ESA Sea Level Climate Change

sropean Space Ageacy Initiative Extension Phase

WP 4.1 NOC/SKYMAT Ltd

Validation with Tide Gauges

Francisco M. Calafat, National Oceanography Centre, UK
Andrew Shaw, SKYMAT Ltd., UK

National
Oceanography Centre
NATURAL ENVIRONMENT RESEARCH COUNCIL

Sea Level CCl+ Phase 1 KO Meeting 29t March 2019



http://www.esa.int/esaCP/index.html

WP 4.1: Aim

To conduct a ‘global’ validation of the coastal
altimetry product developed by TUM and LEGOS

during this project against observations from a
carefully selected set of tide gauges.

The validation will be done in terms of:

e Sea-level annual cycle (amplitude and phase)
e Interannual variability

e Linear trend
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WP 4.1 Datasets

Altimetry Products
Supplied TUM/LEGOS along track products, using Jason 1 to 3, Envisat ?

Tide-Gauge Products

High-frequency (e.g., hourly) records from BODC and UHSLC

Monthly mean values from PSMSL and GPS data (http://www.sonel.orq)
DAC for tide-gauge data from AVISO

GIA data for both tide-gauge and altimetry data from ICE-6G

Ocean Model Data (1965 to 2015)

Nucleus for European Modelling of the Ocean (NEMO) ORCA NOOG6 is a
state-of-the-art modelling framework of ocean related engines. The spatial
resolution is 1/12 degree with a monthly temporal resolution.
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http://www.sonel.org/

WP 4.1 : Methodology

« Validation at different timescales is important because the drivers of sea
level (SL) change vary with timescale. The implication is that the
altimeter’s performance might depend on the timescales.

« Similarly, SL changes at different tide-gauge locations might be driven by
processes with different length scales. Because altimeter measurements
are rarely collocated with tide-gauge sites, the validation will necessarily
be better at sites with long length scales.

« The approach followed here will involve:
1. Extract length scales at tide-gauge sites based on NEMO sea level.
2. Group tide-gauge sites according to length scales.

3. Collocation in time of hourly tide-gauge records with altimeter data
(similar to Calafat et al., 2017; Passaro et al., 2018).

4. Comparison in terms of sea-level annual cycle, inter-annual variability,
and trends, as function of distance to the coast (and tide gauge).
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Bayesian AR1 regression model for annual

cycles trends

Trends and annual amplitude/phase are computed using a regression
model with errors assumed to follow an AR1 process. We adopt a

Bayesian approach, thus modelling the unknown parameters as
random variables.

Advantages
It provides more realistic standard
Ve = Bx; + e errors
e, = pe,_1 + ug, u~N(0,02) In the presence of serial correlation,

this estimator is more efficient than
OLS (i.e., trend estimates are more
Unknown parameters, recise
0= (b, p'az) including trend P )
Computing standard errors for any
p(0|yr) —— Posterior distribution function of the parameters is
= (what we sample from) straightforward (e.g.,

amplitude/phase of the annual cycle)
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Example of grouping the TGs based on

decorrelation length scales in the North Sea

North Sea Trends using NEMO 12, 1965-2012
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The North Sea
(2002 to 2016)

Summary: SL_cci Bridging Phase of trends (mm/yr) from

Tide Gauges and altimetry Xtrack/ALES.

TG Trends Xtrack/ALES Optimal Distance
mm/yr mm/yr to the coast(km)
Group 1 -0.28 + 1.31 -2.40 + 4.43 4
Group 2 0.60 + 1.43 -0.95 + 3.14 4
Group 3 -0.11 £+ 2.38 -1.39 + 4.04 4
Group 4 -0.02 + 3.82 -0.56 + 2.45 5
The Mediterranean Sea
(2002 to 2016)
Group 1 1.30 + 1.35 0.01 £ 1.54 4
Group 3 4.12 + 0.91 0.71+ 2.05 4
Group 4 4,78 + 2.44 2.09 +1.32 4
Group 5 5.78 + 1.37 3.42 +2.19 9
Group 6 3.14 + 2.02 1.29 + 1.91 4
Group 7 2.84 +1.63 3.59 +1.57 4
Group 8 2.74 + 2.39 2.39 £+1.25 9
The West African Region
(2002 to 2016)
Dakar 2 1.64 + 0.98 3.51 £1.32 4

Please note, the best optimal distance to the coast was 4 km, based on
the lowest SLA noise and the SE from the Altimetry trends.
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