-2015 Fire, other  Fire, Non-fire  

 
Monitoring Trends 
in Burn Severity 
(MTBS) 
Disturbance 
intensity 

 
USGS (2023) 
Lu et al., (2023)19 

China 1986-2022 Fire, other Fire, Non-fire 
China's disturbance 
datasets Liu et al., (2023)20 

Tropics 
  

1990-2023 
  

Degradation, 
deforestation, 
Regrowth. 
Fire 

Humid:  
Fire, Non-fire 
Dry: Fire  

Tropical Moist  
Forest (TMF) 
Global Annual 
Burned  
Area datasets 

 
Vancutsem et al., 
(2021) 
Long et al., 
(2021)21,22  

Australia 
  

1988-2023 
  

Original land cover 
class: woody, forest, 
other 

 
Fire, Non-fire 
(forest loss/gain)  

National Forest and 
Sparse  
Woody Vegetation 
Data  

Department of 
Climate Change, 
Energy, the 
Environment 
and Water (2023) 
Long et al., (2021)21 

Other boreal/ 
Other 1985-2021 Burned area Fire 

Global Annual 
Burned  
Area datasets 
(GABAM) 

 
Long et al., (2021)21 

Canada: We used the disturbance datasets developed by 16 for Canada, which provides a 
spatially explicit, yearly record of stand-replacing forest disturbances from 1985 to 2020. This 
Landsat-based dataset distinguishes between wildfire and harvest disturbances and was 
generated using the automated Composite2Change (C2C) algorithm 17. The year of forest change 
was identified by applying a segmentation algorithm to time series of the Normalized Burn Ratio 
(NBR), derived from Landsat surface reflectance data, followed by classification of disturbance 
types using object-based image analysis and a random forest model. The dataset achieved an 
overall change detection accuracy of 89% 17. 

Europe: For Europe, we utilized the European Forest Disturbance Atlas (EFDA) 18, which provides 
annual, spatially explicit forest disturbance maps across 38 European countries from 1985 to 
2023. The EFDA offers detailed information on the disturbance occurrence, severity (calculated 
using spectral changes in the Normalized Burn Ratio, NBR), and type, which is categorized into 
wind/bark beetle, fire, and harvest. The disturbance dataset is derived based on a consistent 
summer Landsat composite data cube and a classification-based approach capable of identifying 
both single and multiple disturbance events. EFDA reports an overall F1 accuracy score of 0.89, 
with commission and omission errors of 17.3 % and 22.5 % for the disturbed forest areas and 
omission errors of less than 1% for undisturbed forest areas, supporting robust detection and 
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 attribution of forest disturbances. The disturbances are further grouped into fire and other non-
fire disturbances (including wink/bark beetle and harvest). 

The United States: For the United States, an annual disturbance intensity map  (30 m, 1986-
2015) from 19 and fire records from Monitoring Trends in Burn Severity (MTBS) (30 m, 1984-
2024) 23 were used. The disturbance intensity map provides estimates of forest disturbance 
intensity across the conterminous United States. The MTBS includes both wildfires and 
prescribed fires that meet defined thresholds (1,000 acres or greater in the western US and 500 
acres or greater in the eastern US) occurred in forest and non-forest area. To delineate forest 
fires, we overlapped the fire records with the Land Use/Land Cover Change layer (30 m, 1985-
2023 , USGS et al. (2025)) and extracted the burned pixels within the forest area. We overlaid 
the forest fires and disturbance intensity map and classified the pixels into two categories: fire 
and other non-fire disturbances. Any disturbance pixel that does not overlap with a fire pixel 
was classified as “other non-fire disturbances”.  

China: We used the forest disturbance dataset developed by Liu et al. (2023)20, which provides 
a spatially explicit, annual record of forest disturbances from 1986 to 2020 for China. This 
disturbance product was generated using the growing season (June–September) Landsat 
imagery. A LandTrendr spectral-temporal segmentation algorithm was applied to multiple 
spectral indices to characterize forest and change conditions. Forest disturbance were classified 
into fire and non-fire categories using a random forest model trained on over 31,000 reference 
points. The year of disturbance was assigned with an accuracy of ±3 years and the overall 
classification achieved an accuracy of 88.2%. 

Tropics: The tropical area covers the same study domain as the tropical moist forest (TMF) 
datasets (Vancutsem et al. 2021)22, which approximately overlaps the ‘Tropical rainforest,’ 
‘Tropical moist forest,’ ‘Tropical mountain system’ and ‘Tropical dry forest’ zones from the FAO 
global ecological zones. We used pixels belonging to the classes of forest cover and changes 
from the TMF Transition Map to define the humid forest extent. For the dry forest, we 
delineated the extent by removing the humid forest extent from a global tree cover map 
(Hansen et al. 2013)29 for the year 2000 with a tree cover threshold of >25% following Hansen 
et al. (2010). The TMF dataset provide 33 yearly change maps, which categorised the 
disturbances across humid tropics into degradation, deforestation, and regrowth following 
deforestation. Deforestation in TMF refers to the change of land use from forest to non-forest 
areas or a loss of canopy cover without subsequent recovery over the past 3 years (Vancutsem 
et al. 2021)22. Forest degradation is not accompanied by permanent land use change (LUC) but 
is related to a decline in canopy cover and biomass. Forest degradation was defined following 
TMF datasets as a short-term disturbance (shorter than 2.5 years) followed by forest recovery. 
These degradations were caused by logging, windbreaks and droughts. Forest regrowth refers 
to forests regrowing following deforestation or afforestsation from non-forested land. The TMF 
reports an overall accuracy of 91.4%, with omission and commission errors for non-forest cover 
detection at 9.4% and 7.9%, respectively  (Vancutsem et al. 2021)22. We further overlapped 
global annual burned area map (Long et al., 2019)21 with the TMF annual change maps, to extract 
the fire and non-fire disturbance in humid troipcs. Deforestation without regrowth and 
afforestation is not accounted in this analysis for the aim of targeting forest disturbance in the 
established forest stands without land use change. Due to the lack of disturbance dataset in dry 
tropics, we overlapped the dry tropical forest extent in 2020 with the global annual burned area 
map (Long et al., 2019)21 to delineate the fire disturbance historically occurred in dry tropical 
forests. The dry tropical forest extent in 2020 was derived from the dry forest extent in 2000 by 
excluding the tree cover loss pixels during 2000-2020 from Hansen et al. (2013)29. 

https://paperpile.com/c/QmnpoD/hAGLL
https://paperpile.com/c/QmnpoD/7aOPs
https://data.fs.usda.gov/geodata/rastergateway/LCMS/index.php
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 Australia: The National Forest and Sparse Woody Vegetation Data (Version 8.0 - 2023 Release) 
provides an annual consistent discrimination between forest, sparse woody, and non-woody 
land cover across Australia from 1988 to 2023 at ~30 m resolution. The ‘forest’ is defined as 
woody vegetation with a minimum 20% canopy cover, at least 2 meters high, and a minimum 
area of 0.2 hectares, while ‘sparse woody’ is defined as woody vegetation with a canopy cover 
between 5-19%. The methodology employs time series processing using conditional probability 
networks to detect woody vegetation cover based on Landsat time series. To delineate the 
forest disturbances, we extract the forest loss from the land cover time-series with the change 
from forest to woody/non-woody and forest gain from woody/non-woody to forest. When the 
30m forest loss pixels overlapped with the fire pixels at the corresponding year from the global 
annual burned area dataset (Long et al., 2019)21, these pixels were assigned as the fire-induced 
forest losses and the remaining ones were attributed to other non-fire losses. 

Other boreal and Other: For the remaining regions without detailed disturbance datasets, the 
global annual burned area map derived from Landsat images was used (1985-2021)21. The 
burned area dataset contains a 8-year gap for the pre-2000 period due to the limited Landsat 
data availability. The accuracy of fire products of 2015-2019 was assessed with the stratified 
random sampling method, and the accuracy validation results show the accuracy of GABAM 
products in different years (2015-2019) was relatively stable, with overall accuracy ranging from 
86.00% to 93.92%, Commission Error from 4.13% to 13.17%, and Omission Error from 29.81% 
to 34.86% 21. We overlapped the burned area with forest cover map and forest loss map from 
global forest watch (Hansen et al., 2013)29 to delineate the forest fires from the original burned 
area dataset. We further separate these burned forests into two regions, the other boreal 
regions (e.g., Alaskan and Russiaian boreal forests) and the other remaining regions.  

Globally, the forest disturbances were separated into the fire and other non-fire disturbances, 
except for the other boreal and the other remaining regions, where other non-fire disturbance 
at the temporal depth of Landsat are not available at the moment. It is also important to notice 
that only forest disturbances happened in the existing forest stands were included in the analysis, 
whereas forest land use change (such as deforestation or afforestation) was excluded, due to 
inconsistency between the different land cover datasets. 

3.1.2 Biomass dataset 

Global above-ground biomass dataset 

We used the ESA Climate Change Initiative Biomass dataset (CCI-Biomass v5 
https://climate.esa.int/en/projects/biomass/data/) to model forest carbon changes. This 
dataset provides global aboveground biomass (AGB) estimates for multiple years at 100 m 
spatial resolution. AGB values are derived from a fusion of Earth observation data, including 
radar signals from Copernicus Sentinel-1, Envisat ASAR, and JAXA’s ALOS-1 and ALOS-2 sensors. 
Importantly, the dataset incorporates updated allometric relationships informed by an extended 
record of spaceborne LiDAR measurements from the GEDI and ICESat-2 missions. To ensure 
spatial consistency with the forest disturbance dataset, the CCI-Biomass map was resampled to 
30 m resolution using nearest-neighbor interpolation. 

Other regional biomass dataset 

Two additional regional biomass datasets at 30m resolution were used, which better matched 
the original resolution of the disturbance datasets.   

https://climate.esa.int/en/projects/biomass/data/
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 For Canadian forests, we used the biomass dataset developed for northern boreal ecosystems 
from 24 at 30m. AGB was modeled through a machine learning approach (XGBoost) by fusing 
ICESat-2-derived canopy structure metrics and Sentinel-2 spectral indices. The dataset was 
trained and validated using the AGB values from national forest inventories (NFI) in Finland, 
Sweden, and Norway. Validation showed strong agreement with reference data, with RMSE 
values around 33–43 Mg/ha across countries. 

For Europe, we used the biomass dataset developed by 25, which estimates aboveground 
biomass (AGB) by integrating PlanetScope imagery with deep learning models. These models 
predict tree canopy cover and height, which are then converted to AGB at 30m resolution using 
allometric equations derived from Danish NFI plots. The dataset captures biomass for both 
forest and non-forest trees. Validation against independent field measurements and national 
inventory data showed a systematic bias of +7.6% and a Pearson correlation coefficient of 0.98 
at the country level. 

3.1.3 Model the forest carbon gain and losses for the disturbed forest 

Identification of the forest age  

We first identified the forest age in 2020 since the last disturbance for each 30m pixel based on 
the regional disturbance history. If multiple disturbances occurred in the same 30m pixel, the 
most recent disturbance was used to calculate the forest age in 2020. For example, if a pixel 
experienced fire or non-fire disturbances in both 1990 and 1995, the year 1995 event was taken 
as the reference point (i.e., the year since the last disturbance), resulting in a forest age of 26 
years in 2020, assuming that recovery begins in the same year as the disturbance.  

Reconstruction of the post-disturbance recovery curves 

To quantify the relationship between aboveground carbon (AGC, converted from AGB using a 
ratio of 0.5) and forest age (i.e., time since the last disturbance), we employed a space-for-time 
substitution approach. Specifically, we overlapped satellite-derived biomass maps with forest 
age maps to extract AGC-age pairs within each 1°×1° spatial window. Due to the temporal extent 
of the remote sensing disturbance data (beginning in 1985), the maximum observable forest age 
is currently limited to 36 years. To extend the AGC-age relationship beyond this range, data from 
the NFIs (Besnard et al., 2021)33 were incorporated during the fitting process, providing 
additional AGC–age observations for older forest stands. If no NFI data were available for a 1°×1° 
grid cell, an estimated data point was added at a forest age of 200 years, with the corresponding 
AGC set to 85% of the maximum AGC within that grid cell. 85th percentile was chosen to 
minimize the differences (mean differences of 1.2 MgC ha-1) at the gridded level between the 
AGC density of the intact forest by overlapping the 2020 intact forest layer (Potapov et al., 
2019)26 and the gridded AGC maps. For each 1°×1° grid cell, the median AGC values and the 
corresponding ages were used to fit the biomass recovery curves following Richard-Chapman 
functions.  

𝐴𝐺𝐶2;@A = 𝐴𝐺𝐶BCD(1 − 𝑒562;)7 + 𝑑                                                                                  (1) 

where AGCmax denotes asymptotic AGC, which determines the maximum potential AGC the 
forest could reach and ti refers to the time since the last disturbance. Parameters b, c, and d 
denote the recovery curves' rate, shape, and intercept.  
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 The recovery curves were derived for each grid cell across global forests, considering two types 
of disturbances, fire-disturbance and other non-fire disturbances.  In the case of Canada, stand-
replacing disturbances were detected 16, the forests are assumed to regrow from zero tree cover, 
and d equals 0. For other non-stand-replacing disturbances where only partial AGC is removed, 
d represents the remaining AGC after disturbances. 

We tested alternative growth functions for regrowth forests, including the Michaelis-Menten 
(𝐴𝐺𝐶2;@A = 𝑎 × 𝑡𝑖/(𝑏 + 𝑥)) and Logistic models (𝐴𝐺𝐶 = 𝑎/(1 + 𝑏𝑒57×2;)). These alternatives 
produced similar AGC accumulation patterns, suggesting that our estimates are robust to the 
choice of model forms within the relevant timeframe. The fitting performance improved with 
increasing grid sizes from 0.25° to 1° (similar R2  of 0.5 but decreased RMSE), due to the larger 
number of data points available for the curve fitting in larger grid sizes. Therefore, a grid 
resolution of 1°×1° was chosen in this study. 

Validation of the recovery curves 

The recovery curves were validated using field-based observations from Cook-Patton et al., 
(2020)2. We compared the field-based AGC and the AGC derived from the spatially-explicit 
regrowth curves following fire/other non-fire disturbances at the same grid in the corresponding 
age intervals. The comparison shows the spatially-explicit curves in general matched the site 
measurements across the three tropical continents (Fig.  3-3c). Our estimated AGC gain rate for 
the recovery forests at young stages (age < 20) with the previous studies based on remote 
sensing and site observations.  

Calculation of the carbon gains and losses from post-disturbance recovery 

The AGC loss from the disturbance is determined by the differences between the pre-
disturbance AGC (point a in Fig. 3-1) and the remaining biomass (point b). The remaining 
biomass is calculated by multiplying the pre-disturbance AGC and the ratio of the biomass loss. 
The ratio of the biomass loss was determined using AGCmax and intercept (d) from the 
corresponding recovery curve as below.  

ratio=  (AGCmax -d)/ AGCmax                 (2) 

For a forest pixel that has been disturbed before, pre-disturbance AGC is determined from the 
recovery curves by the period between the previous and the current disturbance events. For a 
forest pixel that has not been disturbed before (i.e., the first disturbance in the time series), we 
assumed that the biomass should be consistent with the surrounding undisturbed forest. The 
average AGC of N surrounding undisturbed forest pixels (N=10) was used to estimate the pre-
disturbance AGC (point a) of the disturbed pixel.  

For each disturbance event followed by forest recovery, the forest biomass gain depends on the 
differences between the current AGC (point c in Fig. 3-1) and the remaining AGC (point b). The 
current biomass was derived from the recovery curves at the corresponding grid and the period 
between the two disturbance events. The recovery curves for fire and other non-fire 
disturbances were applied for each corresponding disturbance event.  

3.1.4 Estimation of AGC changes for the  undisturbed forest 

https://paperpile.com/c/QmnpoD/Fxl7w
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 To assess carbon dynamics in undisturbed forests, we first delineated the undisturbed forest 
extent in 2020 by excluding all pixels with recorded disturbance events from the forest extent. 
Forest extent was defined using a combination of regional land use/land cover products and 
global tree cover datasets (Table 3-2). AGC values for the undisturbed forest pixels were 
extracted from the CCI Biomass dataset. Using the biomass recovery curves fitted for each 
corresponding 1° × 1° grid cell, forest age in 2020 was estimated (backcasted) for each 30-meter 
pixel by identifying the time since the curve would have accumulated the observed AGC. 
Subsequently, AGC accumulation over the period 1985–2020 was estimated for each 
undisturbed forest pixel by combining the inferred forest age with the recovery trajectory: 

C Gainundist=AGCt=2020−AGCt=1985                                                                                                                (3) 

This approach assumes that these forests were free of detected disturbances in the Landsat 
record (post-1985), but may have experienced disturbances prior to 1985. It further assumes 
that post-disturbance recovery in these forests follows the same trajectory as recently disturbed 
forests, thereby enabling estimation of long-term C gains during 1985-2020. 

Table 3-2 Forest extent data sources  used in the analysis 

Region Forest class Data source Reference 

Canada 

Coniferous 
Broad Leaf 
Mixedwood 

Annual forest land cover maps for 
Canada's forested ecosystems (Hermosilla et al. 2018)27 

Europe Forest mask 
European Forest  
Disturbance Atlas (EFDA) Viana-Soto and Senf (2025) 18 

US  Forest  

 
Landscape Change monitoring 
System (LCCMS) (Land cover layer) USDA Forest Service (2025)  

China Forest China land cover dataset (CLCD) Yang and Huang 202128 

Tropics 
  

Humid: Undisturbed 
forests/regrowth/degraded forests in 2020 
Dry: tree cover in 2020 >25%  

Tropical Moist  
Forest (TMF) 
Tree cover and tree cover loss 
from Global Forest Watch (GFW) 

 
Vancutsem et al. 202122 
(Hansen et al. 2013)29  

Australia 
  

Forest 
  

National Forest and Sparse  
Woody Vegetation Data  

Department of Climate Change, 
Energy, the Environment 
and Water (2023)  

Other 
boreal/ 
Other Tree cover >25% in 2020 from GFW 

Tree cover and tree cover loss 
from Global Forest Watch (GFW)  

 
(Hansen et al. 2013)29 

 

3.1.5 Estimation of AGC fluxes and turnover times 

AGC fluxes at each  1° × 1°  grid cell were defined as the mean annual gross AGC losses (resulting 
from disturbances and calculated following the procedures described in Method 3) divided by 
the total AGC stock in forests (eq. 4).  

https://paperpile.com/c/QmnpoD/pLeGK
https://paperpile.com/c/QmnpoD/G1GdW
https://paperpile.com/c/QmnpoD/F6zM4
https://paperpile.com/c/QmnpoD/gRAz
https://paperpile.com/c/QmnpoD/0xXt
https://paperpile.com/c/QmnpoD/0xXt
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 AGC fluxes (%)=  AGC annual gross loss/Forest  AGCstock  x100                                                                 (4) 

This metric quantifies the rate at which carbon is being released from (or cycling through) the 
forest ecosystem due to disturbances, relative to its standing biomass stock.  

In contrast, AGC turnover time was calculated as the inverse relationship 

Turnover time (yr)=Forest  AGCstock  / AGC annual gross loss                                                                     (5) 

This value reflects the average time required for the existing AGC stock to be fully turned over 
under prevailing disturbance rates. As expected, regions with higher AGC fluxes tend to exhibit 
shorter turnover times, while lower fluxes correspond to more stable, longer-lived carbon stocks. 

Total AGC stocks were estimated by summing aboveground biomass from the CCI-Biomass 
dataset across forested areas, as defined by a combination of regional and global forest land 
cover products (see Table 2). 

3.2 Global disturbed forest distribution and young forest age distribution  

Globally, forests free of recorded disturbances from existing disturbance datasets since 1985 
dominate the total forest area (accounting for 70%, 2330 Mha of the total forest area), while 
disturbed forests affected by events such as fire and harvest between 1985 and 2020 make up 
the remaining 30% in 2020 (Fig. 3-2). In recent years, there has been a notable increase in the 
extent of young forest stands, particularly in regions such as the tropics, Europe, and the United 
States (Fig. 3-2b). This increasing proportion of younger forest stands indicates more frequent 
and widespread disturbance events recently, probably driven by logging, fire and other 
pressures leading to degradation, resulting in accelerated forest regeneration and a higher 
prevalence of younger forest stands. 

Regionally, tropical and sub-tropical regions are characterized by relatively higher rates of 
disturbances and younger forest age structures, while temperate and boreal zones maintain 
reservoirs of older and undisturbed stands (Fig. 3-2). Among all regions, Australia shows the 
largest area of disturbed forests in 2020, with only 26% of its forests remaining undisturbed. 
Following Australia, the dry tropics have the second largest proportion of disturbed forests 
(55%) and show the highest proportion of youngest forests aged from 1–10 years (41%). due to 
the frequent repeated fire and rapid regeneration cycles across this region 28,29. In humid 
tropical regions, the forest age among disturbed forests is more evenly distributed, with 10% 
aged 0–10 years and 13% aged 10–30 years, respectively. Temperate and boreal regions, 
including China (84%), Canada (76%), the United States (76%), and Europe (76%), are dominated 
by undisturbed forests. These regions maintain older forest structures with limited recent 
disturbance, acting as important reservoirs of long-standing biomass and carbon storage. 
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Figure 3-2 Global distribution of disturbed forests and forest age structure in 2020. a) Fraction 
of forest area disturbed during 1985-2020 within each 1° grid cell. b) Forest age composition in 
2020, with each donut chart showing the proportion of young forests that regenerated following 
disturbances during 1985–2020 and ageing forests that remained undisturbed over the same 
period. Young forests are classified into four age groups (0–10, 11–20, 21–30, and 31–40 years) 
based on the time since the last disturbance, derived from regional disturbance datasets. 
Regional boundaries correspond to those shown in Fig. 2c. 

3.3 Forest regrowth patterns across global regions 

By utilizing satellite-derived disturbance history maps and the CCI Biomass dataset, we derived 
regional forest regrowth curves by fitting a Richard-Chapman model to aboveground carbon 
(AGC) values as a function of forest age since the last disturbance, using a space-for-time 
substitution approach. This method captures the trajectory of biomass recovery after 
disturbance at a 1° grid resolution across the global forest area. 

The shape and pace of regrowth vary markedly across regions. In the tropics, AGC accumulation 
is rapid, reaching close to saturation within the first 30–40 years since the disturbance, indicating 
high productivity and fast biomass recovery in tropical forest systems. In contrast, temperate 
and boreal regions such as Canada, the US, Europe, and other boreal regions exhibit much 
slower AGC recovery, with more gradual increases in biomass over time. The median AGC gain 
rates between 0-30 years are particularly high in the tropics (> 4 MgC ha-1 yr-1, followed by 
moderate rates in China and the US (~2–3 MgC ha-1 yr-1). Boreal and temperate regions such as 
Canada and Europe show slower growth, with estimated rates of ~1–2 MgC ha-1 yr-1. 

To validate our regrowth estimates, we compared AGC accumulation rates during the first 30 
years post-disturbance with independent values from Cook-Patton et al. (2020)2.  Overall, our 
modeled results show good agreement with Cook-Patton data, particularly in boreal regions 
where estimates closely align. In temperate and tropical regions, our models tend to reflect 
slightly more region-specific variability and lower AGC gain rates, but remain within the 
expected range of early regrowth dynamics (Fig. 3-3b). 
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Figure 3-3 Forest aboveground carbon (AGC) accumulation changes with time. (a) Forest AGC 
accumulation as a function of forest age for each study region. (b) Comparison of AGC 
accumulation rates over first 0-100 years after regrowth with estimates from naturally 
regenerating forests reported by Cook-Patton et al. (2020)2. (c) Regional map used in the analysis. 
Each color-coded region corresponds to those used in panels a and b. AGC growth curves at 1° 
grid cell were fitted using the Richards-Chapman function (AGC = AGCₘₐₓ × (1 − exp(−bt))ᶜ)+d 
based on the time since the last disturbance (t) derived from the regional disturbance histories 
and the 2020 forest biomass map (see Methods).  

3.4 Spatial and temporal dynamics of forest AGC change associated with 
disturbances  

By combining regional disturbance histories with the modeled regrowth curves, we assessed the 
spatial and temporal dynamics of forest AGC changes associated with disturbances from 1985 
to 2020. At the global scale, forests disturbed during this period gained +18.9 PgC through post-
disturbance recovery but lost −27.3 PgC due to fire and non-fire disturbances, resulting in a net 
AGC loss of −8.5 PgC since 1985.  

The tropics contributed the largest to the global net AGC losses, accounting for 83% (−7.1 PgC) 
of the global net losses (Fig. 3-4). Among which, dry tropical forests experienced the highest 
gross AGC losses, primarily driven by fire disturbances (−12.1 PgC). However, due to relatively 
rapid post-fire recovery  (Fig. 3-3) in these fire-adapted ecosystems, +10.8 PgC of AGC was 
regained, offsetting a substantial portion (90%) of the fire-driven losses and resulting in a near-
neutral carbon balance. In contrast, the humid tropics showed the largest net AGC loss globally 
(–5.8 Pg C), primarily due to non-fire disturbances such as logging and degradation. Gross AGC 
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 losses and gains were concentrated in well-known tropical hotspots, including the “Arc of 
Deforestation” in the Amazon, Northern and Southern Central Africa, and Southeast Asia, where 
both fire and degradation pressures are extensive. Note that land use change-related C fluxes 
(e.g., deforestation and afforestation) were excluded from this analysis due to inconsistencies 
between regional and global land cover datasets (e.g., ESA-CCI LC product, Global Forest Watch, 
and regional land cover products).   

 
Figure 3-4 Spatial and temporal dynamics of forest AGC change associated with disturbances 
during 1985–2020. (a) Spatial patterns of gross AGC gains, gross AGC losses, and net AGC 
changes. (b) Temporal dynamics of AGC change by study region. Bars show annual carbon losses 
and gains due to fire and non-fire disturbances. Black lines indicate the annual net AGC balance, 
calculated as the sum of all carbon flux components. Data availability varies by region based on 
the coverage of regional disturbance datasets: for example, the United States (1990–2015), the 
Tropics (1990–2020), and Australia (1988–2020). In regions lacking regional datasets (i.e., Other 
Boreal and Other regions), a global burned area dataset was used 21. Note that fire data has an 
~8-year gap in the early record (post-1985) due to limited Landsat availability.  

Outside the tropics, Australia was the only region to exhibit a net AGC gain (+0.7 Pg C), largely 
driven by regrowth following past woody vegetation and non-vegetated area. However, this AGC 
gain has declined in recent decades due to increasing fire activity (Fig. 3-4). In contrast, 
temperate and boreal regions such as the US, Europe, and China experienced moderate net AGC 
losses, from –0.01 to –0.8 Pg C, primarily due to non-fire disturbances such as wood harvesting. 
Canada presents a different disturbance pattern, with both fire and non-fire disturbance shaping 
AGC dynamics. While some fluctuations occurred in recent years (e.g., in Europe and China), 
these regions generally showed increasing AGC gains since 1985, unlike Australia. 

It is important to note that limitations in long-term disturbance data, such as the lack of 
consistent differentiation between fire and non-fire disturbances, constrain detailed pan-boreal 
assessments, particularly for Russian boreal forests. 

https://paperpile.com/c/QmnpoD/PkAD
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 3.5 Forest regrowth patterns across global regions 

We further examined the spatial and regional variability in AGC stock and turnover 
characteristics using forest disturbance, biomass, and forest extent data for the period 2001–
2020. The global forest ecosystems exhibited an annual AGC turnover (i.e., gross AGC losses) of 
0.77 Pg C yr⁻¹, corresponding to a global average turnover rate of 0.38% yr⁻¹ and a turnover time 
of 262 years. However, these AGC turnover and turnover characteristics show strong spatial and 
regional variability (Fig. 3-5). The highest turnover rates were observed in fire-prone and 
intensively managed forests, particularly in tropical and temperate regions, while boreal forests 
in general exhibited the longest turnover times due to slower growth and recovery. 

The tropics store the largest share of AGC stock globally, contributing 74% (0.57 Pg C yr⁻¹) of the 
global annual AGC turnover (74%, 0.57 Pg C yr⁻¹). Despite a moderate turnover rate of 0.41% yr⁻¹ 
among the global regions, the vast forest extent, high carbon storage, and frequent disturbances 
from both human and natural drivers result in the highest global AGC turnover fluxes in this 
biome. The average turnover time in tropical forests is 245 years, indicating a dynamic balance 
between disturbance and relatively rapid biomass accumulation.  

In Australia, forests showed the highest turnover rate (1.17%) and the shortest turnover time 
(85 years), primarily driven by fires, which account for 84% of the annual AGC turnover in this 
region.  

Among boreal and temperate regions, Canada exhibits a relatively high AGC turnover rate (0.80% 
yr⁻¹) and faster AGC turnover time (126 years). The United States and China exhibit moderate 
turnover rates of 0.34% yr⁻¹ and 0.44% yr⁻¹, with corresponding turnover times of 296 years and 
229 years, respectively, driven largely by non-fire activities such as logging. In contrast, Europe 
shows a lower average turnover rate (0.20% yr⁻¹) and a longer turnover time (505 years). Across 
Europe, these values vary substantially, with higher turnover rates observed in intensively 
managed boreal forests and lower rates in temperate continental zones. The remaining boreal 
forests, including those in Russia and Alaska, show the lowest turnover rate (0.09%) and the 
longest turnover time (1101 years), indicating extremely slow carbon cycling and limited post-
disturbance recovery in these low-productivity ecosystems. Note that the turnover time may be 
underestimated in regions with incomplete disturbance data, particularly in the Russian boreal 
zone. 
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Figure 3-5 Global and regional distributions of forest AGC fluxes and turnover times. 
(a)  Spatial distribution of AGC fluxes, calculated as the ratio of gross AGC losses to total 
AGC stock at each 1° grid cell. (c) Spatial distribution of AGC turnover time, defined as 
the ratio of total AGC stock to gross AGC losses from disturbances during 1985–2020. (b) 
Regional averages of AGC turnover rate and AGC turnover (PgC yr-1), (d) Regional 
averages of turnover times/AGC stock (d), corresponding to the maps in a and b. 
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