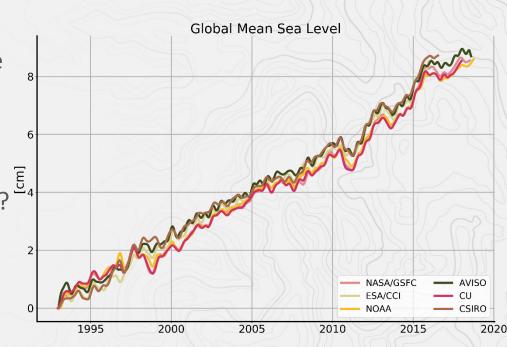


Uncertainty in satellite estimate of Global Mean Sea Level changes, trend and acceleration


M. Ablain, R. Jugier, B. Meyssignac, L. Zawadzki, A. Ribes, A. Cazenave, J. Benveniste, <u>P. Prandi</u>

Overview

- GMSL from T/P, Jason-1, 2 & 3,
- Solutions from different groups are not independent,
- Can we estimate reliable uncertainties for GMSL timeseries ?
- essential for budget closure, detection & attribution, ...

Mathematical elements

Express SLA as forced response, plus IV, plus error:

$$Y = AX + IV + E$$

Then the forced response is given by:

$$\hat{A} = (X^t X)^{-1} X^t Y$$

And its variance-covariance by:

$$\Omega_{\widehat{A}} = (X^t X)^{-1} X^t C_E X (X^t X)^{-1}$$

Mathematical elements

$$\Omega_{\widehat{A}} = (X^t X)^{-1} X^t C_E X (X^t X)^{-1}$$

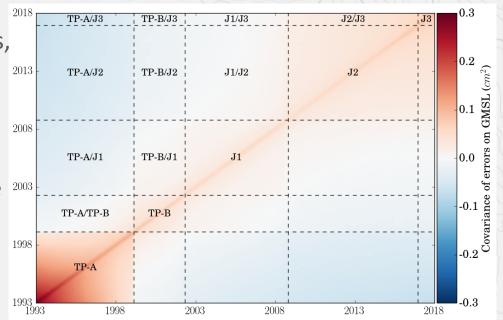
• C_E is the variance-covariance matrix of errors,

- Goal: estimate C_E
- Method: combine elementary error terms

Measurement system errors only, no internal variability

Altimetry Errors

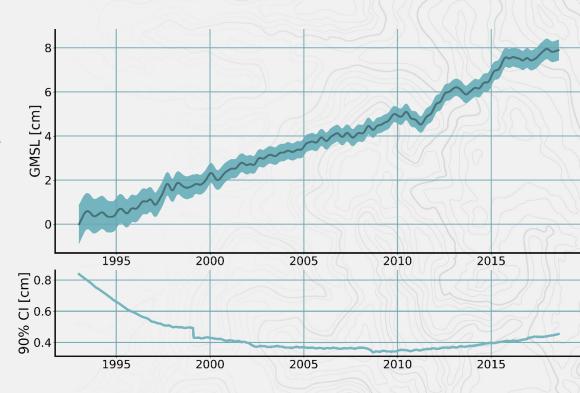
Error source	Category	Magnitude (at 1 σ)	References
High frequency errors: altimeter noise,geophysical corrections, orbits	correlated error $(\lambda = 2 \text{ months})$	σ = 1.7 mm for TOPEX period σ = 1.5 mm for Jason-1 period σ = 1.2 mm for Jason-2/3 period	Cal/Val activities
Medium frequency errors:geophysicalcorrections, orbits	correlated error (λ = 1 year)	σ = 1.3 mm for TOPEX period σ = 1.2 mm for Jason-1 period σ = 1 mm for Jason-2/3 period	Cal/val activities
Large frequency errors: wet tropospherecorrection	correlated error $(\lambda = 5 \text{ years})$	σ = 1.1 mm over all the period (\Leftrightarrow to 0.2 mm/yr for 10 years)	Legeais et al, 2015, Thao et al., 2014
Large frequency errors: orbits (gravity fields)	correlated error (λ = 10 years)	σ = 1.12 mm over TOPEX period (no GRACE data) σ = 0.5 mm over Jason period (\Leftrightarrow to 0.05 mm/yr for 10 years)	Couhert al al., 2015 Rudenko et al., 2017
Altimeter instabilities on TOPEX-A/B	drift error	σ = 0.7 mm/yr on TOPEX-A period (*) σ = 0.1 mm/yr on TOPEX-B period	Watson et al, 2014; Beckley et al., 2017; Ablain et al. 2017
Long-term drift errors: orbit (ITRF and GIA)	drift error	σ = 0.12 mm/yrover all the period	Couhert et al., 2015 Spada, 2017
Error when linking altimetric missions together.	bias errors	σ = 2 mm for TP-A/TP-B σ = 0.5 mm for TP-B/J1, J1/J2, J2/J3.	Zawadzki et al., 2018



Error Covariance

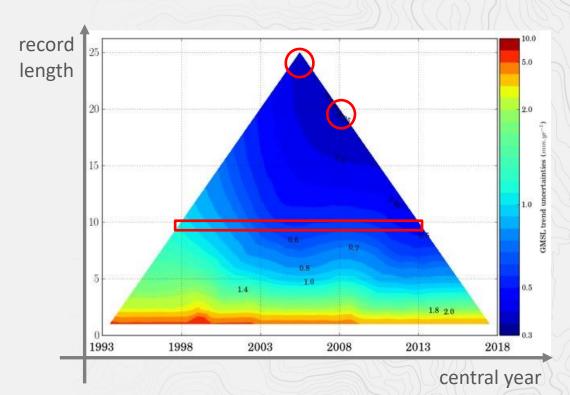
- Total error covariance,
- Sum of all individual contributions,
- Is used to estimate 90% Cl on trends and acceleration,

- Errors covary from one end of the record to the other,
- Available to users
 https://doi.org/10.17882/58344



Error enveloppe

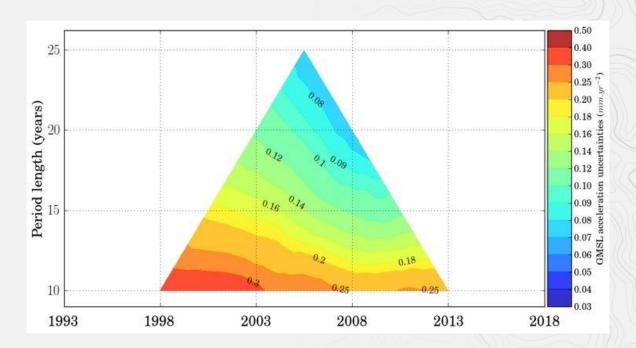
- Error enveloppe as the square root of matrix diagonal,
- Corrections for the TOPEX-A drift fall outside the enveloppe



GMSL trend uncertainty

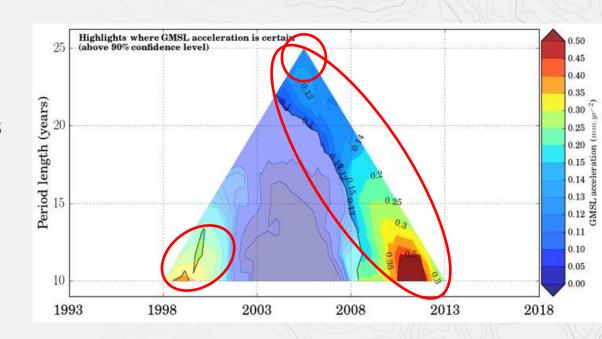
- 25-yr record:3.35 ± 0.4 mm/yr
- Uncertainties decrease over time
- [1998-2018] is the most accurate

± 0.35 mm/yr



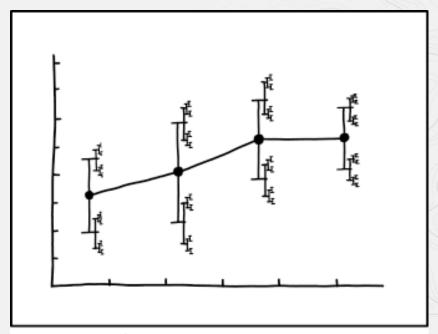
GMSL acceleration uncertainty

Acceleration uncertainty on periods of 10 years and longer



When are accelerations detected?

- Any 10+ year record including 2018 shows significant acceleration
- Recovery from Pinatubo is detected
- Significant acceleration on the 25-yr record
 0.12 ± 0.07 mm/yr²


Conclusions

- Error covariance description, available to users
 - To derive confidence levels on any metric
 - https://doi.org/10.17882/58344
- Used to derive confidence on GMSL trend and acceleration
 - $-3.35 \pm 0.4 \text{ mm/yr}, 0.12 \pm 0.07 \text{ mm/yr}^2$
 - On 25 years, at the 90% CL
- Uncertainty built from current knowledge of system errors,
 - shoud be revised and updated to reflect new findings,
 - does **not** include internal variability,
 - there are uncertainties on the error budget

I DON'T KNOW HOW TO PROPAGATE ERROR CORRECTLY, SO I JUST PUT ERROR BARS ON ALL MY ERROR BARS.

https://xkcd.com/2110/

