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1  INTRODUCTION 

1.1 Purpose 

This document is the Algorithm Theoretical Basis for the Sea Ice ECV within CCI+ PHASE 1                
- NEW R&D ON CCI ECVs, which is being undertaken by a METNO-led consortium. This               
document is based on the work of phase 2 of the ESA CCI project and includes the new                  
developments for the Sea Ice Thickness (SIT) aspects. 

This document also contains preparation and documentation of the ongoing work to extend             
the CRDP to cover SIT from ERS-1 and ERS-2 satellites as well as for future level-4                
products and computation of sea-ice volume. At the time of writing, these development items              
are not complete and these sections will be updated in the future versions of this document. 

 

1.2 Scope 

The scope of the document is to describe elements of the algorithms that are chosen for                
implementation during the first year of the CCI+ Phase 1, towards the first production of test                
products during Year 1. The selected algorithms are presented and justified, but the             
document does not contain the results of research leading to the selection of these              
algorithms.  

 

1.3 Document Status 

This is the second issue of the ATBD document for the Sea Ice CCI+ project. The document                 
describes the algorithms used for the preliminary processing, which will go through further             
development in the future versions. In addition, the auxiliary data sets used in the initial               
processing are introduced.  

The description of the SIT retrieval algorithm reflects the state at the end of the Phase 2 of                  
the SICCI project, with the added knowledge gained from ERS-1 and ERS-2 studies, as well               
as the exception of novel snow estimates for the Arctic in areas where Warren climatology is                
considered outdated. This document will be iterated after the SIT algorithm development has             
progressed. This version of the document has undergone some structural changes from the             
previous version, in order to deliver a fluent description of the algorithm steps and to better                
conform the SIC ATBD. 

 

1.4 Acronyms and Abbreviations 

Table 1-1 below lists the acronyms and abbreviations used in this volume. 
Table 1-1: Acronyms and Abbreviations. Acronyms for the deliverable items (URD, etc…) and partner 
institutions (AWI,..) are not repeated. 

Acronym  Meaning  

AMSR-E / AMSR2  Advanced Microwave Scanning Radiometer (for EOS / #2)   
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AOGCM Arctic Ocean General Climate Model  

AR5, AR6  WMO IPCC Assessment Report series   

ASAR  Advanced Synthetic Aperture Radar  

C3S EU Copernicus Climate Change Service  

CCI Climate Change Initiative  

CDR Climate Data Record  

CMEMS EU Copernicus Marine Environment Monitoring Service  

CMIP5, CMIP6 Coupled Model Intercomparison Project series  

CMUG Climate Modelling User Group  

CRG Climate Research Group  

CS-2 ESA’s CryoSat-2  

DEWG CCI Data Engineering Working Group  

EASE grid Equal-Area Scalable Earth Grid  

ECMWF European Centre for Medium-Range Weather Forecasts  

ECV Essential Climate Variable  

ENVISAT ESA’s Environmental Satellite  

EO Earth Observation  

ERS European Remote Sensing Satellite  

ESA European Space Agency  

ESMR Electrically Scanning Microwave Radiometer  

EUMETSAT European Organization for the Exploitation of Meteorological Satellites  

FoV (​alt​ FOV) Field-of-View  

FY3 Feng Yun 3  

FYI First Year Ice  

GCOS WMO’s Global Climate Observing System   

GCW WMO’s Global Cryosphere Watch  

ICDR Interim Climate Data Record  

IMB Ice Mass Balance buoy  

IPCC WMO’s Intergovernmental Panel on Climate Change  

L1b, L2, L3C, ... Satellite data processing Level (Level-1b, …)  

MERIS MEdium Resolution Imaging Spectrometer  

EPS, EPS-SG EUMETSAT’s Polar System, EPS Second Generation  

MIZ Marginal Ice Zone   

MODIS   Moderate Resolution Imaging Spectroradiometer   

MWI MicroWave Imager (EPS-SG)   

MWRI Micro-Wave Radiation Imager (Feng Yun 3)  

MYI Multi-Year Ice  

NASA National Aeronautics and Space Administration  
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NOAA US National Oceanic and Atmospheric Administration  

NSIDC  US National Snow and Ice Data Centre   

OE Optimal Estimation  

OIB Operation Ice Bridge  

OSI SAF EUMETSAT Ocean and Sea Ice Satellite Application Facility  

OWF Open Water Filter  

PMR Passive Microwave Radiometer  

PMW  Passive Microwave   

RA  Radar Altimeter  

RRDP  Round Robin Data Package  

SIC  Sea Ice Concentration  

SIT  Sea Ice Thickness  

SAR  Synthetic Aperture Radar  

SGDR  Sensor Geophysical Data Record  

SIRAL  Synthetic Aperture Radar (SAR) Interferometer Radar Altimeter  

SOA  Service Oriented Architecture  

SMMR  Scanning Multichannel Microwave Radiometer   

SMOS  Soil Moisture and Ocean Salinity  

SSM/I  Special Sensor Microwave/Imager  

SSMIS  Special Sensor Microwave Imager/Sounder  

ULS  Upward Looking Sonar  

WMO  World Meteorological Organisation   

WSM  Wide Swath Mode  

 

 

1.5 Executive Summary 

This document presents the algorithms for producing the Sea Ice Thickness Climate Data             
Record (SIT CDR) in CCI+. This document can be understood as a recipe book for a                
software engineer wanting to build a working SIT processor. It also gives the background of               
used algorithms and data for anyone wanting to understand the CRDP better. 

 

The document includes all the necessary steps for converting altimeter waveforms into sea             
ice thickness in along-track (L2) as well as monthly gridded (L3) format and the gap-free               
gridded (L4): 

● Filtering data based on latitudes, possibly removing data points based on flags            
provided with the data 

● Surface-type classification algorithms based on waveform parameters for        
differentiating between ocean, lead, sea ice and ambiguous 

● Waveform retracking of the difference surface types to obtain ice elevations and sea             
surface height tie points over leads between ice floes.  
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● Application of geophysical range corrections including tidal correction 
● Estimation of radar freeboard and along-track sea surface height from ice surface            

elevations and interpolated SSH tie points utilizing a mean sea surface  
● Radar freeboard to sea-ice freeboard conversion by applying geometric corrections,          

with snow information 
● Sea ice thickness calculation based on sea-ice freeboard and auxiliary parameters           

and the assumptions of hydrostatic equilibrium 

Along with steps and algorithms, all primary and auxiliary data products used to create the               
SIT CDR are introduced. 

As the algorithms mature, the ATBD will be updated throughout the project. In particular,              
ERS-1 and ERS-2 algorithms will undergo changes in the future versions of this document. 

 

 

2 INPUT AND AUXILIARY DATA 

2.1 Overview 

This part of the document is intended as a generic guide to setting up a sea ice thickness                  
processing system for any polar orbiting satellite radar altimeter. The general method is             
described and specific examples are given. The general processing system is identical for             
pulse-limited as well as for SAR altimetry. Any sensor type specific differences are stated. 

The method used to extract sea ice thickness from radar altimetry data is based on the                
pioneering work of Peacock and Laxon, 2004; Laxon et al., 2003 for the ERS-2 mission. The                
method involves separating the radar echoes returning from the ice floes from those             
returning from the sea surface in the leads between the floes. This step of a surface-type                
classification is crucial and allows for a separate determination of the ice floe and sea               
surface heights. The freeboard that is the elevation of the ice upper side (or ice-snow               
interface) above the sea level can then be computed by deducting the interpolated sea              
surface height at the floe location from the height of the floe. Sea-ice thickness can then be                 
calculated from the sea-ice freeboard with the additional information of the snow load. Figure              
2-1 shows an example of the earliest results of Laxon et al. (2003) with aggregated ERS                
data. Figure 2-2 and Figure 2-3 show the progression in terms of spatial and temporal               
resolution of altimeter-based sea ice thickness information with the extension to the Envisat             
and CryoSat-2 platforms in the ESA CCI project since the first application of the method.  
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Figure 2‑1: Average winter (October to March) Arctic sea ice thickness in meters from 
October 1993 to March 2001 computed from pulse-limited ERS satellite altimeter 

measurements. 
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Figure 2‑2: Monthly gridded sea ice thickness data in the northern hemisphere with 
orbit coverage limits for March 2011 (top panel): Envisat (left) and CryoSat-2 (right) 

and in the southern hemisphere for September 2011 (lower panel) 
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Figure 2‑3: Sea-ice thickness product level examples in both hemispheres. top: Daily 

orbit trajectories (l2p), bottom: monthly data on space-time grid with different 
resolution for northern and southern hemisphere.  

 

2.2 Primary Altimeter Data Sets 

The input data set must contain the radar echo waveforms and all other fields mentioned in                
this document such as altitude, range, atmospheric corrections and geophysical corrections.           
Figure 3-1 shows a flow chart for each step of the sea ice thickness processor. Each step is                  
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explained in detail in the sections below. For ERS-1 and ERS-2 RA the REAPER Sensor               
Geophysical Data Record (SGDR) data is used. In the case of Envisat RA-2, the input for                
the sea ice thickness processor is version 3.0 of the Envisat SGDR data. The SGDR data                
contains the waveforms as well as all other required fields. The ERS data is provided per                
cycle files or daily files. For Envisat data, each orbit is stored in two data files. The earlier of                   
the two data files contains the data for the ascending arc from -81.5 latitude up to +81.5                 
latitude, and the later of the two the descending arc from +81.5 latitude back down to -81.5                 
latitude. These files are read sequentially and the output split at appropriate points to make               
continuous Arctic and Antarctic passes.  

For CryoSat-2, the current version of Baseline C orbit data files are used and separated into                
sections of different instrument modes by the processor. The algorithm version Baseline D is              
generated by ESA at the time of this version of the document and the newer version will be                  
used when available. CryoSat-2’s SIRAL altimeter is operated in two different modes over             
sea ice: a) In synthetic aperture radar (SAR) off-coast and b) in synthetic aperture radar               
interferometric (SIN) mode to enable more accurate land ice altimeter measurements with            
higher surface slopes. For the product generation both radar modes are used, but the              
processing does not utilize the interferometric information in SIN mode. In addition to the              
different altimeter type that improves the spatial resolution, the higher orbit inclination of             
CryoSat-2 allows sea ice thickness measurements in the Arctic up to 88N.  

 

2.3 Auxiliary data 

The conversion into sea-ice freeboard requires either the use of auxiliary input data or a               
parametrization of snow depth. For the Arctic, where in SICCI Phase 2 only Warren              
climatology (W99, Warren et al., 1999) was applied, we now use a merged Warren-AMSR2              
(W99-AMSR2) snow climatology for all the instruments, further described in Section 5.5.            
One main reason for the change is that the Warren climatology is based on data sets                
obtained from Arctic drift stations in regions of multi-year sea ice (MYI), snow depth values               
are suspected to be biased high over first-year sea-ice (FYI).  

In order to discriminate between FYI and MYI in the Arctic, we resort to Copernicus Climate                
Change Service (C3S) Climate Data Record (CDR)/interim-CDR (ICDR). In SICCI Phase 2 a             
MYI fraction data set based on the Special Sensor Microwave Imager (SSM/I)/Special            
Sensor Microwave Imager Sounder (SSMIS) sensors on-board of the Defense          
Meteorological Satellite Program (DMSP) satellites provided by the Integrated Climate Data           
Center (ICDC) was used. The C3S CDR is produced with an algorithm that is optimized to                
produce consistent CDRs based on time series of passive microwave data of the above              
mentioned instruments, in addition with SMMR and ECMWF ERA-Interim data. 

 

Table 2-1: Summary of used auxiliary data sets.  

Parameter  ERS-1 /2 
Arctic 

ERS- 1 / 2 
Antarctic 

Envisat RA-2 
Arctic 

Envisat RA-2 
Antarctic 

CryoSat-2 
Arctic 

CryoSat-2 
Antarctic 

SIC C3S CDR C3S CDR C3S CDR C3S CDR C3S 
CDR/ICDR 

C3S 
CDR/ICDR 

SIType C3S CDR Single Ice 
Type 

C3S CDR Single Ice 
Type 

C3S 
CDR/ICDR 

Single Ice 
Type 

Snow Merged AMSR-e Merged AMSR-E/2 Merged AMSR-E/2 
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Depth W99-AMSR2 
climatology 

climatology W99-AMSR2 
climatology 

climatology W99-AMSR2 
climatology 

climatology 

Snow 
Density 

Warren99 fixed/clim Warren99 fixed/clim Warren99 fixed/clim 

MSS DTU18 DTU18 DTU18 DTU18 DTU18 DTU18 

 

For the Antarctic, we assume only a single sea-ice type being present. As the Warren               
climatology is only available for the Arctic, we use a snow-depth climatology derived from the               
Advanced Microwave Scanning Radiometer-EOS (AMSR-E) and AMSR-2 data for the          
Antarctic. This data set is based on a revised version of the approach described by Cavalieri                
et al. (2014)  and provided by the ICDC. 

Other required auxiliary input data sets for the estimation of sea ice freeboard and sea ice                
thicknesses comprise the use the sea-ice concentration (SIC) data obtained from the C3S             
CDR for both hemispheres, in contrast to the SIC product from Ocean and Sea Ice Satellite                
Application Facility (OSISAF) used in SICCI Phase 2. For mean sea-surface (MSS) height             
product the previously used, provided by the Danish Technical University (DTU) in its 2015              
version, has been updated to the 2018 version. 

A summary of all used auxiliary data sets for the production of the sea-ice thickness climate                
data record is presented in Table 2-1. 

 

 

3 OVERVIEW OF THE SIT PROCESSING CHAIN 

 

Figure 3‑1: Flow chart for the Sea Ice Thickness Processor 

Figure 3-1 presents an overview about the sea-ice thickness processing chain detailed into             
defined processors for the successive product data levels. The structure of the following             
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sections is modeled after these processors that include details for each sensor. The             
geophysical retrieval starts with the surface-type classification, with the corresponding          
parametrization for Envisat RA-2, CryoSat-2 and ERS-1 and ERS-2. This continues with a             
thorough description of the range retracking procedure and a necessary Envisat RA-2            
backscatter correction. Furthermore, the processing chain of radar freeboard and          
sea-surface height derivation, the estimation of sea-ice freeboard, and the estimation of            
sea-ice thickness are described. The subsections contain the computation of the           
geophysical parameters as well as the corresponding uncertainties.  

While the geophysical retrieval is implemented at full sensor resolution, the aggregation of             
the parameter to space-time grids is described in the following sections of this document.  

The processors are implemented in the python sea-ice radar altimetry toolbox (pysiral). This             
open source software project is hosted at Github (https://github.com/shendric/pysiral) and          
allows the inspection of the actual implementation of all algorithm components.  

 

4 ​PRE-PROCESSING AND PRIMARY DATA (LEVEL-1 PRE-PROCESSING) 

The main purpose of the pre-processing of the primary level-1 data is to provide a unified                
input format and data conventions for the following geophysical retrieval. 

 

4.1 General Filtering 

There is some sensor-specific general filtering applied, which follows UCL’s implementation           
of the Envisat algorithm used during phase 1. This filtering is based on the available flags in                 
the Envisat data indicating any significant problems with any record. In UCL’s            
implementation of the filtering for Envisat, the Measurement Confidence Data Flags (MCD            
Flags) in the SGDR data are examined for problem records. We remove records where the               
following flags are raised: 0 (Packet Length Error), 1 (OBDH invalid), 4 (AGC Fault), 5 (Rx                
Delay Fault) and 6 (Waveform Fault). 

For CryoSat-2 level-1b data, no general filtering mechanisms are necessary. For ERS-1 / 2              
this is yet to be confirmed. 

 

4.2 Region Filtering 

The latitudinal boundaries within which Arctic and Antarctic sea ice is found are listed in the                
Table 4-1. The latitude values in the satellite data are examined and any data points outside                
these regions are rejected from the processing. The surface type flag in the data is also                
examined and any data not flagged as over ocean is also rejected. 
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Table 4-1: The table lists the latitudinal boundaries for the northern and southern 
hemisphere used for the region filtering 

Area Minimum Latitude Maximum Latitude 

Arctic 45.0 90.0 

Antarctic -90.0 -45.0 

 
The data is cropped to the two latitude range and data over land masses are excluded,                
except if the orbit segment over land is shorter than 300 km. Else, the orbit is split into two                   
segments. 

 
4.3 CryoSat-2 Radar Modes 

Only for CryoSat-2, the altimeter data is divided into orbit segments in three radar modes:               
LRM, SAR and SARIn. These come in separate product files, which are merged in the               
pre-processor. The merging process requires to reduce the SIN waveforms from 512 to 256              
range bins of the SAR waveforms. This can be done without losing waveform information as               
the sea ice waveforms are narrow and defined. The step is unique to CryoSat-2, as other                
platforms (ERS-1/2, Envisat) provide data with a single radar mode.  

 

4.4 Orbit Merging 

Adjacent neighbouring orbit segments are merged into a single orbit segment over the polar              
regions whenever possible to enable consistent sea surface height estimation across the            
Arctic polar basin. Due to the geography in the Antarctic, the descending and ascending              
orbit segments over the ocean will always be separated by the Antarctic continent.  

 

 

5 GEOPHYSICAL RETRIEVAL (LEVEL-2 PROCESSING) 

The level-2 processing step includes the retrieval of the geophysical variables from the             
pre-processed radar measurements, with the use of auxiliary data listed in Table 2-1.  

 

5.1 Surface-Type Classification 

The surface-type classification is a crucial part in the processing chain of deriving sea-ice              
freeboard (and therefore sea-ice thickness), as the detection of leads is pivotal for             
determining the sea-surface height. The sea-surface height in turn is used as the reference              
from which the sea-ice freeboard is calculated. Additionally, a clear distinction between            
leads, sea ice and ambiguous mixed signals (which will be excluded from the actual              
freeboard retrieval) helps to improve the quality and accuracy of resulting sea-ice freeboard             
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estimates. In other words, a surface-type selection bias is very likely to also have an impact                
on the resulting sea-ice freeboard and hence also the sea-ice thickness. 

In general, with smaller instrument footprint sizes, less surface-type mixing occurs. However,            
leads often dominate acquired waveforms due to their specular reflection, and therefore act             
as sources of strong off-nadir backscatter signals. These off-nadir leads can substantially            
decrease the quality of the range retracking and increase the sensors' footprint. This is              
especially true for pulse-limited radar altimeters. In case of Envisat RA-2, the nominal             
circular footprint of 2 km in diameter (Connor et al., 2009) can increase to up to 10 km                  
(Chelton et al., 2001) for strong off-nadir backscatter sources. Despite its much smaller             
footprint (1.65 km × 0.30 km), CryoSat-2 can also be affected by off-nadir leads, which will                
result in erroneous freeboard estimates (Armitage and Davidson, 2014). 

 

5.1.1 Procedure Description 

The surface classification algorithm is based on a multi-parameter classification based on a             
consistent set of parameters for ERS-1, ERS-2, Envisat RA-2 and CryoSat-2. The set of              
classifiers is defined by the sea-ice backscatter (SIG0), the leading-edge width (LEW) and             
the pulse peakiness (PP) as classifiers to positively identify between lead-type and            
sea-ice-type from otherwise ambiguous-type waveforms. 

The pulse peakiness is subtly differently defined compared to the one used during phase 1               
for Envisat RA-2 and follows the definition of Ricker et al. (2014): 

PP = ∑
NWF

i=1
WFi

max(WF ) · NWF  

The leading-edge width is defined as the width in range bins along the power rise to the first                  
maximum between 5 % and 95 % of the first-maximum peak power while using a ten-times                
oversampled waveform. 

The choice for using three classifiers also allows for less strict thresholds and was              
developed during CCI phase 2 and improved the previously used single threshold parameter             
classification for Envisat RA-2 during phase 1. 

Over the course of a winter season, ice conditions can change substantially. Similar to leads,               
young and thin-ice areas feature rather specular reflections compared to other ice types.             
Furthermore, the amount of leads varies seasonally and regionally. Based on fixed            
thresholds for a whole winter season, these changes are difficult to capture and the rejection               
rate is increased unnecessarily. Hence, we decided on using monthly thresholds to improve             
the overall results and data quality. 

There is a general lack of ground-truth data as collocated measurements of the same              
sea-ice situation are very difficult due to sea-ice drift and therefore rare. However, received              
waveforms feature very distinct characteristics and are well described in literature for sea ice              
and leads. These characteristics can also be deduced from the chosen set of classifiers. In               
order to bypass the lack of ground-truth, we decided to use a combination of unsupervised               
clustering and supervised classification. 

Based on this combination, we are able to determine suitable thresholds for data acquired by               
Envisat RA-2 as well as CryoSat-2. The results seem to be promising for ERS-1 and ERS-2                
as well, and are to improve more within the next iteration.The workflow of how we derived                
the surface-type thresholds is summarized in Figure 5-1. 
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Figure 5‑1: Flowchart for the process of deriving thresholds for the new surface-type 

classification 
 

In a first step, the three classifiers are computed for all available L1b data per sensor and                 
month in the sensor overlap period from January 1995 to June 1996 for ERS-1 and ERS-2,                
from May 2002 to July 2003 for ERS-2 and Envisat and from November 2010 to March 2012                 
for Envisat and CryoSat-2. We only use waveforms that are located between 70°N and              
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81.5°N for the Arctic, are obtained over the ocean, and feature a minimum sea-ice              
concentration of 70%. The northern limit of 81.5°N was chosen to assure a maximum of               
consistency between Envisat RA-2 and CryoSat-2. In order to retrieve thresholds for the             
“Wingham Box” and other Arctic areas that are covered while CryoSat-2 operates in SIN              
mode, all waveforms above 70°N were used. For the Antarctic the same parameters apply,              
but waveforms are geographically limited to an area south of 65°S. 

Next, 1 % of this monthly data are sampled randomly. This data sample is then separated                
into three clusters using k-means clustering (MacQueen et al., 1967; Hartigan et al., 1979).              
This methodology is widely used to separate input data of N observations into K clusters of                
equal variance, whereby the within-cluster sum-of-squares are minimized (MacQueen et al.,           
1967; Hartigan et al., 1979). 

Generally, the preselection of the number of clusters can be a problem when utilizing              
k-means clustering. However, while we also tested a higher number of initial clusters with              
the perspective of later reunion of very similar clusters, a separation into just three classes               
turned out to be sufficient. Overall, lead waveforms account for a smaller fraction of the total                
measurements compared to sea-ice waveforms. Because of that and the fact that k-means             
clustering generally tends toward generating equal-size clusters (this is generally a           
presumption of k-mean algorithms), sole use of k-means clustering for the complete data set              
was not feasible. 

This information in mind, the clustered 1 % data sample is therefore used as training data to                 
train a random forest (Breiman, 2001). Random forests are an ensemble machine learning             
methods used for classification and are based on a large number of single decision trees               
that are fitted to randomized sub samples of the given training data set (Breiman, 2001).               
After initial training, the random forest can then be used for classification of the remaining               
data. Each tree in the trained forest then does a classification and casts a unique vote. In the                  
end, the majority decides the resulting class. Each decision tree is thereby grown following              
certain rules: First, from the training data of size ​N​, ​N cases are sampled randomly with                
replacement as specific training data set for each single tree. Second, for ​M input              
parameters (in our case sea-ice backscatter, pulse peakiness, and leading-edge width), a            
fixed number ​m<<M of the given input parameters is specified and randomly selected out of               
M​. The best split on these selected parameters m is then used to split the node. Throughout                 
the growing of the forest, the value of m is held constant. Third, each tree is grown out fully,                   
i.e., to its largest possible extent. No pruning is applied. In contrast to single decision trees                
that tend to overfit, random forests do not overfit and are also capable of dealing with                
unbalanced data sets (Breiman, 2001). 

For the here-used classification problem, we always grow a total number of 500 decision              
trees per training. Due to the small number of input parameters (​M​=3), we set ​m​ to one. 

The trained random forest for each month is then used to classify the remaining 99 % of the                  
corresponding monthly data. From this classified data set, distributions for each of the three              
classifiers for each month in the sensor overlap period are obtained. These distributions             
feature clear distinctions along each classifier's respective total range for each surface-type            
class (leads, sea ice, and ambiguous). Sea-ice backscatter is on average in the upper part of                
the range for the lead class and in the lower for the sea-ice class. Similar observations are                 
apparent for pulse peakiness (upper part for leads, lower for sea ice) and leading-edge width               
(lower part for leads, upper part for sea ice). In other words, leads feature higher sea-ice                
backscatter and pulse peakiness as well as shorter leading-edge widths. The opposite is             
seen in the sea-ice class. The class of ambiguous signals is placed in between. 

Thresholds are then obtained from the resulting classifier distributions by using either the 5              
% or 10 % percentile for a minimum threshold, or the 90 % or 95 % percentile in case of a                     
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maximum threshold. The choice of using the more strict (10 %/90 %) or less strict (5 %/95                 
%) percentile thresholds depends on the sensor. Due to its larger footprint and therefore an               
expected higher degree of surface-type mixing, we chose the more strict thresholds for             
Envisat RA-2, and the less strict thresholds for CryoSat-2 due to its smaller footprint. For               
example, in order to derive thresholds for the detection of leads, the 5 %/10 % percentiles of                 
the sea-ice backscatter and pulse-peakiness distributions would be used alongside the 90            
%/95 % percentile of the leading-edge-width distribution. The final thresholds for ERS-1 and             
ERS-2 are yet to be determined, but initial versions are included in Tables 5-1 through Table                
5-5. 

The whole procedure, starting with randomly sampling 1 % from the initial monthly stack, is               
then repeated ten times. In a last step, the average minimum/maximum thresholds for each              
classifier, surface-type class, and month in the sensor overlap period are estimated. These             
thresholds are summarized in Table 5-1 through Table 5-5 and are used for all months in the                 
complete climate data record. 

 

Table 5‑1: Metrics for ocean surface-type classification of waveform data for all 
sensors, hemispheres, and radar modes 

Metric Min Max 

Ocean waveforms are characterized by medium to low pulse 
peakiness (PP) values. 

 5 

Only regions of very low ice concentration (SIC in %) values are 
suitable for the ocean surface type flag 

 5 

 

Table 5‑2: Metrics for lead surface-type classification of Envisat RA-2, CryoSat-2 SAR 
mode, and CryoSat-2 SIN mode waveform data for the Arctic 

Metric Month ERS-1 
RA 

ERS-2 
RA 

Envisat RA-2 CryoSat-2 
SAR 

CryoSat-2 SIN 

Min Max Min Max Min Max Min Max Min Max 

Lead 
waveforms 
are 
characterized 
by strong pulse 
peakiness (PP) 

JAN 
FEB 
MAR 
APR 
OCT 
NOV 
DEC 

16.36 
16.72 
17.02 
17.17 
16.68 
18.22 
16.97 

 20.96 
20.51 
20.55 
20.73 
23.25 
22.32 
21.45 

 46.90 
46.40 
46.20 
48.40 
52.90 
51.00 
47.70 

 67.30 
66.30 
66.60 
69.90 
76.00 
73.80 
68.60 

 264.30 
257.90 
253.60 
264.60 
291.80 
288.80 
272.60 

 

Lead 
waveforms 
are also 
characterized 
by 
high 
backscatter 
values due to 
specular 
reflection 
(SIG0) 

JAN 
FEB 
MAR 
APR 
OCT 
NOV 
DEC 

24.95 
24.35 
25.10 
24.78 
28.52 
26.78 
25.21 

 27.45 
26.93 
27.10 
27.92 
32.75 
29.68 
27.99 

 28.80 
28.60 
28.50 
28.40 
32.80 
30.80 
29.30 

 23.80 
23.20 
23.30 
23.40 
28.00 
25.80 
24.10 

 24.90 
25.00 
24.10 
24.50 
29.00 
27.40 
25.80 

 

Lead JAN  1.18  0.97  0.82  0.77  1.10 
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waveforms 
feature a very 
steep increase 
in 
echo power 
and 
therefore short 
leading-edge 
widths (LEW) 

FEB 
MAR 
APR 
OCT 
NOV 
DEC 

 
1.17 
1.16 
1.18 
1.22 
1.15 
1.17 

0.98 
0.98 
0.99 
0.94 
0.95 
0.96 
 

0.82 
0.82 
0.82 
0.82 
0.82 
0.82 

0.78 
0.78 
0.76 
0.72 
0.73 
0.76 

1.11 
1.13 
1.09 
1.02 
1.03 
1.07 

Only lead 
classifications 
by 
waveform are 
expected that 
fall 
into regions of 
sufficient ice 
cover 
(checked with 
SIC 
in %) 

JAN 
FEB 
MAR 
APR 
OCT 
NOV 
DEC 

70 
70 
70 
70 
70 
70 
70 

 70 
70 
70 
70 
70 
70 
70 
 
 

 70 
70 
70 
70 
70 
70 
70 

 70 
70 
70 
70 
70 
70 
70 

 70 
70 
70 
70 
70 
70 
70 

 

 

Table 5‑3: Metrics for sea-ice surface-type classification of Envisat RA-2, CryoSat-2 
SAR mode, and CryoSat-2 SIN mode waveform data for the Arctic 

Metric Month ERS-1 
RA 

ERS-2 
RA 

Envisat RA-2 CryoSat-2 
SAR 

CryoSat-2 SIN 

Min Max Min Max Min Max Min Max Min Max 

Sea-ice 
waveforms 
shouldn’t be 
peaky 
and therefore 
have 
a low pulse 
peakiness (PP) 

JAN 
FEB 
MAR 
APR 
OCT 
NOV 
DEC 

 7.56 
7.66 
7.80 
8.06 
6.72 
8.32 
7.77 

 12.34 
11.69 
11.75 
12.38 
15.04 
13.62 
12.89 

 16.00 
14.80 
14.10 
14.20 
19.40 
19.30 
16.90 

 30.50 
28.70 
28.10 
28.50 
35.40 
34.90 
31.90 

 99.40 
94.20 
89.90 
90.00 
114.40 
113.90 
103.80 

Sea-ice 
waveforms 
are also 
characterized 
by 
low 
backscatter 
values due to 
diffuse 
reflection 
(SIG0) 

JAN 
FEB 
MAR 
APR 
OCT 
NOV 
DEC 

9.69 
9.70 
9.43 
9.03 
10.02 
10.23 
9.90 

17.75 
17.76 
17.20 
16.75 
18.85 
18.90 
17.99 

14.68 
13.98 
14.19 
14.09 
17.94 
15.82 
15.22 

22.87 
22.23 
22.13 
22.52 
27.09 
24.65 
23.57 

2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 

22.50 
21.80 
21.30 
20.40 
25.90 
24.60 
22.80 

2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 

20.80 
19.90 
19.60 
19.00 
25.70 
23.20 
21.10 

2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 

21.40 
20.90 
20.10 
19.10 
24.30 
23.70 
22.00 

Sea-ice 
waveforms 
feature a less 
steep increase 
in 
echo power 
and 
therefore 
longer 
leading-edge 

JAN 
FEB 
MAR 
APR 
OCT 
NOV 
DEC 

0.90 
0.90 
0.90 
0.90 
0.93 
0.89 
0.89 

 0.85 
0.85 
0.85 
0.85 
0.83 
0.83 
0.84 

 0.81 
0.83 
0.83 
0.83 
0.78 
0.78 
0.80 

 1.02 
1.08 
1.10 
1.11 
0.91 
0.90 
0.97 

  1.55 
1.58 
1.62 
1.64 
1.44 
1.44 
1.51 
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widths (LEW) 

Only sea-ice 
classifications 
by 
waveform are 
expected that 
fall 
into regions of 
sufficient ice 
cover 
(checked with 
SIC 
in %) 

JAN 
FEB 
MAR 
APR 
OCT 
NOV 
DEC 

70 
70 
70 
70 
70 
70 
70 
 
 

 70 
70 
70 
70 
70 
70 
70 

 70 
70 
70 
70 
70 
70 
70 

 70 
70 
70 
70 
70 
70 
70 

 70 
70 
70 
70 
70 
70 
70 

 

 

Table 5‑4: Metrics for lead surface-type classification of Envisat RA-2, CryoSat-2 SAR 
mode, and CryoSat-2 SIN mode waveform data for the Antarctic 

Metric Month ERS-1 
RA 

ERS-2 
RA 

Envisat RA-2 CryoSat-2 
SAR 

CryoSat-2 SIN 

Min Max Min Max Min Max Min Max Min Max 

Lead 
waveforms 
are 
characterized 
by strong pulse 
peakiness (PP) 

JAN 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 

19.57 
20.48 
22.23 
18.67 
18.66 
17.87 
18.67 
18.90 
18.57 
19.51 
21.23 
20.04 

 23.41 
22.77 
22.09 
22.35 
22.21 
22.53 
22.44 
22.34 
23.06 
22.92 
22.62 
23.69 

 56.60 
53.20 
51.90 
50.70 
50.10 
49.30 
49.50 
49.10 
49.30 
51.60 
53.90 
55.10 

 80.70 
75.10 
73.20 
69.50 
69.70 
69.30 
69.20 
69.50 
69.70 
71.70 
76.00 
78.10 

 307.40 
300.70 
291.70 
288.50 
283.70 
284.20 
276.90 
284.40 
278.90 
289.40 
299.40 
307.70 

 

Lead 
waveforms 
are also 
characterized 
by 
high 
backscatter 
values due to 
specular 
reflection 
(SIG0) 

JAN 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 

28.21 
28.96 
28.59 
23.42 
24.11 
24.25 
22.82 
23.31 
24.15 
24.47 
25.81 
26.92 

 32.98 
32.85 
31.22 
29.19 
29.20 
28.42 
27.28 
27.28 
28.00 
28.91 
30.22 
31.80 

 33.20 
32.10 
31.80 
30.80 
29.40 
28.60 
28.60 
28.40 
28.50 
29.50 
31.10 
32.10 

 28.50 
26.80 
26.20 
24.60 
23.40 
22.80 
23.00 
23.00 
23.20 
24.00 
25.90 
27.30 

 29.20 
29.00 
28.50 
27.80 
26.90 
26.50 
26.30 
27.00 
26.20 
27.20 
27.50 
28.40 

 

Lead 
waveforms 
feature a very 
steep increase 
in 
echo power 
and 
therefore short 
leading-edge 
widths (LEW) 

JAN 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 

 1.10 
1.06 
0.97 
1.06 
1.09 
1.13 
1.08 
 
 
 
 
 
 

 0.95 
0.96 
0.96 
0.95 
0.95 
0.95 
0.95 
0.95 
0.94 
0.95 
0.94 
0.93 

 0.82 
0.82 
0.82 
0.82 
0.82 
0.82 
0.82 
0.82 
0.82 
0.82 
0.82 
0.82 

 0.71 
0.73 
0.74 
0.77 
0.77 
0.77 
0.78 
0.77 
0.77 
0.76 
0.74 
0.72 

 1.00 
1.01 
1.03 
1.04 
1.06 
1.05 
1.07 
1.05 
1.07 
1.05 
1.02 
1.00 
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1.08 
1.12 
1.08 
1.03 
1.07 

Only lead 
classifications 
by 
waveform are 
expected that 
fall 
into regions of 
sufficient ice 
cover 
(checked with 
SIC 
in %) 

JAN 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 

70 
70 
70 
70 
70 
70 
70 
70 
70 
70 
70 
70 

 70 
70 
70 
70 
70 
70 
70 
70 
70 
70 
70 
70 

 70 
70 
70 
70 
70 
70 
70 
70 
70 
70 
70 
70 

 70 
70 
70 
70 
70 
70 
70 
70 
70 
70 
70 
70 

 70 
70 
70 
70 
70 
70 
70 
70 
70 
70 
70 
70 

 

 

Table 5‑5: Metrics for sea-ice surface-type classification of Envisat RA-2, CryoSat-2 
SAR mode, and CryoSat-2 SIN mode waveform data for the Antarctic 

Metric Month ERS-1 
RA 

ERS-2 
RA 

Envisat RA-2 CryoSat-2 
SAR 

CryoSat-2 
SIN 

Min Max Min Max Min Max Min Max Min Max 

Sea-ice 
waveforms 
shouldn’t be 
peaky 
and therefore 
have 
a low pulse 
peakiness (PP) 

JAN 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 

 5.21 
4.78 
4.61 
5.73 
6.98 
7.29 
6.92 
7.03 
8.22 
7.20 
7.31 
6.16 

 14.34 
12.86 
13.65 
14.05 
13.78 
13.89 
13.91 
13.71 
13.92 
14.13 
14.89 
15.13 

 24.60 
20.70 
19.60 
18.80 
17.50 
16.90 
16.60 
16.10 
16.30 
18.10 
20.70 
22.80 

 40.10 
35.30 
32.90 
30.20 
28.70 
28.90 
28.10 
28.00 
28.40 
29.60 
34.10 
36.60 

 138.40 
126.10 
124.90 
127.30 
122.20 
121.00 
114.90 
115.80 
114.30 
121.20 
126.50 
135.20 

Sea-ice 
waveforms 
are also 
characterized 
by 
low backscatter 
values due to 
diffuse 
reflection 
(SIG0) 

JAN 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 

8.98 
9.14 
8.94 
8.57 
8.61 
8.44 
8.00 
8.19 
8.78 
8.11 
8.02 
8.69 

16.17 
15.20 
15.63 
15.15 
16.54 
16.88 
15.73 
15.97 
17.45 
16.53 
17.02 
16.82 

13.54 
12.87 
14.20 
15.47 
15.93 
15.25 
14.58 
14.96 
15.03 
15.65 
16.28 
16.57 

26.86 
25.61 
25.40 
25.03 
25.07 
24.33 
23.05 
23.22 
23.61 
24.33 
26.05 
28.01 

2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 

27.20 
25.40 
26.70 
27.20 
24.60 
23.10 
22.50 
21.70 
22.30 
23.30 
25.20 
26.10 

2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 

26.30 
24.10 
25.10 
26.20 
23.10 
20.90 
20.20 
19.10 
20.00 
20.60 
22.90 
23.90 

2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 

26.40 
25.10 
27.60 
27.30 
24.90 
24.20 
24.10 
24.90 
23.70 
25.00 
25.20 
25.00 

Sea-ice 
waveforms 
feature a less 
steep increase 
in 
echo power 
and 
therefore 
longer 

JAN 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 

0.94 
0.96 
0.98 
0.95 
0.90 
0.91 
0.91 
0.91 
 

 0.85 
0.86 
0.85 
0.84 
0.84 
0.84 
0.84 
0.84 
0.84 

 0.78 
0.80 
0.80 
0.80 
0.81 
0.80 
0.80 
0.81 
0.81 

 0.87 
0.95 
0.98 
1.02 
1.07 
1.07 
1.12 
1.13 
1.11 

 1.31 
1.40 
1.37 
1.34 
1.37 
1.38 
1.41 
1.41 
1.42 
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leading-edge 
widths (LEW) 

OCT 
NOV 
DEC 

0.90 
0.92 
0.93 
0.94 

0.84 
0.84 
0.84 

0.80 
0.79 
0.78 

1.08 
0.95 
0.92 

1.38 
1.36 
1.33 

Only sea-ice 
classifications 
by 
waveform are 
expected that 
fall 
into regions of 
sufficient ice 
cover 
(checked with 
SIC 
in %) 

JAN 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 

70 
70 
70 
70 
70 
70 
70 
70 
70 
70 
70 
70 

 70 
70 
70 
70 
70 
70 
70 
70 
70 
70 
70 
70 

 70 
70 
70 
70 
70 
70 
70 
70 
70 
70 
70 
70 

 70 
70 
70 
70 
70 
70 
70 
70 
70 
70 
70 
70 

 70 
70 
70 
70 
70 
70 
70 
70 
70 
70 
70 
70 

 

 

 

5.1.2 Results 

Utilizing this new and sensor-consistent surface-type classification scheme results in overall           
much better agreement between CryoSat-2 and Envisat RA-2 for typical benchmarks. 

Compared to the surface-type classification used during Phase 1 for Envisat RA-2, our less              
strict approach allows for substantially more wave forms being classified as either lead or              
sea-ice type that were otherwise rejected before. Additionally, where there was a very high              
fraction of lead detections compared to only a very small fraction of classified sea-ice type               
waveforms during Phase 1, the spatial patterns and distributions of these occurrences are             
now better in line with what one would expect. Furthermore, the intermission consistency for              
the Arctic as well as the Antarctic has improved substantially (Figure 5-2 and Figure 5-3;               
Figure 5-4 and Figure 5-5) 

The increased number of valid waveforms has an additional positive side effect on the              
overall data record: It allows for a much higher spatial resolution to be used in the final                 
gridded Level 3 product without any compromises on overall coverage. Here, we are now              
able to provide a 25 km (50 km) resolution gridded data set for the Arctic (Antarctic)                
compared to a 100 km one during Phase 1. 

Direct comparisons of surface-type class fractions (i.e., either ambiguous, lead, or sea ice)             
over the course of the sensor overlap period reveal an overall very good agreement between               
CryoSat-2 and Envisat RA-2 (Figure 5-2 and Figure 5-3). While the fraction of lead- and               
sea-ice waveforms is on average slightly smaller for Envisat RA-2 than for CryoSat-2 (about              
8 % for the Arctic and 10 % for the Antarctic), both sensors show a similar seasonal                 
development in both hemispheres. 
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Figure 5‑2: Time-series of surface-type fractions for the sensor overlap period 

between CryoSat-2 (CS2) and Envisat RA-2 (ENV) for the Arctic 
 

 
Figure 5‑3: Time-series of surface-type fractions for the sensor overlap period 

between CryoSat-2 (CS2) and Envisat RA-2 (ENV) for the Antarctic 
 

This seasonal change in the present sea-ice cover is also apparent from the derived              
surface-type class thresholds (Table 5-1 - Table 5-5). During summer months (Antarctic) and             
the early winter (Arctic), the number of lead waveforms is higher and returns from new and                
young ice tend to be more specular, which results in higher maximum thresholds in sea-ice               
backscatter und pulse peakiness. This observed seasonal shift in the distributions of the             
classifiers will also play an important role in the description of the new retracker scheme. 

An exemplary visualization of monthly map-wise inter-comparisons between Envisat RA-2          
and CryoSat-2 based on the benchmarks of valid-, lead-, and sea-ice fraction is shown in               
Figure 5-4 and Figure 5-5. In these gridded data sets, the overall good agreement is               
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confirmed. However, there are small differences, and as mentioned earlier, slightly smaller            
valid fractions for Envisat RA-2. This behavior is expected and results most likely from the               
much larger footprint of Envisat RA-2, especially in regions with high rates of sea-ice              
dynamics such as the Beaufort Sea, but also in the Laptev Sea. Here, the increased               
surface-type mixing likely prevents a clearer separation between waveform types. 

Nevertheless, both comparisons highlight the overall good agreement that could be achieved            
between both sensors with this new surface-type classification scheme and the chosen            
settings during the sensor overlap period. These results therefore lay the foundation for a              
proper inter-mission sea-ice freeboard and sea-ice thickness data record. 

 
Figure 5‑4: Visualizations of monthly sea-ice fraction, lead fraction, and valid fraction 

benchmarks for the Arctic (March 2012) 
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Figure 5‑5: Visualizations of monthly sea-ice fraction, lead fraction, and valid fraction 

benchmarks for the Antarctic (September 2011) 
 

For ERS-1 and ERS-2, a similar procedure to analyze the surface type metrics shall be 
carried out in the same scale as for CryoSat-2 and Envisat. For this revision, we have 
included similar figures only for Arctic for ERS-2, where our main focus has been during the 
first year. Keep in mind that these are the results from the first attempt. Due to differences in 
instrument parameters (bin width, noise level etc.) we can notice differences in the metrics of 
ERS-2 when compared to those of Envisat, as in Figure 5-6. In ERS-2 there seems to be 
slightly more leads and only third of the ice that the Envisat processing catches. As can be 
seen in Figure 5-7, the fraction of ice waveforms appears to be smaller and the fraction of 
lead waveforms greater than one could expect. Fraction of valid waveforms is very low, and 
surprisingly lowest around the central Arctic. Differences between the metrics between 
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ERS-1 and ERS-2 are also to be expected, as well as between Arctic and Antarctic.

 

Figure 5‑6: Time-series of surface-type fractions for the sensor overlap period 
between Envisat RA-2 (Envisat) and ERS-2 RA (ERS-2) for the Arctic 

 
Figure 5‑7: Visualizations of monthly ERS-2 sea-ice fraction, lead fraction, and valid 

fraction benchmarks for the Arctic (March 2003) 
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5.2 Retracking 

5.2.1 Procedure Description 

The range retrieval algorithm for Envisat RA-2 and CryoSat-2 waveforms is identical for             
sea-ice and lead waveforms. Ocean waveforms are currently discarded. The used Threshold            
First Maximum Retracker Algorithm (TFMRA, Helm et al., 2014; Ricker et al, 2014) is based               
on the following steps: 

a) Estimate the noise level as the average of the first 5 bins of the waveform. However, in                  
case of Envisat RA-2 we are following UCL’s implementation and discard the counts in the               
first 5 bins of the echo as these just contain artefacts of the FFT. 

b) Oversampling of the echo waveforms by a factor of 10 using linear interpolation 

c) Smoothing of the oversampled waveform with a window filter size of 11 range bins 

d) Locating the first local maximum of the waveform: Must be higher than noise level + 15%                 
of absolute peak power. 

e) Obtain the range value at a specified threshold of the power of the detected first                
maximum, by linear interpolation of the smoothed and oversampled waveform. 

Continuing on the last point, the choice of retracker threshold is pivotal for the range               
estimation. Following AWI’s implementation for CryoSat-2 (Ricker et al., 2014), we keep a             
consistent threshold of 50% from the first maximum peak power both for leads and sea-ice               
waveforms. For pulse-limited altimetry such as for Envisat RA-2, retracking near the            
maximum power for leads proved to be essential to retrieve reasonable freeboard estimates             
later on. Therefore, a threshold of 95% was chosen for leads from Envisat RA-2 waveforms.               
However, using a single fixed threshold of, e.g., 50% similar to CryoSat-2, results later on in                
sea-ice freeboard estimates that feature an overall smaller variation than CryoSat-2           
estimates. Furthermore, expected thin-ice regions feature ice that is too thick and vice versa.              
We relate this behavior to the much larger footprint and therefore increased mixing of              
surface types of different surface-roughness scales in every Envisat RA-2 waveform. 

 
Figure 5‑8: Visualizations of two monthly sets of figures (from left to right): Freeboard 

difference between Envisat RA-2 and CryoSat-2, the best achievable freeboard 
difference using an optimal retracker threshold, the sea-ice backscatter, the 

leading-edge width, and the iteratively estimated optimal threshold for November 2011 
(top row) and March 2012 (bottom row) 
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From Figure 5-6 it appears that differences in sea-ice freeboard are related to differences in               
the waveform parameters of sea-ice backscatter and leading-edge width (as well as pulse             
peakiness, which is strongly correlated with sea-ice backscatter, but is not shown here).             
Areas of potential multi-year ice near the Canadian Archipelago and areas influenced by             
multi-year ice export are in general substantially too thin (e.g., about 20 cm and more in                
March), whereas areas of predominantly first-year sea ice are in general too thick in the               
Envisat RA-2 data. However, the level of freeboard difference appears to be seasonal,             
where Envisat RA-2 appears to be unable to keep track of these seasonal changes. 

As these differences in sea-ice freeboard between CryoSat-2 and Envisat RA-2 appear to be              
indeed strongly correlated to patterns in the sea-ice backscatter and the leading-edge width             
of Envisat RA-2 waveforms, we decided to apply a tuning scheme by computing an adaptive               
range retracker threshold as a function of sea-ice backscatter and the leading-edge width to              
mitigate the differences. Due to the already mentioned larger footprint of Envisat RA-2 and              
hence increased mixing of different surface types, it appears to be necessary to treat              
waveforms differently according to the waveform shape (and hence surface properties) by            
means of retracking the main scattering horizon. 

In order to derive the functional relationship between threshold and sea-ice           
backscatter/leading-edge width, we first processed all Envisat RA-2 for the complete sensor            
overlap period. This processing was done using the TFMRA with a fixed threshold for leads               
of 95 % and a threshold for sea-ice waveforms that was changed in each run. This sea-ice                 
threshold ranged between 5 % and 95 % in steps of 5 %. For example, in the first run the                    
complete data set was processed using a retracker threshold of 5 % for sea-ice waveforms               
and the resulting sea-ice freeboard was calculated. In the next run, a fixed threshold of 10 %                 
was used for all sea-ice waveforms and so on, until the last run with a sea-ice threshold of                  
95 % was computed and the resulting sea-ice freeboard was calculated. 

From this data set, the optimal threshold, i.e., the threshold that yields the smallest              
difference in freeboard between Envisat RA-2 and CryoSat-2, was iteratively derived. An            
exemplary result is also shown in Figure 5-6. Again, also the optimal thresholds reflect the               
seasonal change in waveform parameters with a varying range of optimal threshold values             
that are in general higher for the early winter than the values in late winter. 
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Figure 5-9: Visualizations of averaged binned optimal threshold values on an x-y 

plane of leading-edge width and sea-ice backscatter for the Arctic. The blue plane is 
the 3 ​rd​ order polynomial fit through all data points 

 

Next, average optimal threshold values were calculated for each 0.25 dB sea-ice backscatter             
and 0.025 leading-edge width bin on an x-y plane. A 3D visualization of this is shown in                 
Figure 5-7. For months November through March both occurrences in the sensor overlap             
period were used. October and April, which were only covered once during the sensor              
overlap period were each added twice to circumvent issues of underrepresentation in their             
number of data values added to the total. 

Through this compilation of monthly data points, three 3rd order polynomial planes were             
fitted based on different weighting schemes in order to maximize the adjusted R². As weights               
we used either the number of optimal threshold values per bin in the x-y plane, the inverse                 
standard deviation of all optimal threshold values per bin (1/σ), or no weights at all. 

For the Arctic, the result shown in Figure 5-7 is based on the inverse standard deviation as                 
weights and achieved an adjusted R² of 0.94. All shown data points have a minimum of 50                 
occurrences and were obtained in the central Arctic only. 

In Figure 5-7, the seasonal shift is also present: Early winter months tend towards shorter               
leading-edge widths and higher sea-ice backscatter values (October in yellow and           
November in Black), whereas late-winter months feature longer leading-edge widths and           
lower backscatter values. 

The optimal threshold (​th ​opt​; in decimal values) to be used in the adaptive range retracking as                
a function of sea-ice backscatter (σ ​0​) and leading-edge width (​lew​) is given by the following               
equation: 

ew   thopt = k1 − k2 × l + k3 × lew2 − k4 × lew3 − k5 × σ0 + k6 × σ2 − k7 × σ3  
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Where ​k​1 = 3.4775697362, ​k​2 = 5.9296875486, ​k​3 = 4.3516498381, ​k​4 = 1.0933131955, ​k​5              
= 0.0914747272, ​k​6​ = 0.0063983796, ​k​7​ = 0.0001237455. 

In a first attempt, we applied the same equation that was derived from the northern               
hemisphere data also to the southern hemisphere. However, this did not improve the results.              
The reason for that can partly be seen in Figure 5-8. In contrast to the Arctic, the differences                  
between early and late winter is less prominent in the sea-ice freeboard differences as well               
as the optimal-threshold values. Additionally, patterns in sea-ice backscatter and          
leading-edge width are less correlated in some areas. This is potentially related to surface              
flooding and/or large fast-ice areas with a different snow stratigraphy. 

 
Figure 5‑10: As Figure 2-12 but for the Antarctic showing May 2011 (top row) and 

September 2011 (bottom row) 
For the Antarctic, a 2nd order polynomial fit resulted in the best statistical result (adjusted R²                
of 0.77) to describe the optimal threshold as a function of leading-edge width and sea-ice               
backscatter (Figure 5-8). 

For the Antarctic, the result shown in Figure 5-9 is based on the number of optimal threshold                 
values per bin as weights. All shown data points also have a minimum of 50 occurrences                
and were obtained by excluding the marginal ice zones of the Antarctic as well as the austral                 
summer months. However, compared to the Arctic, there is a much larger spread between              
months.  
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Figure 5‑11: As Figure 2-13 but for the Antarctic and captured from two different 

viewpoints. 
 

 

The equation to be used for deriving the optimal threshold (in decimal values) in the               
Antarctic adaptive range retracking as a function of sea-ice backscatter ( ) and          σ0   
leading-edge width (​lew​) is stated below: 

ew   thopt = k1 − k2 × l + k3 × lew2 + k4 × σ0 − k5 × σ02
 

Where ​k​1 = 0.8147895184, ​k​2 = 0.5555823623, ​k​3 = 0.1347526920, ​k​4 = 0.0055934198, ​k​5              
= 0.0001431595 

Utilizing both equations, for each retracking of each sea-ice waveform, the to-be-used            
threshold is calculated from the waveform-associated sea-ice backscatter and leading-edge          
width value. This threshold is then believed to yield the mean-scattering surface in             
accordance to CryoSat-2 measurements. 

 

5.2.2 Results 

Here, we want to show and discuss some of the results using the adaptive threshold               
retracker for Envisat RA-2 in the sensor overlap period. For the Arctic, Figure 5-10 shows               
the average freeboard in centimeters per month, the average freeboard difference in            
centimeters as well as percent during the sensor overlap period for Envisat RA-2 and              
CryoSat-2. While in the first winter season, the match is nearly perfect with absolute average               
freeboard differences below one centimeter, the second winter season shows larger           
differences. 
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Figure 5‑12: Mean freeboard for each month of the sensor overlap period (top) for 

Envisat RA-2 (red) and CryoSat-2 (blue) and the corresponding mean freeboard 
difference between both sensors in centimetres (middle) and percent with reference 

to CryoSat-2 (bottom) for the Arctic 
However, these differences are still below three centimeters, which is a significant            
improvement over phase 1. Especially for the Arctic spring period (March & April),             
differences in average freeboard are 1.2 cm or better. The stability, i.e., the range of monthly                
differences, is 3.1 cm. 

For the Antarctic, results are not as good as for the Arctic (Figure 5-11). Overall the                
algorithm has less skill to match Envisat RA-2 freeboards to the ones of CryoSat-2. This is                
very likely related to other physical processes such as more prominent snow stratigraphy             
and surface flooding. However, issues causing these differences are subject to further            
investigation. Overall, there is a stronger seasonality in the differences between summer and             
winter, which also leads toward a higher range of monthly differences of 4.6 cm. 
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Figure 5-13: Setup as in Figure 5-10 but for the Antarctic 

 

Putting all gridded freeboard values of Envisat RA-2 and CryoSat-2 against each other             
underlines these observations (Figure 5-12). While the algorithm is able to achieve very             
good agreement for the Arctic (Figure 5-12, left), the results are slightly more diffuse for the                
Antarctic (Figure 5-12, right). 
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Figure 5-14: Scatterplot of all gridded freeboard estimates of CryoSat-2 (y-axis) vs. 

Envisat RA-2 (x-axis) for the Arctic (left) and the Antarctic (right). 
 

5.2.3 Envisat Backscatter Drift Correction 

Over the course of Envisat’s life span, it appears that the RA-2 instrument has been               
degraded (Helm, 2017, pers. comm.). This results in a slight linear reduction in received              
backscatter over the years (Figure 5-13). As this can affect both the surface-type             
classification as well as the range retracking (as both are dependent on the received sea-ice               
backscatter), a correction had to be applied. 

The monthly degradation factor of -0.003269253 was derived from the monthly averages of             
ocean-type waveforms in the Barents Sea (70°N-75°N and 40°E-50°E). Ocean-type          
waveforms are derived independent from the sea-ice backscatter classifier and we assume            
the surface roughness sufficiently random compared to ice-type waveforms for our analysis. 

As the surface-type classification as well as the range retracking was derived from data in               
the sensor overlap period (November 2010 to March 2012), all backscatter values had to be               
corrected towards this base period. In order to accomplish that we picked June 2011 as a                
reference point. 

Using the below given formula, we calculated the necessary backscatter drift correction: 

2 α ) m )tsif t = 1 × ( ref − α + ( ref − m  

− .003269253σ0
drif t = 0 × tsif t  

Here, ​t​sift is the time shift factor in months between the reference year (​a ​ref​) and month (​m​ref​)                 
and the currently processed year (​a) and month (​m)​. The resulting backscatter drift             
correction is then added to the sea-ice backscatter before the surface-type σ0

drif t            
classification and the range retracking. By doing so, the in general slightly higher backscatter              
values during earlier years of Envisat’s lifespan are reduced to the level during the sensor               
overlap period. 
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Figure 5‑15: Visualizations of the monthly averaged sea-ice backscatter reduction 

between 2002 and 2012 over ocean-type waveforms obtained between 70°N-75°N and 
40°E-50°E 

 

5.2.4 ERS-1 and ERS-2 Retracking 

For ERS-1 and ERS-2, adaptive retracker shall be used as well. Values for k​0 - k​6 (for the                  
calculation of optimal threshold) shall be derived minimising the difference between ERS-2            
and Envisat freeboards during the overlap period. Similarly, the ones for ERS-1 shall be              
derived from the ERS-1 and ERS-2 overlap period. 

 

5.2.4.1 Pulse Deblurring 

A significant challenge in ERS retracking is the pulse blurring which results from the range               
window moving during waveform averaging sequence. For detailed description of pulse           
blurring, see Peacock and Laxon (2004). A linear correction to the retracked range is applied               
if the ​height error signal ɛ < 0. Unfortunately, the ɛ is not present in the REAPER SGDR files                   
used as input for the CCI+ processor. In consequence, the pulse deblurring correction must              
be derived elsewhere.  

As a surrogate for the height error signal ɛ, first version of the pulse deblurring algorithm                
uses the delta_range which is the change in range from the nominal tracking point to the                
satellite between the waveform and previous one. For the N:th waveform, this can be written               
as: 
 
delta_range(N) = range(N) - range(N-1) 
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When looking at the relationship of delta_range and the ERS-2 retrieved SLA (elevation -              
MSSH) there is a clear linear dependency for measurements with delta_range < 0. An              
example of SLA and delta_range from ERS-2 in January 2003 is shown in Figure 5-14               
below: 

 

 

Figure 5-16: An example of SLA and delta_range from ERS-2. 
 

As the two variables should not be correlated, we introduce a pulse deblurring correction              
delta_H to the retracted elevations of: 

 

delta_H = 0 if delta_range >= 0 

 = m*delta_range if delta_range < 0 

 

Do derive ​m​, we fitted a first degree polygon to the SLA / delta_range -data shown in Figure                  
5-14 above and arrived at m=0.344. However, as the correction will be sensitive to the               
retracker used, and possibly is not constant over the whole ERS2 period, more effort shall               
be put into refining the correction in the future.  

The empirical deblurring above is just the first try, and the pulse deb ​lurring may have to be                 
defined in a similar manner to the adaptive retracker threshold - that is, finding an empirical                
correction that minimises the difference between ERS-2 and Envisat (and later ERS-1 and             
ERS-2) during the overlap period. 
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5.3 Geophysical Range Correction 

The range is corrected for the changes in sea level due to tides and atmospheric pressure.                
The specific geophysical range corrections are: 

● Elastic ocean tide 
● Geocentric polar tide 
● Long-period ocean tide 
● Solid earth tide 
● Inverse barometric correction 

  

5.4 Radar Freeboard and Sea-Surface Height  

The vast majority of the signal seen in the floe and lead elevations retracked in the last                 
section is caused by unevenness in the Earth's gravity field and mean circulation of the               
ocean currents. This fixed signal known as the mean sea surface must be removed before               
any interpolation of the sea surface heights is attempted. Many models of the mean sea               
surface are available and there will almost certainly be one present in the satellite data               
product. It is however advisable to use a consistent mean sea surface height product based               
on altimeter data from the target period (1993-2020). 

An example for such a global mean sea surface height product is DTU18 (Table 2-1), which                
is based on radar altimeter data from ERS-1 to CryoSat-2 and thus spans the target SIT                
ECV period and region. DTU18 is the improved version from the formerly used DTU15 mean               
sea surface height, which is visualized in Figure 5-15. 
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Figure 5-17: Hillshaded sea surface height of the DTU15 global mean sea 
surface height product for the SIT ECV target region in the northern and 

southern hemisphere 
 

With the mean sea surface height removed from the sea surface heights in the leads, the                
remaining signal will be due to time variant changes in sea surface height caused by               
variability in the magnitude and direction of ocean currents; the dynamic topography and             
long wavelength errors in tides and atmospheric corrections. This signal varies on a scale of               
a few hundred kilometres. The ice freeboard, or the height the ice floe protrudes above the                
sea surface, is determined by interpolating the sea surface height beneath the floe location              
and subtracting it from the height of the floe. Figure 5-16 and Figure 5-17 illustrate this                
calculation. Practically, the residual of the lead elevations with respect to the mean sea              
surface height (MSSH) yield the sea surface height anomaly (SSHA). The instantaneous sea             
surface height (SSH) is then defined by 

SSH = MSSH + SSHA 

The sea surface height measurements are then linearly interpolated and smoothed by a box              
filter using a window size of 25 km. A minimum of one lead must exist for each orbit to allow                    
a proper estimation of the instantaneous sea surface height. The result from subtracting the              
interpolated and smoothed sea-surface height from all retracked sea-ice elevations yields           
the radar freeboard (RFRB). Radar freeboard in contrast to the sea-ice freeboard is not              
corrected for the slower wave propagation speed in the snow layer and therefore biased low. 

RFRB = ELEV_ice - SSH 
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Figure 5-18: Computation of radar freeboard 
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Figure 5-19: Example from along-track CryoSat-2 freeboard retrieval. a) Orbit location, 
b) surface type classification with classes unknown, lead and sea ice with percentage 

and geographical location along track c) Lead detections, mean sea surface height 
and sea surface height anomaly d) unfiltered radar freeboard 

 

5.4.1 Sea-Surface Height Uncertainty 

The uncertainty of the sea surface height depends on the base SSH uncertainty and the               
distance to the closest sea surface height tie point. The values for base ssh uncertainty is                
assumed to be 2 cm to include effects such as leads covered with thin ice and the maximum                  
uncertainty is assumed as 10 cm (example of the value range in Figure 5-18) based on                
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investigations of the typical variation of the anomaly between the instantaneous sea surface             
height and mean sea surface along polar crossing orbits. 

 

Figure 5-20: Example of Sea Surface Height Uncertainty 
 

The sea surface height uncertainty is computed as 

 

With ​d​tp​ as the distance to the next sea surface height tie point. 

 

5.4.2 Radar Freeboard Uncertainty 

The radar freeboard uncertainty is computed by error propagation of the range or elevation              
uncertainty and the sea surface height uncertainty. For the simple case of radar freeboard              
being the difference between elevation and sea surface height, the radar freeboard            
uncertainty is given by: 

 σrfrb = √σ2
elev + σ2

ssh  

 

The elevation uncertainty are fixed assumptions based on noise estimations for Envisat   σ 
elev           

RA-2 und CryoSat-2 SIRAL sensors. 
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5.5 Snow on Sea Ice 

In order to convert radar freeboard to sea-ice freeboard, a geometric correction has to be               
applied. For the Arctic, the W99 climatology used in SICCI Phase 2 has been replaced with                
a merged climatology created by AWI. This new snow product merges the monthly Warren              
snow climatology with daily snow depth from AMSR2 data, provided by the Institute for              
Environmental Physics of the University Bremen, over first-year sea ice, creating monthly            
snow depth fields.  

For the merging of the two data sets, monthly composites of the AMSR2 snow depth fields                
are created to match the monthly resolution of the W99 climatology for the months from               
October to April. After that a Gaussian low pass filter with the size of 8 grid cells is applied                   
on the AMSR2 snow depth composite, negative snow depths are removed and upper range              
limit is set to 60 cm. Then a regional weight factor ​w is created to ensure a smooth transition                   
between the inner Arctic Basin domain and the area where AMSR2 is used. The merged               
snow depth (​sd​merged​) is computed as: 

1 )sdmerged = w · sdW99 + ( − w · sdAMSR2  

Figure 5-19 contains examples of the merging steps and Figure 5-20 for the regional weight               
factor. 

Following the common practice to modify the W99 snow climatology by reducing the values              
by 50 % over first-year sea ice in the central Arctic (Tilling et al., 2018), the reduction is                  
applied based on the ice type information for the particular orbit. This correction stems from               
Kurtz & Farrell 2011, that showed IceBridge measured snow thicknesses on FYI to be about               
50% of the W99 estimates that are based on measurements made on MYI. Note that this                
scaling is applied only on the W99 snow, not on the AMSR2 snow depth. The scaled snow                 
depth is: 

1 )c = ( − fmyi * cfyi * w  

d sds =  merged − c · sdmerged  

Where ​c​fyi ​= 0.5 is the W99 scaling over first-year sea ice, ​c the total scaling factor including                  
multiyear sea ice fraction ​f​myi ​ and the weight factor.   
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Figure 5-21: Steps for creating the monthly merged snow depth climatology. This 

example is for April, from left to right: 1) Warren snow depth climatology, 2) Monthly 
snow composite from daily AMSR2 data, 3) Low-pass filtered composite and 4) 

Merged Warren/AMSR2 with regional weight factor applied 

 
Figure 5-22: Regional weight factor for the W99 snow depth climatology 

 

An example of the results with merged snow is in Figure 5-21. There are significantly less                
data gaps outside the central Arctic Basin, while retaining the W99 information on areas              
potentially covered with multiyear sea ice, areas where AMSR2 lacks sensitivity. 

ESA UNCLASSIFIED – FOR OFFICIAL USE 



Sea Ice CCI+ Sea Ice Thickness Algorithm Theoretical Basis Document Page ​50 

 
Figure 5-23: Performance example of sea ice thickness with the merged W99/AMSR2 
snow product. Upper panel is the AWI CryoSat-2 v2.0 sea ice product with W99 snow 

and lower panel the sea ice thickness with merged W99/AMSR2 snow depth 
climatology. The improvements are most drastic in areas outside the domain (marked 

with green rectangles) of the W99 climatology (marked with purple polygon) 
 

For Antarctic, with only a single ice type, a simpler approach is taken by applying the                
AMSR-E/2 snow-depth climatology provided by the ICDC. The climatology is based in            
averages for each calendar day of the daily data, available at the ICDC University Hamburg:               
(https://icdc.cen.uni-hamburg.de/en/esa-cci-sea-ice-ecv0.html).  

 

5.5.1 Snow Depth Uncertainty 

The Uncertainty of snow depth is taken from the input auxiliary data sets. In the case of the                  
Arctic we use the information of inter-annual variability as an estimation for snow depth              
uncertainty. Since the snow depth (​sd ​) is however modified by the MYI fraction, the              
uncertainty of the snow depth is also scaled on MYI fraction (​f​myi ​) (50% of the original value                 
for FYI and 100% for MYI respectively). 
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We also include an additional term that represents the effect MYI fraction uncertainty on the               
scaling assumption between FYI and MYI snow depth:  

 

In the southern hemisphere the field `mediansnowdepth_filtered100_variability` of the snow          
depth climatology product is used as an uncertainty estimate. 

 

5.5.2 Snow Density Uncertainty 

In the Arctic the snow density uncertainty ( ) is provided by the Warren climatology as well.       σs
ρ          

The difference in sea ice density between FYI and MYI is small, therefore the snow density                
and its uncertainty are assumed to be independent from the myi fraction. 

In the Antarctic, we assume a fixed uncertainty of 20 kg/m3. 

 

5.6 Sea-Ice Freeboard 

The sea-ice freeboard is then calculated by adding this scaled snow-depth value times the              
reduction factor of the wave-propagation speed in snow compared to the vacuum speed of              
light. Valid sea ice freeboards are assumed to range from 0 to 2 meter, while the range is                  
extended by the range noise (0.25 meter) for individual footprint. Thus orbit data outside the               
range of -0.25 m to 2.25 meter is filtered. 

 

5.6.1 Sea-Ice Freeboard Uncertainty 

In addition to the radar freeboard uncertainty, the sea ice freeboard uncertainty needs to              
take the component introduced by the snow wave speed correction into accounts. While the              
wave speed reduction is assumed to be reasonably well known, the additional uncertainty is              
controlled by snow depth  uncertainty. 

 σf rb = √(sd )× σsd
2 + σ2

rfrb  

 

5.7 Sea-Ice Thickness  

5.7.1 Freeboard to Thickness 

The final step in the processing is to convert sea-ice freeboard to sea-ice thickness. The ice                
floe may or may not be covered by snow, but field studies have shown that if the floe is                   
indeed snow covered the radar reflection and hence height measurement relate to the snow              
ice interface. This however may not always be the case as was shown by the laser / radar                  
altimeter study in Fram Strait during the RRDP exercise. This most certainly is not the case                
for areas of seasonal sea ice, such as the Baltic Sea, for most of the winter. Thus freeboard                  
values should be understood as "altimeter freeboard" values. That is, for the cold central              

ESA UNCLASSIFIED – FOR OFFICIAL USE 



Sea Ice CCI+ Sea Ice Thickness Algorithm Theoretical Basis Document Page ​52 

Arctic they can be assumed to represent the ice freeboard, but for marginal areas the               
elevation measured is somewhere between the ice and snow freeboard. But since this effect              
cannot be parameterized with available EO observations, it is always assumed in the             
processing that the dominant reflector is the snow/ice interface. 

Since the ice floe is in isostatic equilibrium, a simple calculation using freeboard and snow               
depth, and the densities of snow, sea ice and sea water, can be used to compute the                 
thickness. Figure 5-22 illustrates this calculation. The final thickness is given by: 

zi = ρ −ρw i

z ρ −f ρs s b w  

Where z​i is sea ice thickness, z​s snow depth, ⍴​s snow density, f​b sea ice freeboard, ⍴​w                 
density of seawater and ⍴​i ​ density of sea ice. 

In the Arctic, the snow depth and density are obtained from the Warren climatology (Warren               
et al., 1999). Since the snow depth measurements contributing to the Warren climatology             
originate exclusively from multi-year ice, the snow depth values are similarly scaled as for              
the snow geometric correction applied for the derivation of sea-ice freeboard from radar             
freeboard. As the Warren climatology is valid only in the central Arctic, we have to mask out                 
measurements where it yields unreliable results (0.0 < snow depth < 0.6). This usually leads               
to masking of areas, for example Baffin Bay and the Baltic Sea in some months. We also                 
follow the approach to scale the snow depth with the MYI fraction, leading to a 50%                
reduction of snow depth in FYI dominated regions. We only apply the MYI fraction scaling to                
snow depth and not density, as the latter is only marginally dependent on sea ice type. 

For water density we use the fixed values of 1024 kg/m³. Direct measurements of sea ice                
density suggest that the density of multi-year ice is less than that of first-year ice. We                
therefore use a parameterization of the sea ice density that is scaled by the multi-year ice                
fraction between the density of multi-year ice (882 kg/m³) and first-year ice (916.7 kg/m³). 

 

Figure 5‑24: Computation of sea ice thickness 
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5.7.2 Sea Ice Density Uncertainty 

Similar to snow depth, sea ice density is a parameter obtained by scaling between the       )(ρi          
values for FYI and MYI using the myi fraction. To estimate the uncertainty , we scale             σ )( i

ρ    
between the uncertainties of FYI and MYI density and add a term for the scaling     σ )( ρ

fyi     σ )( ρ
myi         

uncertainty. 

 

 

5.7.3 Sea Ice Thickness Uncertainty 

The sea ice thickness uncertainty is computed as the error propagation of the input              
uncertainties. 

 σsit = √( σ )ρw
ρ −ρw i f rb

2 + ( σ )ρ −ρw i

f rb·ρ +sd·ρw i i
ρ

2
+ ( σ )ρs

ρ −ρw i sd
2 + ( σ )sd

ρ −ρw i

s
ρ

2  

 

5.7.4 Sea Ice Type (MYI Fraction) Uncertainty 

In the Arctic the myi fraction uncertainty ( ) is taken directly from the MYI fraction product       σfmyi          
(field `my_sea_ice_area_fraction_sdev`) 

No sea ice type product is available in the Antarctic and the general assumption is that all                 
sea ice can be described as FYI. Nevertheless we assume a static uncertainty of 10% for                
the MYI fraction to account for sea ice type based uncertainties. 

 

 

6 COLOCATION ON SPACE-TIME GRID (LEVEL-3 PROCESSOR) 

Level-3 sea ice thickness is processed by mapping the orbit-based Level-2 data onto a              
spatiotemporal grid. The temporal and spatial dimensions are described in the following            
subsections. 

 

6.1 Grid Temporal Coverage 

The data will be processed for the winter season between October 1st and April 30th. Both                
weekly and monthly grids are available and their specifics are described in Table 6-1:  
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Table 6-1: Temporal definition for Level-3 products. 

 Weekly  Monthly 

Start of temporal coverage Monday 00:00:00 UTC First day of month 00:00:00 UTC 

End of temporal coverage Sunday 23:59:59.999 UTC Last day of month 23:59:59.999 
UTC 

 

The Level-3 processing for these two temporal coverages differs only in the file naming,              
where the temporal level (weekly, monthly) is stated along with the start and end times of the                 
temporal coverage.  

 

6.2 Grid Spatial Definition 

Data for both hemispheres will be gridded into the Equal-Area Scalable Earth Grid version 2               
(EASE2-Grid) with 25km resolution. The projection is defined in Table 6-2 and grid extent              
and spacing in the Level-3 product are defined in Table 6-3. 

 

Table 6-2: Projection definition for Level-3 products. 

Property Value 

false_easting 0.0 

false_northing 0.0 

grid_mapping_name lamber_azimuthal_equal_area 

inverse_flattening 298.257223563 

latitude_of_projection_origin 90.0 

longitude_of_projection_origin 0.0 

proj4_string +proj=laea +lon_0=0 +datum=WGS84 
+ellps=WGS84 +lat_0=90.0 

semi_major_axis 6378137.0 

 

Table 6-3: Grid extent and spacing for Level-3 products. 

Property Value 

Grid Dimension (432, 432) 

Grid Spacing (km) 25.0 

Grid Notation Center Coordinates 

Grid x extent in projection coordinates (km) (-5387.5, 5387.5) 
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Grid y extent in projection coordinates (km) (-5387.5, 5387.5) 

 

6.3 Parameter Gridding 

Level-3 processing will grid Level-2 intermediate (l2i) files. All the Level-2 data points within              
the specific timeframe are transformed into projection coordinates and assigned an index of             
a corresponding grid cell in the target grid. Each target grid cell will then possess a                
dedicated parameter stack that contains all the geophysical variables from Level-2 data that             
were associated with that specific cell. There is no filtering applied at this stage, except for                
radar freeboard, where freeboard values in leads need to be set as NaN in the Level-3                
processor. The parameter stack of Level-2 data (​p ​i,L2​) is used to compute the gridded              
parameter geophysical value ​p ​L3​ as an arithmetic mean, ignoring non-numeric values: 

              if  p = aNpL3 = 1
nL2

· ∑
nL2

i=0
pi,L2 i,L2 / N  

 

The geophysical parameters that will undergo gridding are: 

1. radar freeboard  
2. freeboard 
3. sea ice thickness 
4. sea surface anomaly 
5. mean sea surface 
6. snow depth 
7. snow density 
8. sea ice density 
9. sea ice type 
10. sea ice concentration 

 

6.4 Level-3 Gridded Uncertainties 

The Level-3 product contains the average uncertainties for freeboard/thickness respectively          
per grid cell to reflect that the biggest uncertainty components, e.g. snow depth, sea ice               
density, retracker biases, are not random uncertainties that would be reduced by averaging,             
examples in Figure 6-1. The uncertainties of the gridded radar freeboard, freeboard and sea              
ice thickness are therefore computed again with the error propagation functions, only that we              
use the weighted mean error for uncertainties of random variables (radar freeboard) and the              
average uncertainty from the orbit data for variables with systematic error components (snow             
depth, sea ice and snow density). This approach introduced in CCI+ results in a more               
realistic uncertainty magnitude compared to the SIT CRDP v2.0. 
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Figure 6-1: Gridded uncertainties (Example CryoSat-2 March 2015 Arctic data) 

 

7 GAP INTERPOLATION (LEVEL-4 PROCESSOR) 

This section is to be completed in the future versions of the document, but in general the                 
level-4 data sets are created from lower level data and are interpolated in a way that they                 
are gap-free.  

Specifically, the Level-4 processor ingests sea-ice concentration data to determine where           
sea-ice thickness information needs to be available and computes an analysis of the             
available sea-ice thickness information from one or multiple platforms. One decision of the             
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algorithm development will be if the source data for generating Level-4 products will be of               
Level-2 (trajectories) or Level-3 (space-time grids).  

Level-4 sea-ice thickness information in the northern hemisphere will rely on interpolation            
over significant distances for the ERS-1/2 and Envisat platforms, as they provide only data              
up to 81.5 deg north. Appropriate auxiliary data sets guiding the interpolation over the pole               
hole will be identified, as well as the validity of such an approach.  

 

8 SEA ICE VOLUME COMPUTATION 

This section is to be completed in the future versions of the document.  

For volume calculation, the individual sea ice thickness measurements are coupled with ice             
concentration values (C3S, Table 2-1). This is done on a gridded level product as area (of a                 
grid cell) is needed. Volume is calculated only where ice concentration is above 15%, so an                
ice extent mask is applied to rule out areas outside the 15% concentration. Sea-ice volume               
is then the sum product of sea ice thickness, concentration and cell area of all grid cells.  
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