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1. Overview 

This document describes the uncertainty characterization, estimation and/or propagation for each 
product in the lakes ECV included in the lakes cci climate data records.  

The lakes ECV covers several domains of hydrology and biogeochemistry with satellites observing, 
through a range of radar/altimetry, thermal and optical sensors, properties of lakes which are 
ultimately interpreted as  

 Lake water level (LWL) 
 Lake water extent (LWE)  
 Lake surface water temperature (LSWT)  
 Lake Ice Cover (LIC)  
 Lake Water-Leaving Reflectance (LWLR)  

Details on the methodology to determine per-observation uncertainty products, and how they are 
presented to users of the lakes cci data record, are provided in this document.  

2. General terminology 

The uncertainty characterization of the lakes cci follows, in general, the approach and 
recommendations set out in Merchant et al. (2017), applied widely in the CCI programme, and using 
metrological principles discussed in Mittaz et al. (2019). It is useful to restate the internationally 
agreed terminology and concepts for measurement science.  

A measurement is a set of operations having the object of determining the value of quantity. A 
measured value is the result of a measurement and is an observation of a measurand: a quantity 
subject to measurement. The phrases ‘true value of a quantity’ and ‘value of the measurand’ are 
synonymous. The measured value minus the value of the measurand is the error, which is generally 
unknown.  

The measurands in the lake cci are diverse and derived from various satellite sensor measurements 
(e.g. of radiance, time, etc). In addition to errors associated directly with these sensor 
measurements (I.e., errors resulting from sensor noise and imperfect calibration) or their operation 
(detector viewing angles, integration times), errors also result from subsequent stages of data 
processing, such as classification and inversion of signals to geophysical variables. Errors at a given 
stage (data transformation step) combine additively, and errors propagate through successive 
stages.  

With increasing complexity of the satellite data processing chain, e.g. including dependencies on 
external models, it may become difficult identify and quantify the dominant effects causing errors 
in products, especially as which effects are dominant may depend on the scale of data aggregation 
in the product.  

Uncertainty characterises the dispersion of values it is reasonable to attribute to the measurand 
having made a measurement. Standard uncertainty is practically interpretable as the standard 
deviation of an estimated distribution of combined errors. Systematic methods for estimating 
uncertainty in Earth observation by understanding retrieval and data processing have been 
summarised by Mittaz et al., (2019) and associated mathematical methods by Merchant et al. 
(2019). Alternatively, it may be possible to characterize the uncertainties associated with a 
measurement process (such as a satellite retrieval system) using an adequate sample of measured 
values in comparison to reference measurements, which are trusted sources whose uncertainty 
characteristics are independently known.  

The end-to-end uncertainty budget is the result (where possible) of determining the uncertainty 
associated with measured values in products. Ideally, measured values have associated with them 
an uncertainty per datum that is obtained by modelling the measurement process and which is 
validated using comparisons to reference measurements (Merchant et al., 2017). This ideal situation 
requires significant investment of resources, both by the data producer and via programmes such as 
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ESA’s Fiducial Reference Measurements; this is gradually becoming more feasible for an increasing 
number of essential climate variables, but not all. 

In the sections that follow, product uncertainties are described for each of the thematic domains of 
Lakes cci. 

3. Lake Water Level (LWL) 

3.1. LWL Uncertainty characterization 

The uncertainties provided with the LWL product result from the standard deviation of the along 
track altimetry (after including all corrections) of all measurements used to calculate the median 
value for a pass over a lake.  

For reference, the calculation of LWL using satellite altimetry follows 

LWL= Alt-Rcorr-TE                     [3.1] 

Where LWL is considered with respect to a geoid through Rcorr, Alt is the altitude of the satellite 
above an ellipsoid and TE is the sum of different corrections in order to account for atmospheric 
refraction (propagation in the ionosphere and the troposphere), tidal effects (solid Earth, lake and 
polar), and geoid height above the ellipsoid. For readers who needs more detailed information a full 
discussion of the computation of LWL can be found in Cretaux et al. (2009).  

Each term of the expression of LWL has its own contribution to the final error budget. These 
sources of uncertainty are introduced in detail in section 3.2.  

To quantify the end-to-end error budget both new field work and existing data sources are used. 
Previous findings are reported in Cretaux et al. (2009, 2011, 2013, 2018). 

To determine the impact of some of the altimetry data processing models in different 
configurations, other studies based on comparison with in situ data have been performed (Ričko et 
al., 2012, Arsen et al., 2015). This work is continued with new in situ data sets collected during 
Lakes_cci, through external collaborations. 

Based on the quality assessments done over the last years a quantification of the full error budget is 
available for different combinations of lakes and altimeters. 

3.2. Sources of uncertainty in LWL 

The sources of uncertainty of LWL product vary and depend on several factors. The uncertainty is 
calculated from the standard deviation of the distribution of measurements of water height by the 
satellite altimeter. The different factors affecting this calculation fall into three categories:  

Detector noise: For a classic altimeter, the detector noise is sub centimeter and is therefore not 
the main source of uncertainty for LWL.   

Morphology of the lake and its surrounding environment: Radar altimeter measurements involve 
sending an electromagnetic pulse to the satellite nadir and measuring the propagation time to and 
from the emitted wave and its echo on the illuminated surface. A received echo is not identical to 
the initial pulse. Despite how narrow the initial pulse can be, the echo is spread over time by its 
interaction with the reflecting surface. In practice, the echo spans multiple antenna reception 
intervals – the “distance doors” – (typically a hundred doors of 2 to 3 nanoseconds each, a length of 
30 to 50 cm per door) and the technique of locating the correct time interval to give the distance 
measurement (range) in this period is called the tracking (if the operation is performed on board) or 
retracking (if the operation is done on the ground through post-processing techniques). Tracking 



D2.3: End-to-End ECV Uncertainty Budget (E3UB) 

 

 7/34 

and retracking are not directly performed on echoes, which are too noisy, but on the echo 
accumulations, called the waveforms. 

As the first altimetry missions were dedicated to oceanic studies, the algorithms developed to 
address the waveforms were therefore adjusted to the shape of echoes that returned from the 
ocean surface. These algorithms were based on the fact that the reflective surface is sufficiently 
isotropic and continuous, and if we accumulate echoes over a longer time span than the 
decorrelation time of spatial structures from the reflecting surface of the same order of magnitude 
as the pulse wavelength (2.2 cm for a Ku-band of 13.6 GHz), the waveform could be approximated 
by a theoretical form from which time A/R can be analytically determined. This theorical form is 
called it the brown model. 

The time for the echo to bounce back to the altimeter can be obtained by finding the best fit 
between the waveform and the analytical expression. Once established, and if the dating provides 
the best fit, it is found halfway up the rising edge. In the specific case of continental surfaces, the 
received echo is very different from the paradigm presented above. The shape of the echo becomes 
extremely variable (Figure 1) depending on the power backscattered by the water plane 
environment, in the case small or narrow lakes.  

It is no longer possible to find a single analytical expression that can determine a specific A/R time 
for all waveforms. A key milestone was reached with the ESA Envisat mission, where it was decided 
to break away from the principle of the single range estimate and offer several range estimates 
made by very different algorithms for each measurement within its Geophysical Data Records 
(GDRs) user products.  

The morphology of the lake and surrounding terrain affect the final uncertainty in different ways: 
for large lakes (>100s km2) with a long track coverage (> 30-40 km) it is possible to strictly select 
the range of measurements that are located far enough from the coastline. Because the selected 
radar echoes are fully over water, the final uncertainty is in the centimetre range. If, however, the 
lake is narrow or when the satellite track crosses the lake on an edge or within a short distance 
from shore, the echoes no longer follow the Brown model and we need to use the released 
retracking models. If a large proportion of measurements is affected by this issue, their dispersion 
is much increased with respect to ideal cases, and the uncertainty may reach several decimetres. In 
practice, the classical OCOG (namely ICE-1) is used for the LWL product since it has been evaluated 
as the best algorithm for such reflecting surfaces. The same problem arises when specular or quasi 
specular echoes are registered on lakes with a very calm surface, since the Brown model assumes 
that the reflecting surface has some small waves rather than specular echoes. For this reason, it is 
problematic to use Topex / Poseidon or Jason-1 satellite over lakes in such cases because 
alternative retracking models (like OCOG) are not released in the GDRs. Using retracking models 
(with Envisat, Jason-3, Saral or Sentinel-3A) does not solve all problems with complex footprints 
and in the worst cases, the resulting uncertainty may reach several decimetres. 

It is important to note that the Ka band (36 GHz) with the Saral/AltiKa mission has reduced the 
footprint and consequently also decreased the uncertainty for small lakes. It has been shown in 
Arsen et al. (2015) that accuracy of LWL over small lakes in the Andean chains (with respect to 
Envisat for the same lakes) improved by a factor of 5 to 10 depending on the lake.  

With Sentinel-3A another technical improvement reduces potentially in a significant manner the 
final uncertainty in some specific geographical contexts. Sentinel-3A operates in SAR mode which 
brings several advantages for small water bodies. The footprint is reduced by a factor ranging from 
10 to 50 compared to Low Resolution Mode (LRM) used with other altimeters. This allows much 
better selection of the reflecting point and drastically reduces the pollution from the ground when 
the satellite track approaches the lake shoreline. It is however valid only when the orbital track is 
almost perpendicular to the shoreline. 
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Figure 1: example of typical waveforms, from left to right; specular, ocean like (Brown model), 
contaminated, and examples of noisy waveforms 

 Geophysical corrections: Calculating the range is based on the propagation velocity of the 
electromagnetic wave, which is the speed of light in a vacuum. In practice, as the radar pulse 
passes through the atmosphere, the actual propagation speed is below this limit value. The impact 
on the estimated range is an extension of around 2.5 m, mainly linked to the density of the air. 
Three separate corrections are applied: 

 dry tropospheric correction 
 wet tropospheric correction 
 ionospheric correction  

There is actually a fourth source of uncertainty to consider, due to the reflection on the surface of 
the water. A correction of the surface state would take into account that the height of the facets 
that reflect the radar pulse may be different from the average water height in the radar beam 
footprint, and it is also to correct for the fact that the shape of waves changes the height 
distribution in the surface illuminated by the radar. Whereas it is described for sea state, the effect 
on lakes is not well known, not modelled and assumed to be relatively weak. In extreme cases, 
however, it may reach several centimetres and constitutes a source of potential uncertainty. To 
date this has not been taken into account for inland waters.  

Among the above three corrections, the dry tropospheric and the ionospheric ones are well 
modelled over continental water (using global gridded data sets and the resulting errors are below 
the centimetre over lakes: see Cretaux et al. (2009). The third correction factor is the most 
problematic and causes the main measurement uncertainty. 

Wet tropospheric correction is related to the water vapour contained in the air column that the 
electromagnetic wave intersects. This correction can be estimated in two ways: either with an 
onboard bi or tri-frequency radiometer or from a global meteorological model, as used for dry 
tropospheric correction. Radiometers measure the instantaneous brightness temperatures at the 
nadir, a quantity dependent on the atmospheric water vapor content. This measurement has the 
obvious advantage of time coincidence with the radar altimeter measurements. However, 
radiometers do not operate properly over the continental areas because the measurement is 
polluted by the inhomogeneity of the soil emissivity except for very large lakes. To avoid this 
problem, a WTC based on the ECMWF re-analysis is used. Over lakes, however, the use of local GPS 
precise positioning near Lake Issykkul in Central Asia (Cretaux et al. 2009, 2011) has shown that the 
estimated error is in the order of a few centimetres. 

Other corrections are applied to the final calculation of LWL, which do not contribute significant 
(i.e. they are sub-centimetre) sources of uncertainty. These include lake tides, Earth tides and the 
polar tide, and all are delivered within the GDRs using geophysical models. 

3.3. Uncertainty estimation methodology in LWL 

The uncertainty estimation of each LWL at a given time is derived from the standard deviation of 
the individual lake water height along the track. Geoid corrections using the repeat track technique 
(Cretaux et al. 2016) are applied, and the median value of each of the water height estimation (at 
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20 Hz for Topex / Poseidon, Jason-1, Jason-2, and Envisat, and 40 Hz for Saral/Altika, Jason-3 and 
Sentinel3A) is calculated and constitutes the final LWL product. Standard deviations of the 
distribution of individual measurements are then calculated and reported as LWL measurement 
uncertainty. 

3.4. End to end uncertainty budget in LWL 

It is practically impossible to establish a generic error budget for LWL calculation using satellite 
altimetry because the sources of errors are numerous and they vary strongly from one lake to 
another, and between altimeters. 

We can, however, draw some generic conclusions. 

For large lakes, whichever satellite mission is considered, and in normal lake state conditions (no 
specular echoes) the main source of uncertainty comes from the wet tropospheric correction, and 
depending on the regions it varies from 2-3 cm. The combination of altimeter noise and geophysical 
corrections then amounts to 8-10 centimetres. 

For small and narrow lakes, the LWL uncertainty varies between 10 centimetres and 1 meter (above 
which the data are discarded). In such cases, the uncertainty depends first of all on the form of the 
echoes (waveform) and the ability of the retracking to analytically interpret it in terms of range 
between the satellite and the lake surface. Under very poor conditions (very narrow lakes for 
example) the retracking used (OCOG) may be not robust enough to retrieve the range without large 
uncertainty. In such cases, another factor influencing final uncertainty is the altimeter itself: with 
Saral/AltiKa and with Sentinel-3A, the impact of lake morphology on the result is reduced since the 
footprint is also drastically reduced. With LRM altimeters, the impact is the highest. 

4. Lake Water Extent (LWE) 

Both optical and SAR data are used to produce LWE. Processing chains being different, candidate 
algorithms are described independently in this document. A first section focuses on the SAR 
processing optical approach and the following one presents the optical approach. 

4.1. SAR LWE Uncertainty characterization 

Sources of uncertainty in SAR data are in general well known. In the context of LWE the main 
sources of uncertainty derive from the nature of the SAR signal and the classification method 
employed to retrieve the water pixels, where the latter is currently being studied. Our methodology 
assumes that lake water pixels have low backscatter compared to their surroundings. As detailed in 
the next section, this assumption does not always hold, and defining backscatter thresholds 
introduces uncertainty which propagates to the LWE estimate.  

At the present time no uncertainty is calculated with LWE results, because the classification 
methods to characterize water pixels do not provide error estimates. Some general quality 
indicators could be proposed as a rough indication of the class separability in an image. At the 
present time this remains subject to discussion. Ultimately, however, an uncertainty budget of the 
lake water maps can only be produced using ground truth data.  

4.1.1.  SAR sources of uncertainty 

SAR measurand: SAR backscatter is mainly driven by the geometry of the observed target. This 
means that SAR is sensitive to roughness on the water body surface, which is assumed to be low 
proving low backscatter values. Consequently, any modification on the surface modifying this 
condition will impact on the lake water extension calculation. In the presence of strong wind, the 
water low backscatter assumption does not hold, causing errors on the water detection. The 
presence of ice and snow, not only in the lake surface, but also in the surroundings, cause 
erroneous lake water extent retrieval.  
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Other types of land cover e.g. crop fields or wet snow, may have similar backscatter features as 
water bodies. When they are located in the surroundings of the lakes, especially if the image 
spatial resolution (nominal or after the filtering) is low compared to the proximity distance, they 
can mistakenly be classified as part of the lake in the classification process. 

Vegetation on the lake can increase the backscatter, so those areas would be classified (at least in 
a first step) as non-water pixels. 

Depending on the resolution of the SAR image, a negative bias can be found with respect to the real 
water extent measure. Coarse resolution SAR imagery will tend to underestimate the water covered 
area along the edge of the lake, and depending on the complexity of the lake edge in comparison to 
the pixel spacing, the negative bias is proportional to the length of the lake circumference. 

Detector noise: SAR amplitude images are affected by multiplicative noise known as speckle. To 
reduce its effect on the water extent estimation de-speckle filtering is applied to the images. 
Filtering causes a decreasing of the nominal spatial resolution. SAR de-speckle filtering is an open 
topic so improvements can be achieved on this side. 

Observation noise (e.g. related to viewing angle, atmospheric path): Depending on the viewing 
angle, geometric distortions (layover, shadowing and foreshortening) can be more or less severe. In 
order to prevent including those areas, a corresponding mask account for the areas presenting those 
effects is applied to the images. 

The viewing angle also conditions the ground range inherent pixel size, therefore it will vary from 
near to far range. In any case it shall not be a significant variation for this application. 

SAR amplitude images are not strongly affected by atmospheric effects. Nevertheless, in case of 
very severe atmospheric conditions (heavy storms), a mitigation of the signal amplitude could 
affect the image. 

Algorithm effects: as mentioned, de-speckle filtering is a necessary step in the algorithm but at 
the same time it worsens the spatial resolution of the product. 

Calibration effects: GRDH amplitude images are calibrated according to the annotated look-up 
tables. Consequently, any mismatch on them will impact in the quality of the calibration. SLC 
amplitude images are calibrated based on the Persistent Scatters behavior among the image stack. 
The lower the presence of these targets the lower the quality of the calibration. In general terms 
though no significant errors are expected. 

Model effects: A DTM is needed in order to properly make the SAR to Geo coordinates and vice-
versa. The more accurate and the larger the spatial resolution of the DTM the better the GRDH re-
gridding and the geo-location accuracy of the results. The same impact can be considered for orbit 
inaccuracies. 

Misclassification effects (e.g. cloud, land, water, subpixel variation): This effect is strictly 
related to the “SAR measurand” and “algorithm effects”. The K-means classification employed 
method uses a finite number of classes so depending on the separability degree on the image, 
misclassification can have a significant impact on the results. The main sources of misclassification 
are speckle noise due to waves on the lakes (leading to water erroneously classified as land) and 
lake ice (ice covered water classified as land). All in all, the majority of the misclassification effect 
tends to cause a negative bias on the water extent, but the magnitude of the negative bias needs to 
become better understood. 

4.2.  Optical sources of uncertainty 

There are numerous sources of uncertainty when deriving water surfaces from images acquired by 
optical sensors. These can be related to the following effects, as detailed below:  

 Observation effects 
 Algorithm effects (external sources) 
 Training samples selection 
 Calibration effects 
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 Misclassification effects (e.g. cloud, land, water, subpixel variation) and adjacency or 
proximity effects 

Observation effects: Optical remote sensing of inland and marine waters depends on the quality of 
the retrieval of the water-leaving radiance from the top-of-atmosphere measurements. A notable 
influence on the retrieval is specular reflection of sunlight on the air-water interface (sun glint) in 
the direction of the satellite field of view. Depending on the satellite (viewing angles, pixel size) 
the effects of sun glint are felt differently. 

For medium resolution satellites (e.g. MODIS, MERIS, OLCI with pixel sizes of 300 m to 1km) the sun 
glint can be modelled from the geometry of observation (angle of sight, solar angle and azimuth) 
and the wind speed (see Cox & Munk, 1954). It is then possible to attempt correction for sun glint or 
mask the affected pixel. 

For high or very high resolution satellites (e.g. sensors on Landsat, Sentinel-2, Pleiades) the spatial 
resolution (< 30m) no longer allows modelling the sun glint. This effect must then be estimated 
from the observation itself, in which case Short Wave Infra-Red (SWIR) bands (> 1.5 μm) are 
particularly useful to delineate glint. The viewing geometry of Sentinel-2 satellites with a near-
nadir view makes it particularly vulnerable to sun glint contamination (Harmel et al. 2017, Figure 
2).  

The SWIR bands of Sentinel-2 MSI and Landsat-8/OLI can also alleviate limitations associated with 
using the Near Infra-red (NIR) part of the spectrum. First, light absorption by water is more than an 
order of magnitude more efficient in the SWIR than in the NIR thus allowing better separation of 
land and water. Second, the atmosphere is more transparent in the SWIR thus showing less diffuse 
transmission paths and, consequently, lower contribution of aerosols and air molecules.   

Methods to remove or limit the sun glint bias require external input such as aerosol optical 
thickness, amount of absorbing gas, sea surface pressure and target altitude, which can be 
populated from the AERONET photometer network or the CAMS dataset (Harmel et al. 2017). 

 

Figure 2 Sun glinted Sentinel-2 MSI image acquired on 14 Jul 2017 over Namtso lake (PR China) 

 

Algorithm effects (external sources): In order to compute water extent over a lake, a reference 
area is required to limit the analysis to a spatial buffer around the target area. When working with 
medium resolution satellite imagery, it may be suitable to adopt these from the ESA CCI Land Cover 
database. However, this does not always provide sufficient detail when looking at higher resolution 
imagery (Figure 3).  
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Figure 3 Reference envelope over Colhue Lake (Argentina).  Yellow and orange (buffered) 
envelopes are derived from the ESA CCI Land Cover database and exclude the 
northern part of the lake. The red contour is based on high resolution satellite 

imagery. 

In some cases, the reference polygons only include part of the lake systems. An example is given in 
Figure 4 for Sasykkol Lake (Kazakhstan) which is a morphologically complex system. Here, two lakes 
(Alakol and Sasykkol) are separated by a wetlands complex. A large part of the water surface 
increase is located within this complex as well as on the North-Western extent. In the medium 
resolution-based reference database, these surrounding wetlands complex are not included. 

 

Figure 4 Reference envelopes over Sasykol lake (Kazakhstan) 
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Training sample selection: There are many ways to select training samples for classification 
including manual/visual effort or automated processes when time series are exploited. In either 
case, sample selection can introduce bias: local validity of input databases; selection criteria for 
training samples, and localized observation conditions.  

A first example concerns introduction of sun glint (Figure 5). Using a conventional water index 
(MNDWI, Xu 2006), sun glint reduces the detected water surface area. Another common water index 
(AWEI, Feyisa et al. 2014) is in this case not affected by the sun glint. 

 

 

Figure 5. Sensitivity of the MNDWI (dark blue) to sun glint, compared to the AWEI (light blue), 
yielding a reduced water surface area in case of MNDWI for the sun glint affected 

scene on 14 July 2017 (low point in time series) shown in Figure 2. 

Another example to illustrate the potential influence/bias induced by input data is given in Figure 
6, showing the GSW product (Pekel et al. 2016) used to define a training set. Where the GSW 
product yields a 0% occurrence level, water may in fact be (albeit rarely) present. Some pixels 
associated with dry areas can even be found inside water bodies. This effect is likely caused by the 
long observation period underlying the GSW data set, whereas ephemeral water bodies could have 
very short periods containing water. The opposite effect, where the long-term dataset suggests 
water but this is not found in current time-series, is also observed. Further screening of the training 
data set is then essential.  
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Figure 6 Lake Colhue (Argentina ) shows water despite pixels having 0% water occurrence in 
the GSW data set.  

Calibration effects: From time to time, Sentinel 2 MSI imagery may contain sensor or calibration 
anomalies, which then affect any use of the imagery including water detection (Figure 7). These 
artefacts are rare. 

 

Figure 7 An example of a rare case of radiometric anomaly observed in Sentinel-2 MSI imagery 
of Lake Chilwa, 22 Nov 2018 

 

Misclassification effects (e.g. cloud, land, water, subpixel variation) and - adjacency or 
proximity effects: Confusion and commission errors occur, for example between ice and water or 
water and snow. The effect is obvious in the below example of Lake Namtso on the Tibetan plain 
(Figure 8). The effect is more evident when using K-means clustering compared to Support Vector 
Machines.  
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Figure 8 Confusion/commission between Ice and water when exploiting a KMeans approach 
rather than SVM at Namtso lake (PR China) 

 

Lyon et al. (2013) also identified that increasing lake size and a less complex morphology decreases 
classification error in terms of observed lake area (relative to actual lake size), as shown in  Figure 
9. 

 

Figure 9  Scatter plots of absolute error in estimated lake area as a function of ‘actual’ lake 
area (based on DGPS shoreline measurements). Lines represent power-law fits to the 

respective data points (from Lyons et al. 2013) 
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5. Lake Surface Water Temperature (LSWT)  

5.1. LSWT Uncertainty characterization 

5.1.1.  Basis of LSWT uncertainty characterisation 

An evaluation of uncertainty in LSWT products is given per datum, and is obtained by calculation of 
propagated, retrieval and sampling uncertainties.  

The propagated part addresses the amplification of error in the satellite observations (the 
brightness temperatures, BTs) through the retrieval process, using standard equations for the type 
of retrieval used (optimal estimation, see below). 

The retrieval uncertainty expresses the range of possible LSWTs compatible with the observations 
even if they were error free, since the intervening atmosphere produces some ambiguity in the 
relationship between the surface LSWT and the top of atmosphere satellite BTs. Another 
component of retrieval uncertainty is the influence of the prior value used in the optimal estimate, 
and error in which also (slightly) affects the result. The retrieval uncertainty component is also 
expressed using standard optimal estimation equations.  

Sampling uncertainty at level 3 (gridded data) arises is only part of the lake within the grid cell is 
observable. This is well parameterised as a function of the fraction and properties of the grid cell 
that is observable. 

The uncertainty evaluation includes all sources of uncertainty (sensor errors, modelling errors, prior 
errors, retrieval indeterminacy and L3 sampling) expected for a valid retrieval of LSWT.  

5.1.2.  Limitations of LSWT uncertainty characterisation 

The standard equation for the uncertainty evaluation (and the retrieval) uses error covariance 
parameters that are, for LSWT, still relatively poorly known (this is quite common in optimal 
estimation approaches). Therefore, the uncertainty evaluation is still expected to improve in 
realism with further research and development. 

An aspect of uncertainty that is “unexpected” (in the sense of not being accounted for in the 
retrieval process) and not included in the quoted LSWT uncertainty is related to any errors that may 
arise in cloud detection / water-surface identification. This is addressed via a quality indicator 
approach, whereby quality level (QL) 5 means high confidence that the retrieval assumptions are 
fully met and that the uncertainty provided is valid. Lower QL is attributed where circumstances 
suggest that retrieval assumptions are less closely met and the uncertainty evaluation may be less 
valid (usually underestimated). For climate studies, use of QL 4 and 5 is recommended, and for 
these data the uncertainty evaluations are credible. 

Further aspects of LSWT uncertainty depend on the usage of the data. Where, for example, a user 
wishes to form a wider spatio-temporal average of LSWT, there is sampling uncertainty arising from 
the fact that the space-time box for the average is not fully sampled by satellite data (which may 
have cloud-related gaps and are obtained only when a satellite passes overhead). This is aspect 
goes beyond what can be provided in a product with per datum uncertainty, since it is usage 
dependent.  

5.2. Sources of uncertainty in LSWT 

The sources of uncertainty in any retrieval are the effects that cause errors in either the 
observations used or in other parameters that influence the retrieval result. 

Detector noise: Brightness temperatures for the sensors used for LSWT are noisy at levels between 
about 0.03 and 0.12 K. The combination of BTs into an LSWT estimate generally amplifies the noise 
by a factor of between 2 and 4 (for single-view retrievals as used here). In the LSWT CCI processing, 
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sensor-specific noise estimates are used, and the standard equations evaluate the noise 
amplification. 

Forward model errors: The fast radiative transfer model RTTOV is used within the optimal 
estimation framework. Errors in simulation of BTs also propagate to LSWT. These errors are not 
noise in the retrieval of LSWT from a given overpass because they are largely in common between 
lake pixels nearby to each other, and therefore the effect is locally systematic. The magnitude of 
RTTOV uncertainty is relatively poorly known, but appears to be comparable to the BT noise. The 
combined effect of detector and forward model errors is represented by an error covariance matrix 
in the optimal estimation framework.  

The effects of instrument calibration and forward model errors are indistinguishable in the 
uncertainty budget of optimal estimation: the simulation should ideally represent the instrument 
(with its calibration characteristics) and therefore we don't distinguish forward model error and 
calibration error in practice (when doing this sort of retrieval).  

The combined LSWT uncertainty from observation noise and forward model errors is typically of 
order 0.3 K.  

Prior error: Optimal estimation retrieval starts from a prior estimate of the state (here, of the 
LSWT and atmospheric water vapour) which is then updated using the new observations (here, BTs). 
The prior estimate is subject to uncertainty (otherwise, we would not need to do the retrieval) and 
therefore in a given instance there is a prior error that is unknown. Because of the indeterminacy of 
the retrieval (an intrinsic feature of inverse problems) some of the prior error persists in the 
retrieved LSWT. For LSWT, the prior uncertainty is around 1 K and typically 10% to 20% of any prior 
error persists. (The degree of propagation of prior uncertainty can be quantified in an optimal 
estimation framework using standard theory.) Thus, the uncertainty associated with this component 
is of order 0.1 K to 0.2 K. If the prior is biased, this effect will be systematic on the same spatio-
temporal scales as the prior errors. 

Retrieval error: The optimal estimation framework uses the error covariance information supplied 
to the retrieval along with the Jacobians (sensitivities) of the observations to LSWT (calculated by 
RTTOV) to evaluate the degree to which the retrieval result is uncertain, using standard equations 
(that also account for all the elements described above).  

Sampling error: All of the above sources relate to single pixel retrieval. Sampling errors arise when 
combining the swath pixels to gridded products (level 3). Not all cells are fully observed because of 
swath edges and intervening clouds that obscure the lake in the infrared. However, users interpret 
gridded data as representing the average across the entire cell. Therefore, when the cell is not 
fully observed, there is a sampling error which is equal to the difference the unobserved parts of 
the cell would make to the cell mean if they could be observed. This is generally considered to be a 
random effect (although biased circumstances can be imagined). Sampling uncertainty is greater 
when less of the cell is observed, and when the LSWT in the cell is more variable. The 
parameterisation of this in terms of the cell fraction observed and the variability observed follows 
that proposed by Bulgin et al (2016) for sea surface temperature. 

Somewhat balancing the “extra” sampling uncertainty is the effect of averaging down the noise 
when combining several LSWTs into a cell mean (the familiar “1¼√n” uncertainty reduction).  

Classification error: The uncertainty model is complete and valid for situations where the 
retrieval assumptions are met: cloud-free low-aerosol skies over ice-free lake surfaces. Where 
residual cloud or heavy aerosol is present, the retrieval may be affected to a degree not captured 
by the uncertainty evaluation. Likewise, if part of the surface is not water but is ice, land or 
flotsam, the obtained temperature interpreted as LSWT will have an additional error.  

As is apparent from the example in Figure 10 below, clouds may have fuzzy edges that make some 
degree of residual cloud contamination likely in some pixels used for LSWT. 
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Figure 10  (Left) False colour composite image of reflectance at 1600 nm (R), 870 nm (G) and 
670 nm (B). (Middle) the co-incident MERIS cloud indicator. (Right) The water 

detection score: QL 5 retrievals are made where this score reaches 4 or more. All 
panels for lake Michigan in USA on the 15-Feb-2011. 

 

There being no known means to evaluate classification uncertainty on a per datum basis, this 
aspect is handled via quality levels, as mentioned above. 

5.3. Uncertainties estimation methodology in LSWT 

Optimal Estimation retrieval has been used for LSWT for all the sensors since it is based on physics, 
and can be applied where no in situ data for retrieval tuning are available. This gives good reason 
to expect stable performance across domains in time and space. 

For single-view instruments, the LSWT is retrieved using an optimal estimation (OE) scheme 
(MacCallum and Merchant, 2012):  

𝑥ො = 𝑥 + 𝐺(𝑦 − 𝐹(𝑥))       [5.1] 

𝐺 = (𝐾்𝑆ఌ
ିଵ𝐾 + 𝑆

ିଵ)ିଵ𝐾்𝑆ఌ
ିଵ      [5.2] 

The retrieved state is the prior state plus an increment of  

𝐺(𝑦 − 𝐹(𝑥))         [5.3] 

F is the forward model and the matrix K expresses how the observations change for departures from 
the prior state, i.e., it is a matrix where a given row contains the partial derivatives of the BT in a 
particular channel with respect to each element of the state vector in turn. The partial derivatives 
are the tangent linear outputs from the forward model. Sக is the error covariance of the differences 
between the model and observed BTs. This error covariance matrix is the sum of the radiometric 
error covariance in the observations (S୭) and estimated error covariance of the forward model (S୫). 
Sୟ is the error covariance matrix for the prior state variables. 

It has been shown that a reduced state vector, z(x) = ቂ
x
w
ቃ where x is the LSWT and w the total 

column water vapour can be used in the retrieval instead of the full prior state vector xୟ. However, 
the full prior state vector is used in the forward model (see (MacCallum and Merchant, 2012). 
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Given the above, in LSWT processing the uncertainty due to noise (assumed uncorrelated between 
pixels) and due to uncertainty from retrieval-related factors (assumed correlated on synoptic 
scales) are estimated by: 

 ඥGS୭G
         [5.4] 

and: 

 ඥGS୫G
         [5.5] 

These equations are not a complete decomposition of uncertainty estimation using an optimal 
estimation framework, and will be refined in a future version. 

To determine the uncertainty of the gridded product, the components are combined according to 
their correlation structure. Over a grid cell, the uncertainty from propagated noise is treated as 
random between pixels, the uncertainty from retrieval-related factors is assumed to be systematic 
across all pixels and the sampling uncertainty is combined as a parameterised value obtained at the 
whole-cell level. 

The total uncertainty is available for users in the gridded product. 

5.4. End to end uncertainty budget in LSWT 

The evaluated uncertainty for a L3 LSWT is typically in the range 0.4 to 0.7 K. (All statements here 
are made on the basis of LSWT v4.0.) Two example uncertainty fields are shown in Figure 11. 
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Figure 11  Uncertainty fields for L3 product for (top) Swedish lakes (the largest being Vanern 
and Vattern) and (lower) east African lakes (the largest being Lake Victoria). 

As Figure 11 shows, uncertainty tends to increase towards lake edges and may be greater in cells 
where cloud has partly obscured the lake surface. 

Figure 12 shows a validation of satellite LSWT against in situ measurements of the sort that is 
routinely done for the 56 lakes for which (so far) intensive personal collection efforts have yielded 
usable data. The satellite data are coloured by QL (1 to 5, of which 4 & 5 are recommended for 
use), and uncertainty bars are plotted (not always visible beyond the circles). 
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Figure 12  Satellite observations (dots), in situ matches (white dots), in situ measurements 
(black line), satellite minus in situ temperature difference for quality levels 3,4,5 

(green line) and climatology (golden line) for lake Erken in Sweden in 2008. 

The LSWT variability is, for a given time of year, shown by the width of the climatological band 
(representing 1 standard deviation of variability around the climatological mean), and is about 2 K. 
Clearly, the satellite data tracks the LSWT fluctuations of this specific year (2008) around the 
climatological expectation, which are also seen in in situ data. The “signal to noise”, using the 
variability as the measure of signal, is thus ~ 2 K / 0.4 K = 5. Using the climatological range to 
represent the signal would give an SNR an order of magnitude larger. 

Using all the matches of the sort shown in Fig 4.3 across all the lakes (sample of opportunity, not 
geophysically representative), the statistics of satellite-minus-in situ difference are as in Table 1. 

 

Table 1 Statistics of satellite minus in situ LSWT per quality level. 

QL N Median/K Standard 
Deviation/K 

Robust Standard 
Deviation/K 

5 29819 -0.13 0.91 0.52 

4 11361 -0.28 1.18 0.79 

3 12618 -0.25 1.39 0.95 

 

Because of the water-temperature skin effect, the expected offset between these datasets is of 
order –0.17 K, and therefore we see that the QL 5 relative mean difference is well within an 
accuracy target of 0.1 K. For QL 5, the robust standard deviation is compatible with a closed 
uncertainty budget, assuming that in situ uncertainty is of order 0.2 K (a number based on 
experience of ocean-going buoys). The higher standard deviation indicates the presence of a 
minority of larger outliers (I.e., the distribution is not normal, but has heavy tails). Thus, for the 
majority of QL 5 data, the evaluated uncertainty appears to be of the right magnitude; the reasons 
for the heavy tails in the distribution, where discrepancies are larger than expected, can include in 
situ data where 0.2 K is overly optimistic as an estimate of uncertainty. The QL system is working as 
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expected, as shown by the fact that the SD and RSD increase in size for the lower quality levels, for 
which the evaluated uncertainty is likely to be underestimated. 

Overall, despite the limitations pointed out earlier, the uncertainty budget used and applied to the 
LSWT products is quantitatively realistic for QL 5 data, and is useful in discriminating more and less 
certainty LSWT data points. 

6. Lake Ice Cover (LIC) 

6.1. LIC Uncertainty characterization 

The assessment of uncertainty in the LIC product is currently performed through computation of a 
confusion matrix built on independent statistical validation. Thus, uncertainties are not assessed at 
a per-pixel level, but rather from classification error calculated from multiple samples/images. The 
reference data for validation are collected from the visual interpretation of imagery from several 
ice seasons (freeze-up and break-up periods) by skilled ice analysts. Classification error (%) derived 
from the confusion matrix is the metric used to report total uncertainty for each class (ice, water, 
cloud). In Lakes_cci LIC (L3) product v1.0, pixels belonging to the same class are simply assigned 
the same % error value in the uncertainty band provided. 

6.2. Sources of uncertainty in LIC 

The sources of uncertainty in the Lakes_cci LIC product are provided below along with a brief 
description of the expected effects from each source. It is important to note that the threshold-
based algorithm implemented for LIC v1.0 production uses MODIS Terra/Aqua Atmospherically 
Corrected Surface Reflectance 5-Min Level 2 Swath (MOD09/MYD09), Collection 6 (C6), data 
(Vermote et al., 2015) as input data. Corrections are applied for sensor degradation and 
atmospheric effects (described below) in the generation of MOD09/MYD09 products, and their 
impact on the quality of surface reflectance values has largely been characterized (Mortimer and 
Sharp, 2018; Vermote et al., 2015). On-orbit noise characterization of MODIS reflective and thermal 
bands is regularly monitored to ensure the fidelity of the on-orbit calibration to the prelaunch 
measurement (Angal et al., 2015; Sun et al., 2014). The primary source of uncertainty in the LIC 
product is expected to come from the retrieval algorithm (including the selection of sampled 
sites/pixels used to develop the algorithm). 

Detector noise/sensor degradation: The MODIS sensors (launched on the Terra and Aqua satellites 
in December 1999 and May 2002, respectively) are currently operating well beyond their life 
expectancy of 6 years; their detectors are degrading. However, MODIS was designed with stringent 
requirements on the sensor’s calibration accuracy and data product quality. It is equipped with a 
set of on-board calibrators (OBCs), including a solar diffuser (SD) and a solar diffuser stability 
monitor (SDSM) for the reflective solar bands (RSB) calibration and a blackbody (BB) for the thermal 
emissive bands (TEB) calibration (Xiong et al., 2005). MODIS RSB on-orbit calibration is reflectance 
based using the on-board SD plate with its bi-directional reflectance factor (BRF) determined pre-
launch. MODIS TEB are calibrated on-orbit using the onboard BB. The MODIS Level 1B (L1B) 
radiance/TOA reflectance is the primary deliverable product for the RSB and TEB, which is used to 
derive the MOD09/MYD09 surface reflectance L2 products used as input in the LIC retrieval 
algorithm. 

For technical reasons, not elaborated upon herein (see MODIS Characterization Support Team 
website, https://mcst.gsfc.nasa.gov), nonphysical trends in MODIS Terra data products, which 
result from calibration drift, have been observed and are well documented. On-orbit calibration 
procedures to mitigate long-term calibration drift, particularly at the shorter wavelengths, have 
been applied to MODIS C6 L1B data. Recent analyses of MODIS surface albedo C6 product (MCD43A3; 
daytime clear-sky white- and black-sky shortwave broadband data) have revealed statistically 
significant albedo declines over the Greenland Ice Sheet and Queen Elizabeth Islands glaciers 
(Canada) thought to be physically real, which gives us confidence in the MOD09/MYD09 C6 data for 
generation of the LIC product and its use in future analyses. 
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Observation noise: Optical thickness of the atmosphere and geometric conditions (view zenith 
angle and solar zenith angle) introduce some uncertainty in retrieved surface reflectance (level 2) 
from TOA reflectance (level 1b) measurements. In the case of the MODIS (MOD09/MYD09) surface 
reflectance data used as input in the LIC retrieval algorithm, uncertainty has been characterized 
and estimated by NASA (Vermote and Vermeulen, 1999; Vermote and El Saleous, 2006; Vermote et 
al., 2015). Vermote and El Saleous (2006) report the overall average accuracy in MOD09/MYD09 
(based on Collection 5) to be 0.006 reflectance units or 5% relative whatever is higher under clear 
sky conditions, 0.007 reflectance units or 7% relative whatever is higher under average sky 
conditions, and 0.007 reflectance units or 9% relative whatever with high aerosol loading 
conditions. For MOD09/MYD09 Collection 6 data, Vermote et al. (2015) indicate that the 
performance of the atmospheric correction algorithm degrades with increasing view and solar 
zenith angles as well as increasing aerosol optical thickness. The authors state that the accuracy of 
the atmospheric correction is typically ±(0.005 + 0.05*reflectance) under favourable sky conditions 
(low aerosol content). Given the reported quality of the MOD09/MYD09 products, it is not expected 
that atmospheric and geometric conditions will introduce a significant level of error in the LIC 
product in most cases. Large solar zenith angles (SZA) (ca.  > 70 degrees) may increase the 
uncertainly in detection of ice cover due to lower surface reflectance. However, the surface 
reflectance threshold values used by LIC algorithm have been devised to also detect ice under low 
solar illumination conditions (SZAs 70-85 degrees). 

Algorithm: The algorithm implemented for Lakes_cci LIC v1.0 production follows a threshold-based 
approach. Similar to machine learning algorithms, lake sites (sampled pixels) for algorithm 
development and validation must be carefully selected to capture the broadest suite of conditions 
(e.g. clear-sky, overcast, partly cloudy, low to high solar zenith angles, open water from low to 
high turbidity, clear and thin ice, snow-covered ice) that have an impact on the magnitude and 
variations of surface reflectance (MOD09/MYD09) for the classes of interest; here ice, open water 
and cloud. The ice/open water detection part of the algorithm uses MODIS bands 2 (NIR), 3 (blue) 
and 4 (green). The thresholds for the three bands have been optimized using sampled data (AOIs) 
from 17 lakes across the Northern Hemisphere (n = 386,309 pixels). Sampled (training) data were 
randomly and evenly separated into 100 groups. An objective function for optimization was applied 
based on a trade-off equation (trade-off value= ε2+ s2, where ε2 is the mean classification error of 
the training data and s2 is the variance of 100 errors computed from each group). Using the three 
MODIS bands, the algorithm iterates through each possible combination of bands for surface 
reflectance values between 0 and 0.15 at an interval of 0.001, resulting in a total of 3,375,000 
combinations. Each combination has been tested using the trade-off value and the combination 
with the lowest trade-off value was selected as the most optimal (see ATBD for details). While this 
objective function leads to threshold values aimed at minimizing errors, uncertainty in correct class 
assignment is expected to increase where cloud cover partly obscures the lake surface (towards the 
edge of cloud cover, thin clouds, cloud shadows) (Figure 13). 
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Figure 13  Example of impact of cloud cover on LIC product, Lake Huron, 14 February 2019. 
(Left) LIC daily product from MODIS Aqua/Terra, (Centre) false colour composite of 

MODIS Aqua image, and (Right) false colour composite of MODIS Terra image. Edge of 
cloudy area to the left of open water area (blue) is mislabelled as ice (yellow) in the 

LIC product. 

Misclassification: In the processing chain implemented for LIC v1.0 production, the maximum 
water extent mask derived from ESA CCI Land Cover v4.0 at 150-m resolution is used to determine 
which pixels within a lake will be processed with the threshold-based algorithm to determine class 
belonging. Since the mask represents maximum water extent, it can introduce some 
misclassification errors along the shoreline of lakes (i.e. mask spilling over land so that some MODIS 
land pixels will be incorrectly flagged as lake pixels). A cursory look reveals that this may indeed be 
the case (Figure 14), but the full impact of this mask remains to be quantified. In addition, it has 
been found that when applying the algorithm at the global scale, some pixels may be misclassified 
as ice covered where lakes are dried-up in summer due to the high reflectance of sediments from 
exposed lakebeds. The presence of aquatic vegetation and algae blooms during the ice-free season 
change the reflectance characteristics and may also cause erroneous ice cover detection in the 
spring or summer (Riggs and Hall, 2015). To reduce uncertainty introduced from these varied 
sources, a suite of options will be examined (and the best implemented as part of the existing 
processing chain) leading to the release of LIC v2.0 product. 

 

Figure 14. Example of pixels along the shoreline of Lake Ontario mislabelled as ice (in 
yellow), 9 February 2019. 
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6.3. Uncertainties estimation methodology in LIC 

For Lakes_cci LIC product v1.0, class uncertainty is computed from a confusion matrix built on an 
independent statistical validation process. The confusion matrix shown in Table 2 was produced 
from AOIs (n = 165,697 pixels) collected through visual interpretation of 108 images (MODIS Aqua 
and Terra at 17 lakes) spread over three ice seasons (2002-2003, 2009-2010, and 2016-2017). 

Table 2 shows the overall accuracy (95.54%) as well as the accuracy of individual classes (91.71% for 
ice cover, 98.85% for water, and 95.63% for cloud cover). Uncertainty is reported as % error from 
classification (100 - % class accuracy) for each class. Currently, pixels belonging to the same class 
are given the same error value. 

Table 2: Confusion matrix with class accuracies for Lakes_cci LIC product v1.0. 

  Retrieval Algorithm 
Lakes_cci LIC  Ice Water Cloud 

 

Accuracy 

U
se

r-
de

fi
ne

d Ice 46968 2737 1510 91.71% 
Water 506 57435 165 98.85% 

Cloud 2272 192 53912 95.63% 

  Overall Accuracy: 95.54% 
 

Following the release of the LIC v1.0 product, efforts will be placed in identifying additional 
metrics for consideration and possible implementation leading to product v2.0. For example, 
probability, which informs about the confidence in the classification, is considered as a valuable 
proxy for the uncertainty associated with machine learning (ML) algorithms; algorithms that are 
currently being considered for LIC v2.0 production. 

6.4. End to end uncertainty budget in LIC 

The evaluated uncertainty for LIC L3 product is 1.15% for open water, 4.37% for cloud cover and 
8.29% for ice cover, as derived from accuracy assessment (confusion matrix) of each class through 
independent statistical validation. An example of the uncertainty map for the Laurentian Great 
Lakes, Canada/USA, is shown in Figure 15. 

 

Figure 15. Uncertainty map of the Laurentian Great Lakes, Canada/USA, 14 February 2019. 
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7. Lake Water-Leaving Reflectance (LWLR) 

7.1. LWLR Uncertainty characterization 

The uncertainty characterization of the LWLR products, including water-leaving reflectance, 
chlorophyll-a and turbidity, is based on end-to-end validation of the satellite product against in situ 
matchups with satellite measurements. These results are separated per optical water type and 
extrapolated over the applicable range of each individual algorithm used to compute a single 
measurement. Uncertainties are thus simultaneously characterized for the whole system including 
satellite sensor, atmospheric correction, and algorithms for water column substance 
concentrations.  

End-to-end characterization of uncertainty is more feasible than the propagation of uncertainty 
associated with each part of the system, because the processing chain includes elements of non-
linear optimization in algorithms with multiple free variables introducing a high degree of 
complexity.  

The characterization of uncertainty based on in situ validation yields an uncertainty function for 
each desired uncertainty metric, which is either the relative uncertainty (%), relative unbiased 
uncertainty (%, not including systematic effects) or absolute relative uncertainty (%) depending on 
the specific product. Where these uncertainty functions are based on a sufficient number and range 
of in situ observations, they are used to propagate product uncertainty through each contributing 
algorithm and for each measurement or pixel.  

Lakes_cci marks the first introduction of the per-pixel uncertainty products in the Calimnos multi-
sensor satellite data processing chain. The evaluation of uncertainty is entirely based on the Lake 
Bio-optical Measurements and Matchup Date for Remote Sensing (LIMNADES) data set of in situ 
optical-biogeochemical observations, contributed by various research groups and curated at the 
University of Stirling. Over time, it is expected that the number of recent observations in this 
database will grow and this would lead to more accurate estimates of uncertainty for currently 
under-sampled water types and their corresponding algorithms.  

7.2. Sources of uncertainty in LWLR 

The following is an overview of sources of uncertainty and their expected (or unknown) effect on 
the LWLR product or derived water column products. For each element it is indicated whether the 
uncertainty is planned to be studied in detail or only part of the end-to-end uncertainty 
characterization.  

Detector noise: this effect is expected to be random and variable over time. It is included in the 
end-to-end uncertainty characterisation insofar as it is present in the match-up data set used during 
validation of individual algorithms. It is possible, for some sensors that the magnitude of this effect 
changes over time. We expect this effect to be accounted for (if present) during analysis of inter-
sensor bias, when the observation periods of two sensors overlap.  

Observation noise: certain observation effects, notably the optical pathlength to the target under 
variable viewing and illumination angles, are expected to influence the magnitude in uncertainties 
resulting from atmospheric correction of the LWLR signal. However, due to limited reference data 
we do not anticipate that we will be able to isolate this effect. Due to the non-linear optimisation 
methodology of POLYMER, the atmospheric correction algorithm used for at least MERIS and OLCI 
and candidate for MODIS, it is not possible to predict whether the effect is likely positive or 
negative, this will equally depend on the shape and magnitude of non-atmospheric components, 
including LWLR and sun glint.  

Algorithm effects: It is commonly understood that the dominant source of error in deriving LWLR 
stems from the separation of atmospheric path radiance and LWLR. This is an optimisation problem 
occasionally suffering a relatively large number of free variables, only bounded by supplying 
specific wavebands which respond to either atmospheric or water optical features. The algorithm 
uncertainty also relates to adjacency effects, since the atmospheric correction error is expected to 
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increase with proximity to land and specifically when LWLR departs from zero in the near infra-red 
and shortwave infra-red, where highly efficient light absorption by water is a dominant optical 
feature. 

Algorithms for the retrieval of optical-biogeochemical water column properties have limited ranges 
of applicability, e.g. to relatively clear or turbid waters. Candidate algorithms in Lakes_cci are 
calibrated against in situ data to counteract biases in both LWLR and the algorithms themselves. 
This takes place within a framework of Optical Water Types to limit the application of any given 
algorithm outside of its calibrated range. For some water types, calibration, validation and 
resulting characterisation of uncertainty still relies on the same data set, due to limited availability 
of satellite match-ups. Where possible, the optimisation and characterisation of uncertainties are 
separated.  

Calibration effects: the methodologies and accuracy of in-flight sensor calibration have evolved 
over several generations of ocean-colour sensors. Degradation of both sensor and on-board 
calibration materials and the need to calibrate the response of a (usually) 2-dimensional sensor 
array which may further include multiple detectors, add to the complexity of this challenge. Two 
activities contribute to achieving consistent sensor response between satellite missions. Sensor-to-
sensor comparisons cannot solely rely on simultaneous observations, because variability across and 
between detectors needs to be accounted for, while different viewing and illumination angles will 
introduce real divergence between sensors. Alternatively, system vicarious calibration aligns the 
system of sensor response plus atmospheric correction between sensors and optionally against 
reference measurements at ground level. Within Lakes_cci we will primarily consider vicarious 
calibration during the overlap of sensor missions. This approach does not specifically attribute 
uncertainty (specifically, bias) to the sensor but prioritises harmonized retrievals of LWLR despite 
differences in sensor capabilities such as radiometric sensitivity or waveband configurations.  

Misclassification effects (e.g. cloud, land, water, subpixel variation): For inland waters, the 
presence of cloud or land may introduce an adjacency effect (usually a brightening in the near 
infra-red) on nearby water pixels. This adjacency effect leads to misinterpretation of the 
contribution of the atmosphere to signal at the sensor, usually resulting in over-correction for 
atmospheric effects and low or negative water-leaving reflectance values. This effect propagates to 
the derived products (chlorophyll-a and turbidity) depending on specific algorithm sensitivity to 
these effects. This effect is not systematic in nature and thus expected to be reflected in product 
uncertainty.  

Moreover, inland waters are highly dynamic and optically complex waters, where vegetation 
(including both algae and macrophytes) occur in irregular shapes which can fully or partially cover 
image pixels. The uncertainties on chlorophyll-a/turbidity estimates would then be introduced by 
mixed pixels containing both algae and algae free surfaces. For some shallow waters, the presence 
of submerged or emergent macrophytes may also introduce uncertainties in chlorophyll-a retrieval 
since the current algorithms do not necessarily separate vegetation (particularly with sub-pixel 
cover). We do not anticipate to isolate this effect because such cases are not typically included in 
in situ reference observations. 

7.3. Uncertainty estimation methodology in LWLR 

LWLR per-pixel product uncertainties are extrapolated from end-to-end algorithm validation. For 
LWLR, the validation results are specific to each combination of satellite sensor and algorithm. For 
products generated from LWLR (chlorophyll-a, turbidity) they are further separated by Optical 
Water Type (OWT). A flow chart of the validation procedure yielding the uncertainty models from 
which per-pixel uncertainties are generated, is provided in Figure 18.  

The uncertainty of LWLR is always expressed as a function of waveband. Additionally, the 
amplitude of reflectance (in case the response is non-linear) and the time difference between 
satellite and in situ reference observations can be evaluated. For the propagation of the 
uncertainty model to individual satellite observations (pixels) only the waveband and optionally the 
amplitude are taken into account.  

If the number of matchups between in situ and satellite observations is low, the matchup time 
window may be extended at the expense of higher uncertainties. The time window will not exceed 
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more than 7 days from the satellite observation. The minimum number of matchups to derive 
statistically robust estimates of uncertainty will be in the order of 50-100 observations distributed 
over multiple lakes and spanning a range of reflectance amplitudes representative of the global 
variability in LWLR. When such conditions are not met for a given sensor-waveband combination, 
the uncertainty model is not used; corresponding pixels are flagged as having unknown product 
uncertainty.  

Ultimately, the validation procedure for LWLR yields uncertainty models per sensor-waveband for 
the relative uncertainty (RU, %) and relative unbiased uncertainty (RUU, %). 

The uncertainty estimation of RU and RUU for LWLR is conducted by first calculating the difference 
and unbiased Difference (see below) between the matchups of the in situ and remote sensing Rw for 
each band.  

Difference 

The difference is expressed as: 

Diff = RIS – Rsat          [7.1] 

Where RIS is the in situ observation of Rw, and Rsat is the remotely sensed Rw. 

Unbiased Difference (UD) 

The UD is defined as the distance between the remote sensing Rw and the regression line (between 
the in situ and satellite Rw matchups). This removes systematic effects from the uncertainty 
estimate which is desirable when the product is subject to further calibration (as is done with 
downstream chl-a and turbidity algorithms). The linear regression line (Y) between in situ and 
remote sensing Rw matchups at each waveband can be written as  

Y = a*RIS + b         [7.2] 

Where a and b are coefficients from the regression. The UD can be then obtained by subtracting the 
Y from the satellite Rw 

UD = Rsat – Y         [7.3] 

Secondly, linear regression relationships of each band are obtained between the satellite Rw and 
the uncertainty (Difference and Unbiased Difference) using the in situ and satellite Rw matchups 
(Figure 16 and Figure 17 below).  

Finally, the linear models of Difference and Unbiased Difference are then applied to each pixel. The 
Relative Uncertainty and the Relative Unbiased Uncertainty of each pixel can be calculated as 
follows: 

Relative Uncertainty (RU) 

This metric is expressed as  

RU (%) = ( Diffpix  / Rpix )*100%        [7.4] 

Where Diffpix is the retrieved difference of each pixel using the models in Figure 16 and Rpix is the 
corresponding Rw on the satellite image.  

Relative Unbiased Uncertainty (RUU) 

RUU (%) = ( UDpix / Rpix )*100%       [7.5] 

Where UDpix is the retrieved Unbiased Difference of each pixel using the models on the Figure 17. 

Please note that the RU and RUU calculated for the LWLR are both not absolute, in order to show 
the systematically under-estimation of LWLR (Figure 16, Figure 17) due to the challenges that are 
faced with accurately performing atmospheric correction in optically complex inland waters. The 
application boundary constraints of uncertainty models for each waveband are determined based on 
the matchup dataset. If any waveband has no associated uncertainty model (e.g. in situ data were 
too sparse) or the LWLR is out of the application range, the pixel will be flagged as having unknown 
uncertainty in the uncertainty product.  



D2.3: End-to-End ECV Uncertainty Budget (E3UB) 

 

 29/34 

 

Figure 16 Linear correlation between Remote sensing Rw and the Difference between in situ 
and remote sensing Rw matchups (among which the wavebands of 865, 885 and 900 

nm are not included in the Rw uncertainty products because of the sparse 
matchups). 

 

Figure 17 Linear correlation between Remote sensing Rw and the Unbiased Difference between 
in situ and remote sensing Rw matchups (among which the wavebands of 865, 885 
and 900 nm are not included in the Rw uncertainty products because of the sparse 

matchups). 

The OWTs are not taken into account during validation of LWLR due to the typically low number of 
in situ reference measurements that are available. The OWTs are, however, considered in the 
validation of algorithms for chlorophyll-a and turbidity since these vary considerably in their 
suitability to describe water column properties of the different water types.  
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The uncertainty of the algorithms for chlorophyll-a and turbidity is provided for each of the 
statistical metrics listed above. Each algorithm is evaluated against the full matchup data set 
available for the observation period of the satellite sensor. This includes samples with a value 
considered outside of the applicable range of the individual algorithm. This is done because OWT 
membership is a fuzzy property (one observation belongs to multiple classes, with varying degrees 
of similarity) so that a clear separation of in situ data and a subset of algorithms cannot be made 
objectively. This approach also ensures that the uncertainty model captures the reduction of 
uncertainty with increasing OWT class membership, which is ultimately how the per-pixel 
uncertainty is generated. Finally, this has the added benefit that the number of data points on 
which the analysis is based is higher than if any arbitrary thresholds were used, which results in a 
more robust statistical model of product uncertainty.  

 

 

Figure 18 Flow chart of the end-to-end validation of LWLR products against in situ 
observations, resulting in uncertainty models.  

 

As shown in Figure 18, the uncertainty model per OWT and chlorophyll-a or turbidity algorithm is 
expressed as a function of OWT class membership. An algorithm that is suitable for a given OWT and 
water column property is expected to show a linear response over its applicable range.  The 
uncertainty metric used for the chlorophyll-a or turbidity algorithm is absolute relative uncertainty 
(ARU, %), which is defined using the matchup dataset as follows: 

ARU (%) = (|xd – xm| / |xm|) * 100%      [7.6] 
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where xd is the satellite derived value from the chlorophyll-a/turbidity algorithms and xm is the in 
situ measured chlorophyll-/turbidity. 

In the Lakes_CCI processor, the top-3 ranking OWT scores and their corresponding algorithm results 
are included in the algorithm blending procedure, which provides a weighted average of the 
algorithm results corresponding to those 3 OWTs. An example of the relationship between an ARU 
metric and OWT class membership is given in Figure 19 which shows the weighted chlorophyll-a by 
the top 3 OWT class membership in relation to the membership of OWT 9 using matchup data for 
the entire MERIS observation period. This shows a robust and relatively low ARU over a wide range 
of class membership values, indicating a wide application range of this scheme. There is a slight 
skew of the RU towards lower values which increases with class membership score of OWT 9, 
suggesting that the blended algorithm is optically suited for this OWT. A linear regression fit of this 
relationship provides the ARU uncertainty e of this algorithm-OWT combination as  

[7.7] 

where a and b are the slope and intercept of the linear fit and subscript (4) is the OWT class.  

Finally, to compute chlorophyll-a product uncertainty for each satellite observation, the mapping of 
different algorithms corresponding to OWT membership scores are taken into account.  The 
uncertainties associated with each of the selected algorithms are weighted in the same fashion, 
taking the sum of each of the top-3 OWT uncertainties multiplied by membership score for that 
OWT relative to the sum of membership scores of the number (n=3) of classes considered, yielding 
the per-pixel uncertainty E:  

𝐸 = ∑ 𝑒


∑ 

సభ


ୀଵ         [7.8] 

Upper and lower boundary of the OWT membership score for the application of each OWT 
uncertainty model is determined based on the matchup dataset. If the OWT membership score is 
out of the application range in the uncertainty calculation procedure, then the pixel will be flagged 
as having unknown product uncertainty.  

 

 

 

Figure 19 Correlation of Absolute Relative Uncertainty (ARU) of the  top-3 weighted 
chlorophyll-a by the OWT membership score in relation to the membership score for 

optical water type 9. Reproduced from Liu et al. (in prep). 
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7.4. End to end uncertainty budget in LWLR 

Applying the uncertainty models to MERIS observations result in uncertainty maps such as those 
shown in Figure 20. Maps are shown for each of the uncertainty products provided in the CDRPv1.0 
over lakes Vänern and Vättern in Sweden on 26th July 2006. All uncertainties are relative product 
uncertainty, with Turbidity and chlorophyll-a relative uncertainty (RU) as their absolute values. The 
uncertainty products for LWLR are not absolute in order to show the systematic underestimation of 
reflectance. For the latter, both relative uncertainty (RU) and relative unbiased uncertainty (RUU) 
show negative uncertainties in the two lakes, which illustrates ‘over-correction’ for atmospheric 
effects (Figure 20a and b). Positive uncertainty values for Rw665 are observed near land, as a result 
of the land-adjacency effect. In terms of turbidity, patches with high uncertainties are observed 
both in open water and near land (Figure 20c). For chlorophyll-a, generally lower uncertainties are 
found in lake Vänern (in the north-west) compared to lake Vättern (south-east), as seen in Figure 
20d. This is consistent with smaller uncertainties in Rw(665) in lake Vänern.   

 

Figure 20 Per-pixel uncertainty products. (a) Relative uncertainty of Rw(665), (b) Relative 
unbiased uncertainty of Rw(665), (c) Absolute relative uncertainty of Turbidity and 

(d) Absolute relative uncertainty of chlorophyll-a. 
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