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Figure 2-1 Forest state in Europe during the historical period. (A) Above-ground biomass for the year 2019,
averaged from two products: CCI-ESA (solid lines in the histograms) and PlanetScope (dashed lines), both bias-
corrected with NFI data at a sub-national scale. Histograms show the distributions within five biogeographical
regions indicated in the miniature. (B) Trends in the mean percentage of forest cover loss at 18 km. The annual
forest cover loss has been aggregated from 30 m to 18 km, divided by the forest area at 18 km. Then, a moving
average (30-year window) has been computed to produce the mean percentage of forest cover loss (six values
from 2000 to 2005). A linear trend has been computed at 18 km based on these six values (no trend
corresponds to p > 0.05). Scatterplots display the annual percentage of forest cover loss due to all
disturbances (natural and anthropogenic) in each biogeographical region. They were obtained by spatially
aggregating the forest cover loss (at 30 m) across each biogeographical region, and then dividing by the total
forest cover of the region. (C) Disturbance partitioning assessed from ground-based (1) and Landsat-based (2)
data. The disturbance agents “bark beetles” and “others” have been merged with “storms” and “harvests”
(respectively) due to Landsat’s limited sensitivity. The ground-based partitioning was first established
between harvests and natural disturbances (period 2001-2019, natural disturbances accounted for 16% of the
mean annual harvest in Europe), then the natural disturbances was further partitioned following numbers
given in (1) corresponding to the period 1950-2019 (D) Country reports to UNFCCC giving ground-based
estimations from 2010 to 2021 of forest area (FA, Mha) and the forest sink (FS in MgC/haF), which is the sum
of the net carbon stock change in the AGC, belowground-biomass, organic and mineral soils, deadwood, litter
and harvested wood products. Four groups are separated based on the national forest sink trends: small
decrease (in orange), large decrease (in red), and increase (in green) and no trend (in gray). The unit haF
stands for hectares of forests.

Figure 2-2 Flowchart of the DDCM procedure. This flowchart explains the DDCM procedure from raw data to
forest sink estimates. The variable s refers to the percentage of AGC loss, and t to the return interval of the
disturbances (for a 30-year window), both defined at 18 km. The correction factors (a,B) are defined at a
country or a biogeographical region scale. ... ..ot e

Figure 2-3 Detailed example of the DDCM procedure for a given forested pixel at 18 km. Use of the flowchart
presented in Fig. 2-2 on a forested pixel at 18 km. The parametrization is a bootstrap conducted on the scale
of a country or a biogeographical region to adjust the correction factors (a,B) so that the difference between
simulated and observed (UNFCCC) annual changes in AGC is minimized across the historical period (2010-
2021). Each forest sink component (AHWP, ASoil, ABGC and ADWL in panel B) is computed based on AAGC
with the linear relationships. . . .. ..o e e e e e e

Figure 2-4 UNFCCC reports, computation of the BGC & AGC components, and linear relationships between
forest sink components and annual changes in AGC. A, Ratio of belowground biomass (BGC) to AGC calculated
based on the FAO-FRA reports of 2020 (The year 2015 has been used instead for Serbia, Albania, Portugal and
Greece as the year 2020 was not available yet). This ratio is used to partition the annual carbon stock change
in living biomass into the annual carbon stock change in AGC & BGC. B, Contribution of the forest area of each
country to each bioregion, which allows to calculate each component of the forest sink (from the country
reports to UNFCCC) for each biogeographical region. C, Linear relationships obtained from the UNFCCC
reports associated with each biogeographical region of the forest sink FS (sum of annual carbon stock changes
in AGC, BGC, Harvested Wood Products (HWP), Deadwood and Litter (DWL) and organic and mineral soil (soil))
versus annual carbon stock changes in AGC for 12 data points (years from 2010 to 2021). D,E,F,G, Similar
relationships but for AHWP, ASoil, ABGC and ADWL versus AAGC, respectively. The mean is calculated instead
if the relationship is non-significant (P> 0.05). . . . .ttt i it e e e et e e

Figure 2-5 Forest growth in Europe. (A) AGC recovery curves computed at 18 km based on a Chapman-Richard
equation: AGCCRt = AGCpot(1-e-bt)c using two AGC datasets (CCI-ESA in blue, and PlanetScope in red)
harmonized with NFI data on a sub-national scale. See supplementary Fig. 2-6 for a map of coefficients b, c,
and AGCpot. The representative growth curve (thick line) is obtained with the median of all valid curves
associated with a r2 > 0.5 in a specific biogeographical region. Points represent the median of the AGC after
a stand-replacing disturbance (limited to 5-30 years based on the Landsat range) or the median of the
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potential AGC (AGCpot displayed for the age = 250 years for visualization purposes only. AGC approaches
AGCpot asymptotically, never reaching it fully) across all 18 km pixels (whiskers show the 95% variability, from
2.5% to 97.5% percentile). AGCpot is scaled from the AGC of forests undisturbed since 1986 with a bootstrap
analysis that minimizes the difference between simulated and observed (UNFCCC) changes in AGC from 2010
to 2021. The 90% AGC recovery interval (t90) is retrieved at 18 km with AGCCRt90 = 0.9AGCpot, and then
the median of all 18 km pixels is calculated. The shaded areas and the range of t90 (horizontal black line)
represent the variability from the bootstrap conducted on the scale of a country or a biogeographical region.
(B) In situ validation with the age and AGC of trees measured from 383 European sites. For each site,
fcAGCCRage-AGCin situ age has been computed using the nearest growth curve parameters, and fcis the
forest fraction estimated at 90 m around the site from our forest mask. The thick curve represents the moving
mean (loess) of all available anomalies, with a variability indicated by the mean absolute error for all available
samples. The Mediterranean anomalies are discarded due to a small sample size (13 sites). (C) Location of

the in situ sites and the biogeographical regions. The unit haF stands for hectares of forests................

Figure 2-6 Chapman-Richards coefficients from the recovery curves. The Chapman-Richards growth function
is decribed as AGC(t)=AGCpot (1-e(-b*t))*c. A, Growth coefficients obtained from the parameterization of the
DDCM at a country scale for the PlanetScope AGC map. B, Growth coefficients obtained from the
parameterization of the DDCM at a country scale for the CCI-ESA AGC maps. C, growth coefficients obtained
from the parameterization of the DDCM at a regional scale for the PlanetScope AGC map. D, growth
coefficients obtained from the parameterization of the DDCM at a regional scale for the CCI-ESA AGC maps.
Missing values in these maps will be filled with spatial interpolations before simulating the AGC from 2010 to

Figure 2-7. Changes in forest growth and disturbances, DDCM procedure, and remote sensing
inconsistencies in biomass change. (A) Comparison across Europe of the mean AGC (CCI-ESA, bias-corrected
with NFI data on a sub-national scale) of forests from 5 to 30 years old (Landsat range) between the periods
2015-2017 and 2019-2021. For each year (2015,2016,2017,2019,2020,2021), the mean AGC of forests (for a
given age class) has been aggregated from 30 m to 18 km. One point in panel A corresponds to the mean
value of all 18 km pixels across Europe for the given period (2015-2017 for the X axis and 2019-2021 for the Y
axis) and a given age class. (B) The volume of wood loss is shown in blue (1)and the percentage of forest cover
loss is shown in red (2) due to natural disturbances in the EU-27 from 2010 to 2019. (C) Roundwood removals
are shown in blue (3) and the percentage of forest cover loss is shown in red (2) due to harvest or salvage
logging in the EU-27 from 2010 to 2020. The percentage of forest cover loss has been aggregated from the
same sub-sample of Europe described in panel B. (D) Example of AGC simulations from the data-driven carbon
model (DDCM) for a forested pixel at 18 km, from two AGC datasets (the year 2019 for PlanetScope and mean
of 2017-2021 for CCI-ESA) and one parameterization (bootstrap conducted on each country). See Fig. 2-3 for
more details. The simulated AGC is the mean of 50 replicates. For each replicate, the period of growth is equal
to the return interval, which is the average time between two mean disturbances aggregated at 18 km across
30-year windows (typically between 1 and 5 years). Each replicate has a different starting time of the first
disturbance. The mean percentage of AGC loss at 18 km is scaled from the mean percentage of forest cover
loss with a bootstrap analysis that minimizes the difference between simulated and observed (UNFCCC)
annual changes in AGC from 2010 to 2021. (E) Annual AGC changes from CCI-ESA maps (2015 to 2021),
UNFCCC reports, and DDCM simulations from 2010 to 2021 (PlanetScope has only one year of data and
changes cannot be assessed). Annual AGC changes for CCI-ESA (2016-2021) have been aggregated across each
biogeographical region, regardless of the quality flag of the CCI-ESA product or possible 0 values emerging

from a mismatch with our forest cover mask.. . .. ... i e e

Figure 2-8 Spatial and temporal changes in the carbon sink of European forests. (A) Forest sinks for the five
biogeographical regions and the EU-27 are based on two forest management scenarios: business as usual and
a 26% decrease in harvest in addition to the 3 billion trees planted by 2030 (their total forest sink is pink). The
forest sink is the sum of five components: net carbon stock change in the AGC, below-ground biomass (BGC),
deadwood and litter, soils and harvested wood products. The EU-27 forest sink target has been estimated at
392 MtCO,eq, the average for the years 2016-2018. The black-shaded area represents the total variability
obtained from using PlanetScope or CCI-ESA maps with the parameterization conducted per country or
biogeographical region. (B) Map of the difference between 2030 and 2010 of the AGC simulated by the DDCM.
Forests losing AGC from 2010 to 2030 are in yellow. (C) Map of the difference between 2030 and 2010 of the
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forest carbon stocks composed of AGC, BGC, deadwood and litter, soil and harvested wood products (values
have been divided by 2 to match the legend). Forests losing carbon (acting as a source) from 2010 to 2030 are
in yellow. For both panels B and C, inconsistencies between CCI-ESA and PlanetScope are in gray (when one

product predicts a carbon source and the otheracarbonsink). ....... ... . il

Figure 3-1 Conceptual diagram .. .. oottt it e e et e e e

Figure 3-2 Global distribution of disturbed forests and forest age structure in 2020. a) Fraction of forest area
disturbed during 1985-2020 within each 1° grid cell. b) Forest age composition in 2020, with each donut chart
showing the proportion of young forests that regenerated following disturbances during 1985-2020 and
ageing forests that remained undisturbed over the same period. Young forests are classified into four age
groups (0-10, 11-20, 21-30, and 31-40 years) based on the time since the last disturbance, derived from

regional disturbance datasets. Regional boundaries correspond to those showninFig. 2c..................

Figure 3-3 Forest aboveground carbon (AGC) accumulation changes with time. (a) Forest AGC accumulation
as a function of forest age for each study region. (b) Comparison of AGC accumulation rates over first 0-100

years after regrowth with estimates from naturally regenerating forests reported by Cook-Patton et al. (2020)2.

(c) Regional map used in the analysis. Each color-coded region corresponds to those used in panels a and b.
AGC growth curves at 1° grid cell were fitted using the Richards-Chapman function (AGC = AGCpax X (1 -
exp(-bt)))+d based on the time since the last disturbance (t) derived from the regional disturbance histories

and the 2020 forest biomass map (see Methods). . ... ... i e e e e

Figure 3-4 Spatial and temporal dynamics of forest AGC change associated with disturbances during 1985—
2020. (a) Spatial patterns of gross AGC gains, gross AGC losses, and net AGC changes. (b) Temporal dynamics

of AGC change by study region. Bars show annual carbon losses and gains due to fire and non-fire disturbances.

Black lines indicate the annual net AGC balance, calculated as the sum of all carbon flux components. Data
availability varies by region based on the coverage of regional disturbance datasets: for example, the United
States (1990-2015), the Tropics (1990-2020), and Australia (1988-2020). In regions lacking regional datasets
(i.e., Other Boreal and Other regions), a global burned area dataset was used 2. Note that fire data has an ~8-

year gap in the early record (post-1985) due to limited Landsat availability.. .. ....... ... ... . .. . ...

Figure 3-5 Global and regional distributions of forest AGC fluxes and turnover times. (a) Spatial distribution
of AGC fluxes, calculated as the ratio of gross AGC losses to total AGC stock at each 1° grid cell. (c) Spatial
distribution of AGC turnover time, defined as the ratio of total AGC stock to gross AGC losses from
disturbances during 1985-2020. (b) Regional averages of AGC turnover rate and AGC turnover (PgC yr?), (d)

Regional averages of turnover times/AGC stock (d), corresponding to the mapsinaandb. ................
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AGB Aboveground Biomass
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BGB Belowground Biomass

CAR Climate Assessment Report

CCI Climate Change Initiative

CLCD China land cover dataset

DDCM Data-Driven Carbon Model

EFDA European Forest Disturbance Atlas
DWL Deadwood and Litter

ESA European Space Agency

GABAM Global Annual Burned Area Map
GFW Global Forest Watch

HWP Harvested Wood Products
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LuC Land Use Change
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1 Summary

In the previous Climate Assessment Report (CAR) report from Phase |, we addressed the use of
the European Space Agency (ESA) Climate Change Initiative (CCl) BIOMASS data on the Above
Ground Biomass (AGB; Mg ha) of woody vegetation for evaluation of TRENDYV8 DGVMs, the
inference of tropical land carbon cycle parameters by combining CCl BIOMASS AGB estimates,
L-band Volumetric Optical Depth (LVOD) from Soil Moisture and Ocean Salinity (SMOS), Leaf
Area Index (LAI) data, and the change of tropical AGB inferred from LVOD calibrated to AGB,
with a focus on the recovery of AGB from the most recent El Nifio.

In the Phase Il CAR report, we applied CCl BIOMASS AGB data to infer forest biomass changes in
three regional studies 1) the forest biomass loss caused by plantation area expansion in
Southeast Asia, 2) the deficit and loss of AGB across forest edges in Africa, 3) the net carbon
balance of boreal forests, with a focus on fire disturbances and post-fire AGB recovery.

In this Phase Il CAR report, we applied CCl BIOMASS AGB data to infer the forest biomass losses
and gains associated with fire, degradation, deforestation, and regrowth within tropical forests
during 1990-2020. In this case study, we provided spatially explicit, long-term analysis of the
carbon balance dynamics within disturbed tropical humid and dry forests, offering critical
insights for accurate resource assessment, land management, and the formulation and
monitoring of land use emission reduction policies.

In the initial version of the CAR from CCl BIOMASS Phase |V, we applied CCl BIOMASS AGB data
to two studies aimed at quantifying carbon changes in forest ecosystems—one focusing on
European forests and the other on global disturbed forests. For Europe, we modeled the EU-27
forest carbon sink from 2010-2030 using UNFCCC carbon data, disturbance maps and available
AGB modeling. We found that, without intervention, the EU forest carbon sink will decline by
44% by 2030—falling 29% short of climate targets. The decline is primarily driven by increased
disturbances and harvests, and the study concludes that reducing harvest levels by 26% is critical
to reversing the trend. This study is currently under review and the full preprint is available at
https://www.researchsquare.com/article/rs-3671432/v1. In the second study, we integrated
CCl BIOMASS AGB data with the disturbance history (1985-2020) and regionally calibrated
above-ground carbon (AGC; Mg ha) regrowth curves at 1° spatial resolution. Our analysis shows
that forests disturbed since 1985 account for 30% of global forest area. These disturbed forests
resulted in a net global AGC loss of -8.5 PgC, comprising -27.3 PgC from disturbance-related
losses and +18.9 PgC from regrowth. Notably, 83% of the carbon losses occurred in tropical
regions. AGC turnover rates varied globally, with the highest observed in Australia (1.17%) and
the lowest in boreal regions such as Russia and Alaska (0.09%).
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2 Alarming decline in the carbon sink of European
forests driven by disturbances

European forests have gradually recovered from major timber exploitation during and following
the two World Wars *. Today, they cover 33% of the continent and hold 12.1 PgC of above-
ground biomass carbon (AGC, Fig. 2-1A), based on a recent dataset established from National
Forest Inventories (NFIs) at sub-national scale for 2020 2. Forests constitute the main carbon sink
of the European Union (EU-27), which has implemented a revised regulation aiming to achieve
an annual carbon sink of 310 MtCO,eq in the land use sector by 2030 3. In this study, we define
the forest carbon sink as the sum of five components: the net carbon stock change in AGC,
below-ground biomass, soils (organic and mineral), deadwood and litter, and harvested wood
products.

Despite their importance for carbon sequestration, Europe’s forests are facing increasing
pressure from timber harvest #°, as well as from natural disturbances such as wildfires, storms,
bark beetle outbreaks 6, and drought and heatwave events ’. Timber harvest is the most
significant disturbance in Europe, accounting for 83-86% of all the forest area losses from 2001
to 2019, followed by storms (6-7%), fires (3-5%) and bark-beetles (less than 3%) based on the
data from two independent studies 8. The increasing rate of forest disturbances was already
predicted in the 1990s °and has been confirmed by recent in situ ® and satellite ° observations.
Over the past three decades, the mortality of forest trees has almost doubled in Europe 1%,
raising concerns about the future resilience of forests to disturbances 2 and their capacity to
maintain their role as major carbon sinks 3¥°, Annual summaries of country reports under the
UNFCCC indicate that the carbon sink of 69% of European forests has declined from 2010 to
2021, despite the forest area of Europe increasing by 1.6% (Fig. 2-1D).

NFIs routinely monitor forest wood stocks through regular measurements of numerous field
plots with statistical sampling schemes specific to each country 1°. However, inventories typically
have a revisit cycle of five years, which complicates the tracking of changes in forest growth or
stocks, and individual plot observations are not easily accessible to the scientific community due
to economic interests and legislative issues (e.g., 47% of forests are privately owned *).
Spaceborne remote sensing offers an attractive data source for obtaining spatially explicit
estimates of forest carbon stocks. We used two state-of-the-art annual AGB maps: one from CCI-
ESA v5 7 (100 m resolution, 2015 to 2021) and another from PlanetScope imagery v0.1 8 (30 m
resolution aggregated from 3 m nanosatellite images, available for 2019). The AGB density is
converted to AGC density using a scaling factor of 0.5 1° . The two map products are independent,
allowing for the assessment of uncertainties, and have been bias-corrected to align with the
forest cover and AGC levels reported by NFls at a sub-national scale 2.
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Figure 2-1 Forest state in Europe during the historical period. (A) Above-ground biomass for the
year 2019, averaged from two products: CCI-ESA (solid lines in the histograms) and PlanetScope
(dashed lines), both bias-corrected with NFI data at a sub-national scale. Histograms show the
distributions within five biogeographical regions indicated in the miniature. (B) Trends in the
mean percentage of forest cover loss at 18 km. The annual forest cover loss has been aggregated
from 30 m to 18 km, divided by the forest area at 18 km. Then, a moving average (30-year
window) has been computed to produce the mean percentage of forest cover loss (six values
from 2000 to 2005). A linear trend has been computed at 18 km based on these six values (no
trend corresponds to p > 0.05). Scatterplots display the annual percentage of forest cover loss
due to all disturbances (natural and anthropogenic) in each biogeographical region. They were
obtained by spatially aggregating the forest cover loss (at 30 m) across each biogeographical
region, and then dividing by the total forest cover of the region. (C) Disturbance partitioning
assessed from ground-based ° and Landsat-based ® data. The disturbance agents “bark beetles”
and “others” have been merged with “storms” and “harvests” (respectively) due to Landsat’s
limited sensitivity. The ground-based partitioning was first established between harvests and
natural disturbances (period 2001-2019, natural disturbances accounted for 16% of the mean
annual harvest in Europe), then natural disturbances was further partitioned following numbers
given in ® corresponding to the period 1950-2019 (D) Country reports to UNFCCC giving ground-
based estimates from 2010 to 2021 of forest area (FA, Mha) and the forest sink (FS in MgC/haF),
which is the sum of the net carbon stock change in the AGC, belowground biomass, organic and
mineral soils, deadwood, litter and harvested wood products. Four groups are separated based
on the national forest sink trends: small decrease (in orange), large decrease (in red), and
increase (in green) and no trend (in gray). The unit haF stands for hectares of forests.

2.1 Method

2.1.1 Model the forest regrowth

To assess current and predict future AGC changes, we leveraged a recent European disturbance
map based on 30 m resolution Landsat data from 1986 to 2020 °. This map allowed us to
estimate trends in AGC loss due to disturbances by spatially and temporally aggregating forest
cover loss data from 30 m to 18 km. We also used two AGB maps (converted to AGC using a
factor of 0.5 ), one CCI-ESA maps ¥ (2015 to 2021, version 5, at 100 m resolution) and the 2019
PlanetScope-based AGC map 8 (30 m, version 0.1). All AGC maps have been bias-corrected to
match the AGC reported at the sub-national scale in the harmonized NFI dataset for the year

2020 2. The correction for each European dnpnrfmpnfnl unit_is a mulfiplir‘qfi\m factor

© Aberystwyth University and GAMMA Remote Sensing, 2018
This document is the property of the CCI-Biomass partnership, no part of it shall be reproduced or transmitted without the
express prior written authorization of Aberystwyth University and Gamma Remote Sensing AG.




Ref CCI Biomass Climate Assessment Report v3

esa Issue Page Date biomass
3.0 12 14.07.2021 —

corresponding to the ratio between the AGC reported by NFIs and the mean raw AGC of 2020
for CCI-ESA or 2019 for PlanetScope. The median correction across all units (288) is 1.30 + 0.27
(+ 1 Mean Absolute Deviation) for CCI-ESA, and 1.06 + 0.24 (+ 1 MAD) for PlanetScope.

Then, we estimated AGC gains from forest regrowth following disturbances 2° using a space-for-
time methodology following the approach originally developed for tropical forests 2. We
extended their approach and derived spatially explicit local recovery curves at 18 km across all
Europe from two AGB maps (CCI-ESA Biomass and PlanetScope) instead of continental-average
curves used in their work. The year of the disturbance is first subtracted from the year of the
AGC map to obtain post-disturbance years. The AGC maps are then normalized by dividing them
with AGC,,, defined here as AGCpy = aAGC7sy, With AGC750, the 75% percentile of the AGC
of all 30 m forests undisturbed since 1986 inside an 18 km pixel, and a a correction factor
calculated on the scale of a country or biogeographical region. For each AGC dataset (average of
AGC maps from 2017-2021 for CCI-ESA, or PlanetScope map of 2019), values of (a) have been
estimated on a country-level or a biogeographical region-level using a bootstrap analysis that
minimizes the RMSE between DDCM simulations and observations of AAGC from UNFCCC
reports across the recent historical period (2010-2021). Then these (&) correction maps have
been smoothed at 100 km to reduce the discrepancies at the border between two countries or
two biogeographical regions. For each normalized AGC map (2015-2021 for CCI-ESA and 2019
for PlanetScope) and each 18 km pixel, five mean AGCs are calculated within five-time windows
([5-10 years], [10-15 years],..,[25-30 years]). For each time window, the average of the seven
products of CCI-ESA (2015-2021) is computed to reduce uncertainties. A Chapman-Richard
growth curve (AGCcg(t) = AGCpo (1 — e‘bt)c) is fitted through the five values to estimate the
b and c coefficients. Growth curves with non-physical inputs are discarded (AGC[5-10 years] >
AGC[25-30 years]), and outliers in b and ¢ populations across Europe are removed using the
Logbox method. Growth curves associated with 72 < 0.5 are finally discarded. The time tgq
required to recover 90% of the AGC,,; after a stand-replacing disturbance corresponds to

1
AGCcr(tgp) = 0.9AGCy,; Which leads to tgg = —%log(l — 0.9¢). The median ty9y has been

calculated from all 18 km pixels with valid growth curves. These curves have been validated with
an independent in situ dataset on forest age and AGC 22,

2.1.2 DDCM model overview

The data-driven carbon model (DDCM Version 1.1, Fig. 2-2 and Fig. 2-3) simulates annual AGC
stocks from 2010 to 2030 at 18 km resolution. The net carbon stock change in AGC for a year y
is computed as AAGC(y) = AGC(y) — AGC(y — 1). According to UNFCCC reports, the carbon
sink of forests across all five European biogeographical regions (miniature in Fig. 1A) is primarily
driven by the net carbon stock change in AGC rather than in soils, deadwood, and harvested
wood products. The net carbon stock changes in belowground biomass (ABGC), soils (AS),
harvested wood products (AHWP), and deadwood (including litter, ADWL) are therefore
estimated based on AAGC with linear relationships derived from UNFCCC data in five different
biogeographical regions (Fig. 2-4). This gives access to the annual forest sink at 18 km, defined
as FS(y) = AAGC(y) + ABGC(y) + AS(y) + AHWP(y) + ADWL(y) . Remote-sensing and
ground-based data have been integrated into our study to reconcile differences that have
sparked debate in these last years (see Matters Arising in Nature 23).

The AGC(y) is computed from the imbalance between AGC gain due to forest growth and AGC
loss due to disturbances. The annual percentage of AGC loss (s(y)) is modeled at 18 km
resolution based on a linear relationship to capture long-term (30 years) trends in disturbance
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rates (Fig. 2-1B). This linear relationship is obtained by applying a scaling factor a (constant over
a country or a biogeographical region) to forest cover loss data aggregated spatially and
temporally from a Landsat-based disturbance map. AGC gains are modeled using an analytical
growth curve at 18 km resolution (Fig. 2-1A) (Section 2.1.1). The growth curve is constrained by
an upper limit, referred to as potential AGC (AGCy,.), which is obtained by applying a scaling
factor B (constant over a country or a biogeographical region) to AGC values of forests
undisturbed since 1986. Then the two coefficients of the forest growth curve (b,c, see details in
Section 2.1.1) are retrieved at 18 km knowing the age (obtained from the disturbance map, from
5to 30 years old) and the AGC (obtained from the remote-sensing maps CCI-ESA or PlanetScope)
of thousands of 30 m forested pixels inside each 18 km pixel. The two upscaling factors @ and 8
are parameterized at the scale of a country (or a biogeographical region) so that DDCM
simulations match the UNFCCC observations (2010-2021, see Fig. 2-7E).

In particular, Version 1.1 of the DDCM (i) matches the forest cover and the AGC of European
countries based on NFI data for the year 2020, (ii) does not simulate land-use change (the forest
cover is constant), (iii) does not account for changes in the growth curves (for example CO;
fertilization effects are ignored), (iv) captures long-term trends (30-year periods) at 18 km in
natural disturbances and harvests (Fig. 2-1B), and finally (v) ignores the AGC changes according
to the maps from CCI-ESA (2015-2021, these are contaminated with artefacts, see Fig. 2-7E). A
single year of AGC data (2019 for PlanetScope and mean of 2017-2021 for CCI-ESA) is used to
run the DDCM from 2010 to 2030.
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Figure 2-2 Flowchart of the DDCM procedure. This flowchart explains the DDCM procedure from
raw data to forest sink estimates. The variable s refers to the percentage of AGC loss, and T to
the return interval of the disturbances (for a 30-year window), both defined at 18 km. The
correction factors (a,B) are defined at a country or a biogeographical region scale.
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Figure 2-3 Detailed example of the DDCM procedure for a given forested pixel at 18 km. Use of
the flowchart presented in Fig. 2-2 on an 18 km forested pixel. The parametrization is a bootstrap
conducted on the scale of a country or a biogeographical region to adjust the correction factors
(a,B) so that the difference between simulated and observed (UNFCCC) annual changes in AGC
is minimized across the historical period (2010-2021). Each forest sink component (AHWP, ASail,
ABGC and ADWL in panel B) is computed based on AAGC using linear relationships.
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Figure 2-4 UNFCCC reports, computation of the BGC & AGC components, and linear relationships
between forest sink components and annual changes in AGC. A, Ratio of belowground biomass
(BGC) to AGC calculated based on the FAO-FRA reports of 2020 (the year 2015 has been used
instead for Serbia, Albania, Portugal and Greece as the year 2020 was not yet available). This
ratio is used to partition the annual carbon stock change in living biomass into the annual carbon
stock change in AGC & BGC. B, Contribution of the forest area of each country to each bioregion,
which allows to calculate each component of the forest sink (from the country reports to
UNFCCC) for each biogeographical region. C, Linear relationships obtained from the UNFCCC
reports associated with each biogeographical region of the forest sink FS (sum of annual carbon
stock changes in AGC, BGC, Harvested Wood Products (HWP), Deadwood and Litter (DWL) and
organic and mineral soil (soil)) versus annual carbon stock changes in AGC for 12 data points
(years from 2010 to 2021). D,E,F,G, Similar relationships but for AHWP, ASoil, ABGC and ADWL
versus AAGC, respectively. The mean is calculated instead if the relationship is non-significant
(p>0.05).

2.1.3 Future projection

To project the future forest carbon sink, we conservatively assumed that future disturbances
would follow the same local trends as in the past 35 years while future AGC recovery curves
would remain unchanged. Our projections for carbon sink trajectories are spatially explicit and
can be aggregated at the national level for each EU-27 country. This allows comparison with the
2030 carbon sink target for the forest sector, which contributes to the broader land-use sector
mitigation goal set by the European Commission. By partitioning harvests and natural
disturbances based on their constant ratio at 18 km and adjusting the harvest trends in the
DDCM, we infer the reduction in harvesting necessary to meet the 2030 target (while accounting
for the observed increase in natural disturbances).

2.2 Forest biomass recovery

Forest recovery after disturbance shows significant variations across different biogeographical
regions of Europe ?° (Fig. 2-5A). In the Boreal region, forests typically need 118 [93,163] years on
average to regain 90% of their maximum reachable AGC (AGC,.t) after a stand-replacing
disturbance event. The confidence intervals in brackets show the range obtained from model
parameterization conducted on different AGC maps at different scales. Forests in the Atlantic

© Aberystwyth University and GAMMA Remote Sensing, 2018
This document is the property of the CCI-Biomass partnership, no part of it shall be reproduced or transmitted without the
express prior written authorization of Aberystwyth University and Gamma Remote Sensing AG.



AGC (MgC/haF)

AGC [gL‘;VWe‘Q]-AGC [in-situ] (MgC/ha)

-200

0 100 200

-100

w

Alpine

(1060 valid curves for CCI-ESA, i
1028 for Planet.) in 18 km pixels,

AGCoo

S esa Issue Page Date

Ref CCI Biomass Climate Assessment Report v3

biomass

3.0 17 14.07.2021
also take about a century to recover (101 [64,181] years), while recovery in the Alpine and
Continental regions is twice as slow (239 [157,312] years). Their recovery is slower because it is
defined here as a percentage of AGCy.t, which is much higher in the Alpine and Continental
regions (184 [162,223] MgC/haF, with haF standing for hectares of forest) compared to the
Boreal and Atlantic regions (104 [85,147] MgC/haF). However, the Mediterranean region has the
longest recovery time (more than 300 years) with the lowest potential AGC (72 [59,92] MgC/haF)
due to it being water-limited. The accuracy of local recovery curves is confirmed by the small
mean anomalies between satellite-derived and field-observed AGC (Fig. 2-5B) when the sample
size is large enough for a given age. However, the precision of these curves is limited (large
variability seen in the anomalies) due to the influence of varying factors (e.g., climate, soil, forest
management) as well as the inherent uncertainties in in situ measurements.
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Figure 2-5 Forest growth in Europe. (A) AGC recovery curves computed at 18 km based on a
Chapman-Richard equation: AGCcg(t) = AGCpoe(1 — e Pt using two AGB datasets (CCI-ESA
in blue, and PlanetScope in red) harmonized with NFI data on a sub-national scale. See
supplementary Fig. 2-6 for a map of coefficients b, ¢, and AGC,,;. The representative growth
curve (thick line) is obtained with the median of all valid curves associated with ar? > 0.5in a
specific biogeographical region. Points represent the median of the AGC after a stand-replacing
disturbance (limited to 5-30 years based on the Landsat range) or the median of the potential
AGC (AGCy,; displayed for the age = 250 years for visualization purposes only. AGC
approaches AGC,,; asymptotically, never reaching it fully) across all 18 km pixels (whiskers
show the 95% variability, from 2.5% to 97.5% percentile). AGC,,; is scaled from the AGC of
forests undisturbed since 1986 with a bootstrap analysis that minimizes the difference between
simulated and observed (UNFCCC) changes in AGC from 2010 to 2021. The 90% AGC recovery
interval (tgo) is retrieved at 18 km with AGC¢g(tgo) = 0.9AGC, ¢, and then the median of all 18
km pixels is calculated. The shaded areas and the range of ty, (horizontal black line) represent
the variability from the bootstrap conducted on the scale of a country or a biogeographical
region. (B) In situ validation with the age and AGC of trees measured from 383 European sites.
For each site, f,AGC.-r(age) — AGCyy, siru(age) has been computed using the nearest growth
curve parameters, and f. is the forest fraction estimated at 90 m around the site from our forest
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mask. The thick curve represents the moving mean (loess) of all available anomalies, with a
variability indicated by the mean absolute error for all available samples. The Mediterranean
anomalies are discarded due to a small sample size (13 sites). (C) Location of the in situ sites
and the biogeographical regions. The unit haF stands for hectares of forests.
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Figure 2-6 Chapman-Richards coefficients from the recovery curves. The Chapman-Richards
growth function is decribed as AGC(t) = AGCp, (1 — e Pt)¢ . A. Growth coefficients obtained
from the parameterization of the DDCM at a country scale for the PlanetScope AGC map. B.
Growth coefficients obtained from the parameterization of the DDCM at a country scale for the
CCI-ESA AGC maps. C. Growth coefficients obtained from the parameterization of the DDCM at
a regional scale for the PlanetScope AGC map. D. growth coefficients obtained from the
parameterization of the DDCM at a regional scale for the CCI-ESA AGC maps. Missing values in
these maps will be filled with spatial interpolations before simulating the AGC from 2010 to
2030.

2.3 Carbon storage potential in a world without disturbance

On a global scale, studies have suggested that forests could significantly increase their biomass
if allowed to regrow partially or fully 228, We estimate that Europe could potentially increase its
AGC stock by 15.8 [11.9,19.0] PgC, corresponding to a ~130% increase in AGC carbon stocks
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relative to the period 2017-2020 (for the same forest area). This result is consistent with the
conclusions of a recent study based on old-growth forests in Europe ?°. Being far from their
saturation point, these forests reflect a broader shift in forest dynamics >3° characterized by a
rapid increase in forest turnover rates. Mature forests steadily decline due to increased tree
mortality, leading to significant ecological consequences !. Repeated disturbances affecting
forests are not accounted for in these estimations, therefore the disturbance trends are
implemented in the DDCM to provide more realistic projections of future AGC stocks (Fig. 2-7D).
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Figure 2-7. Changes in forest growth and disturbances, DDCM procedure, and remote sensing
inconsistencies in biomass change. (A) Comparison across Europe of the mean AGC (CCI-ESA,
bias-corrected with NFI data on a sub-national scale) of forests from 5 to 30 years old (Landsat
range) between the periods 2015-2017 and 2019-2021. For each year (2015, 2016, 2017, 2019,
2020, 2021), the mean AGC of forests (for a given age class) has been aggregated from 30 m to
18 km. One point in panel A corresponds to the mean value of all 18 km pixels across Europe for
the given period (2015-2017 for the X axis and 2019-2021 for the Y axis) and a given age class.
(B) The volume of wood loss is shown in blue ® and the percentage of forest cover loss is shown
in red & due to natural disturbances in the EU-27 from 2010 to 2019. (C) Roundwood removals
are shown in blue 32 and the percentage of forest cover loss is shown in red & due to harvest or
salvage logging in the EU-27 from 2010 to 2020. The percentage of forest cover loss has been
aggregated from the same sub-sample of Europe described in panel B. (D) Example of AGC
simulations from the data-driven carbon model (DDCM) for a forested pixel at 18 km, from two
AGC datasets (the year 2019 for PlanetScope and mean of 2017-2021 for CCI-ESA) and one
parameterization (bootstrap conducted on each country). See Fig. 2-3 for more details. The
simulated AGC is the mean of 50 replicates. For each replicate, the period of growth is equal to
the return interval, which is the average time between two mean disturbances aggregated at 18
km across 30-year windows (typically between 1 and 5 years). Each replicate has a different
starting time of the first disturbance. The mean percentage of AGC loss at 18 km is scaled from
the mean percentage of forest cover loss with a bootstrap analysis that minimizes the difference
between simulated and observed (UNFCCC) annual changes in AGC from 2010 to 2021. (E)
Annual AGC changes from CCI-ESA maps (2015 to 2021), UNFCCC reports, and DDCM simulations
from 2010 to 2021 (PlanetScope has only one year of data and changes cannot be assessed).
Annual AGC changes for CCI-ESA (2016-2021) have been aggregated across each biogeographical
region, regardless of the quality flag of the CCI-ESA product or possible 0 values emerging from
a mismatch with our forest cover mask.
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2.4 Inconsistencies in biomass change detection using remote sensing

While the CCI-ESA biomass maps correctly capture the spatial variability of AGC (converted from
AGB to AGC using a ratio of 0.5) among young, mature, and old forests (Fig. 2-5B), calculating
AGC changes as the year-on-year difference between two consecutive AGC maps is unsuitable,
as it produces AGC changes that are inconsistent with UNFCCC reports across the recent
historical period (Fig. 2-7E, blue triangles versus black dots). For instance, this approach
produces a net loss of AGC in the Continental region from 2017 to 2021 (except in 2020),
contradicting the AGC accumulation reported by the UNFCCC for that period. In contrast, the
AGC change simulations from the DDCM closely match UNFCCC data across all biogeographical
regions (Fig. 2-7E). The NFI data used in the UNFCCC reports provide robust national-scale
estimates of biomass carbon stock changes over time with a ~30% uncertainty 33 However,
they cannot provide insights into fine-scale spatial patterns; a gap effectively addressed by the
DDCM that is spatially explicit (see next sections).

2.5 Future carbon sink of Europe’s forests

According to the DDCM, the net carbon sink of EU-27 forests is projected to decrease from 496
[459,521] MtCO,eqg/year in 2010 to 279 [269,294] MtCOeq/year by 2030 (Fig. 2-8A). This
projection assumes that forest recovery curves remain unchanged in the near future (Fig. 2-5A)
and that forest management and natural disturbances will continue linearly until 2030, following
past trends observed in the mean percentage of AGC loss across 18 km grids (Fig. 2-7D). The
largest decrease in the forest carbon sink is expected in the Boreal region, with a decline of 62%,
while the Mediterranean region is predicted to maintain a stable sink. The forest carbon sink
consists of five components, each with different significance and behavior (Fig. 2-8A). The net
carbon stock change in living above- and below-ground biomass (AAGC + ABGC) will see a large
decrease of 63% from 2010 to 2030 in the EU-27, which is the primary driver of the overall
decline. However, this decline will be partially offset by increases in the net carbon stock changes
of harvested wood products ** (AHWP, +96%) and deadwood and litter resulting from recent
disturbances (ADWL, +71%). The net carbon stock change in soils is expected to decrease by 17%,
consistent with our current understanding of the impact of harvests on soil carbon dynamics °.
While AHWP and ADWL only accounted for ~11% of the forest carbon sink in 2010, they are
projected to contribute ~35% by 2030, acting as a temporary buffer against the declining carbon
sink of living biomass and soils.

The resolution of the DDCM allows for the detailed computation of spatial variations in the AGC
sink (Fig. 2-8B) in addition to the overall forest carbon budget (Fig. 2-8C) from 2010 to 2030.
Regions such as Southern Germany, Northern Belarus, Northern Sweden, Southern Romania,
Central Spain, the Pyrenees, and the Dinaric mountains are expected to continue to accumulate
large proportions of AGC from 2010 to 2030 (Fig. 2-8B). These gains are attributed to either
stationary or decreasing trends in disturbance levels (partly due to recovery from old
disturbances like in Southern Germany), unlike other parts of the continent (Fig. 2-1B), where
12% of forests are projected to experience a net AGC loss (agreement between CCI-ESA and
PlanetScope). Particularly, forests in Portugal, Slovenia, Southern France, Austria, Czechia,
Estonia, Latvia, Northern Ukraine, Northern Germany, the Eastern Alps, and parts of Scandinavia
are projected to face reductions in AGC (Fig. 2-8B). However, the impacts of these losses will be
partially offset by increases in the net carbon stock changes in HWP and DWL (Fig. 2-8A), which
will help compensate for the AGC loss in about half of these areas. Overall, our estimates indicate
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that at least 6% of European forests will become net carbon sources between 2010 and 2030
(Fig. 2-8C, agreement between CCI-ESA and PlanetScope).
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Figure 2-8 Spatial and temporal changes in the carbon sink of European forests. (A) Forest sinks
for the five biogeographical regions and the EU-27 are based on two forest management
scenarios: business as usual and a 26% decrease in harvest in addition to the 3 billion trees
planted by 2030 (their total forest sink is pink). The forest sink is the sum of five components:
net carbon stock change in the AGC, below-ground biomass (BGC), deadwood and litter, soils
and harvested wood products. The EU-27 forest sink target has been estimated at 392 MtCO-eq,
the average for the years 2016-2018. The black-shaded area represents the total variability
obtained from using PlanetScope or CCI-ESA maps with the parameterization conducted per
country or  biogeographical region. (B) Map of the difference between 2030 and 2010 of the
AGC simulated by the DDCM. Forests losing AGC from 2010 to 2030 are in yellow. (C) Map of the
difference between 2030 and 2010 of the forest carbon stocks composed of AGC, BGC,
deadwood and litter, soil and harvested wood products (values have been divided by 2 to match
the legend). Forests losing carbon (acting as a source) from 2010 to 2030 are in yellow. For both
panels B and C, inconsistencies between CCI-ESA and PlanetScope are in gray (when one product
predicts a carbon source and the other a carbon sink).

2.6 Challenges and mitigation strategies

A common assumption is that sustainable harvests carry a low carbon cost according to the
rationale that (i) HWPs serve as a reliable long-term carbon sequestration asset, and (ii) young
stands replacing mature forests are compensating for the carbon deficit because they are more
productive 1. Based on these premises, the EU-27 has endorsed wood use for bioenergy, which
now represents 59% of renewable energy **. Regarding point (i), 69% of global HWPs have very
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short lifespans, significantly reducing their contribution to the forest carbon sink . For instance,
estimates from the French NFIs show that 68% of HWPs are used as bioenergy **. Concerning
point (ii), the DDCM demonstrates that the recovery of young and productive stands is
insufficient to offset carbon losses from current natural and anthropogenic disturbances (Fig. 2-
8A). These projections also address point (i) as they implicitly incorporate carbon transfers
across different pools (especially HWPs and DWLs). The EU-27 plan could be made more
effective by extending HWP lifespans (for example, using wood for construction material) and
reducing wood use for bioenergy (by promoting other renewable energies) to lower harvest
rates, especially as natural disturbances continue to increase dramatically (Fig. 2-7B). The impact
of reducing harvest rates on the forest carbon sink is estimated below.

We estimate that the forest carbon sink of the EU-27 will be 29% lower than the 2030 sink target
(forest state of 2016-2018), resulting in a carbon deficit of -113 MtCO2eq/year for the target
sink in the forest sector. Despite the EU-27's plan to plant 3 billion trees by 2030, this initiative
will only contribute an additional 15 MtCO2eq/year to the carbon sink 4, which is insufficient to
close the gap. According to DDCM simulations, a 26 [20,31]% decrease in harvest from 2025 to
2030, in addition to the 3 billion new trees, would be sufficient for the EU-27 to reach the target
(Fig. 2-8A). This estimate is a first-order assessment and should be refined in future studies by
examining other forest management options than simply reducing harvest %, Forest biomass
expansion could, for instance, be promoted by regenerating forests with thinning, changing
rotations, considering biodiversity restoration versus monocultures, or choosing non-
intervention versus salvage logging after a disturbance 3. All these solutions need to be explored,
as a continent-wide reduction in harvests will increase carbon market leakage, with harvests
increasing outside Europe to meet European demand. Three recent studies predict that the
forest sink values in 2030 will fall below the EU-27 target, based on different modeling
approaches: large-scale simulations from a forestry carbon model (CBM) with business-as-usual
forest management assumptions “¢, multiple statistical extrapolations of current trends *°, and
land-climate models under different Representative Concentration Pathway scenarios . Our
data-driven model assumes that disturbances will evolve in the next six years as they did in the
past, forecasting a less optimistic carbon sink for living biomass (AAGC and ABGC) than CBM
predictions: 152 MtCO,eq/year (DDCM) versus 240 MtCO,eq/year (CBM) by 2030 for the EU-27.
However, it is important to note that the CBM forestry model did not capture the recent declines
in forest carbon sinks reported in the latest UNFCCC data from 2023 “°.

Several limitations are acknowledged in our study. First, shifts in disturbance trends or changes
in the growth rates of recovering forests '°, whether due to natural or anthropogenic reasons,
will impact the simulated trajectories. This is why we chose not to extend forecasts beyond 2030.
Secondly, land-use changes such as deforestation and reforestation are not factored in, with the
reasonable assumption that forest cover remains largely constant (only +1.6% increase from
2000 to 2021, Fig. 2-1D). Thirdly, we assumed that forests would continue to recover as they
have in the past, regardless of disturbance frequency and severity (or increasing droughts).
Notably, our model does not capture non-linear processes such as cascading effects in
disturbance interactions (e.g., bark beetle outbreaks after a heatwave). This overlooks the
potential for ecological tipping points 2, beyond which the resilience of ecosystems is altered.
Finally, the type and severity of disturbance (fires, storms, harvests) or the disturbance patch
size, along with variations in forest structure (e.g., old versus young, coniferous versus deciduous,
plantations versus natural forests), might change the way forests recover *¢. We plan to address
these factors and their potential legacy effects in future studies.
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2.7 Conclusion

We present evidence that Europe’s forests are increasingly at risk of losing their role as carbon
sinks, primarily due to a dramatic increase in natural disturbances alongside a moderate increase
in harvests. Although these forests have the potential to double their AGC stocks within the
same forest area, disturbances are currently outpacing AGC recovery in 12% of European forests.
Alarmingly, half of these endangered forests are projected to become net carbon sources by
2030. The carbon sequestration capacity of the remaining forests is progressively deteriorating,
a trend exacerbated by business-as-usual forest management practices. Our projections for the
near future are less optimistic than the EU-27’s target, which will significantly impact European
climate change mitigation plans that rely on increasing forest area. Over the past two decades,
forest expansion has been limited. By November 2024, only 22 million trees had been planted
in Europe ¥, falling short of the ambitious pledge to plant 3 billion trees by 2030. Even if this
pledge were met, we estimate that a 26% decrease in forest harvest from 2025 to 2030 would
be necessary for the EU-27 to reach their target. Historically, forest management in Europe has
accumulated a substantial carbon debt *°, further exacerbated by recent natural disturbances.
To mitigate the decline in the European carbon sink, a major shift in forest management
practices is essential, focusing on increasing resilience and better adapting to natural
disturbances.

© Aberystwyth University and GAMMA Remote Sensing, 2018
This document is the property of the CCI-Biomass partnership, no part of it shall be reproduced or transmitted without the
express prior written authorization of Aberystwyth University and Gamma Remote Sensing AG.




Ref CCI Biomass Climate Assessment Report v3

. @Sa| issue Page Date biomass
3.0 24 14.07.2021 ‘

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

2.8 Reference

Fuchs, R., Herold, M., Verburg, P. H. and Clevers, J. G. A high-resolution and harmonized model approach
for reconstructing and analysing historic land changes in Europe. Biogeosciences 10, 1543-1559(2013).
https://doi.org/10.5194/bg-10-1543-2013

Avitabile, V., Pilli, R., Migliavacca, M. et al. Harmonised statistics and maps of forest biomass and
increment in Europe. Sci. Datall, 274 (2024). https://doi.org/10.1038/s41597-023-02868-8

European Commission. Regulation (EU) 2023/839 of the European parliament and of the council
Document no. 32023R0839 (Publications Office of the European Union, 2023). https://eur-
lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32023R0839.

Forest Europe. State of Europe’s Forests 2020 (Ministerial Conference on the Protection of Forests in
Europe, 2020). https://foresteurope.org/wp-content/uploads/2016/08/SoEF_2020.pdf

Senf, C., Sebald, J. and Seidl, R. Increasing canopy mortality affects the future demographic structure of
Europe’s forests. One Earth4, 749-755(2021). https://doi.org/10.1016/j.oneear.2021.04.008

Patacca, M. et al. Significant increase in natural disturbance impacts on European forests since
1950. Glob. Chang. Biol. 29, 1359-1376(2023). https://doi.org/10.1111/gcb.16531

Van der Woude, A.M., Peters, W., Joetzjer, E. et al. Temperature extremes of 2022 reduced carbon uptake
by forests in Europe. Nat Commun14, 6218 (2023). https://doi.org/10.1038/s41467-023-41851-0

Seidl, R., Senf, C. Changes in planned and unplanned canopy openings are linked in Europe’s forests. Nat
Commun15, 4741 (2024). https://doi.org/10.1038/s41467-024-49116-0

Overpeck, J. T., Rind, D. and Goldberg, R. Climate-induced changes in forest disturbance and
vegetation. Nature 343, 51-53(1990). https://doi.org/10.1038/343051a0

Senf, C. and Seidl, R. Mapping the forest disturbance regimes of Europe. Nat. Sustain. 4, 63—-70(2021).
https://doi.org/10.1038/s41893-020-00609-y

Senf, C. et al. Canopy mortality has doubled in Europe’s temperate forests over the last three
decades. Nat. Commun. 9, 4978(2018). https://doi.org/10.1038/s41467-018-07539-6

Forzieri, G., Dakos, V., McDowell, N. G., Ramdane, A. and Cescatti, A. Emerging signals of declining forest
resilience under climate change. Nature 608, 534-539(2022). https://doi.org/10.1038/s41586-022-
04959-9

Nabuurs, G.-J. et al. First signs of carbon sink saturation in European forest biomass. Nat. Clim. Chang. 3,
792-796 (2013). https://doi.org/10.1038/nclimate1853

Anderegg, W. R. et al. Climate-driven risks to the climate mitigation potential of forests. Science 368,
eaaz7005 (2020). https://doi.org/10.1126/science.aaz7005

Winkler, K. et al. Changes in land use and management led to a decline in eastern Europe’s terrestrial
carbon sink. Commun. Earth Environ. 4, 237 (2023). https://doi.org/10.1038/s43247-023-00893-4
Gschwantner, T. et al. Growing stock monitoring by European national forest inventories: Historical
origins, current methods and harmonization. For. Ecol. Manag.505, 119868 (2022).
https://doi.org/10.1016/j.foreco.2021.119868

Santoro, M.; Cartus, O. (2024): ESA Biomass Climate Change Initiative (Biomass_cci): Global datasets of
forest above-ground biomass for the years 2010, 2015, 2016, 2017, 2018, 2019, 2020 and 2021, v5. NERC
EDS Centre for Environmental Data Analysis, 22 August 2024.
https://dx.doi.org/10.5285/02e1b18071ad45a19b4d3e8adafa2817

Liu, S. et al. The overlooked contribution of trees outside forests to tree cover and woody biomass across
Europe. Sci. Adv.9, eadh4097 (2023). https://doi.org/10.1126/sciadv.adh4097

Petersson, H. et al. Individual tree biomass equations or biomass expansion factors for assessment of
carbon stock changes in living biomass — A comparative study. For. Ecol. Manag. 270, 78-84,
doi:https://doi.org/10.1016/j.foreco.2012.01.004 (2012).

Pretzsch, H., et al. Forest growth in Europe shows diverging large regional trends. Sci Rep 13, 15373 (2023).
https://doi.org/10.1038/s41598-023-41077-6

Heinrich, V.H.A. et al. The carbon sink of secondary and degraded humid tropical forests. Nature615, 436—
442 (2023). https://doi.org/10.1038/s41586-022-05679-w

Besnard, S. et al. Mapping global forest age from forest inventories, biomass and climate data. Earth Syst.
Sci. Data. 13, 4881-4896 (2021). https://doi.org/10.5194/essd-13-4881-2021

© Aberystwyth University and GAMMA Remote Sensing, 2018
This document is the property of the CCI-Biomass partnership, no part of it shall be reproduced or transmitted without the
express prior written authorization of Aberystwyth University and Gamma Remote Sensing AG.



https://doi.org/10.1126/sciadv.adh4097
https://doi.org/10.1038/s41586-022-05679-w

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

Ref CCI Biomass Climate Assessment Report v3

C @Sa| issue Page Date biomass
3.0 25 14.07.2021 ‘

23.

Ceccherini, G. et al. Abrupt increase in harvested forest area over Europe after 2015. Nature 583, 72—
77(2020). https://doi.org/10.1038/s41586-020-2438-y

Ciais, P. et al.Carbon accumulation in European forests. Nat. Geosci.1, 425-429(2008).
https://doi.org/10.1038/nge0233

Verkerk, P. J. et al. Spatial distribution of the potential forest biomass availability in Europe. For. Ecosys. 6,
1-11 (2019). https://doi.org/10.1186/s40663-019-0163-5

Cook-Patton, S. C. et al. Mapping carbon accumulation potential from global natural forest
regrowth. Nature 585, 545-550(2020). https://doi.org/10.1038/s41586-020-2686-x

Roebroek, C. T., Duveiller, G., Seneviratne, S. 1., Davin, E. L. and Cescatti, A. Releasing global forests from
human management: How much more carbon could be stored? Science 380, 749-753(2023).
https://doi.org/10.1126/science.add5878

Mo, L., Zohner, C.M., Reich, P.B. et al. Integrated global assessment of the natural forest carbon
potential. Nature (2023). https://doi.org/10.1038/s41586-023-06723-z

Keith, H., Kun, Z., Hugh, S. et al. Carbon carrying capacity in primary forests shows potential for mitigation
achieving the European Green Deal 2030 target. Commun Earth Environ5, 256 (2024).
https://doi.org/10.1038/s43247-024-01416-5

McDowell, N. G. et al. Pervasive shifts in forest dynamics in a changing world. Science 368,
€aaz9463(2020). https://doi.org/10.1126/science.aaz9463

Hua, F. et al. The biodiversity and ecosystem service contributions and trade-offs of forest restoration
approaches. Science376, 839-844 (2022). https://doi.org/10.1126/science.abl4649

Eurostat, Roundwood removals by type of wood and assortment. https://doi.org/10.2908/FOR_REMOV.
Last data access: 25/10/2024.

Memento (édition 2024) de linventaire forestier national. https://www.ign.fr/publications-de-I-
ign/institut/kiosque/publications/docs_thematiques/memento-2024.pdf

Midiller, Jorg, et al. Increasing disturbance demands new policies to conserve intact forest. Conservation
Letters 12(1), e12449 (2019). https://doi.org/10.1111/conl.12449

Phillips, D. L., Brown, S. L., Schroeder, P. E. and Birdsey, R. A. Toward error analysis of large-scale forest
carbon budgets. Glob. Ecol. Biogeogr.9, 305-313 (2000). https://doi.org/10.1046/j.1365-
2699.2000.00197.x

Grassi, G. et al. Carbon fluxes from land 2000-2020: Bringing clarity to countries’ reporting. Earth Syst. Sci.
Data 14, 4643-4666(2022). https://doi.org/10.5194/essd-14-4643-2022

McGlynn, E., Li, S., Berger, M. F., Amend, M. and Harper, K. L. Addressing uncertainty and bias in land use,
land use change, and forestry greenhouse gas inventories. Clim. Change 170, 5(2022).
https://doi.org/10.1007/s10584-021-03254-2

Yu, Y. et al. Making the US National Forest Inventory spatially contiguous and temporally
consistent. Environ. Res. Lett.17, 065002 (2022). https://doi.org/10.1088/1748-9326/ac6b47

Hyyrynen, M., Ollikainen, M. and Seppala, J. European forest sinks and climate targets: past trends, main
drivers, and future forecasts. Eur. J. For. Res. 142, 1-18(2023). https://doi.org/10.1007/s10342-023-
01587-4

Mayer, M., et al. Tamm Review: Influence of forest management activities on soil organic carbon stocks:
A knowledge synthesis. Forest Ecol. Manage. 466, 118127 (2020).
https://doi.org/10.1016/j.foreco.2020.118127

Peng, L., Searchinger, T.D., Zionts, J. et al. The carbon costs of global wood harvests. Nature 620, 110-115
(2023). https://doi.org/10.1038/s41586-023-06187-1

European Commission: Directorate-General for Energy, Union bioenergy sustainability report — Study to
support reporting under Article 35 of Regulation (EU) 2018/1999 — Final report, Publications Office of the
European Union, 2024, https://data.europa.eu/doi/10.2833/527508

Les foréts frangaises face au changement climatique. Rapport du Comité des sciences de I'environnement
de I’Académie des sciences et points de vue d’Académiciens de I’Académie d’Agriculture de France. June,
2023. https://www.academie-sciences.fr/pdf/rapport/rapport_forets_v2_LD.pdf

Grassi, G., et al., Brief on the role of the forest-based bioeconomy in mitigating climate change through
carbon storage and material substitution. Sanchez Lopez, J., Jasinevicius, G. and Avraamides, M. editor(s),

© Aberystwyth University and GAMMA Remote Sensing, 2018

This document is the property of the CCI-Biomass partnership, no part of it shall be reproduced or transmitted without the

express prior written authorization of Aberystwyth University and Gamma Remote Sensing AG.



45.

46.

47.

48.

49.

50.

Ref CCI Biomass Climate Assessment Report v3

S @Sa| issue Page Date biomass
3.0 26 14.07.2021 =

European Commission, JRC124374 (2021).

https://publications.jrc.ec.europa.eu/repository/handle/JRC124374

Kauppi, P. E. et al. Carbon benefits from Forest Transitions promoting biomass expansions and
thickening. Glob. Change Biol.26, 5365-5370 (2020). https://doi.org/10.1111/gcbh.15292

Korosuo, A, Pilli, R., Abad Vifias, R. et al. The role of forests in the EU climate policy: are we on the right
track?. Carbon Balance Manage.18, 15 (2023). https://doi.org/10.1186/s13021-023-00234-0

Pilli, R., Alkama, R., Cescatti, A., Kurz, W. A. and Grassi, G. The European forest carbon budget under future
climate conditions and current ~management practices. Biogeosci. 19, 3263-3284(2022).
https://doi.org/10.5194/bg-19-3263-2022

Babst, F. et al. Twentieth century redistribution in climatic drivers of global tree growth. Sci. Adv. 5,
eaat4313(2019). https://doi.org/10.1126/sciadv.aat4313

Forest Information System in Europe (9 November, 2024). https://forest.eea.europa.eu/3-billion-
trees/introduction

Naudts, K. et al. Forest management: Europe’s forest management did not mitigate climate
warming. Science 351, 597-600(2016). https://doi.org/10.1126/science.aad7270

© Aberystwyth University and GAMMA Remote Sensing, 2018
This document is the property of the CCI-Biomass partnership, no part of it shall be reproduced or transmitted without the
express prior written authorization of Aberystwyth University and Gamma Remote Sensing AG.




Ref CCI Biomass Climate Assessment Report v3

esa Issue Page Date biomass
3.0 27 14.07.2021 3

3.Disturbance-recovery dynamics drive global
forest biomass change

Forests constitute the largest carbon reservoirs in the terrestrial biosphere. The capacity of
forests to sequester and store carbon is closely linked to their age structure, disturbance regimes,
and post-disturbance recovery dynamics 2. However, increasing anthropogenic pressures and
climate-related extremes are intensifying the frequency, extent, and severity of forest
disturbances 3. These disturbances, including wildfires, insect outbreaks, storms, and logging,
although not necessarily resulting in forest land-use change, can alter forest structure, disrupt
carbon dynamics, and threaten the long-term stability of the terrestrial carbon sink.

Recent advances in Earth observation (EO) have substantially enhanced our ability to monitor
forest disturbances across large spatial and temporal scales. In particular, the Landsat satellite
archive provides a continuous multi-decadal record that enables the reconstruction of
disturbance histories and the modeling of post-disturbance forest recovery. Several satellite-
derived datasets now track forest age dynamics “®, but their spatial coverage remains limited.
The recently updated Global Age Mapping Inventory (GAMIv2.0) represents a notable
improvement, refining spatial resolution from 1 km to 100 m by integrating Landsat-derived
stand-replacement events over the past two decades 7. Nevertheless, it tends to overestimate
the age of younger forests, due to the lack of disturbance records before the 2000s and the
omission of non-stand-replacing events 7. These limitations constrain our ability to fully
characterize forest age structures and disturbance patterns >°, which are critical for accurately
quantifying the spatial and temporal patterns of aboveground carbon (AGC) fluxes and
understanding forest carbon recovery trajectories.

Despite these observational advances in forest monitoring, integration with existing modeling
frameworks remains limited, as current models often fail to fully utilize the spatiotemporal detail
available in EO products. Bookkeeping models (BMs) %2, as used in the Global Carbon Budget
(GCB), were originally developed to estimate land-use change emissions and rely on prescribed
carbon densities and fixed temporal response curves tied to specific land-use transitions. These
models are driven by historical land-use reconstructions and generally exclude natural
disturbances and forest age dynamics. In contrast, process-based Dynamic Global Vegetation
Models (DGVMs), which are used in the GCB framework to quantify gross forest carbon uptake,
often lack explicit representation of age-dependent growth processes and the disturbance-
induced carbon losses such as wildfire, windthrow, and insect outbreaks **!*. National
Greenhouse Gas Inventories (NGHGIs), which follow IPCC guidelines, offer a bottom-up
alternative but differ conceptually from global models by including indirect effects on managed
lands and broader definitions of anthropogenic influence . Collectively, these approaches have
provided critical insights into forest carbon dynamics, yet they show substantial discrepancies
in the treatment of forest extent (e.g., definitions of managed land), representation of
disturbance types, and the attribution of indirect effects such as CO, fertilization and climate
variability. These inconsistencies result in divergent estimates of forest carbon fluxes and hinder
reconciliation between observational data and model outputs. As such, there is an increasing
need for spatially explicit approaches that directly link observed disturbance histories with
biomass changes to improve model-data consistency.
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In this study, we address this gap by integrating global and region-specific datasets of forest
disturbance and biomass. We examine how historical disturbances during the Landsat era have
shaped current forest age structures and influenced carbon dynamics across eight major global
regions: Canada, Europe, other boreal regions, the United States, China, the tropics, Australia,
and the remaining areas. By coupling a spatially explicit carbon bookkeeping framework with
gridded forest biomass recovery curves, we aim to: (1) quantify forest AGC changes associated
with fire and non-fire disturbances, (2) evaluate the regional contributions to the global forest
carbon budget, and (3) assess carbon residence times under prevailing disturbance regimes.

3.1 Method
3.1.1 Delineation of forest disturbances

We separated the global forested area into 8 subregions, including Canada, Europe, other boreal
regions, the United States (mainland), China, the tropics, Australia, and other remaining regions
(Fig. 3-2c). The 8 regions were delineated due to the availability of disturbance datasets (Table
3-1), which are introduced in detail in the following paragraphs.
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Figure 3-1 Conceptual diagram
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Table 3-1 Disturbance datasets used in the analysis

Harmonized
Region Time Period Original type disturbance type Dataset Name Reference
Canada’s
disturbance Hermosilla et al.
Canada 1985-2020 Harvest, fire Fire, Non-fire datasets (2019)1617
European Forest
Wind/bark beetle, Disturbance Atlas Viana-Soto and Senf
Europe 1985-2023 fire, harvest Fire, Non-fire (EFDA) (2025)18
Monitoring Trends
in Burn Severity
(MTBS)
1985-2020 Disturbance USGS (2023)
us 1985-2015 Fire, other Fire, Non-fire intensity Lu et al., (2023)1°
China's disturbance
China 1986-2022 Fire, other Fire, Non-fire datasets Liu et al., (2023)20
Tropical Moist
Degradation, Forest (TMF) Vancutsem et al.,
deforestation, Humid: Global Annual (2021)
Tropics 1990-2023 Regrowth. Fire, Non-fire Burned Longetal.,
Fire Dry: Fire Area datasets (2021)21.22
Department of
Climate Change,
National Forest and Energy, the
Original land cover Sparse Environment
Australia 1988-2023 class: woody, forest,  Fire, Non-fire Woody Vegetation and Water (2023)
other (forest loss/gain) Data Long et al., (2021)2
Global Annual
Burned
Other boreal/ Area datasets
Other 1985-2021 Burned area Fire (GABAM) Long et al., (2021)2

Canada: We used the disturbance datasets developed by ¢ for Canada, which provides a
spatially explicit, yearly record of stand-replacing forest disturbances from 1985 to 2020. This
Landsat-based dataset distinguishes between wildfire and harvest disturbances and was
generated using the automated Composite2Change (C2C) algorithm 7. The year of forest change
was identified by applying a segmentation algorithm to time series of the Normalized Burn Ratio
(NBR), derived from Landsat surface reflectance data, followed by classification of disturbance
types using object-based image analysis and a random forest model. The dataset achieved an
overall change detection accuracy of 89% *7.

Europe: For Europe, we utilized the European Forest Disturbance Atlas (EFDA) *8, which provides
annual, spatially explicit forest disturbance maps across 38 European countries from 1985 to
2023. The EFDA offers detailed information on the disturbance occurrence, severity (calculated
using spectral changes in the Normalized Burn Ratio, NBR), and type, which is categorized into
wind/bark beetle, fire, and harvest. The disturbance dataset is derived based on a consistent
summer Landsat composite data cube and a classification-based approach capable of identifying
both single and multiple disturbance events. EFDA reports an overall F1 accuracy score of 0.89,
with commission and omission errors of 17.3 % and 22.5 % for the disturbed forest areas and
omission errors of less than 1% for undisturbed forest areas, supporting robust detection and
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attribution of forest disturbances. The disturbances are further grouped into fire and other non-
fire disturbances (including wink/bark beetle and harvest).

The United States: For the United States, an annual disturbance intensity map (30 m, 1986-
2015) from *° and fire records from Monitoring Trends in Burn Severity (MTBS) (30 m, 1984-
2024) 2 were used. The disturbance intensity map provides estimates of forest disturbance
intensity across the conterminous United States. The MTBS includes both wildfires and
prescribed fires that meet defined thresholds (1,000 acres or greater in the western US and 500
acres or greater in the eastern US) occurred in forest and non-forest area. To delineate forest
fires, we overlapped the fire records with the Land Use/Land Cover Change layer (30 m, 1985-
2023, USGS et al. (2025)) and extracted the burned pixels within the forest area. We overlaid
the forest fires and disturbance intensity map and classified the pixels into two categories: fire
and other non-fire disturbances. Any disturbance pixel that does not overlap with a fire pixel
was classified as “other non-fire disturbances”.

China: We used the forest disturbance dataset developed by Liu et al. (2023)%, which provides
a spatially explicit, annual record of forest disturbances from 1986 to 2020 for China. This
disturbance product was generated using the growing season (June—September) Landsat
imagery. A LandTrendr spectral-temporal segmentation algorithm was applied to multiple
spectral indices to characterize forest and change conditions. Forest disturbance were classified
into fire and non-fire categories using a random forest model trained on over 31,000 reference
points. The year of disturbance was assigned with an accuracy of +3 years and the overall
classification achieved an accuracy of 88.2%.

Tropics: The tropical area covers the same study domain as the tropical moist forest (TMF)
datasets (Vancutsem et al. 2021)*, which approximately overlaps the ‘Tropical rainforest,’
‘Tropical moist forest,” “Tropical mountain system’ and ‘Tropical dry forest’ zones from the FAO
global ecological zones. We used pixels belonging to the classes of forest cover and changes
from the TMF Transition Map to define the humid forest extent. For the dry forest, we
delineated the extent by removing the humid forest extent from a global tree cover map
(Hansen et al. 2013)% for the year 2000 with a tree cover threshold of >25% following Hansen
et al. (2010). The TMF dataset provide 33 yearly change maps, which categorised the
disturbances across humid tropics into degradation, deforestation, and regrowth following
deforestation. Deforestation in TMF refers to the change of land use from forest to non-forest
areas or a loss of canopy cover without subsequent recovery over the past 3 years (Vancutsem
et al. 2021)?2. Forest degradation is not accompanied by permanent land use change (LUC) but
is related to a decline in canopy cover and biomass. Forest degradation was defined following
TMF datasets as a short-term disturbance (shorter than 2.5 years) followed by forest recovery.
These degradations were caused by logging, windbreaks and droughts. Forest regrowth refers
to forests regrowing following deforestation or afforestsation from non-forested land. The TMF
reports an overall accuracy of 91.4%, with omission and commission errors for non-forest cover
detection at 9.4% and 7.9%, respectively (Vancutsem et al. 2021)*. We further overlapped
global annual burned area map (Long et al., 2019)?* with the TMF annual change maps, to extract
the fire and non-fire disturbance in humid troipcs. Deforestation without regrowth and
afforestation is not accounted in this analysis for the aim of targeting forest disturbance in the
established forest stands without land use change. Due to the lack of disturbance dataset in dry
tropics, we overlapped the dry tropical forest extent in 2020 with the global annual burned area
map (Long et al., 2019)?* to delineate the fire disturbance historically occurred in dry tropical
forests. The dry tropical forest extent in 2020 was derived from the dry forest extent in 2000 by
excluding the tree cover loss pixels during 2000-2020 from Hansen et al. (2013)%°.
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Australia: The National Forest and Sparse Woody Vegetation Data (Version 8.0 - 2023 Release)
provides an annual consistent discrimination between forest, sparse woody, and non-woody
land cover across Australia from 1988 to 2023 at ~30 m resolution. The ‘forest’ is defined as
woody vegetation with a minimum 20% canopy cover, at least 2 meters high, and a minimum
area of 0.2 hectares, while ‘sparse woody’ is defined as woody vegetation with a canopy cover
between 5-19%. The methodology employs time series processing using conditional probability
networks to detect woody vegetation cover based on Landsat time series. To delineate the
forest disturbances, we extract the forest loss from the land cover time-series with the change
from forest to woody/non-woody and forest gain from woody/non-woody to forest. When the
30m forest loss pixels overlapped with the fire pixels at the corresponding year from the global
annual burned area dataset (Long et al., 2019)%, these pixels were assigned as the fire-induced
forest losses and the remaining ones were attributed to other non-fire losses.

Other boreal and Other: For the remaining regions without detailed disturbance datasets, the
global annual burned area map derived from Landsat images was used (1985-2021)%. The
burned area dataset contains a 8-year gap for the pre-2000 period due to the limited Landsat
data availability. The accuracy of fire products of 2015-2019 was assessed with the stratified
random sampling method, and the accuracy validation results show the accuracy of GABAM
products in different years (2015-2019) was relatively stable, with overall accuracy ranging from
86.00% to 93.92%, Commission Error from 4.13% to 13.17%, and Omission Error from 29.81%
to 34.86% 2!. We overlapped the burned area with forest cover map and forest loss map from
global forest watch (Hansen et al., 2013)% to delineate the forest fires from the original burned
area dataset. We further separate these burned forests into two regions, the other boreal
regions (e.g., Alaskan and Russiaian boreal forests) and the other remaining regions.

Globally, the forest disturbances were separated into the fire and other non-fire disturbances,
except for the other boreal and the other remaining regions, where other non-fire disturbance
at the temporal depth of Landsat are not available at the moment. It is also important to notice
that only forest disturbances happened in the existing forest stands were included in the analysis,
whereas forest land use change (such as deforestation or afforestation) was excluded, due to
inconsistency between the different land cover datasets.

3.1.2 Biomass dataset

Global above-ground biomass dataset

We wused the ESA Climate Change Initiative Biomass dataset (CCI-Biomass V5
https://climate.esa.int/en/projects/biomass/data/) to model forest carbon changes. This
dataset provides global aboveground biomass (AGB) estimates for multiple years at 100 m
spatial resolution. AGB values are derived from a fusion of Earth observation data, including
radar signals from Copernicus Sentinel-1, Envisat ASAR, and JAXA’s ALOS-1 and ALOS-2 sensors.
Importantly, the dataset incorporates updated allometric relationships informed by an extended
record of spaceborne LIDAR measurements from the GEDI and ICESat-2 missions. To ensure
spatial consistency with the forest disturbance dataset, the CCl-Biomass map was resampled to
30 m resolution using nearest-neighbor interpolation.

Other regional biomass dataset

Two additional regional biomass datasets at 30m resolution were used, which better matched
the original resolution of the disturbance datasets
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For Canadian forests, we used the biomass dataset developed for northern boreal ecosystems
from 2* at 30m. AGB was modeled through a machine learning approach (XGBoost) by fusing
ICESat-2-derived canopy structure metrics and Sentinel-2 spectral indices. The dataset was
trained and validated using the AGB values from national forest inventories (NFI) in Finland,
Sweden, and Norway. Validation showed strong agreement with reference data, with RMSE
values around 33-43 Mg/ha across countries.

For Europe, we used the biomass dataset developed by %, which estimates aboveground
biomass (AGB) by integrating PlanetScope imagery with deep learning models. These models
predict tree canopy cover and height, which are then converted to AGB at 30m resolution using
allometric equations derived from Danish NFI plots. The dataset captures biomass for both
forest and non-forest trees. Validation against independent field measurements and national
inventory data showed a systematic bias of +7.6% and a Pearson correlation coefficient of 0.98
at the country level.

3.1.3 Model the forest carbon gain and losses for the disturbed forest
Identification of the forest age

We first identified the forest age in 2020 since the last disturbance for each 30m pixel based on
the regional disturbance history. If multiple disturbances occurred in the same 30m pixel, the
most recent disturbance was used to calculate the forest age in 2020. For example, if a pixel
experienced fire or non-fire disturbances in both 1990 and 1995, the year 1995 event was taken
as the reference point (i.e., the year since the last disturbance), resulting in a forest age of 26
years in 2020, assuming that recovery begins in the same year as the disturbance.

Reconstruction of the post-disturbance recovery curves

To quantify the relationship between aboveground carbon (AGC, converted from AGB using a
ratio of 0.5) and forest age (i.e., time since the last disturbance), we employed a space-for-time
substitution approach. Specifically, we overlapped satellite-derived biomass maps with forest
age maps to extract AGC-age pairs within each 1°x1° spatial window. Due to the temporal extent
of the remote sensing disturbance data (beginning in 1985), the maximum observable forest age
is currently limited to 36 years. To extend the AGC-age relationship beyond this range, data from
the NFls (Besnard et al., 2021)*®* were incorporated during the fitting process, providing
additional AGC—age observations for older forest stands. If no NFl data were available for a 1°x1°
grid cell, an estimated data point was added at a forest age of 200 years, with the corresponding
AGC set to 85% of the maximum AGC within that grid cell. 85th percentile was chosen to
minimize the differences (mean differences of 1.2 MgC ha) at the gridded level between the
AGC density of the intact forest by overlapping the 2020 intact forest layer (Potapov et al.,
2019)?® and the gridded AGC maps. For each 1°x1° grid cell, the median AGC values and the
corresponding ages were used to fit the biomass recovery curves following Richard-Chapman
functions.

AGCyiyy = AGCrax(1— e™P) +d (1)
where AGCnax denotes asymptotic AGC, which determines the maximum potential AGC the

forest could reach and ti refers to the time since the last disturbance. Parameters b, ¢, and d
denote the recovery curves' rate, shape, and intercept.
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The recovery curves were derived for each grid cell across global forests, considering two types
of disturbances, fire-disturbance and other non-fire disturbances. In the case of Canada, stand-
replacing disturbances were detected 18, the forests are assumed to regrow from zero tree cover,
and d equals 0. For other non-stand-replacing disturbances where only partial AGC is removed,
d represents the remaining AGC after disturbances.

We tested alternative growth functions for regrowth forests, including the Michaelis-Menten
(AGCyyq1 = a X ti/(b + x)) and Logistic models (AGC = a/(1 + be™¢*t")). These alternatives
produced similar AGC accumulation patterns, suggesting that our estimates are robust to the
choice of model forms within the relevant timeframe. The fitting performance improved with
increasing grid sizes from 0.25° to 1° (similar R? of 0.5 but decreased RMSE), due to the larger
number of data points available for the curve fitting in larger grid sizes. Therefore, a grid
resolution of 1°x1° was chosen in this study.

Validation of the recovery curves

The recovery curves were validated using field-based observations from Cook-Patton et al.,
(2020)%. We compared the field-based AGC and the AGC derived from the spatially-explicit
regrowth curves following fire/other non-fire disturbances at the same grid in the corresponding
age intervals. The comparison shows the spatially-explicit curves in general matched the site
measurements across the three tropical continents (Fig. 3-3c). Our estimated AGC gain rate for
the recovery forests at young stages (age < 20) with the previous studies based on remote
sensing and site observations.

Calculation of the carbon gains and losses from post-disturbance recovery

The AGC loss from the disturbance is determined by the differences between the pre-
disturbance AGC (point a in Fig. 3-1) and the remaining biomass (point b). The remaining
biomass is calculated by multiplying the pre-disturbance AGC and the ratio of the biomass loss.
The ratio of the biomass loss was determined using AGCmax and intercept (d) from the
corresponding recovery curve as below.

ratiO: (AGCmax'd)/ AGCmax (2)

For a forest pixel that has been disturbed before, pre-disturbance AGC is determined from the
recovery curves by the period between the previous and the current disturbance events. For a
forest pixel that has not been disturbed before (i.e., the first disturbance in the time series), we
assumed that the biomass should be consistent with the surrounding undisturbed forest. The
average AGC of N surrounding undisturbed forest pixels (N=10) was used to estimate the pre-
disturbance AGC (point a) of the disturbed pixel.

For each disturbance event followed by forest recovery, the forest biomass gain depends on the
differences between the current AGC (point c in Fig. 3-1) and the remaining AGC (point b). The
current biomass was derived from the recovery curves at the corresponding grid and the period
between the two disturbance events. The recovery curves for fire and other non-fire
disturbances were applied for each corresponding disturbance event.

3.1.4 Estimation of AGC changes for the undisturbed forest
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To assess carbon dynamics in undisturbed forests, we first delineated the undisturbed forest
extent in 2020 by excluding all pixels with recorded disturbance events from the forest extent.
Forest extent was defined using a combination of regional land use/land cover products and
global tree cover datasets (Table 3-2). AGC values for the undisturbed forest pixels were
extracted from the CCl Biomass dataset. Using the biomass recovery curves fitted for each
corresponding 1° x 1° grid cell, forest age in 2020 was estimated (backcasted) for each 30-meter
pixel by identifying the time since the curve would have accumulated the observed AGC.
Subsequently, AGC accumulation over the period 1985-2020 was estimated for each
undisturbed forest pixel by combining the inferred forest age with the recovery trajectory:

C Gainundist=AGCt=2020~AGCt-1985 (3)
This approach assumes that these forests were free of detected disturbances in the Landsat
record (post-1985), but may have experienced disturbances prior to 1985. It further assumes

that post-disturbance recovery in these forests follows the same trajectory as recently disturbed
forests, thereby enabling estimation of long-term C gains during 1985-2020.

Table 3-2 Forest extent data sources used in the analysis

Region Forest class Data source Reference
Coniferous
Broad Leaf Annual forest land cover maps for
Canada Mixedwood Canada's forested ecosystems (Hermosilla et al. 2018)27

European Forest

Europe Forest mask Disturbance Atlas (EFDA) Viana-Soto and Senf (2025) 18

Landscape Change monitoring

us Forest System (LCCMS) (Land cover layer) USDA Forest Service (2025)
China Forest China land cover dataset (CLCD) Yang and Huang 202128
Tropical Moist
Humid: Undisturbed Forest (TMF)
Tropics forests/regrowth/degraded forests in 2020 Tree cover and tree cover loss Vancutsem et al. 202122
Dry: tree cover in 2020 >25% from Global Forest Watch (GFW)  (Hansen et al. 2013)2°
Department of Climate Change,
Australia  Forest National Forest and Sparse Energy, the Environment
Woody Vegetation Data and Water (2023)
Other
boreal/ Tree cover and tree cover loss
Other Tree cover >25% in 2020 from GFW from Global Forest Watch (GFW)  (Hansen et al. 2013)2°

3.1.5 Estimation of AGC fluxes and turnover times

AGC fluxes at each 1°x 1° grid cell were defined as the mean annual gross AGC losses (resulting
from disturbances and calculated following the procedures described in Method 3) divided by
the total AGC stock in forests (eq. 4).
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AGCfIUXGS (%): AGC annual gross /OSS/FOI'BSt AGCstock XlOO (4)

This metric quantifies the rate at which carbon is being released from (or cycling through) the
forest ecosystem due to disturbances, relative to its standing biomass stock.

In contrast, AGC turnover time was calculated as the inverse relationship
Turnover time (yr)=Forest AGCstock / AGC annual gross loss (5)

This value reflects the average time required for the existing AGC stock to be fully turned over
under prevailing disturbance rates. As expected, regions with higher AGC fluxes tend to exhibit
shorter turnover times, while lower fluxes correspond to more stable, longer-lived carbon stocks.

Total AGC stocks were estimated by summing aboveground biomass from the CCl-Biomass
dataset across forested areas, as defined by a combination of regional and global forest land
cover products (see Table 2).

3.2 Global disturbed forest distribution and young forest age distribution

Globally, forests free of recorded disturbances from existing disturbance datasets since 1985
dominate the total forest area (accounting for 70%, 2330 Mha of the total forest area), while
disturbed forests affected by events such as fire and harvest between 1985 and 2020 make up
the remaining 30% in 2020 (Fig. 3-2). In recent years, there has been a notable increase in the
extent of young forest stands, particularly in regions such as the tropics, Europe, and the United
States (Fig. 3-2b). This increasing proportion of younger forest stands indicates more frequent
and widespread disturbance events recently, probably driven by logging, fire and other
pressures leading to degradation, resulting in accelerated forest regeneration and a higher
prevalence of younger forest stands.

Regionally, tropical and sub-tropical regions are characterized by relatively higher rates of
disturbances and younger forest age structures, while temperate and boreal zones maintain
reservoirs of older and undisturbed stands (Fig. 3-2). Among all regions, Australia shows the
largest area of disturbed forests in 2020, with only 26% of its forests remaining undisturbed.
Following Australia, the dry tropics have the second largest proportion of disturbed forests
(55%) and show the highest proportion of youngest forests aged from 1-10 years (41%). due to
the frequent repeated fire and rapid regeneration cycles across this region 28,29. In humid
tropical regions, the forest age among disturbed forests is more evenly distributed, with 10%
aged 0-10 years and 13% aged 10-30 years, respectively. Temperate and boreal regions,
including China (84%), Canada (76%), the United States (76%), and Europe (76%), are dominated
by undisturbed forests. These regions maintain older forest structures with limited recent
disturbance, acting as important reservoirs of long-standing biomass and carbon storage.
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Figure 3-2 Global distribution of disturbed forests and forest age structure in 2020. a) Fraction
of forest area disturbed during 1985-2020 within each 1° grid cell. b) Forest age composition in
2020, with each donut chart showing the proportion of young forests that regenerated following
disturbances during 1985-2020 and ageing forests that remained undisturbed over the same
period. Young forests are classified into four age groups (0—10, 11-20, 21-30, and 31-40 years)
based on the time since the last disturbance, derived from regional disturbance datasets.
Regional boundaries correspond to those shown in Fig. 2c.

3.3 Forest regrowth patterns across global regions

By utilizing satellite-derived disturbance history maps and the CCl Biomass dataset, we derived
regional forest regrowth curves by fitting a Richard-Chapman model to aboveground carbon
(AGC) values as a function of forest age since the last disturbance, using a space-for-time
substitution approach. This method captures the trajectory of biomass recovery after
disturbance at a 1° grid resolution across the global forest area.

The shape and pace of regrowth vary markedly across regions. In the tropics, AGC accumulation
is rapid, reaching close to saturation within the first 30—40 years since the disturbance, indicating
high productivity and fast biomass recovery in tropical forest systems. In contrast, temperate
and boreal regions such as Canada, the US, Europe, and other boreal regions exhibit much
slower AGC recovery, with more gradual increases in biomass over time. The median AGC gain
rates between 0-30 years are particularly high in the tropics (> 4 MgC ha? yr?, followed by
moderate rates in China and the US (~2-3 MgC ha yr?). Boreal and temperate regions such as
Canada and Europe show slower growth, with estimated rates of ~1-2 MgC ha yr.

To validate our regrowth estimates, we compared AGC accumulation rates during the first 30
years post-disturbance with independent values from Cook-Patton et al. (2020)2. Overall, our
modeled results show good agreement with Cook-Patton data, particularly in boreal regions
where estimates closely align. In temperate and tropical regions, our models tend to reflect
slightly more region-specific variability and lower AGC gain rates, but remain within the
expected range of early regrowth dynamics (Fig. 3-3b).
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Figure 3-3 Forest aboveground carbon (AGC) accumulation changes with time. (a) Forest AGC
accumulation as a function of forest age for each study region. (b) Comparison of AGC
accumulation rates over first 0-100 years after regrowth with estimates from naturally
regenerating forests reported by Cook-Patton et al. (2020)>. (c) Regional map used in the analysis.
Each color-coded region corresponds to those used in panels a and b. AGC growth curves at 1°
grid cell were fitted using the Richards-Chapman function (AGC = AGC,ax X (1 — exp(-bt)))+d
based on the time since the last disturbance (t) derived from the regional disturbance histories
and the 2020 forest biomass map (see Methods).

3.4 Spatial and temporal dynamics of forest AGC change associated with
disturbances

By combining regional disturbance histories with the modeled regrowth curves, we assessed the
spatial and temporal dynamics of forest AGC changes associated with disturbances from 1985
to 2020. At the global scale, forests disturbed during this period gained +18.9 PgC through post-
disturbance recovery but lost -27.3 PgC due to fire and non-fire disturbances, resulting in a net
AGC loss of -8.5 PgC since 1985.

The tropics contributed the largest to the global net AGC losses, accounting for 83% (-7.1 PgC)
of the global net losses (Fig. 3-4). Among which, dry tropical forests experienced the highest
gross AGC losses, primarily driven by fire disturbances (-12.1 PgC). However, due to relatively
rapid post-fire recovery (Fig. 3-3) in these fire-adapted ecosystems, +10.8 PgC of AGC was
regained, offsetting a substantial portion (90%) of the fire-driven losses and resulting in a near-
neutral carbon balance. In contrast, the humid tropics showed the largest net AGC loss globally
(-5.8 Pg C), primarily due to non-fire disturbances such as logging and degradation. Gross AGC
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losses and gains were concentrated in well-known tropical hotspots, including the “Arc of
Deforestation” in the Amazon, Northern and Southern Central Africa, and Southeast Asia, where
both fire and degradation pressures are extensive. Note that land use change-related C fluxes
(e.g., deforestation and afforestation) were excluded from this analysis due to inconsistencies
between regional and global land cover datasets (e.g., ESA-CCI LC product, Global Forest Watch,
and regional land cover products).

a b
Canada Europe Other Boreal
i~ 100 ~ 2
et 9 20 Q 50
c E E
e 0 : O 0 prermemescraserssnsescyeseas i 2 o |
e e &
& 5 4 W\/\M g .
+] S S
. 87100 2 3
v < - - - < e - - - < =100 - - - -
1990 2000 2010 2020 1990 2000 2010 2020 1990 2000 2010 2020
Year Year Year
us China Tropics
Q 50 9, 50 9, 1000
= | =
L g o0 i o0 |
& b3 e
£ 2 s £ -1000 t
S -50 S -50 S -1
3 3 3
2 -100 ‘ g0 Q -2000 » ‘
1990 2000 2010 2020 1990 2000 2010 2020 1990 2000 2010 2020
Year Year Year
0 125 25
27 PgC
Australia ; Other . Global y ; ]
P2 g so] Q 50 3 1000 t
e \s el ¢ el
i 'y A © 0 u t © 0 © 0
s N 5 [ e 1111 T Wm«n 5 ‘
o ] ] <
-4 ; § 0 5 <10
» $ o] g :
> g 100 | 2 -100 Q -2000 |
1990 2000 2010 2020 1990 2000 2010 2020 1990 2000 2010 2020
Year Year Year
8 PaC =1 0 B Gain-fire I Loss-fire Net
9 Net (gain-loss) (TgC) Gain-nonfire Loss-nonfire

Figure 3-4 Spatial and temporal dynamics of forest AGC change associated with disturbances
during 1985-2020. (a) Spatial patterns of gross AGC gains, gross AGC losses, and net AGC
changes. (b) Temporal dynamics of AGC change by study region. Bars show annual carbon losses
and gains due to fire and non-fire disturbances. Black lines indicate the annual net AGC balance,
calculated as the sum of all carbon flux components. Data availability varies by region based on
the coverage of regional disturbance datasets: for example, the United States (1990-2015), the
Tropics (1990-2020), and Australia (1988—2020). In regions lacking regional datasets (i.e., Other
Boreal and Other regions), a global burned area dataset was used L. Note that fire data has an
~8-year gap in the early record (post-1985) due to limited Landsat availability.

Outside the tropics, Australia was the only region to exhibit a net AGC gain (+0.7 Pg C), largely
driven by regrowth following past woody vegetation and non-vegetated area. However, this AGC
gain has declined in recent decades due to increasing fire activity (Fig. 3-4). In contrast,
temperate and boreal regions such as the US, Europe, and China experienced moderate net AGC
losses, from —0.01 to —0.8 Pg C, primarily due to non-fire disturbances such as wood harvesting.
Canada presents a different disturbance pattern, with both fire and non-fire disturbance shaping
AGC dynamics. While some fluctuations occurred in recent years (e.g., in Europe and China),
these regions generally showed increasing AGC gains since 1985, unlike Australia.

It is important to note that limitations in long-term disturbance data, such as the lack of
consistent differentiation between fire and non-fire disturbances, constrain detailed pan-boreal
assessments, particularly for Russian boreal forests.
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3.5 Forest regrowth patterns across global regions

We further examined the spatial and regional variability in AGC stock and turnover
characteristics using forest disturbance, biomass, and forest extent data for the period 2001-
2020. The global forest ecosystems exhibited an annual AGC turnover (i.e., gross AGC losses) of
0.77 Pg Cyr™, corresponding to a global average turnover rate of 0.38% yr™" and a turnover time
of 262 years. However, these AGC turnover and turnover characteristics show strong spatial and
regional variability (Fig. 3-5). The highest turnover rates were observed in fire-prone and
intensively managed forests, particularly in tropical and temperate regions, while boreal forests
in general exhibited the longest turnover times due to slower growth and recovery.

The tropics store the largest share of AGC stock globally, contributing 74% (0.57 Pg C yr™) of the
global annual AGC turnover (74%, 0.57 Pg C yr™). Despite a moderate turnover rate of 0.41% yr™'
among the global regions, the vast forest extent, high carbon storage, and frequent disturbances
from both human and natural drivers result in the highest global AGC turnover fluxes in this
biome. The average turnover time in tropical forests is 245 years, indicating a dynamic balance
between disturbance and relatively rapid biomass accumulation.

In Australia, forests showed the highest turnover rate (1.17%) and the shortest turnover time
(85 years), primarily driven by fires, which account for 84% of the annual AGC turnover in this
region.

Among boreal and temperate regions, Canada exhibits a relatively high AGC turnover rate (0.80%
yr™') and faster AGC turnover time (126 years). The United States and China exhibit moderate
turnover rates of 0.34% yr™ and 0.44% yr~", with corresponding turnover times of 296 years and
229 years, respectively, driven largely by non-fire activities such as logging. In contrast, Europe
shows a lower average turnover rate (0.20% yr~") and a longer turnover time (505 years). Across
Europe, these values vary substantially, with higher turnover rates observed in intensively
managed boreal forests and lower rates in temperate continental zones. The remaining boreal
forests, including those in Russia and Alaska, show the lowest turnover rate (0.09%) and the
longest turnover time (1101 years), indicating extremely slow carbon cycling and limited post-
disturbance recovery in these low-productivity ecosystems. Note that the turnover time may be
underestimated in regions with incomplete disturbance data, particularly in the Russian boreal
zone.
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Figure 3-5 Global and regional distributions of forest AGC fluxes and turnover times.
(a) Spatial distribution of AGC fluxes, calculated as the ratio of gross AGC losses to total
AGC stock at each 1° grid cell. (c) Spatial distribution of AGC turnover time, defined as
the ratio of total AGC stock to gross AGC losses from disturbances during 1985-2020. (b)
Regional averages of AGC turnover rate and AGC turnover (PgC yr:), (d) Regional
averages of turnover times/AGC stock (d), corresponding to the mapsin a and b.
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