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1. Purpose and scope of this report 
 

This document is a continuation from the 2015 version 1 which reported on CMUG CCI 
evaluations during the first 12-months of Phase 2. Its purpose is to assess the quality of the 
latest versions of CCI products and update feedback to ESA and the CCI teams. This 
assessment is being conducted by the climate modelling and reanalysis centres in the CMUG 
consortium using CCI Phase 2 data and includes a wide range of data and model interactions 
(assimilation, boundary conditions, optimisation, reanalysis, sensitivity studies etc). This 
second phase of evaluation continues to examine the following top level questions: 

• Are the CCI data products of ‘climate quality’ i.e. is their quality adequate for use in 
climate modelling, reanalysis and for wider research applications? 

• Are the error characteristics provided by CCI products adequate? 
• Do the products meet the Global Climate Observing System (GCOS) quality 

requirements for satellite for Essential Climate Variables (ECV)? 
• Is the quality of the products sufficient for climate service applications? 

 

2. CMUG methodology and approach for assessing quality 
in CCI products 

 

This report describes the results in the second 12 months of CMUG Phase 2 from CMUG 
Task 3 “Assessing consistency and quality of CCI products”. The work is spread across 
fifteen Work Packages1 (WP) listed in Table 1, which includes the CCI product being 
assessed, the CMUG model being used to make the assessment, and the type of climate 
modeling experiment. 
 
The CMUG results presented here provide information on the accuracy, consistency and 
usefulness of the latest CCI data sets. The analysis assesses the suitability of the CCI datasets 
for coupled climate model and reanalysis applications and evaluates the impact of the data 
products on model based studies, including quantification of the uncertainties associated with 
both the models and the observations (see Table 1). This information is aimed at the CCI 
teams producing the data but is also of use to other modelling centres which will use CCI data 
in the future. 
 
The modeling experiments are described in the following sections of this report, and cover the 
following topics: assimilation of CCI data into climate models; cross assessments of CCI data 
(those which have physical links/interactions); applications for reanalysis; integrated 
                                                 
1 Two new WPs have been included in the CMUG work plan since version 1 of this report in June 2015. 
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assessment of CCI data in climate models; boundary condition forcing experiments; regional 
modeling; earth system process studies. The CMUG work reported here was conducted with 
the CCI data available at the time, which in most cases were from the final Phase 2 Climate 
Record Data Packages produced by the CCI projects. Where the results are not yet available, 
the section is marked “To be completed” Future versions of this report will include updates to 
these sections based on the latest Phase 2 CCI data. 
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Table 1: Summary of the CMUG Work Packages, CMUG models, CCI products, and CMUG experiments for assessing quality of the CCI products, as given 
in this report. 
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3 Summary of CMUG assessment of Quality by WP 
 

3.1 Assessment of Marine ECVs in FOAM Ocean Model [WP 3.1] 

Aim 
The aim of this research is to make an integrated assessment of marine ECVs to assess their 
consistency within a global and shelf seas regional data assimilation environment, and to 
provide an assessment of the uncertainty. It will address the following scientific questions: 

• Are the individual marine CCI CDRs good enough for assimilation purposes? 

• What are the changes made to the analyses by assimilating the CCI data? 
• Are the uncertainties provided useful to assign observation errors to the 

measurements? 

• Are the four marine ECVs mutually consistent from an ocean assimilation point of 
view? 

• What should be recommended to EUMETSAT for Sentinel-3 processing to 
operational centres? 

 

Key Outcomes of CMUG Research 
• Assimilating ocean colour data improves surface and sub-surface model chlorophyll, 

with some evidence of improvement in nutrients and carbon variables. 
• Information gained by assimilating ocean colour data can be beneficial for model 

development. 
• OC-CCI products are of at least equal quality to predecessor products, with some 

improvements due to increased spatial coverage and stability. 

• OC-CCI V2 products are of at least equal scientific quality, and improved technical 
quality, to OC-CCI V1 products. 

• Reanalyses assimilating ocean colour products produce realistic variability in response 
to climatic events, allowing their use as a tool for climate studies. 

• An integrated multivariate assessment of marine ECVs is ongoing, with assessment to 
be completed during the remainder of Phase 2. 

Summary of Results 
Initial work has focused on assessment of the ocean colour CCI (OC-CCI) data for 
assimilation purposes. This is now being extended to an integrated assessment of all four 
marine ECVs. Both these pieces of work are summarised below, as well as a comparison 
between OC-CCI V1 and V2 products. 
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At the end of Phase 1, a global ocean reanalysis was produced by assimilating OC
chlorophyll products into the FOAM
(Storkey et al., 2010; Palmer and Totterdell, 
covering the period from September 1997 to July 2012. For comparison, a reanalysis was also 
produced assimilating the predecessor GlobColour products, as well as a control run with no 
data assimilation. A thorough assessment of the results has been performed during Phase 2, 
and a paper on the work will
issue of Remote Sensing of Environment
 
The OC-CCI V1 products were found to be of sufficient quality for data assimilation 
purposes, and of at least equal quality to the GlobColour products (more detail on the 
comparison with GlobColour is included in the “Quality relevant outcomes” sub
below). Assimilating OC-CCI chlorophyll data improved the model’s representation of sea 
surface chlorophyll compared with both satellite data sets, and also a range of independent 
situ observations. An example of this is shown in 
surface chlorophyll from all three model runs at the Hawaii Ocean Time Series (HOT) site in 
the North Pacific, along with in situ observations. The assimilation results in a much better 
match for both the magnitude and seasonality of the observatio
reanalysis which is stable with time whilst displaying inter
 
 

Figure 1: Time series of modelled and observed chlorophyll concentration in the surface 10 m at the 
HOT site. Observations have been obtai

 
 
The largest impact of the assimilation was on sea surface chlorophyll, but an improved 
representation of chlorophyll was also found throughout the water column
improved representation of deep chl
phytoplankton and zooplankton biomass, although limited observational data are available for 
validation. Changes to nutrient concentrations were small, 
improvement compared with in 
have found a degradation of nutrients due to chlorophyll assimilation.
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At the end of Phase 1, a global ocean reanalysis was produced by assimilating OC
chlorophyll products into the FOAM-HadOCC coupled physical-biogeochemical ocean model 
(Storkey et al., 2010; Palmer and Totterdell, 2001; Hemmings et al., 2008; Ford et al., 2012), 
covering the period from September 1997 to July 2012. For comparison, a reanalysis was also 
produced assimilating the predecessor GlobColour products, as well as a control run with no 

orough assessment of the results has been performed during Phase 2, 
work will  be submitted for publication in the forthcoming CCI special 

issue of Remote Sensing of Environment. 

products were found to be of sufficient quality for data assimilation 
purposes, and of at least equal quality to the GlobColour products (more detail on the 
comparison with GlobColour is included in the “Quality relevant outcomes” sub

CCI chlorophyll data improved the model’s representation of sea 
surface chlorophyll compared with both satellite data sets, and also a range of independent 

observations. An example of this is shown in Figure 1, which plots a time series
surface chlorophyll from all three model runs at the Hawaii Ocean Time Series (HOT) site in 
the North Pacific, along with in situ observations. The assimilation results in a much better 
match for both the magnitude and seasonality of the observations. It is also able to produce a 
reanalysis which is stable with time whilst displaying inter-annual variability.

Figure 1: Time series of modelled and observed chlorophyll concentration in the surface 10 m at the 
HOT site. Observations have been obtained from http://hahana.soest.hawaii.edu/hot.

The largest impact of the assimilation was on sea surface chlorophyll, but an improved 
representation of chlorophyll was also found throughout the water column
improved representation of deep chlorophyll maxima. Corresponding changes were found in 
phytoplankton and zooplankton biomass, although limited observational data are available for 
validation. Changes to nutrient concentrations were small, with some evidence of 

in situ observations. This is an important result, as some studies 
have found a degradation of nutrients due to chlorophyll assimilation. 

At the end of Phase 1, a global ocean reanalysis was produced by assimilating OC-CCI V1 
biogeochemical ocean model 

2001; Hemmings et al., 2008; Ford et al., 2012), 
covering the period from September 1997 to July 2012. For comparison, a reanalysis was also 
produced assimilating the predecessor GlobColour products, as well as a control run with no 

orough assessment of the results has been performed during Phase 2, 
the forthcoming CCI special 

products were found to be of sufficient quality for data assimilation 
purposes, and of at least equal quality to the GlobColour products (more detail on the 
comparison with GlobColour is included in the “Quality relevant outcomes” sub-section 

CCI chlorophyll data improved the model’s representation of sea 
surface chlorophyll compared with both satellite data sets, and also a range of independent in 

1, which plots a time series of sea 
surface chlorophyll from all three model runs at the Hawaii Ocean Time Series (HOT) site in 
the North Pacific, along with in situ observations. The assimilation results in a much better 

ns. It is also able to produce a 
annual variability. 

 
Figure 1: Time series of modelled and observed chlorophyll concentration in the surface 10 m at the 

ned from http://hahana.soest.hawaii.edu/hot. 

The largest impact of the assimilation was on sea surface chlorophyll, but an improved 
representation of chlorophyll was also found throughout the water column, including an 

. Corresponding changes were found in 
phytoplankton and zooplankton biomass, although limited observational data are available for 

with some evidence of 
observations. This is an important result, as some studies 



CMUG Phase 2 Deliverable  
Reference:  D3.1: Quality Assessment Report 
Due date:   June 2016 
Submission date:  July 2016 
Version:  2.0c 
 

8 of 91 

 
Validation has also focused on the impact of the assimilation on the model carbon cycle, as 
this is of particular relevance for climate studies. Validation has been performed against 
surface fugacity of carbon dioxide (fCO2) observations from the SOCAT V2 database (Bakker 
et al., 2014). Overall, the effect of the chlorophyll assimilation was small compared with the 
magnitude of model biases. In part, this is because there are large physical controls on the 
carbon cycle. The impact on these of additionally assimilating physical ECVs is being 
assessed as part of ongoing Phase 2 activities. In regions of strong biological activity, the 
chlorophyll assimilation was found to have a beneficial impact on carbon variables, an 
example of which is shown in Figure 2. In some areas, the assimilation was found to improve 
representation of the biological component of the carbon cycle, but overall degrade fCO2 
compared with observations due to compensating errors in the physical component of the 
carbon cycle. This provides important information on model biases which can be fed back 
into model development activities. Again, the impact in these cases of combined assimilation 
of all marine ECVs will be assessed during Phase 2. 
 

 
Figure 2: June mean air-sea CO2 flux (mol C m-2 yr-1) in the North Atlantic from a) climatology of 
Takahashi et al. (2009), b) FOAM-HadOCC control, c) reanalysis assimilating GlobColour data, d) 
reanalysis assimilating OC-CCI data. Positive values represent a flux into the ocean. The reduction in 
spurious outgassing in the centre of the domain in c) and d) compared with b) is due to the 
assimilation reducing the chlorophyll bias in this area. An alternative version of this figure, not 
including OC-CCI data but mentioning the CCI project, has been published in Gehlen et al. (2015). 
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Technical issues with the OC-CCI V1 products have already been reported on during Phase 1. 
OC-CCI V2 products have since been released, and CMUG have tested these in comparison 
with V1. The Product User Guide has been expanded on and improved, particularly regarding 
use of the uncertainty estimates, which is beneficial for users. The V2 products were not quite 
“plug-and-play” with the V1 products, since the variable names for the chlorophyll 
uncertainty have been changed in the NetCDF files. Whilst consistency between releases is 
generally preferred, in this case the change of variable name makes the contents of the 
variable clearer, so is a reasonable change to have made. Minor metadata errors which had 
been identified in the V1 products have been corrected, and no new errors identified. Short 
like-for-like assimilation runs have been performed using the V1 and V2 products, with 
similar results obtained, but small regional differences, indicating the V2 products to be of at 
least equal scientific quality to the V1 products, as well as of improved technical quality. 
 
Experiments are now in progress to perform an integrated assessment of marine CCI products. 
These are using V2 OC, V1.1 SST, V1.1 SSH, and OSI SAF sea ice products, with a 
comparison to be made against the final Phase 2 releases towards the end of the project. Two 
sets of model runs are being performed with FOAM-HadOCC; long 1° resolution runs 
covering the overlapping period of the data sets (1998-2010), and higher resolution 0.25° 
resolution runs covering the final three years of this period. In each case, there is a non-
assimilative control run, runs assimilating each CCI product individually, a run assimilating 
the four products in combination, and runs using other selected combinations of products. So 
far work has focused on setting up the model runs and processing the observation products for 
use with the assimilation. 
 
The model runs are near completion, and assessment will be performed over the coming 12 
months, with the aim of publishing the work in the peer-reviewed literature. The assessment 
will focus on how spatial features and temporal variability compare when using the products, 
the impact of each product on non-assimilated variables, and the impact of the assimilation on 
climate-relevant variables. Assessment will also be performed using the observation products 
and their uncertainty fields. 

Quality relevant outcomes 
A comparison between the OC-CCI V1 and GlobColour observation products has been 
performed to assess their stability and spatial coverage, building on that reported on at the end 
of Phase 1. GlobColour has greater spatial coverage prior to 2002, as it uses an older NASA 
SeaWiFS processing which discards fewer data points. Between 2002 and 2012, OC-CCI has 
greater coverage as more use is made of MERIS data. This is of particular benefit to the 
assimilation in certain regions, such as the Mauritanian upwelling region and the Arabian Sea 
during the Asian monsoon period, which were poorly covered by GlobColour. There is a lack 
of in situ observations with which to validate the results in these areas, but the model fields 
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when assimilating OC-CCI data are in line with qualitative expectations. Furthermore, carbon 
cycle variables are improved in these regions when assimilating OC-CCI data, as a result of 
the improved coverage. The global mean and spatial standard deviation of the OC-CCI 
chlorophyll products are also more stable with time than for GlobColour. A reduction in 
variability is noted when MERIS is introduced in 2002, which could be due to differences in 
the properties of the sensors, or could simply be an artifact of the sudden increase in the 
number of data points. Such features are less clear in the reanalysis fields, as to some extent 
the model acts to smooth these out. Overall, very similar results are obtained whether OC-CCI 
or GlobColour products are assimilated, but where differences are found, there is evidence 
that results are improved due to the increased spatial coverage and improved stability of the 
OC-CCI data. 
 
In the current line of work, the uncertainty estimates have been used to assign observation 
errors during the quality control stage, but not directly as part of the assimilation, which 
would require developments to the data assimilation scheme. As part of the quality control, 
the uncertainty estimates were found to be suitable for the purpose. The only issue found was 
that not every observation had a corresponding uncertainty, as reported during Phase 1, which 
led to these observations being automatically rejected. This is a known issue which the OC-
CCI team is aware of. Some use has been made of the uncertainties in a validation context, 
and this will be explored more fully as part of the ongoing multivariate assessment. 
 
Assessment of the seasonal and inter-annual variability of the reanalyses has also been 
performed, including the impact of the data assimilation on this variability, as an assessment 
of the applicability of the end product to climate monitoring activities. As mentioned above, 
the assimilation has a beneficial impact on the variability of model chlorophyll, and has also 
been found to impact phenological indicators, for instance the start dates of the North Atlantic 
spring bloom. The effect of the assimilation on the carbon cycle variability is more subtle, 
with it impacting the magnitude more than the variability of the air-sea CO2 flux. Nonetheless, 
the model is able to capture observed variability relating to climate drivers such as the El Niño 
Southern Oscillation (ENSO), the North Atlantic Oscillation and the Atlantic Meridional 
Overturning Circulation. An example is shown in Figure 3, which plots time series of the 
Tropical Pacific mean air-sea CO2 flux, along with the multivariate ENSO index. Anomalies 
are seen corresponding to El Niño and La Niña events, related to changes in upwelling. The 
impact of the different marine CCI products on such variability will be a key focus of the 
ongoing multivariate assessment. 
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Figure 3: Top: Tropical Pacific mean air
repeating in black, and each model run (coloured lines,
as obtained from http://www.esrl.noaa.gov/psd/enso/mei.
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Top: Tropical Pacific mean air-sea CO2 flux from the climatology of Takahashi et al. (2009) 
repeating in black, and each model run (coloured lines, as labeled). Bottom: multivariate ENSO index, 
as obtained from http://www.esrl.noaa.gov/psd/enso/mei. 

 

flux from the climatology of Takahashi et al. (2009) 
as labeled). Bottom: multivariate ENSO index, 
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3.2  Integrated assessment of Marine ECVs in the ORA system 
[WP O3.1] 
 
Introduction 
The aim of this WP is to perform an integrated assessment of CCI SST, SSH and SIC via 
assimilation using the ECMWF Ocean ReAnalysis (ORA) System. The focus is on 
multivariate detection of climate variability and change patterns in the set of CCI ECV in 
comparison with independent observational products. 
 
The baseline ocean assimilation system ORAS5 used for this WP is closely related to the 
ORAP5 system described in Zuo et al. (2015) and Tietsche et al. (2015). It uses the ORCA1 
global configuration of NEMO 3.4 forced by ERA-Interim (bulk formulas). Subsurface 
observations from EN4, SLA from Aviso V5, and SIC from OSI-SAF are assimilated using a 
3DVar-FGAT algorithm with a 10 day assimilation window. SST is restored to observations 
from HadISST2 with a restoring strength of 200 Wm-2K-1. 
 
The work on this WP has started in January 2016. Initial offline-inspection of the data has 
shown that the major climate modes of variability and change are very similar to pre-existing 
ECV data sets. However, for data assimilation, small differences in one variable can be 
amplified, or interact with how other variables are simulated. Therefore, a series of 
assimilation experiments has been started, where observational product in the baseline 
experiment are exchanged one by one with the CCI equivalent, as well as an experiment 
which uses all CCI-ECV considered here together (see Table 2). Depending on the outcome 
of these experiments, it is planned to perform additional experimentation to address specific 
questions regarding the inter-variable consistency of the CCI. 
 

Table 2: Overview of assimilation runs. 

 
Preliminary results of ingesting CCI SST in the ORA system 
Preliminary results from the assimilation experiment ORA CCI-SST that ingested SST from 
CCI v1.1 instead of HadISST2 are presented here. As shown in Figure 4, the variability and 
trend of global CCI SST in agrees well with the non-ECV data set HadISST2. However, CCI 
SST is warmer by a constant amount of 0.05K. Whether this is due to the different definitions 

Experiment SST SIC SLA Start End 
ORA REF HadISST2 OSI-SAF Aviso 1975 2014 
ORA CCI-SST CCI v1.1 OSI-SAF Aviso 1992 2010 
ORA CCI-SIC HadISST2 CCI SSMI v1.1 Aviso 1992 2008 
ORA CCI-SLA HadISST2 OSI-SAF CCI v1.1 1993 2013 
ORA CCI-ALL CCI v1.1 CCI SSMI v1.1 CCI v1.1 1993 2008 
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of sea surface temperature regarding reference depth and diurnal cycle remains to be seen. 
Global SST in the two assimilation experiments
trend and variability of the two observation
observational product which was ingested into the system. The fact that the ORA CCI
experiment simulates SST which is often halfway between HadISST2 and CCI
that subsurface ocean observations 
SST that are closer to HadISST2.
 

Figure 4: Global-mean SST in the observational data sets HadISST2 and CCI
assimilation experiments ORA REF and ORA CCI

 
To understand better the potential causes for differences between CCI
maps of regional biases and trends are needed. As shown in Figure 
systematic regional modulations to the 
data set 1992-2010, the tropical oceans tend to be 0.1 to 0.3 K warmer in CCI
HadISST2. However, they are more than 0.2 K cooler in the North Pacific, and more than 
0.5K cooler in the Sea of Okhotsk. The North Atlantic exhibits a comple
warm differences, which might be partially related to boundary currents and the presence of 
sea ice. 
 
From the Figure 5 (left) it can be seen that the assimilation systems tends to dampen the 
differences between the two data sets: in 
cooler than in CCI-SST, and slightly warmer in the North Pacific. Disagreements in the 
upwelling regions of the west coast of South America and Africa are apparent, which might 
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of sea surface temperature regarding reference depth and diurnal cycle remains to be seen. 
Global SST in the two assimilation experiments ORA REF and ORA CCI
trend and variability of the two observational products very well, each being close to the 
observational product which was ingested into the system. The fact that the ORA CCI
experiment simulates SST which is often halfway between HadISST2 and CCI
that subsurface ocean observations or atmospheric forcing tend to drive the model towards 

closer to HadISST2. 

 

mean SST in the observational data sets HadISST2 and CCI
assimilation experiments ORA REF and ORA CCI-SST over 1992

 

To understand better the potential causes for differences between CCI-SST and HadISST2, 
maps of regional biases and trends are needed. As shown in Figure 5 
systematic regional modulations to the global-mean warm offset. Averaged over th

2010, the tropical oceans tend to be 0.1 to 0.3 K warmer in CCI
they are more than 0.2 K cooler in the North Pacific, and more than 

cooler in the Sea of Okhotsk. The North Atlantic exhibits a complex pattern of cold and 
, which might be partially related to boundary currents and the presence of 

it can be seen that the assimilation systems tends to dampen the 
differences between the two data sets: in ORA CCI-SST, the tropical oceans SST is slightly 

SST, and slightly warmer in the North Pacific. Disagreements in the 
upwelling regions of the west coast of South America and Africa are apparent, which might 

of sea surface temperature regarding reference depth and diurnal cycle remains to be seen. 
ORA REF and ORA CCI-SST reproduce 

al products very well, each being close to the 
observational product which was ingested into the system. The fact that the ORA CCI-SST 
experiment simulates SST which is often halfway between HadISST2 and CCI-SST suggests 

or atmospheric forcing tend to drive the model towards 

mean SST in the observational data sets HadISST2 and CCI-SST, and the 
SST over 1992—2010. 

SST and HadISST2, 
 (middle), there are 

warm offset. Averaged over the whole 
2010, the tropical oceans tend to be 0.1 to 0.3 K warmer in CCI-SST than in 

they are more than 0.2 K cooler in the North Pacific, and more than 
x pattern of cold and 

, which might be partially related to boundary currents and the presence of 

it can be seen that the assimilation systems tends to dampen the 
SST, the tropical oceans SST is slightly 

SST, and slightly warmer in the North Pacific. Disagreements in the 
upwelling regions of the west coast of South America and Africa are apparent, which might 
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be partly due to well-known model biases in these regions. In the Southern Ocean and the 
western boundary currents, the inability of the model to simulate mesoscale eddies leads to a 
strong and spatially variable bias pattern (Figure 5, left and right), which is not present when 
comparing the two observational data sets directly (Figure 5 middle). 
 
 

 

Figure 5: SST difference averaged over 1992-2010 between (left) ORA CCI-SST and CCI-
SST, (middle) CCI-SST and HadISST2, and (right) ORA CCI-SST and HadISST2. 

 
Despite these bias patterns, monthly-mean anomalies of SST are well correlated both between 
the two data sets, and between the model simulation and the data sets (Figure 6). Correlations 
between ORA CCI-SST and CCI-SST are generally 0.95 or higher, except in the presence of 
mesoscale eddies in the Southern Ocean and the western boundary currents, where 
correlations are degraded to values of 0.5 to 0.7. It is worth noting that the SST correlation 
between the observational data sets (Figure 6 middle) is actually weaker than between ORA 
CCI-SST and HadISST2. This might suggest that the assimilation system is able to reduce 
uncertainty of observed SST variability and/or trend by spreading information from non-SST 
fields to the SST. 
 
 

 

Figure 6: Correlation of monthly-mean SST anomalies (seasonal cycle removed) from 1992—
2010 between (left) ORA CCI-SST and CCI-SST, (middle) CCI-SST and HadISST2, and 
(right) ORA CCI-SST and HadISST2. 
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Ingesting CCI-SST in the ORA system has an impact on the simulation of some other 
important aspects of climate variability and change. We will limit the discussion to upper-
ocean heat content (UOHC) and sea ice cover here; for these variables the impact is most 
pronounced. 
 
The overall trend and variability of global-mean UOHC in ORA CCI-SST is close to that of 
ORA REF. However, UOHC is slightly higher for several periods, especially between 1994 
and 2000 (Figure 7 left). This differences comes mainly from the tropical oceans (Figure 7 
middle), while the UOHC in the North Pacific is lower in ORA CCI-SST than in ORA-REF 
(Figure 7 right). These UOHC differences are consistent with the SST differences shown in 
Figure 5. 
 

 

Figure 7: Upper 700m ocean heat content from 1992-2010, averaged over (left) the global 
ocean, (middle) tropical oceans, and (right) the North Pacific. 

 
There is a significant and consistent impact of CCI-SST on Northern Hemisphere sea ice 
cover, as illustrated by Figure 8. Although trend and variability of Northern Hemisphere sea 
ice area fraction and Arctic sea ice thickness in ORA REF are reproduced in ORA CCI-SST, a 
rather constant positive offset is apparent. One might speculate that the on average colder SST 
in the northern extra tropics are responsible, but closer inspection of seasonal and regional 
signals (not shown) suggest there is not such a clear correspondence between SST and sea ice 
cover, and it appears that further investigation into the mechanisms of propagating the SST 
information to the sea ice would be useful. This will also connect to and enhance the already 
documented inconsistencies between SST and sea ice data sets. 
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Figure 8: Northern Hemisphere annual-mean sea ice for ORA CCI-SST and ORA REF. (Left) 
average sea ice area fraction over northern extra-tropical oceans; (right) average sea ice 
thickness of the Arctic. 

 
Technical comments on the data 
Here, the following CCI data products were used: 

• Sea surface temperature: level 4 data, analysed daily mean at 20cm depth on 1/20 
degree regular grid, version 1.1, available 1992—2010 

• Sea surface height: level 2 data, along-track anomalies referenced to DTU10 mean sea 
surface + level 4 data to calculate global mean sea level for freshwater budget 
corrections in assimilation, available 1993—2012  

• Sea ice concentration: level 4 SSMI data, analysed daily means on EASE2 
hemispheric grids with 25km resolution, available 1992—2008 

When preparing the data, a few technical problems were found. For future use of the data in 
weather and climate models, it might be helpful to address these. 

1. Due to the details of the analysis method, the MSLA gridded data contains spurious 
data over land points, but does not provide a land-sea mask. This is a well-known 
problem, but since it is not documented in the data themselves, it is easy to obtain 
wrong results when performing area averages. We suggest to either provide a land-sea 
mask in the files, or to remove the spurious data in future versions. 

2. The gridded MSLA data are only available as monthly means. While this is sufficient 
for most applications, it poses a problem when the global mean sea level is needed on 
a daily basis to constrain the daily fresh-water balance. Therefore, for data assimilation 
purposes, it would be very helpful to have the gridded MSLA data as daily means. 

3. The SSMI SIC data have a constant number of missing values (the land points), but on 
just three days, the 25th, 26th, and 27th August 2008, there are additional missing values 
in the Hudson Bay. The status flag indicates that the cause was missing satellite data. 
This can cause problems in interpolation routines which for efficiency reasons assume 
constant missing values over time. A warning in the data documentation about unusual 
missing values would be appreciated. 
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3.3 Assimilation of several L2 ozone products in the ERA system 
[WP 3.2] 

Aim 
The aim of this study is to promote and facilitate the integration of as many O3-CCI products 
as possible in reanalysis systems in general and in the forthcoming ERA5 production in 
particular. A number of Observing System Experiments (OSEs) have been designed to 
provide a detailed assessment of the quality and of the impact of these O3-CCI products. The 
list of assessed datasets includes seven products encompassing the three lines of production of 
O3-CCI (total column, profiles from nadir instruments, and profiles from limb instruments).  

A set of Round Robin (RR) assimilation exercises for algorithm selection were performed 
using ozone datasets retrieved alternative algorithms from the same radiance measurements. 
The aim of the RR exercise was to provide an objective and rigorous assessment of the impact 
of assimilating similar datasets, thus giving the reanalysis community feedback on which one 
to use.  

By inter-comparison with the results from some of the performed experiments, it is possible to 
provide user recommendations to space agencies and retrieval teams on the most useful 
characteristics of future satellite instruments for ozone measurement. 

Summary of Results 
The results from this study were reported in the CMUG QAR (2015), and briefly summarized 
as follows:  
• The structure of observation uncertainties generally compare well with estimates obtained 

using the Desroziers method (Desroziers et al., 2005). The differences between estimated 
and provided uncertainties show up to 60% overestimation in the tropical mid stratosphere 
for GOME-2 NPO3 (this accounts for less than 4% of the observation values) and up to 
100% underestimation in the tropics for the total columns (this difference is about 8% of 
the global mean total column ozone value). 

• All the products exhibit negligible to very small biases. 
• All assessed O3-CCI datasets lead to improved ozone analyses.  

• Regarding the RR assimilation exercises, with the exception of OMI TCO3, the O3-CCI 
retrievals seem to better constrain the ozone analyses than retrievals obtained from the 
same radiances using alternative algorithms. 

• The assimilation of the GOME-2 NPO3 show a clear improvement in the internal 
consistency of the data assimilation system in terms of better fit to the AIRS ozone-
sensitive IR channels that in turn leads to statistically significant reduction (i.e. 
improvement) in the RMS of the geopotential forecast errors in the tropics.  

• Assimilation User Requirements to Space Agencies and retrieval teams:  
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� The comparison of the impact generated by the GOME-2 TCO3 and that of the 
GOME-2 NPO3 shows that the latter dataset can lead to a greater positive impact on 
the ozone analyses than the former. 

� The comparison of the impact generated by the GOME-2 NPO3 and that of the 
MIPAS LPO3 shows that thanks to its higher vertical resolution limb observations 
can lead to a greater positive impact in the stratosphere and upper troposphere than 
the nadir ozone profiles. This is not always the case in the lower troposphere, where 
despite lacking visibility, the limb observations can still improve the ozone analyses 
compared to a control experiment if their synergy with other observations (in 
particular total column ozone products) can be exploited within the data assimilation 
system.  

 
The recommendations that were formulated on the basis of the results and conclusions 
summarized above were un-controversially accepted by the C3S reanalysis team, and the 
following O3-CCI products are being assimilated in the ERA5 reanalysis currently in 
production: SCIAMACHY TCO3; GOME and GOME-2 NPO3; MIPAS LPO3. 
 
A summary paper, Dragani (2016), has been accepted for publication in Atmospheric 
Chemistry and Physics Discussion, and it is now under review for Atmospheric Chemistry 
and Physics. 
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3.4 Integrated assessment of the CCI Aerosols, GHG, and Ozone 
datasets [WP3.3]  

Aim 
WP3.3 aims at providing an integrated assessment of the impact of assimilating ozone, 
aerosol, and GHG datasets in the global atmospheric composition data assimilation system 
developed through a number of FP6, FP7, and H2020 projects (GEMS, MACC, MACC-II, 
and MACC-III) and currently operated by the Copernicus Atmosphere Monitoring Service 
(CAMS) to provide NRT monitoring of air quality relevant gases and their reanalyses. The 
results are expected to feed back into the decision process in preparation for the forthcoming, 
first reanalysis of the CAMS.  
 
To maintain this WP aligned with the state-of-the-art research and understanding, as well as 
needs of both groups, further interactions with the CCI community and the MACC/CAMS 
ECV experts at ECMWF continued after the CMUG Phase 2 proposal was accepted. These 
interactions indicated that to best meet the evolving needs of both the CCI consortia, and the 
CAMS while still attempting at providing an indication of the consistency between the three 
ECVs the original experiment design had to be substantially modified. The new design is 
discussed below, and contrasted with the original one.  
 

Summary of the results 
The discussion presented here is based on preliminary results that will need to be carefully 
confirmed by further analysis. The significant changes adopted in the experiment design have 
caused some delays in the original schedule, so it is not possible at this stage to provide a full 
account for the three ECVs. At the time of writing, the experiments are still running and in 
cases, e.g. for the GHG, they are not fully spun-up yet making premature any discussion. For 
that reason, this initial assessment focus on the assimilation of two CCI Aerosol Optical 
Depth or Thickness (AOD or AOT) datasets retrieved with the SU (v4.2) and ADV (v1.42) 
algorithms. The results available thus far can be summarized as follows: 
 
• Based on the period available, the SU algorithm seems to produce AOD retrievals with 

higher values than the ADV algorithm, but the latter provides a larger dataset than the 
former. (For comparison, MODIS observations show values between the SU and ADV 
datasets.) 

 
• The two algorithms provide similar uncertainty estimates, which appear overestimated 

when compared with the first-guess and analysis departures. In a data assimilation system, 
an overestimation of the observation uncertainty has the only consequence of limiting the 
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observations’ impact on the analyses, thus contributing to a conservative assimilation, 
with no detrimental consequences. 

 
• The data assimilation system seems to be able to exploit the synergy between MODIS and 

AATSR AOD datasets that results in a reduction of the analysis departures when they are 
jointly assimilated compared to the assimilation of only one of them (i.e. either MODIS or 
AATSR data). 

 

• Comparisons with the AERONET data of the modelled AOD at 500 nm from an 
experiment assimilating MODIS only, one assimilating (SU) AATSR, and one 
assimilating both show that  

 
� Globally, the MODIS-constrained AODs have a positive bias compared to the in-situ 

dataset. In contrast, the CCI (SU) AATSR-constrained AODs show a negative bias.  
� The assimilation of AATSR and MODIS data together leads to the best fit to 

AERONET globally.  
� The level of agreement with the AERONET observations strongly depends on the 

geographical area.  
� In the South-East Asia, the MODIS-only experiment exhibits the best fit to the 

AERONET observations.  
� Over Europe, the two datasets lead to residuals from AERONET that are of 

similar magnitude, but opposite sign, clearly showing an inter-instrumental 
bias-related problem. Here, the combination of the two instruments, generally 
improves the agreement to the independent observations.  

� Over Africa, North and South America, the modelled AOD shows the best fit 
to the independent observations when only constrained by the CCI AATSR 
retrievals. 

 

The data assimilation system 
The data assimilation system used in this study consists in the most recent version of the 
global atmospheric composition data assimilation system operated at ECMWF for the CAMS. 
At present, this system uses a bin-model for aerosol that includes desert dust, sea salt, organic 
matter, black carbon and sulphates, as well as the greenhouse gases, allowing assimilation of 
CO2 and CH4. For the chemical reactive species (i.e. O3, CO, NO2, SO2 and HCHO), the IFS 
data assimilation system was extended to include an integrated chemistry model (referred to 
as C-IFS), which provides emissions, deposition, and chemical tendencies for the species 
included in the system. These variables are all constrained by the assimilation of satellite 
observations, where possible.  
 

The experiment design 
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The assessment of the three CCI ECVs within the MACC-II system is performed in both 
passive and active modes.  
 
An experiment design was originally proposed. It included four data assimilation experiments, 
with the first one used as a control that included all CCI data in passive mode and three 
additional, incremental active experiments (see Table 3).  
 
Furthermore, in the submitted proposal it was suggested that the active assimilation of CCI 
datasets made use of: 

� The GOME-2, SCIAMACHY and OMI TCO3 and MIPAS LP datasets from the O3-
CCI;  

� The AATSR AOD from one algorithm to be decided among those available from 
Aerosol-CCI;  

� The XCO2 retrievals from one algorithm and one instrument from the GHG-CCI.  
 

 
Experiment CCI O3 CCI Aerosols CCI GHG 

Control passive passive passive 
Exp 1 active passive passive 
Exp 2 active active passive 
Exp 3 active active active 

Table 3: Originally proposed experiment design for WP3.3. 

 
As anticipated above, to maintain this WP aligned with the state-of-the-art research and 
understanding, as well as needs of both the CCI community and the CAMS, the original 
experiment design, presented above, had to be substantially modified. Below, we first report 
on the new requirements and needs and then provide a summary table of the new experiment 
set-up. 
 
The new requirements from CAMS indicated that: 

1. On Ozone: There was a good understanding on how to use the ozone products from 
the nadir instruments (in particular, SCIAMACHY nadir, OMI, GOME, GOME-2) but 
not enough on the use of the limb datasets, with the exception of MIPAS. A similar 
request on assessing other limb datasets was also made by members of the O3-CCI 
consortium. 

2. On Aerosols: preliminary assimilation runs had been performed for 2008 with an 
earlier version of the data assimilation system using the ADV retrievals from AATSR. 
Interest was expressed in assessing the SU retrievals and contrasting the impact of the 
two datasets, and their synergy and consistency with MODIS data.  

3. On GHG: an assessment of the difference in the impact of assimilating the proxy 
product and the full physics product was considered useful.  
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Additionally, at the time the new CAMS requirements were defined, it was noted that the 
GHG CCI had not yet finalized the baseline algorithm selection for some products.  
 
To account for these new requirements, the modified experiment design includes six 
assimilation experiment instead of the four envisaged, and it is presented in Table 4. 
Experiments Exp 1 – Exp 4 are used to assess the individual aspects for each of the three 
ECVs with respect to the Ctrl while Exp 5 will help to assess the level of consistency between 
the three ECVs when contrasted with the results from the other five experiments. 
 
All the experiments were started on 1 Jan 2010, and will run to cover the period till the end of 
September 2010, with the aim of analysing in detail the NH summer period (May-September 
2010) after removing the period affected by spin-up. They make use of the branch currently 
used for preparing the next CAMS reanalysis and run with a resolution of T255 (about 80 km) 
on 60 vertical levels.  
 
The changes in the experiment set-up required a much larger number of datasets to be 
processed than originally anticipated, with some of the ozone datasets being still pre-
processed at the time of writing. This caused some delays on the schedule with some of the 
experiments not yet completed and others still within the spin-up period. This is particular 
critical for the GHG, for which a spin-up period is normally estimated in four to five months 
(S. Massart, personal communications), much longer than that for aerosols and ozone. It is 
also noted that the IASI CO2 and CH4 were assimilated in most experiments to improve the 
GHG background information, but also in an attempt of reducing the system spin-up. Based 
on these considerations, only preliminary results concerning the aerosols can be discussed as a 
proof of concept over the period available. These should also be carefully confirmed by 
further analysis.  
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GHG 

CH4 

Active 
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IASI 
SRFP TANSO 

IASI 
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SRFP TANSO 

SRPR TANSO 

IASI 

Passive 
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N/A 

N/A 
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Active 
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Aerosol 
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MODIS 

SU AATSR 

MODIS 
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Preliminary discussion on Aerosols: 
Figure 9 (left panels) shows the global mean statistics for the CCI AATSR AOD data retrieved 
from the SU algorithm (v4.2) and ADV (v1.42) algorithm, and contrast it with that of MODIS 
retrievals during the period 20 February – 10 March. MODIS data here are taken with the same 
configuration used as default in the IFS that foresees a data thinning over a 0.5o x 0.5o resolution 
grid. No thinning is instead applied to the AATSR retrievals. From the short period available, the 
SU algorithm leads to higher AOD values than the ADV algorithm, but the latter provides a 
larger dataset than the former.  

 
Figure 9: Top left panel: Time series of the global daily mean AOD statistics for MODIS (green 
lines), and the CCI AATSR retrieved with the ADV (v1.42) algorithm (red lines) and the SU 
(v4.2) algorithm (blue lines) during the period 20 February – 10 March. Bottom left panel: Data 
count for the three datasets. MODIS data is used in the default IFS configuration that foresees a 
thinning over a 0.5o x 0.5o grid. Right panel: Scatter plot of the observation uncertainty derived 
from the SU algorithm (blue symbols) and ADV algorithm (red symbols) versus the absolute 
value of the first-guess and analysis departures from the observations. The filled circles refer to 
the first-guess departures, the crosses refer to the analysis departures. 
 
The uncertainty provided by the two AATSR algorithms is compared with the modelled AOD 
departures against the observations (right panel in Figure 9). The inspection would suggest that 
the two algorithms provide uncertainty estimates of similar magnitude that are larger than the 
first-guess and analysis departures. It is noted that in data assimilation, an overestimation of the 
observation uncertainty has the only consequence of limiting the observations’ impact on the 
analyses, thus contributing to a conservative assimilation, generally desirable to avoid potential 
degradation in the analyses.  
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Figure 10 shows the global mean statistics for AATSR AOD data from the CCI SU algorithm. In 
the left hand side panels, the AATSR data are passively monitored and MODIS observations 
from both AQUA and TERRA are assimilated. In the right hand side panels, the assimilation of 
MODIS AOD data was completely replaced by that of the AATSR AOD observations.  

 
Figure 10: Time series of the global daily mean statistics computed from the experiments gi90 
(Ctrl, i.e. assimilation of MODIS only, left hand side panels), and gi91 (Exp 1, i.e. assimilation 
of the CCI AATSR dataset retrieved from the SU algorithm, right hand side panels). The top 
panels show the mean modelled and observed AOD; the middle panels the first guess and 
analysis departures from the CCI AATSR observations, and the bottom panels the CCI AATSR 
AOD data count. The period is from 1 January to 10 March 2010.  
 

The top left panel of Figure 10 shows that there is a general good agreement between the 
AATSR retrievals and the first guess and analyses constrained by MODIS AOD data, with a 
trend in the departures (mid left panel) that exhibit modelled values higher than AATSR until 
about 20 February and lower afterwards. When the assimilation of MODIS is replaced by that of 
AATSR, the analysis departures decrease as expected (mid right panel).  
 

Figure 11 shows the AATSR global statistics similar to those in Figure 10, but obtained from 
Exp 2, which assimilated both MODIS and AATSR AOD observations. The most significant 
aspect is that the data assimilation system seems to be able to exploit the synergy between the 
two AOD datasets. A first indication of such a synergy is the reduction of the analysis departures 
in Exp 2 for both AATSR and MODIS (mid left panel of Figure 11 compared to Ctrl (mid-left 
panel of Figure 10 for AATSR).  
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Figure 11: As in Figure 10 (left panels), but for Exp 2 constrained by the assimilation of both 
MODIS and (SU) AATSR AOD observations. The left hand side panels show the statistics for 
AATSR, the right hand side panels show similar statistics for MODIS. 
 

 
The impact of assimilating AATSR either on its own or in addition to the MODIS data has been 
assessed by comparison with independent AOD observations obtained from the AERONET 
network. These preliminary comparisons refer to the period 15 January – 20 February 2010, after 
discarding the first two weeks of run, and refer to the AATSR AOD retrievals obtained with the 
SU algorithm. Figure 12 shows an example of verification of the modelled AOD at 500 nm (left) 
and at 1640 nm (right) against the AERONET dataset for three of the experiments detailed in 
Table 4. It is noted that only the 500nm is actively constrained. This means that changes are 
mostly expected at 500 nm, while only negligible to small impact should be noticed at the 
longest wavelength. Thus, the time series should be very similar to each other and they are only 
shown as a basic quality check.  
 
Figure 12 (left hand side panels) shows that the information provided by MODIS tends to 
increase the global aerosol amount above the values measured by the AERONET stations, thus 
MODIS would have a positive bias compared to the in-situ dataset. In contrast, the CCI (SU) 
AATSR AOD assimilation tends to decrease the AOD distribution below that reported by the 
AERONET data, thus showing a negative bias. The assimilation of AATSR and MODIS data 
together leads to the best fit of the modelled aerosols to AERONET. The impact on the 1640 nm 
wavelength (Figure 13, right hand side panels) is as expected negligible to very small.  
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Figure 12: Top panels: Time series of the global mean modelled Aerosol Optical Depth at 500 
nm from the experiments gi90 (Ctrl, i.e. assimilation of MODIS only in green), gi91 (Exp 1, i.e. 
assimilation of the CCI AATSR dataset retrieved from the SU algorithm in red), and gi92 (Exp 2, 
i.e. assimilation of both MODIS and CCI [SU] AATSR dataset in black), and the observation 
from the AERONET network (blue).The top left panel refers to the 500nm wavelength; the top 
left panel refers to the 1640 nm wavelength. Bottom panels: Modelled AOD departures from the 
AERONET observations at 500 nm for the same three experiments presented in the top panels.  
 
The level of agreement with the AERONET observations strongly depends on the geographical 
area. Figure 13 presents the area averaged time series of the modelled AOD departures from the 
AERONET observations for the same three experiments shown in Figure 12. Five areas are 
represented: Europe, Africa, North and South America, and South-East Asia.  

� In the South-East Asia, the MODIS-only experiment exhibits the best fit to the 
AERONET observations.  

� Over Europe, the two datasets lead to residuals from AERONET that are of similar 
magnitude, but opposite sign, clearly showing an inter-instrumental bias-related problem. 
Here, the combination of the two instruments, generally improves the agreement to the 
independent observations.  

� Over Africa, North and South America, the modelled AOD shows the best fit to the 
independent observations when only constrained by the CCI AATSR retrievals. These 
differences could be due to a number of reasons, e.g. the ability of the two retrieval 
schemes to deal with specific aerosol types, their characterization, the AOD model bias, 
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and the model’s ability to efficiently extract the information in the assimilated 
observations.  

 

 

 

 
Figure 13: Time series of the departures between the modelled AOD and the AERONET 
observations for experiments Ctrl (green, MODIS only), Exp 1 (red, AATSR only) and Exp 2 
(black, MODIS and AATSR) at 500 nm and for five regions: Europe (top left panel), Africa (top 
right panel), North and South America (middle left and middle right panel, respectively), and 
South-East Asia (bottom panel). The number of AERONET sites available in each region is 
reported in each title.  
 
Further to Figure 13, Figure 14 shows the correlations between the modelled and AERONET 
AODs at 500nm by station for the three experiments discussed in Figures 12 and 13. It confirms 
that over the South-East Asia the assimilation of MODIS AOD produces modelled AODs that 
have higher correlation with the AERONET observations than those constrained with the CCI 
AATSR retrievals. In contrast, the latter show higher correlation with AERONET data than the 
former over the South America. 
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Figure 14: Correlation coefficient between the modelled AOD and the AERONET data at 500 
nm at various sites for experiment Ctrl (MODIS only, top panel), Exp 1 (AATSR only, middle 
panel) and Exp 2 (MODIS and AATSR, bottom panel). The size of each circle refers to the size of 
sample used to estimate the correlations. The squares over the South-East Asia and South 
America refer to the area where the largest differences between the MODIS only and AATSR 
only experiments were found. 
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3.5 Integrated assessment of CCI terrestrial ECVs impact in the MPI-
ESM [WP3.4] 

Aim 
WP3.4 includes an integrated assessment of the terrestrial ECV variables available in the CCI 
with a joint analysis of the ECVs land cover, fire, soil moisture, and greenhouse gases (GHG). 
The ECVs were used to optimize uncertain parameters in the MPI-M ESM fire model process 
formulations using an optimum estimate framework, to make use of the uncertainty information 
provided with the ESA CCI datasets. The overarching questions to be addressed were: 
 

• Are the four CCI data-sets consistent with each other and with model data so that 
modelled and observations data can be used directly for model validation and data 
assimilation? 

• How can CCI data records be used to improve fire emission modelling in an earth system 
model? 

• Do simulated carbon emissions improve using CCI datasets?  

Summary of Results 
SPITFIRE-JSBACH simulations were performed for the time period 1850 to 2010 in which 
burned area and fire carbon emissions are interactively simulated. Simulations were run with the 
standard model setup as described in detail in Lasslop et al., 2014. In addition, simulations were 
performed with a modified representation of the Nesterov-Index in SPITFIRE following 
Groisman et al. 2007. The modified version served as a first test case to use ESA CCI data in the 
evaluation of the SPITFIRE-JSBACH model. Simulated, FIRE_CCI burned area as well as 
burned area reported in GFEDv3/GFEDv4 based on MODIS (Giglio et al., 2006, Giglio et al., 
2010) for the time period 2006-2008 are compared in Figure 15.  
 
Contrasting the burned area with soil moisture reported from CCI_SM, we find a distinct 
relationship between burned area and soil moisture with low burned area for low soil moisture 
(fuel limitation) and low burned areas for high soil moisture (moisture limitation).  
 
The comparison shows that all products have a very similar distribution. The CCI-MERIS 
product peaks at a higher soil moisture compared to GFED products and the distribution is wider. 
Both versions of JSBACH-SPITFIRE peak at a too high soil moisture and the distribution is too 
wide.  
 
 



CMUG Phase 2 Deliverable 
Reference:  D3.1: Quality Assessment Report
Due date:   June 2016 
Submission date:  July 2016 
Version:  2.0c 
 

Figure 15: Burned area averaged for the years 2006
GFEDv4 (middle row), SPITFIRE

 
In a first step we identified two parameters (
ignition rate) in SPITFIRE-JSBACH that are not well constrained by observations, which we 
systematically varied over a reasonable parameter space to optimize width and peak position 
the soil moisture / burned area relationship
number of experiments with varying parameter settings in a reasonable amount of time. Figure 
16 shows the deviations in peak position and distribution width for 
MERIS as reference.  
 
Further analysis within FIREMIP will assess the differences in state
applying CCI data.  
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: Burned area averaged for the years 2006-2008. FIRE_CCI (upper row), GFEDv3 and 
GFEDv4 (middle row), SPITFIRE-JSBACH standard and modified (lower row).  

In a first step we identified two parameters (conversion soil moisture to fuel moisture and 
JSBACH that are not well constrained by observations, which we 

systematically varied over a reasonable parameter space to optimize width and peak position 
d area relationship. JSBACH-SPITFIRE was optimized to run a large 

number of experiments with varying parameter settings in a reasonable amount of time. Figure 
shows the deviations in peak position and distribution width for 70 exper

Further analysis within FIREMIP will assess the differences in state-of-the

 
2008. FIRE_CCI (upper row), GFEDv3 and 

 

conversion soil moisture to fuel moisture and 
JSBACH that are not well constrained by observations, which we 

systematically varied over a reasonable parameter space to optimize width and peak position of 
SPITFIRE was optimized to run a large 

number of experiments with varying parameter settings in a reasonable amount of time. Figure 
70 experiments with CCI-

the-art global fire models 
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Figure 16: Relative difference in peak position and width of the burned area – soil moisture 
relationship for 70 experiments performed with JSBACH-SPITFIREv1/v2 compared to 
GFEDv3/v4 and CCI MERIS (reference).  
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Figure 17: burned area – soil moisture relationship
FIREMIP. 

Quality relevant outcomes
In WP3.4, only the gridded FIRE_CCI products were used. The FIRE_CCI gridded products 
from phase I were only available for a 3 year period (2006
applicability for climate studies. To test the functional relationships, such as the relationship 
between burned area and soil moisture, global data coverage was available
dependency on having a long time series. Further assessment for fire m
require categorization by land cover type to optimize land cover dependent parameters, which 
will benefit from a longer time series. 
 
The CCI-MERIS product shows a very similar distribution of soil moisture dependency 
compared with the MODIS based GFEDv3/GFEDv4 product, which was applied in previous 
studies. These findings agree with the analysis of the FIRE CCI team reported in the Product 
Validation Report II and the Climate Assessment Report. The temporal stability of the product
was not assessed due to the limited time period covered by the global product.
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soil moisture relationship in four global fire models participating in 

Quality relevant outcomes 
In WP3.4, only the gridded FIRE_CCI products were used. The FIRE_CCI gridded products 
from phase I were only available for a 3 year period (2006-2008), which limited their 
applicability for climate studies. To test the functional relationships, such as the relationship 
between burned area and soil moisture, global data coverage was available
dependency on having a long time series. Further assessment for fire model development will 
require categorization by land cover type to optimize land cover dependent parameters, which 
will benefit from a longer time series.  

MERIS product shows a very similar distribution of soil moisture dependency 
he MODIS based GFEDv3/GFEDv4 product, which was applied in previous 

studies. These findings agree with the analysis of the FIRE CCI team reported in the Product 
Validation Report II and the Climate Assessment Report. The temporal stability of the product

due to the limited time period covered by the global product.

 

in four global fire models participating in 

In WP3.4, only the gridded FIRE_CCI products were used. The FIRE_CCI gridded products 
2008), which limited their 

applicability for climate studies. To test the functional relationships, such as the relationship 
between burned area and soil moisture, global data coverage was available, reducing the 

odel development will 
require categorization by land cover type to optimize land cover dependent parameters, which 

MERIS product shows a very similar distribution of soil moisture dependency 
he MODIS based GFEDv3/GFEDv4 product, which was applied in previous 

studies. These findings agree with the analysis of the FIRE CCI team reported in the Product 
Validation Report II and the Climate Assessment Report. The temporal stability of the product 

due to the limited time period covered by the global product. 
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3.6 Cross assessment of clouds, water vapour, aerosols, ozone, 
GHG, SST, radiation and soil moisture impact on global climate 
variability and trends [WP_O3.4] 

Aim 
The aim of this WP is to make an integrated assessment of ECVs from CCI and other 
observations studying climate variability by investigating statistical relationships between co-
varying variables and evaluate the same processes in global climate models, such as ENSO, IOD 
and NAO. The uncertainty information for the CCI data sets will be used when comparing to 
other observational data sets and associated model-generated variability. The scientific questions 
are: 

• How are the observed ECV's related and what is the robustness of associated mechanisms 
across different observational data sets and climate model simulations? 

• Can the models capture the relations between ECVs and the variability seen in 
observations? 

• How do different representations of sea surface and sea ice impact on simulated 
variability and teleconnections?  

• How do the results depend on the horizontal resolution of EC-Earth in capturing climate 
variability and teleconnection skills? 

 

Key Outcomes of CMUG Research 

• CCI SST, Cloud cover, sea level and ocean colour all capture the ENSO variability 
consistently. They ECV's are suitable for evaluating processes and climate models. 

• ERA-Interim and EC-Earth AMIP simulations capture the observed ENSO variability. 
• Coupled CMIP5 EC-Earth simulations are too cold over the Pacific Ocean and have too 

small variability for present day, towards the end of the century the model is warmer and 
have higher variability. 

• This process study revealed issues with the NOAA satellites having problems with the 
scanning motor around 2000. This was known to the Cloud-CCI team but not how it 
could affect certain cloud products. This has been amended for in the latest Cloud-CCI 
v2.0 dataset, although some features remain and should be communicated to end users.  

Summary of Results 
The El Niño Southern Oscillation (ENSO) is the most important coupled ocean-atmosphere 
phenomenon affecting global climate variability on seasonal to inter-annual time scales. It is an 
irregularly periodical variation in winds and sea surface temperatures (SST) over the tropical 
eastern Pacific Ocean, affecting much of the tropics and subtropics. The warm (El Niño) phase is 
associated with large positive SST anomalies in eastern to central Pacific occurring on 3-7 years 
times-scales and the cold phase (La Niña) occurring every 2-4 years is less intense but longer 
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lasting. The phases can be classified by calculating SST anomalies for different regions of the 
Equatorial Pacific, most typically the Niño3.4 region (190E
recently other variables, top of the atmosphere outgoing long
also been used to classify the ENSO events giving new perspective of the ENSO phase 
distributions. 
 

Figure 18: Correlation between CCI SST Niño 3.4 SST time series and CCI global Cloud 
for 1992-2008. The boxes show the Niño3.4 region (170W
Hovmöller region (100E-80W, 5S
 
 
The short time scale, large amplitude and multiple ECV's affected by ENSO make
natural forcing to focus on for cross
albeit the records are too short for sampling the full ENSO diversity and the decadal ENSO 
variability. Climate models capture the basic ENSO
frequency are not properly reproduced and most models variability extends too far into the 
Western Pacific. To further understand model performances and biases, evaluating models with 
observational constraints derived from multiple variables can give new perspectives. 
 
In this ongoing study we examine ENSO variability in satellite observations, CCI
ocean colour and clouds and the corresponding variables in climate models. 
correlation between CCI SST Niño3.4 index and CCI global cloud cover. The warm El Niño 
phases are accompanied with deep convective clouds in the central or eastern Pacific and 
reduced cloudiness in the western Pacific. The maximum positive correlation is for th
Pacific shifted west of the Nino3.4 box. We calculate Niño3.4 indices for CCI and other ECV's 
from their respective monthly anomalies and normalize by the standard deviation as shown for 
CCI and CLARA (Kaspar et al 2009) cloud cover and for HadISST (
cloud and SST indices co-vary especially for the positive ENSO phase. The lower panel show 
the Niño3.4 cloud cover indices calculated for ERA
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lasting. The phases can be classified by calculating SST anomalies for different regions of the 
Pacific, most typically the Niño3.4 region (190E-240E, 5S-5N) (Figure 

s, top of the atmosphere outgoing long-wave radiation and clouds have 
also been used to classify the ENSO events giving new perspective of the ENSO phase 

Figure 18: Correlation between CCI SST Niño 3.4 SST time series and CCI global Cloud 
2008. The boxes show the Niño3.4 region (170W-120W, 5S

80W, 5S-5N, hatched) used in the other figures in this section.

The short time scale, large amplitude and multiple ECV's affected by ENSO make
natural forcing to focus on for cross-assessment of multiple satellite records as the CCI data sets, 
albeit the records are too short for sampling the full ENSO diversity and the decadal ENSO 
variability. Climate models capture the basic ENSO features but the amplitude, life cycle and 
frequency are not properly reproduced and most models variability extends too far into the 
Western Pacific. To further understand model performances and biases, evaluating models with 

rived from multiple variables can give new perspectives. 

In this ongoing study we examine ENSO variability in satellite observations, CCI
and the corresponding variables in climate models. 

lation between CCI SST Niño3.4 index and CCI global cloud cover. The warm El Niño 
phases are accompanied with deep convective clouds in the central or eastern Pacific and 
reduced cloudiness in the western Pacific. The maximum positive correlation is for th
Pacific shifted west of the Nino3.4 box. We calculate Niño3.4 indices for CCI and other ECV's 
from their respective monthly anomalies and normalize by the standard deviation as shown for 
CCI and CLARA (Kaspar et al 2009) cloud cover and for HadISST (Rayner

vary especially for the positive ENSO phase. The lower panel show 
the Niño3.4 cloud cover indices calculated for ERA-Interim (ERAI, Dee et al 2011) and for an 

lasting. The phases can be classified by calculating SST anomalies for different regions of the 
5N) (Figure 18). More 

wave radiation and clouds have 
also been used to classify the ENSO events giving new perspective of the ENSO phase 

Figure 18: Correlation between CCI SST Niño 3.4 SST time series and CCI global Cloud cover 
120W, 5S-5N, black) and the 

5N, hatched) used in the other figures in this section. 

The short time scale, large amplitude and multiple ECV's affected by ENSO makes it an ideal 
assessment of multiple satellite records as the CCI data sets, 

albeit the records are too short for sampling the full ENSO diversity and the decadal ENSO 
features but the amplitude, life cycle and 

frequency are not properly reproduced and most models variability extends too far into the 
Western Pacific. To further understand model performances and biases, evaluating models with 

rived from multiple variables can give new perspectives.  

In this ongoing study we examine ENSO variability in satellite observations, CCI SST, sea level, 
and the corresponding variables in climate models. Figure 19 shows the 

lation between CCI SST Niño3.4 index and CCI global cloud cover. The warm El Niño 
phases are accompanied with deep convective clouds in the central or eastern Pacific and 
reduced cloudiness in the western Pacific. The maximum positive correlation is for the mid 
Pacific shifted west of the Nino3.4 box. We calculate Niño3.4 indices for CCI and other ECV's 
from their respective monthly anomalies and normalize by the standard deviation as shown for 

Rayner et al 2003). The 
vary especially for the positive ENSO phase. The lower panel show 

Interim (ERAI, Dee et al 2011) and for an  
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Figure 
index time
a. HadISST (black), 
CCI (red) and CLARA 
(blue) Cloud cover 
and b. HadISST 
(black), EC
(red) and ERAI (cyan) 
cloud cover.

Figure 19: Niño3.4 
index time series for 
a. HadISST (black), 
CCI (red) and CLARA 
(blue) Cloud cover 
and b. HadISST 
(black), EC-Earth 
(red) and ERAI (cyan) 
cloud cover. 
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EC-Earth (Hazeleger et al 2010) AMIP simulation (a 30 year atmosphere only simulation with
 prescribed observed SST and Sea
atmospheric model explaining the very good agreement with ERAI and that when driven by 
observed SST EC-Earth capture the natural variability. 
 
For the CMUG cross-assessment and to find alternative ENS
variability for all CCI variables for the equatorial Pacific Ocean, by calculating normalized 
anomalies (5S to 5N) for all longitudes and months for CCI SST, Sea level, ocean color 
(chlorophyll) and cloud cover. The results ar
row), where the positive and negative values show the deseasonalised monthly anomalies as 
function of longitude and time. For all variables we see the strong El Niño event 1997/1998 and 
the following longer La Nina period as well as other weaker El Niño's peaking further west. We 
note that the largest variability for the different ECV's occur at different longitudes as seen for 
the standard deviations (STD's) as function of longitude (lower row, Figure 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 20: Hovmöller diagrams for Pacific Ocean 5S
Sea Level, Chlorophyll and Cloud cover as function of time and longitudes between 100E to 
270E. Bottom row show the standard deviation for each 
 
SST has a wide flat peak in STD over the Pacific cold tongue region (enclosing the Niño3.4 
region) in contrast the cloud variability having a peak just east of the dateline (
level variability there is a minima at the dateline and two maxima at 140W and 140 E. The OC
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2010) AMIP simulation (a 30 year atmosphere only simulation with
prescribed observed SST and Sea-Ice). EC-Earth atmospheric part is based on the ECMWF 
atmospheric model explaining the very good agreement with ERAI and that when driven by 

Earth capture the natural variability.  

assessment and to find alternative ENSO indices, we investigate the 
variability for all CCI variables for the equatorial Pacific Ocean, by calculating normalized 
anomalies (5S to 5N) for all longitudes and months for CCI SST, Sea level, ocean color 
(chlorophyll) and cloud cover. The results are shown in Hovmöller diagrams (Figure 
row), where the positive and negative values show the deseasonalised monthly anomalies as 
function of longitude and time. For all variables we see the strong El Niño event 1997/1998 and 

ina period as well as other weaker El Niño's peaking further west. We 
largest variability for the different ECV's occur at different longitudes as seen for 

the standard deviations (STD's) as function of longitude (lower row, Figure 

Hovmöller diagrams for Pacific Ocean 5S-5N normalized anomalies for CCI SST, 
Sea Level, Chlorophyll and Cloud cover as function of time and longitudes between 100E to 
270E. Bottom row show the standard deviation for each variable as function of longitude.

SST has a wide flat peak in STD over the Pacific cold tongue region (enclosing the Niño3.4 
region) in contrast the cloud variability having a peak just east of the dateline (

inima at the dateline and two maxima at 140W and 140 E. The OC

2010) AMIP simulation (a 30 year atmosphere only simulation with 
Earth atmospheric part is based on the ECMWF 

atmospheric model explaining the very good agreement with ERAI and that when driven by 

O indices, we investigate the 
variability for all CCI variables for the equatorial Pacific Ocean, by calculating normalized 
anomalies (5S to 5N) for all longitudes and months for CCI SST, Sea level, ocean color 

e shown in Hovmöller diagrams (Figure 20 top 
row), where the positive and negative values show the deseasonalised monthly anomalies as 
function of longitude and time. For all variables we see the strong El Niño event 1997/1998 and 

ina period as well as other weaker El Niño's peaking further west. We 
largest variability for the different ECV's occur at different longitudes as seen for 

the standard deviations (STD's) as function of longitude (lower row, Figure 20). 

5N normalized anomalies for CCI SST, 
Sea Level, Chlorophyll and Cloud cover as function of time and longitudes between 100E to 

variable as function of longitude. 

SST has a wide flat peak in STD over the Pacific cold tongue region (enclosing the Niño3.4 
region) in contrast the cloud variability having a peak just east of the dateline (~190E). For sea 

inima at the dateline and two maxima at 140W and 140 E. The OC-
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chlorophyll is anti-correlated with the other variables as expected (high chlorophyll for cold 
upwelling waters), the largest variability is seen near the South American coast and over the 
Indonesian islands. The spikes in chlorophyll STD could be due to missing values not masked 
properly or mixed in land points in our analysis, it will be further investigated. For this first 
analysis we have used the full time length of each variable, for the final evolution we will make 
the comparisons for the same time-period. 
 
For the model comparisons as well as using AMIP simulations, that can be directly compared to 
the observations, we will also evaluate statistics of coupled climate models ENSO simulations. 
Figure 21 show an example of SST and cloud Niño3.4 time series from 1982 to 2100 for one 
EC-Earth RCP8.5 scenario, with the CCI observations included. We note the model is not in 
phase with the observations (as expected) and EC-Earth is too cold and has too small variabilities 
for SST and clouds for the “present” day climate. Towards the end of the century when the 
model is warmer the variabilities are larger and closer to the observations 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 21: Niño3.4 index time series for (top) HadISST (black), CCI (red) and CLARA (blue) Cloud 
cover and (bottom) HadISST (black), EC-Earth (red) and ERAI (cyan) cloud cover. 
 
Decadal variations in ENSO are visible in EC-Earth timeseries, with a plateau in the SST 
warming around 2040 after a strong El Niño 2038. This illustrate the problem of characterizing 
ENSO from “short” time periods, 20-30 years, which should be remembered when deriving 
constraints from observations. Using observations and models together can help to improve our 
understanding of ENSO and other large scale processes. 
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Finally, in Figure 22, we show an example how this process study have revealed issues with the 
satellite data. We do not expect a strong ENSO signal in Cloud liquid water path (LWP) since it 
is mainly the high convective clouds with ice water that interact with ENSO. Still, we also made 
HVM diagrams for liquid water path (LWP) for Cloud-CCI, CLARA and PATMOS-x 
(Heidinger et al 2014) that revealed unrealistic high values for the anomalies after year 2000. 
This is due to problems with the scanning motor onboard the satellites. The Cloud-CCI and 
CLARA team were aware of this problem but it was not clear on how it could affect the ECV's. 
In the latest Cloud CCI data v2.0 corrections have been made that mitigated the issue but some 
features remain, which should be communicated to end users. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 22: Hovmöller diagrams for CCI, CLRA and PATMOS-x LWP, anomalies for 5S-5N as a 
function of time and longitude, 100E-270E. see text for explanation of debugging application. 
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3.7 Coupled climate model assessment [WP3.5]  

Aim 
The aim of WP3.5 is to investigate the suitability of ESA-CCI products to constrain coupled 
climate model responses, especially the climate carbon feedback. In the last Coupled Model 
Intercomparison Project (CMIP5), all coupled climate models agree on the positive sign of this 
feedback, meaning a reduction of carbon uptake by ocean and land biosphere sinks under higher 
temperature, but the magnitude of this feedback is still subject to significant uncertainties, 
especially for the land components of the models. 
 
The climate carbon feedback cannot be directly measured, but the concept of “emergent 
constraints” has flourished over the last years (Cox et al., 2013 ; Wenzel et al., 2014). The idea is 
to define an empirical relationship between long and short-term carbon sinks sensitivity to a 
given variable, and then to constrain the simulated future CO2 fluxes thanks to the observed 
short-term sensitivity. The ESA-CCI products offer a great opportunity to look for this kind of 
relationships. We focus here on the ESA-CCI combined soil moisture product and the IPSL 
climate coupled model, with this specific question: How much soil moisture CCI data allow 
constraining carbon sinks sensitivity to climate change? 
 
To answer this general question, the following questions are first addressed:  

• What spatio-temporal resolutions are relevant to carry out this study? 
• Are the ESA-CCI soil moisture spatio-temporal coverage sufficient to define such a 

relationship? 
• Can the simulated relations between soil moisture and climate (precipitation and 

temperature), and between soil moisture and carbon fluxes, be observed?  
 
Eventually, we plan to extend this study to the CCI GHG product, for use as an additional 
constraint. 
 

Summary of results 
3.7.1  Spatio-temporal coverage of data 
 
The combined soil moisture product v02.2 is used in this study. This product was released in 
February 2016, and was developed from two types of instruments, active and passive microwave 
space borne instruments. It is available from 1979 to 2014 and provides daily data at 0.25° 
resolution. The surface soil moisture (SSM) data are supposed to stand for the SSM through the 
first 2 cm of the soil on average, expressed in m3/m3. (Dorigo et al., 2015). 
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The CCI-SM data were first aggregated at a larger spatial resolution of 1 degree, as the 
resolutions of coupled climate model are rarely higher than this. Then, as the relation between 
soil moisture and carbon fluxes is investigated at the global scale, and measures of GPP such as 
GPP from Jung et al., 2014 are given at the monthly timescale, the CCI
averaged. This temporal aggregation allows a better global coverage of data as it is 
Loew et al., 2013, but we tested the impact of imposing a threshold of the minimum of 
observations per month necessary to compute the monthly mean.
of the global coverage depending on this minimum of observation thre
daily observations per month. Demanding a minimum of 10 observations per month prevent 
from considering data before 1992, as less than 30% of land surfaces is covered. On the contrary, 
taking only 3 observations per month gives a g
important gap between 1988 and 1990, coming from a change in constellation of satellites used 
to build the product. Eventually, the threshold of 5 observations per month shows an increasing 
improvement of the data coverage from 30% in 1978 to 65% in 2014.
that taking at least 5 observations in a month to compute monthly means stands for a good trade
off between sufficient data spatial coverage and mean “robustness”.
between the different thresholds lies mainly in the high latitudes (
 
 
 
 

 
Figure 23: Evolution of the global spatial coverage depending on the threshold of observations 
per month taken. 
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SM data were first aggregated at a larger spatial resolution of 1 degree, as the 
resolutions of coupled climate model are rarely higher than this. Then, as the relation between 

arbon fluxes is investigated at the global scale, and measures of GPP such as 
., 2014 are given at the monthly timescale, the CCI-SSM data were monthly 

averaged. This temporal aggregation allows a better global coverage of data as it is 
., 2013, but we tested the impact of imposing a threshold of the minimum of 

observations per month necessary to compute the monthly mean. Figure 23
of the global coverage depending on this minimum of observation threshold taken from 1 to 10 
daily observations per month. Demanding a minimum of 10 observations per month prevent 
from considering data before 1992, as less than 30% of land surfaces is covered. On the contrary, 
taking only 3 observations per month gives a good coverage from the beginning but shows an 
important gap between 1988 and 1990, coming from a change in constellation of satellites used 
to build the product. Eventually, the threshold of 5 observations per month shows an increasing 

ta coverage from 30% in 1978 to 65% in 2014. Therefore, we conclude 
taking at least 5 observations in a month to compute monthly means stands for a good trade

off between sufficient data spatial coverage and mean “robustness”. Spatially, the differenc
between the different thresholds lies mainly in the high latitudes (see. Figure 2

 
Evolution of the global spatial coverage depending on the threshold of observations 

SM data were first aggregated at a larger spatial resolution of 1 degree, as the 
resolutions of coupled climate model are rarely higher than this. Then, as the relation between 

arbon fluxes is investigated at the global scale, and measures of GPP such as 
SSM data were monthly 

averaged. This temporal aggregation allows a better global coverage of data as it is showed in 
., 2013, but we tested the impact of imposing a threshold of the minimum of 

23 shows the evolution 
shold taken from 1 to 10 

daily observations per month. Demanding a minimum of 10 observations per month prevent 
from considering data before 1992, as less than 30% of land surfaces is covered. On the contrary, 

ood coverage from the beginning but shows an 
important gap between 1988 and 1990, coming from a change in constellation of satellites used 
to build the product. Eventually, the threshold of 5 observations per month shows an increasing 

Therefore, we conclude 
taking at least 5 observations in a month to compute monthly means stands for a good trade-

Spatially, the difference 
. Figure 24). 

Evolution of the global spatial coverage depending on the threshold of observations 
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Figure 24: Mean monthly spatial coverage of CCI
threshold of minimum daily observations per month (a) 1 day per month (62%), (b) 3 days per 
month (57%), (c) 5 days per month (49%), (d) 10 days per month (36%).
 
 
3.7.2  Comparison of the CCI
 
Following the CMIP5 design, the simulated surface soil moisture by the IPSL model stand for 
the amount of water in the first 10 cm of the soil column whereas soil moisture from the ESA
CCI stand for the first 2 cm. These two variables are thus not directly comparable and need to be 
normalized by their mean (content of water) and their standard deviation (dynamic of soil 
hydrology), following Reichle et al. (2004). Once normalized, the spatial patterns of
moisture are very similar between the model and the ESA
 
3.7.3  Relationships between soil moisture, precipitations, air temperature and carbon fluxes
 
Soil moisture and climate 
Annual correlations between soil moistur
Productivity (GPP) were calculated using an AMIP run of the IPSL
imposed) from the CMIP5 experiment. The correlations simulated by the model are compared 
with correlations obtained from “observations” on a 96x96 grid resolution.
precipitation data come from the reanalysis CRU
calculated from 1993 to 2009 because the CCI
% from this year. Figure 25 shows that soil moisture and precipitation are positively correlated, 
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Mean monthly spatial coverage of CCI-SM data over 1979-2014, depending on the 
threshold of minimum daily observations per month (a) 1 day per month (62%), (b) 3 days per 
month (57%), (c) 5 days per month (49%), (d) 10 days per month (36%). 

Comparison of the CCI-SM product with the IPSL model 

Following the CMIP5 design, the simulated surface soil moisture by the IPSL model stand for 
the amount of water in the first 10 cm of the soil column whereas soil moisture from the ESA

first 2 cm. These two variables are thus not directly comparable and need to be 
normalized by their mean (content of water) and their standard deviation (dynamic of soil 
hydrology), following Reichle et al. (2004). Once normalized, the spatial patterns of
moisture are very similar between the model and the ESA-CCI product ( not shown here ).

Relationships between soil moisture, precipitations, air temperature and carbon fluxes

Annual correlations between soil moisture, precipitations, air temperature and Gross Primary 
Productivity (GPP) were calculated using an AMIP run of the IPSL-CM5A
imposed) from the CMIP5 experiment. The correlations simulated by the model are compared 

ed from “observations” on a 96x96 grid resolution.
precipitation data come from the reanalysis CRU-NCEP.v2. The annual correlations are 
calculated from 1993 to 2009 because the CCI-SM data present a global coverage higher than 50 

shows that soil moisture and precipitation are positively correlated, 

 
2014, depending on the 

threshold of minimum daily observations per month (a) 1 day per month (62%), (b) 3 days per 

Following the CMIP5 design, the simulated surface soil moisture by the IPSL model stand for 
the amount of water in the first 10 cm of the soil column whereas soil moisture from the ESA-

first 2 cm. These two variables are thus not directly comparable and need to be 
normalized by their mean (content of water) and their standard deviation (dynamic of soil 
hydrology), following Reichle et al. (2004). Once normalized, the spatial patterns of soil 

CCI product ( not shown here ). 

Relationships between soil moisture, precipitations, air temperature and carbon fluxes 

e, precipitations, air temperature and Gross Primary 
CM5A-LR (sea ice and SST 

imposed) from the CMIP5 experiment. The correlations simulated by the model are compared 
ed from “observations” on a 96x96 grid resolution. The temperature and 

NCEP.v2. The annual correlations are 
SM data present a global coverage higher than 50 

shows that soil moisture and precipitation are positively correlated, 
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with a larger proportion of significant correlation coefficient given by the IPSL
model than by the observations, 63 % of grid cells are significantly corre
the model against 25% for the observations with R =0.53. 
 
On contrary, soil moisture and temperature are negatively correlated, meaning that the hotter, the 
drier is the surface (cf. Figure 
during spring, but the sign of this correlation depends on the season and on the regions. Again, 
the signal given by then IPSL model is stronger than the one given by the observations. 
However, the differences are lower, 24% of grid cel
using the model against 22% with R=
 
 

 
Figure 25: Annual correlations between soil moisture and precipitation (upper row), and 
between soil moisture and temperature (lower row), calculated over 1993
resolution, by the IPSL model and by CCI
 
 
This analysis shows the importance of soil moisture as an integrator of climate information, not 
only of precipitation but also of temperature, and it is supported by the ESA
 
Soil moisture and carbon fluxes
The relationships between soil m
occurs, are here investigated. The GPP come from Jung et al., 2013 and are provided at the 
monthly scale. The seasonal correlations using ESA
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with a larger proportion of significant correlation coefficient given by the IPSL
model than by the observations, 63 % of grid cells are significantly correlated with R=0.67 using 
the model against 25% for the observations with R =0.53.  

On contrary, soil moisture and temperature are negatively correlated, meaning that the hotter, the 
drier is the surface (cf. Figure 25). The strongest signal appears in the 
during spring, but the sign of this correlation depends on the season and on the regions. Again, 
the signal given by then IPSL model is stronger than the one given by the observations. 
However, the differences are lower, 24% of grid cells are significantly correlated with R=
using the model against 22% with R=-0.53 using the observations. 

Annual correlations between soil moisture and precipitation (upper row), and 
between soil moisture and temperature (lower row), calculated over 1993-2009 on a 96x96 grid 
resolution, by the IPSL model and by CCI-SM and CRU-NCEP precipitations and temperatu

This analysis shows the importance of soil moisture as an integrator of climate information, not 
only of precipitation but also of temperature, and it is supported by the ESA

Soil moisture and carbon fluxes 
The relationships between soil moisture and GPP, which is the rate at which photosynthesis 
occurs, are here investigated. The GPP come from Jung et al., 2013 and are provided at the 
monthly scale. The seasonal correlations using ESA-CCI SM and observed GPP are calculated if 

with a larger proportion of significant correlation coefficient given by the IPSL-CM5A-LR 
lated with R=0.67 using 

On contrary, soil moisture and temperature are negatively correlated, meaning that the hotter, the 
). The strongest signal appears in the Northern Hemisphere 

during spring, but the sign of this correlation depends on the season and on the regions. Again, 
the signal given by then IPSL model is stronger than the one given by the observations. 

ls are significantly correlated with R=-0.57 

 
Annual correlations between soil moisture and precipitation (upper row), and 

2009 on a 96x96 grid 
NCEP precipitations and temperature. 

This analysis shows the importance of soil moisture as an integrator of climate information, not 
only of precipitation but also of temperature, and it is supported by the ESA-CCI data. 

oisture and GPP, which is the rate at which photosynthesis 
occurs, are here investigated. The GPP come from Jung et al., 2013 and are provided at the 

CCI SM and observed GPP are calculated if 
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at least 10 values among 16 from 1993 to 2009 exist. The seasonal correlations, calculated by the 
IPSL model, between soil moisture and GPP shows interesting contrasts between spring and 
summer (Figure 25). Soil moisture is negatively correlated to GPP in spring whereas it is 
positively correlated in summer. These contrasts seem to highlight different vegetation 
processes. When plants photosynthesize, they pump water, inducing a reduction of soil moisture. 
However, water stress can break this mechanism by preventing photosynthesis to occur. The 
opposite signs of the correlations are thus likely to highlight two hydrological regimes inducing 
different plants behaviours. Spring is rarely subject to water stress, the first mechanism is thus 
followed: important GPP induces a reduction of soil moisture, illustrated by the negative 
correlation between these two variables. On the contrary, summer can be subject to water stress, 
and low soil moisture would reduce GPP. The positive correlation is thus likely to reflect a 
water-limited regime.  
 
Figure 26 shows that the correlations in spring are mostly noisy and do not reflect the 
relationship highlighted in the simulations. The signal is a bit stronger in summer in central 
Europe. Besides, the contrasts between southeast Europe (positive correlation) and northwest 
Europe (negative correlation) in summer are similar as in the model and tend to support our 
analysis. The differences between the model and the observations could either come from 
missing processes that are not represented in the model and induce a signal that is too ‘simple’ 
than the reality, or an insufficient temporal coverage of the observations. Indeed, if we impose 
that all values in the time series (i.e. 16) must exist to compute the correlations, than Western 
Europe is not covered at all. Spatial contrasts at the global scale will also be investigated to 
understand more about these differences.  
 



CMUG Phase 2 Deliverable 
Reference:  D3.1: Quality Assessment Report
Due date:   June 2016 
Submission date:  July 2016 
Version:  2.0c 
 

 
Figure 26: Spring and Summer correlations over 1993
between soil moisture and GPP using the IPSL
and GPP from Jung et al., 2014 (right column).
 
 
To conclude, soil moisture plays a key role in water and carbon cycles. It integrates information 
about climate (temperature and precipitation) and drives vegetation processes 
photosynthesis. These statements were already partly supported by the ESA
product and show good promises to identify a relationship between present and future carbon 
sinks sensitivities to soil moisture. 
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Spring and Summer correlations over 1993-2009, on a 96x96 grid resolution, 
between soil moisture and GPP using the IPSL-CM5A-LR (left column) and the CCI
and GPP from Jung et al., 2014 (right column). 

To conclude, soil moisture plays a key role in water and carbon cycles. It integrates information 
about climate (temperature and precipitation) and drives vegetation processes 
photosynthesis. These statements were already partly supported by the ESA
product and show good promises to identify a relationship between present and future carbon 
sinks sensitivities to soil moisture.  

 

2009, on a 96x96 grid resolution, 
ft column) and the CCI-SM data 

To conclude, soil moisture plays a key role in water and carbon cycles. It integrates information 
about climate (temperature and precipitation) and drives vegetation processes such as 
photosynthesis. These statements were already partly supported by the ESA-CCI soil moisture 
product and show good promises to identify a relationship between present and future carbon 
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3.8 Improved process understanding from Arctic and Antarctic 
cross ECV assessment [WP3.6] 

 

ESA-CCI sea ice and sea surface temperature data products 
 
We assess here the quality of sea ice concentration and sea ice thickness datasets compiled by the 
ESA Sea Ice CCI (SICCI) team, and perform a polar ECV cross assessment between ESA-CCI 
ice concentration and sea surface temperature datasets. To analyse the quality of the sea ice 
concentration and thickness products we assimilated these datasets into the Max Planck Institute 
Earth System Model (MPI-ESM; Stevens et al., 2013). In order to evaluate the SICCI ice 
concentration dataset we assimilated only SICCI ice concentration data into the model, and 
compared the performance of the simulated sea ice behaviour with identical experiments where 
ice concentration data from the National Snow and Ice Data Center (NSIDC) was assimilated. To 
evaluate the quality of the SICCI ice thickness dataset, we assimilated both SICCI ice 
concentration and thickness data into the model, and compared the simulated sea ice volume to 
other observational datasets as well as to the ice volume derived from the experiment where only 
ice concentration was assimilated. For the polar ECV cross assessment ESA-CCI sea ice 
concentrations and sea surface temperatures were assimilated into the model. For each of the two 
ECVs the assimilation run was repeated with a reference data product. 
 
The assimilation technique we apply in our model system is Newtonian relaxation (or 
“nudging”), and besides sea ice also atmospheric and oceanic observations are assimilated into 
the model. In the atmosphere vorticity, divergence, temperature and surface pressure data 
provided by ERA-Interim reanalyses (Dee et al., 2011) are assimilated, while ocean temperature 
and salinity are nudged with ORA-S4 reanalysis data (Balmaseda et al., 2013). Relaxation times 
applied when data was assimilated into the model vary from 1 day for atmospheric nudging to 10 
days for ocean nudging, and 20 days for nudging of sea ice. When only sea ice concentration is 
assimilated into the model, sea ice thickness is updated proportionally to sea ice concentration 
updates (Tietsche et al., 2013). 
 
Results of our performance analysis for both SICCI sea ice concentration and thickness datasets, 
as well as for the polar ECV cross assessment, are given below. 
 
 
3.8.1 ESA-CCI sea ice concentration dataset (version 1.1, daily data, 1991-2008) 
 
A comparison of SICCI and NSIDC sea ice concentration products shows that the Arctic sea ice 
area computed from SICCI data lies between NASA-Team (Cavalieri et al., 1984) and Bootstrap 
(Comiso, 1995) datasets from NSIDC. While NASA-Team data shows lower Arctic sea ice area 
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than SICCI, the Arctic sea ice area derived from Bootstrap data is larger than for SICCI. The 
difference between NASA-Team and Bootstrap products lies in the selection of tie points for 
brightness temperatures representing “fully ice-covered” grid boxes. In the Bootstrap retrieval 
algorithm 100% ice cover is obtained already for lower brightness temperatures compared to the 
NASA-Team algorithm. From computed Arctic sea ice areas we infer that the SICCI algorithm 
gives intermediate ice concentrations in the Arctic. This result also holds for simulated Arctic sea 
ice area in assimilation experiments with the different ice concentration datasets. 
 
The Antarctic sea ice area derived from both the SICCI ice concentration dataset and the 
assimilation run performed with SICCI ice concentrations shows that in the Antarctic the SICCI 
product resembles the NSIDC Bootstrap product, while the NASA-Team product shows about 
10% less sea ice area. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 27: Sea ice concentration differences between observations and the associated assimilation runs 
are presented for SICCI (left) and NSIDC/NASA-Team (right) data products. March-mean values over the 
period 1991 to 2008 are shown. 

 
 
A regional evaluation of the correspondence of the assimilated sea ice data product with the 
model physics indicates, however, a clear difference between SICCI and NSIDC data products. 
In many regions, especially in the Norwegian and Labrador Sea, low ice concentrations (< 3%) 
are obtained by the SICCI algorithm in grid boxes where observed sea surface temperatures as 
well as NSIDC ice concentration products indicate ice-free waters (see Figure 27). These 
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spurious ice concentrations occur, because consciously no weather filter was applied in the 
SICCI algorithm. In NSIDC ice concentration products these low ice concentrations, which 
originate from the contribution of clouds to brightness temperatures recorded by the satellite, are 
removed by a weather filter. However, since it is not feasible to objectively distinguish between 
the origins of possible brightness temperature sources, weather filters are likely to filter out also 
contributions of actual sea ice. Thus, although not using a weather filter introduces spurious ice 
concentrations in the open ocean, it provides a more objective view on the satellite data, since no 
actual ice concentrations are removed and it is left to the user to discard spurious low ice 
concentrations over open waters, if intended. 
 
The regional investigation of the assimilation performance also showed that a notable amount of 
sea ice in the marginal ice zone melts directly after assimilation into the model. The most 
prominent area for this to happen is the Davis Strait (see Figure 27). Sea ice observations show 
that in a few years (e.g. 1993) this area is largely covered by sea ice in March, however, model 
physics does not allow here for sea ice to exist. The model physics in a grid box where both sea 
ice and sea surface temperature are assimilated can be described as follows: 
In a model grid box the temperature of the uppermost ocean layer needs to be at freezing point to 
allow even for small amounts of sea ice to exist. Thus, assimilated sea ice cannot persist if the 
heat content in a certain ocean model grid box plus the sum of heat contributions from the 
assimilated sea surface temperature and the assimilated sea ice adds up to an ocean surface 
temperature above freezing. 
 
In many regions inconsistencies with the assimilated SST data also play an important role (see 
also Section 3.7.3). 
 
In summary, we consider the SICCI sea ice concentration data product as adequate for use in 
climate modelling, and of comparable quality as NSIDC data products. A major advantage of the 
SICCI product with respect to other datasets is its error characteristics. The different types of 
uncertainties provided with the dataset allow for more accurate studies, e.g., on the evaluation of 
model physics. 
 
 
3.8.2  ESA-CCI sea ice thickness dataset (version 0.9, Arctic-only, monthly data 
for October to March, 2003-2008) 
 
A comparison of the SICCI ice thickness product with other data products derived from 
observational time series reveals a substantial positive bias in SICCI data. When besides sea ice 
concentration data also SICCI ice thickness data is assimilated into the model, the March-mean 
Arctic sea ice volume exceeds the ice volume derived from the assimilation run where only ice 
concentration is nudged by almost 100% (see Figure 28).  
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Figure 28: March-mean reduced Arctic sea ice volume over 2003-2008, as derived from SICCI ice 
thickness data (red dotted line), the combined SICCI ice thickness/concentration assimilation run (red 
solid line), as well as the SICCI ice concentration-only assimilation run (black line), is shown. The term 
“reduced” is introduced here, since only grid boxes, where the SICCI ice thickness dataset contains non-
missing non-zero values, are considered. 

 
 
A side effect of assimilating high SICCI ice thicknesses into the model is that almost no 
assimilated sea ice in the marginal ice zone is lost directly after assimilation due to sea surface 
temperatures above freezing (see section on SICCI ice concentration data). The additional 
cooling of the system due to the positive bias in assimilated ice thicknesses prevents assimilated 
sea ice from being melted. However, we find the positive bias in the SICCI sea ice thickness 
dataset to be too large to allow for the data product to be of adequate quality for climate 
modelling studies. Error characteristics were not provided with the SICCI ice thickness data 
product. 
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3.8.3 Cross assessment ESA-CCI sea surface temperature and ice concentration 

(SST data version 1.1, daily data, 1992-2008) 
 
A comparison between ESA-CCI sea surface temperature (SST) and sea ice concentration (SIC) 
datasets reveals that inconsistencies among the data products exist in many regions close to the 
ice edge. Figure 29 shows the ESA-CCI sea surface temperature for March 1998 in all grid boxes 
where the ESA-CCI ice concentration is larger than 5%. Particularly in the Denmark Strait, but 
also in other regions such as the Baltic Sea, sea surface temperatures exceed 2°C over large 
areas, although ice concentrations above 5% are found in the same grid boxes. This result does 
not change qualitatively in other years. 
 

 
Figure 29: ESA-CCI sea surface temperatures are shown for March 1998. Grid boxes with less than 5% 
ice concentration were set to 0°C. 

 
The reason for these inconsistencies is likely that for the compilation of the ESA-CCI SST 
product another sea ice dataset, the OSI-SAF SIC product, was used to determine the exact 
position of the ice edge. Thus, ESA-CCI SST and SIC datasets are two independent data 
products, each showing the location of the ice edge as retrieved from the respective algorithm. 
In order to test how MPI-ESM model physics agrees with both ESA-CCI SST and SIC data, we 
assimilated both datasets simultaneously into the model. To assess the quality of the 
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correspondence between the model and the data products, we repeated the assimilation run once 
with ERA-Interim (instead of ESA-CCI) SST data, and once with NSIDC/Bootstrap (instead of 
ESA-CCI) SIC data. For reference, we also performed an assimilation run without any ESA-CCI 
data by using the respective SST and SIC reference products. 
 
The impact of the assimilated SST data product on the simulated total Arctic sea-ice area is 
almost undetectable. Figure 30 shows that both SST products assimilated into the model give 
very similar Arctic sea-ice area. This result holds, independent of the SIC product assimilated 
simultaneously. The total Arctic ice area reduces, however, after assimilation into the model. 
This reduction is slightly higher for the ESA-CCI compared to the NSIDC/Bootstrap SIC 
product, and is generally more prominent in March than in September (see Figure 30). The cause 
for this reduction is twofold. On the one hand, SSTs above freezing overlapping with the 
marginal ice zone cause ice melt in the respective regions (compare Figure 29). On the other 
hand, in regions such as the Davis Strait MPI-ESM model physics does not allow for ice being 
formed. The reduction is higher for ESA-CCI SIC than NSIDC/Bootstrap sea ice data, since the 
ESA-CCI algorithm does not apply a weather filter, so that clouds over open water are 
interpreted as ice concentrations by the algorithm (compare Figure 27).  
 
The general offset between ESA-CCI and NSIDC/Bootstrap SIC data is likely to originate from a 
different setting of the ice tie points in the different retrieval algorithms. 
 

 
Figure 30: Arctic sea-ice area in March (left) and September (right) as derived from observational 
datasets (solid lines) and assimilation runs (dashed and dotted lines). Only grid boxes with non-missing 
values in all datasets were considered for the computation. 
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3.9  Cross-Assessment of Aerosols, Cloud and Radiation CCI ECVs 
[WP3.7] 
 
Aim 
The aim of this work package is to complement the work of the Aerosol CCI Climate Research 
Group by providing a cross-assessment in the ESA CCI ECVs and in the CMIP5 climate models. 
We also aim at providing an improved process understanding by performing additional, more-
detailed studies with the global aerosol model EMAC. The following scientific questions shall be 
addressed: 
 

• What is the interrelation between different aerosol, cloud and radiation ECVs in CCI data 
and Earth System Models? 

• How do the CMIP5 models perform in comparison to a more detailed aerosol global 
model (EMACMADE) in the representation of processes related to aerosol-radiation and 
aerosol-clouds interactions? 

 
Summary of Results 
A first working version of the EMAC model, coupled with a new version of the aerosol sub-
model MADE (MADE3) has been set up. The MADE3 sub-model is able to simulate the main 
aerosol microphysical processes, such as nucleation, condensation and coagulation, as well as the 
equilibrium between the gas and the aerosol phases. In the current version of EMAC-MADE3, it 
is also possible to calculate aerosol optical properties using the aerosol quantities calculated by 
MADE3 (particle number, mass and radius) combined with pre-calculated lookup tables of 
optical parameters. This allows us to couple MADE3 to the radiation scheme of the model. An 
additional coupling of MADE3 to the cloud scheme (including aerosol interactions with liquid, 
mixed-phase and ice clouds) is currently being developed and will be used to perform the 
planned experiments if a working version is available by the end of the project. 
 
Several test simulations have been conducted with the new model system. Using the 
ESMValTool, which is being developed within WP5.1, the model has been extensively evaluated 
by comparison with several observational datasets, including the ESA-CCI aerosol products for 
aerosol optical properties. In particular, we compared the simulated aerosol optical depth (AOD) 
at 550 nm against the ESA-CCI satellite products (Figure 31). The simulated AOD is higher than 
that derived from ESA-CCI satellite measurements, especially over the southern oceans, which 
may indicate too high sea spray emissions, and in East Asia, where an incorrect estimate of the 
input emissions may play a role. As mentioned in the previous quarterly report, however, 
differences exist also in the observational data, e.g. when comparing the ESA product with 
MODIS. Furthermore, deviations in the simulated AOD compared to measurements are common 
also in other models. The relative error of MADE3 in this experiment is comparable to or smaller 
than those of other global models. 
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In order to perform a full transient simulation with EMAC
performance to that of the CMIP5 models, a similar emission setup has been developed, cove
the period 1950-2010. It makes use of the 
CMIP5 emission data, but considers yearly
between the decades) and a sector
more precise representation of the emissions with respect to the CMIP5 models, which is 
particularly important for aerosol and aerosol precursors given the relatively short lifetime of 
these species. 
 

 
Figure 31: aerosol optical depth at 550 nm (od550aer) as simulated by EMAC
from the ESA-CCI satellite product (middle panel). The right panel shows the difference model minus 
observations. Average values for the year 2001 are depicted in all panels.
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In order to perform a full transient simulation with EMAC-MADE3 and to compare i
the CMIP5 models, a similar emission setup has been developed, cove
It makes use of the MACCity inventory, which 

data, but considers yearly-resolved emissions (using a linear interpolation 
between the decades) and a sector-specific seasonal cycle based on RETRO. This should allow a 
more precise representation of the emissions with respect to the CMIP5 models, which is 
particularly important for aerosol and aerosol precursors given the relatively short lifetime of 

depth at 550 nm (od550aer) as simulated by EMAC-MADE3 (left panel) and 
CCI satellite product (middle panel). The right panel shows the difference model minus 

observations. Average values for the year 2001 are depicted in all panels. 

MADE3 and to compare its 
the CMIP5 models, a similar emission setup has been developed, covering 

inventory, which builds on the original 
resolved emissions (using a linear interpolation 

RO. This should allow a 
more precise representation of the emissions with respect to the CMIP5 models, which is 
particularly important for aerosol and aerosol precursors given the relatively short lifetime of 

MADE3 (left panel) and 
CCI satellite product (middle panel). The right panel shows the difference model minus 
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3.10 Cross assessments of clouds, water vapour, radiation, soil 
moisture for regional climate models [WP3.8] 

 

Aim 
The aim of this work package is to make an integrated assessment of ECV's related to regional 
moisture processes - clouds, soil moisture, precipitation and water vapour, to assess their 
consistency for African monsoons and European rainfall as simulated by regional climate 
models. The assessment will include an estimation of the usability of the corresponding CCI 
uncertainties. It will address the following scientific questions: 
 

• How do the CORDEX regional climate models simulate cloudiness and soil moisture for 
the African and European regions? 

• Are observed soil moisture and extreme precipitation relationships captured by regional 
climate simulations at different horizontal resolutions? 

• Investigate moisture related feedbacks in observations which are important in the African 
monsoon development. This involves local feedback mechanisms, lagged regional 
correlations in time and space and large scale forcing. 

• Identify key processes in regional climate models affecting the simulated rainfall and 
monsoon systems that can lead to improvements in their representations in the climate 
simulations. 

 
Key Outcomes 
For Europe, 

• The observed variabilities of CCI cloud cover, CCI soil moisture (SM) and EOBS 
precipitation are consistent over Europe and suitable for climate model evaluations. The 
regional model anomalies are of similar magnitude as the observed anomalies. 

• The climate model output (SM and Clouds) differ in absolute values compared to the 
observations. For SM it is due to difference in what is possible to compare, for cloudiness 
it is due to observational and model errors, as listed in the 3 points below.  

• SM-CCI absolute values representing the top 2cm cannot be compared directly to model 
fields (see SM FAQ http://www.esa-soilmoisture-cci.org/node/136). However, 
comparisons of absolute values can help to identify seasonal model short comings. For 
comparisons with models, the model data should be sampled in time and space according 
to the availability of the satellite data (also stated in SM FAQ).  

• Cloud-CCI prototype data v1.4 cloud cover is overestimated over North Atlantic and 
Mediterranean Sea. Feedback to the Cloud-CCI team has led to changes in thresholds for 
the cloud mask, which has improved the cloud cover in the final v2.0 data. 
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• ERA-Interim underestimate cloud fraction in southern Europe. The regional climate 
model HCLIM agrees better with the satellite observations.  

For Africa, 
• The observed variabilities of CCI and other satellite datasets and surface based 

observations are consistent over Africa and suitable for climate model evaluations.  
• Cloud-CCI and other cloud satellite data reveal that cloud cover in the CRU surface 

observations have “country shaped” errors.  
• CCI Cloud prototype data v1.4 overestimate cloud cover over sea for latitudes north and 

south of 20º, here the Mediterranean Sea and Southern Ocean (improved for v2.0). 
• RCA4 overestimate clouds over seas compared to the satellite observations, for regions 

with thin clouds as the stratocumulus region off the African west coast and cloudiness 
over sea East of Africa horn. 

Summary of Results 
The work so far for WP3.8 include evaluation of cloudiness, soil moisture and precipitation 
simulated by two Regional Climate Models (RCMs) utilizing the ESA CCI data soil moisture 
remote sensing product (Wagner et al., 2012) and CCI-clouds (prototype v1.4, Stengel et al 
2013) and EOBS precipitation (Haylock et al 2008). In addition we use satellite cloud data from 
CLARA-A1 (Caspar et al 2009) and PATMOS-x (Heidinger et al 2014) and land surface based 
cloud data from CRU (Haylock et al 2008). Simulations were performed using two different 
RCM systems, the Rossby Centre Regional Climate model (RCA4) and a climate version of the 
non-hydrostatic meso-scale modelling system HARMONIE (HCLIM). Both models are driven 
by ERA-Interim (ERAI, Dee and co-authors, 2011) lateral boundary fields of winds, temperature 
and humidity and sea surface temperature, every six hours.  
 
All comparisons have been made for monthly mean values. Since the CCI-SM data is available 
on daily bases with spatial and temporal gaps, we used a simplistic simulator interpolating the 
regional models daily values of soil moisture to the observational grid. A daily mask represented 
by the grid boxes which have valid CCI-SM values was applied to the interpolated model SM 
fields. From these daily values monthly mean values were calculated for the RCM's and CCI-
SM, respectively. 
 
HCLIM over Europe 
The aim is to evaluate moisture processes for Europe in the high resolution model HCLIM for a 
30 year, 6km horizontal resolution simulation (work not yet completed). Here, we show 
preliminary results from a four year (2003-2007) HCLIM simulation at 15km horizontal 
resolution over Europe (Figure 31). An example of the co-variability of the moisture related 
variables is shown for the Mediterranean region in Figure 32. Time series of absolute values (left 
column) and de-seasonalised anomalies (monthly mean removed, right column) are shown for 
cloudiness, precipitation and soil moisture.  
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Figure 31: Map of the HCLIM area, the red box show the region for the time series in Figure 32. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 32: Monthly mean time series 2003-2007 for the Mediterranean region marked in the 
previous figure. Left column show absolute values for clouds (top), precipitation (middle) and 
soil moisture (bottom). Right column show de-seasonalised anomalies for clouds (top), 
precipitation (middle) and soil moisture (bottom). Black lines CCI data, red lines HCLIM, blue 
lines CLARA data and cyan lines ERA-Interim. 
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The different observations show consistent variations in time with higher cloud fraction, 
precipitation and soil moisture in winter and lower values in summer (left column). The regional 
model anomalies are of similar magnitude as the observed anomalies (right column). Both 
observations and model anomalies have the wettest winter 2003/04 and the driest 2006/07.  
 
ERA-Interim underestimate cloud cover all year but especially in autumn to spring (top left), as 
also found in other studies for Southern Europe (Calbó et al 2016). HCLIM is similar to ERAI 
and does not manage to produce more clouds than ERAI, except in summer when the regional 
model is less influenced by the inflow from the lateral boundaries. Both HCLIM and ERAI 
reproduce the observed cloud monthly variability (right top panel) but HCLIM has smaller 
variations than observed. Cloud-CCI v1.4 overestimate cloud cover over the Mediterranean Sea 
compared to CLARA and PATMOS-x data (top left) and over the Atlantic (not shown). This 
issue was reported to the Cloud-CCI team and was found to be due to too low thresholds over sea 
in the Neural Network cloud mask. In the latest v2.0 Cloud-CCI data the cloud cover bias over 
sea has been reduced. 
 
HCLIM surface scheme has three layers of soil moisture, here we used the top 1cm to compare 
with the satellite observation. SM-CCI absolute values representing the top 2cm cannot be 
compared directly to models as known (http://www.esa-soilmoisture-cci.org/node/136). 
However, comparisons of absolute values can help to identify seasonal model short comings. As 
an example we note SM-CCI has a peak value each December while the simulated SM peaks 
later during the spring (lower left panel). This model SM bias can be explained by an 
overestimation of precipitation in spring as seen in the middle left panel in Figure 32. Further 
analysis into the moisture ECV's relationships will be made for the longer simulation. 
 
CORDEX RCA4 simulations over Africa 
The analysis of African monsoon and relationships between clouds, precipitation and soil 
moisture, in observations and CORDEX (Coordinated Regional Climate Down-scaling 
Experiment) simulations is ongoing. Here, we show examples comparing cloud cover from 
different observational data sets and RCA4 (Strandberg et al., 2014) run at 50 km horizontal 
resolution for the time period 1982-2010 driven by ERA-Interim and different CMIP5 models at 
the lateral boundaries. 
  
The East African Monsoon is associated with the ITCZ moving south of the equator. The so-
called long rains prevail during spring (MAM) and the short rains during autumn (OND). The 
transition season (JFM) bring most rainfall and cloudiness to East Africa. Figure 33 show the 
mean cloud fraction for January to March for the satellite observations, Cloud-CCI, CLARA, 
PATMOS-x and land surface observations CRU and three reanalysis datasets (ERAI, 
MERRRA2 and JRA25). For now, we use CLARA as the reference cloud data set, since the 
Cloud-CCI prototype data v1.4 has some known errors, the analysis will be remade for the final 
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phase 2 Cloud-CCI v2.0 dataset. All observational datasets have a maximum in cloud cover over 
East Africa consistent with the region of large amounts of rainfall. The reanalysis models 
underestimate the East-African cloud cover maxima, ERAI being closest to the observations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 33: Top panel: Cloud fraction for observations and reanalysis over Africa. Bottom panel: 
CLARA cloud fraction and differences for satellite and reanalysis data compared to CLARA. All 
figures for January-March 1982-2012 (%). 
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We note some problem regions for CRU, Cloud-CCI and CLARA cloud fraction. CRU surface 
observations have “country shaped” differences compared to CLARA (Fig 33 lower panel) and 
compared to the other satellite and reanalysis data sets (not shown). CCI Cloud prototype data 
v1.4 overestimate cloud cover over sea for latitudes north and south of 20º, as seen here over the 
Mediterranean Sea and Southern Ocean. The biases have been reduced in the latest Cloud-CCI 
v2.0 datasets. CLARA cloud cover is about 10% smaller than Cloud CCI, PATMOS and the 
reanalysis over Sahel and the desert regions in North Africa. This could be due to problems over-
detecting clouds over desert surfaces for CLARA.  
 
Figure 34 (top panel) show the cloud fraction for CLARA and the bias for RCA4 driven by 
ERA-Interim and 10 CMIP5 GCM models (resolution 200-300km) at the lateral boundaries. 
RCA4 overestimate clouds over sea; for the stratocumulus region off the African west coast and 
for seas East of Africa horn, the biases are very similar for all RCA simulations indicating 
problems with RCA thin cloud formation over sea that needs to be looked into. RCA4 driven by 
ERAI has the smallest bias over land compared to RCA4 driven by the atmosphere-ocean 
coupled CMIP5 models and the highest correlation compared to the observations (lower panel). 
This is expected since the coupled model climate do not reproduce the climate of a certain year, 
for coupled models other statistics is needed. To compare directly with the observations we will 
evaluate RCA4 driven by CMIP5 AMIP simulations (GCM's driven by observed SST and Sea-
Ice at the lower boundary) which can reproduce the climate natural variability. We will also 
extend this study to include all moisture variables and other CORDEX RCM's for the final 
CMUG QAR report.  
 

Quality relevant outcomes (updates from CMUG QAR 2015) 
We found from these preliminary results assessing CCI SM and cloud cover that both variables 
are of “climate quality”. CCI clouds and soil moisture are consistent on a regional scale. Listed 
below are some remarks and recommendations for the individual variables and some general 
thoughts on observed versus modelled soil moisture. 
 
Cloud-CCI Quality 
The Cloud-CCI prototype data v1.4 was obtained directly from the Cloud-CCI team in December 
2015, some issues were found and are listed below. These issues have been corrected and 
reduced in the final version that will be available summer 2016 from ftp://ftp-cmsaf-
projects.dwd.de/ESA_Cloud_CCI/CLD_PRODUCTS/L3C/.  

• Cloud-CCI prototype data had too much cloud fraction over sea compared to other 
satellite data (CLARA, PATMOS) and models (ERA-Interim, EC-Earth) as 
communicated to the Cloud-CCI team and since improved in the latest v2.0 dataset.  
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• For the NOAA satellites there are overlapping L3C data for same time periods. What is 
the Cloud-CCI recommendation on how to make one single time series, to minimize the 
drift and any artificial trend?  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 34: Top panel: Cloud fraction for CLARA and differences RCA4 (driven by ERA-Interim 
and 10 CMIP5 models) - CLARA. Bottom panel: CLARA cloud cover and correlation CLARA 
and RCA4 cloud cover. All figures for January-March 1982-2010 (%). 
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SM-CCI Quality  
The Frequently Asked Questions on the SM website (http://www.esa-soilmoisture-
cci.org/node/136) was very useful. It is recommended that a FAQ page be set up for all CCI 
ECVs, and any bugs can be listed under known issues/errors. The following points should be 
added to the SM FAQ to avoid misuse under ‘Do’, Don't’ or ‘Data usage in models’. 

• Do not compare (or take care when comparing) your model total SM directly with these 
products, the satellite observes the top ~2cm”. 

• Any model data should be masked (“simplistic simulator approach”) when compared to 
the observations. This is indirectly implied in the spatial and temporal availability SM 
FAQ's. It was less important in this study but for other regions and time periods the 
differences can be much larger. Any user comparing with model data should strongly be 
recommended to do mask the model data. 

• It would be useful to have a presentation similar to that presented at the CMUG 5th 
integration meeting available at the FAQ link or somewhere else at the website. 

 
General thoughts on satellite and model soil moisture comparisons 
The CCI-SM represents a very shallow layer corresponding to approximately the top two 
centimeters of the soil, however, the observed depth depends on the soil moisture content (deeper 
for drier soils). It is not easy to characterize this top soil layer but in many regions it is some 
combination of active or dormant vegetation mixed by some dead vegetation material mixed 
with mineral soil. In the model, depending on the exact parameterization applied, the top SSM 
layer may be purely mineral soil or some weighted value between mineral soil, soil carbon and 
vegetation material. 
 
As stated on the CCI-SM web page “the statistical comparison metrics like root-mean-square-
difference and bias based on our combined dataset are scientifically not meaningful. However, 
the CCI SM products can be used as a reference for computing correlation statistics or the 
unbiased root-mean-square-difference”. This would support the anomaly analysis of SM in the 
2015 CMUG Quality Assessment Report (CMUG 2015), although the absolute simulated SM 
values are sometimes at the uncertainty limit of the CCI-SM. The most important soil moisture in 
models is represented by the layer occupied by roots since this is the soil moisture limiting the 
transpiration. Methods do exist which can be used to integrate CCI-SM in time to reach a soil 
moisture representing a thicker layer but assumptions, sometimes difficult to control, are needed 
for such methods. CCI-SM can be nudged or assimilated in a land-surface model to compile a 
deep soil moisture product but such a product will always be model dependent and must be used 
carefully when compared to other models. A soil moisture product representing the degree of 
saturation rather than volumetric soil moisture would limit, or even exclude, any model 
dependence. We argue that such a product is preferable. The SM team at the CMUG 5th 
integration meeting informed that such products are planned to be made, we support that work. 
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3.11 Cross assessments of ESA CCI glacier, land cover and sea level 
data for hydrological modelling of the Arctic Ocean drainage 
basin [WP3.9] 

 

Aim  
The aim of this study is to assess the use of the CCI Glacier and Land cover data in hydrological 
modelling of the Arctic Ocean drainage basin. The main underlying question is if the use of CCI 
Glacier and Land cover can improve hydrological models and simulated river runoff to the 
Arctic Ocean? The current assessment is focused on the usefulness of the data as input for model 
parameterization, initialization, and evaluation compared to pre-cursor datasets, as well as on the 
‘climate quality’ of the products in terms of understanding long term trends and seasonal 
variation in the Arctic hydrological system.  

Use of Land cover and Glacier data in the Pan-Arctic hydrological model Arctic-HYPE 
A pan-arctic application of the hydrological model HYPE (Hydrological Predictions for the 
Environment) developed by SMHI (e.g. Lindström et al., 2010; Arheimer et al., 2012) is used in 
the analysis. The model is based on a semi-distributed multi-basin approach, with each river 
basin divided into sub-basins, and each such sub-basin divided into a set of soil-type/land-cover 
classes. The model domain includes the land area draining into the Arctic Ocean (excluding 
Greenland) and covers 23 million km2, divided into 32,599 sub-basins with an average size of 
715 km2 (see further on ). The model simulates processes including for instance accumulation 
and melt of snow and glaciers, evapotranspiration, surface runoff, and drainage from individual 
soil layers, routing in lakes and rivers, and accumulated water discharge through the mouth of 
each sub-basin. Arctic-HYPE version 2.5 was developed without any CCI data using GlobCover 
2004-2006. A first model version 3.0 based on CCI data was developed during 2015-2016 
including information from CCI Land cover (v1.4) and CCI Glacier (Randolph Glacier 
Inventory, RGI v4.0). Included in the current analysis is also some initial assessments of CCI 
Land Cover v1.6 and RGI v5.0. 
 
Land cover information is used in the partitioning of the hydrological model sub-basin areas 
into the runoff-generating sub-units representing unique combination of soil types and land cover 
types. The original land cover data is re-classified to a smaller number of classes in order to 
represent only the most important hydrological responses and processes. The current land cover 
classes in Arctic-HYPE are: lake, glacier, urban, wetland, crops, forest, open vegetation, and 
bare soil. This may be a oversimplification, since we know for instance that different types of 
forest ted to grow in different hydrological and permafrost conditions (deciduous needle leaf and 
evergreen needle leaf, respectively). It should be noted that land cover classes are fixed and their 
areal extent cannot be changed during the HYPE model simulation. The exception is the glacier 
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land cover class, for which the glacier covered areal fraction is calculated based on the glacier ice 
volume (see further below). Lakes and rivers are also given special attention in HYPE: surface 
water area can be separated into rivers, lakes on the main river course, and internal lakes 
connected to the main river through local rivers. However, none of the land cover data used for 
Arctic HYPE – neither GlobCover nor CCI land cover - contains information to separate the 
surface water area into rivers and lakes. Currently, all surface water area is attributed to lakes. 
Lake polygons from the Global Lake and Wetlands Database (GLWD) are used to identify lakes 
situated on the main river, whereas the remaining water area from the land cover data is 
considered as internal lakes in the model sub-basins. 
 
Glacier information is used to initialize and parameterize a simplified glacier area and mass 
balance sub-model in HYPE, representing all glaciers within a hydrological model sub-basin by 
a single storage of ice. Total glacier area within each sub-basin is the main input information, 
whereas the total glacier volume is the main state variable in the model. Glacier area and 
volume is related using area-volume relationships following Bahr et al. (2015). The initial 
volume is calculated from the input glacier area, whereas during the simulation, the glacier area 
is updated as a function of the simulated glacier volume. In summary, there are at least 4 major 
issues related to glacier modelling in HYPE that has been assessed using the CCI Glacier data: 

• The use of glacier area-volume scaling is actually not intended for dynamic modelling of 
individual glaciers, but rather for volume estimates of populations of glaciers. It has been 
suggested by the CCI Glacier scientific leader to instead use glacier models or glacier 
volume estimates by Huss and Farinotti (2012). On the other hand, the more simple area-
volume scaling models might still be motivated for large-scale hydrological models, since 
the interest is mass balance and runoff generation of the population of glaciers within a 
river basin and not of individual glaciers. As a compromise for Arctic-HYPE v3 and 
later, the linear coefficients in the area-volume relationships are calibrated by fitting the 
total glacier volume per RGI zone to the values reported in Huss and Farinotti (2012). 
The glacier type data field in the RGI v4 was used to separate into glaciers and ice caps.  

• When area-volume scaling is used, it should be applied on the individual glacier areas; 
otherwise the total volume will be different due to the non-linear properties of the 
scaling-functions. This poses a problem for the lumped model structure in HYPE where 
smaller glaciers within the same sub-basin are lumped together, and larger glaciers and 
ice caps covering several sub-basins are divided in smaller sections. This problem was 
solved using the RGI v4 glacier outlines by deriving sub-basin-specific corrections of the 
linear area-volume coefficients. The exponential coefficients are kept constant with 
different values for glaciers and ice caps, as discussed by Bahr et al., 2015). 

• In previous versions of Arctic-HYPE (version 2.5 and earlier), the glacier area was 
derived from GlobCover’s land cover class “Permanent snow and ice”. First of all, this 
land cover class largely overestimate the glacier area (both using GlobCover and CCI 
Land Cover; Figure 35; Table 5), and obviously, land cover data does not provide 



CMUG Phase 2 Deliverable 
Reference:  D3.1: Quality Assessment Report
Due date:   June 2016 
Submission date:  July 2016 
Version:  2.0c 
 

information on individual glacier basis, which is n
estimations as described above 

• A major issue is the problem of: How to initialize glacier area and volume for historical 
time periods? The mean year of the RGI v4 gla
CCI land cover data is representing the period 1998
model simulations around 1960. The World Glacier Monitoring Service (WGMS) 
provide annual glacier mass balance from a large nu
information need to be generalized through some sort of modelling in order to be applied 
on all glaciers in the RGI database. The following method was developed solve this 
problem for the Arctic-
• We used annual mass balance data from 74 WGMS glaciers within the Arctic

model domain (Figure 
annual glacier mass balance at any point in the Arctic
function of a) a 9 year centered running mean of all annual mass balance data points 
within the same RGI zone plus b) a linear regression model for the annual deviation 
from the regional running mean taking into account annual precipitation and 
temperature  
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• The annual mass balance was integrated backwards to 1961 from the RGI source data 
year, for each glacier in the model to obtain the initial
Arctic-HYPE model domain, the initial ice volume increased only by 2% by this 
procedure. But there were large regional differences: For the regions Iceland, 
Svalbard and Western Canada/US the initial glacier volume increased 
and 30% respectively, whereas for Scandinavia and North Asia the initial glacier 
volume decreased by 17% and 36%, respectively.

 

 

Figure 35: Comparison of glacier area in Alaska derived from CCI land cover and ESA 
GlobCover 2004-2006 (permanent snow and ice) and the glacier outlines from CCI Glacier 
(RGIv4).  
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information on individual glacier basis, which is needed for the area
estimations as described above - only the total area of (permanent snow and) ice. 
A major issue is the problem of: How to initialize glacier area and volume for historical 
time periods? The mean year of the RGI v4 glacier outline source data is 1996 and the 
CCI land cover data is representing the period 1998-2012, whereas we would like to start 
model simulations around 1960. The World Glacier Monitoring Service (WGMS) 
provide annual glacier mass balance from a large number of glaciers, but still that 
information need to be generalized through some sort of modelling in order to be applied 
on all glaciers in the RGI database. The following method was developed solve this 

-HYPE model:  
We used annual mass balance data from 74 WGMS glaciers within the Arctic
model domain (Figure 36). The data was used to derive statistical models for the 
annual glacier mass balance at any point in the Arctic-HYPE model domain as a 

year centered running mean of all annual mass balance data points 
within the same RGI zone plus b) a linear regression model for the annual deviation 
from the regional running mean taking into account annual precipitation and 

An example of the statistical annual glacier mass balance model from the RGI zone 
Scandinavia is shown in Figure 37. 

The annual mass balance was integrated backwards to 1961 from the RGI source data 
year, for each glacier in the model to obtain the initial ice volume. In total over the 

HYPE model domain, the initial ice volume increased only by 2% by this 
procedure. But there were large regional differences: For the regions Iceland, 
Svalbard and Western Canada/US the initial glacier volume increased 
and 30% respectively, whereas for Scandinavia and North Asia the initial glacier 
volume decreased by 17% and 36%, respectively.  

  

Figure 35: Comparison of glacier area in Alaska derived from CCI land cover and ESA 
manent snow and ice) and the glacier outlines from CCI Glacier 

eeded for the area-volume coefficient 
only the total area of (permanent snow and) ice.  

A major issue is the problem of: How to initialize glacier area and volume for historical 
cier outline source data is 1996 and the 

2012, whereas we would like to start 
model simulations around 1960. The World Glacier Monitoring Service (WGMS) 

mber of glaciers, but still that 
information need to be generalized through some sort of modelling in order to be applied 
on all glaciers in the RGI database. The following method was developed solve this 

We used annual mass balance data from 74 WGMS glaciers within the Arctic-HYPE 
). The data was used to derive statistical models for the 

HYPE model domain as a 
year centered running mean of all annual mass balance data points 

within the same RGI zone plus b) a linear regression model for the annual deviation 
from the regional running mean taking into account annual precipitation and 

An example of the statistical annual glacier mass balance model from the RGI zone 

The annual mass balance was integrated backwards to 1961 from the RGI source data 
ice volume. In total over the 

HYPE model domain, the initial ice volume increased only by 2% by this 
procedure. But there were large regional differences: For the regions Iceland, 
Svalbard and Western Canada/US the initial glacier volume increased by 5%, 10%, 
and 30% respectively, whereas for Scandinavia and North Asia the initial glacier 

Figure 35: Comparison of glacier area in Alaska derived from CCI land cover and ESA 
manent snow and ice) and the glacier outlines from CCI Glacier 



CMUG Phase 2 Deliverable 
Reference:  D3.1: Quality Assessment Report
Due date:   June 2016 
Submission date:  July 2016 
Version:  2.0c 
 

 

Table 5: Glacier area in the Arctic
glacier (RGI v4), Huss and Farinotti (2012), and estimations based on the land cover class 
“permanent snow and ice” in CCI land cover v1.4 and GlobCover 2004

RGI region 

All glacier areas

RGIv4

km2

01 Alaska 86723

02 Western Canada/US 14559

03 Arctic Canada North 104873

04 Arctic Canada South 40883

06 Iceland 11060

07 Svalbard 33959

08 Scandinavia 

09 Russian Arctic 51592

10 North Asia 

Total 349934

 
 

Figure 36: Left: Location of 74 WGMS 
model domain and RGI regions 1
average annual glacier mass balance per RGI region.
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Table 5: Glacier area in the Arctic-HYPE model per RGI region, comparing data from CCI 
Farinotti (2012), and estimations based on the land cover class 

manent snow and ice” in CCI land cover v1.4 and GlobCover 2004-2006.

All glacier areas ArcticHYPE model domain 

RGIv4 HF2012 Based on RGIv4 

Based on 

LCv1.4 

km2 % of RGIv4 km2 % of region % of area based on RGIv4

86723 104% 10346 12% 

14559 100% 2151 15% 

104873 100% 104716 100% 

40883 100% 40875 100% 

11060 100% 11060 100% 

33959 100% 33458 99% 

2851 100% 2268 80% 

51592 100% 50844 99% 

3435 82% 1613 47% 

349934 101% 257330 74% 

Figure 36: Left: Location of 74 WGMS glaciers with mass balance data within the Arctic
model domain and RGI regions 1-10 (Greenland zone 5 excluded from the model), Right: 
average annual glacier mass balance per RGI region. 

HYPE model per RGI region, comparing data from CCI 
Farinotti (2012), and estimations based on the land cover class 

2006. 

Based on 

 

Based on 

GlobCover 

% of area based on RGIv4 

140% 157% 

325% 1711% 

123% 240% 

159% 265% 

101% 208% 

117% 165% 

157% 131% 

121% 229% 

235% 860% 

130% 242% 

 
glaciers with mass balance data within the Arctic-HYPE 

10 (Greenland zone 5 excluded from the model), Right: 
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Figure 37: Annual glacier mass balance data from WGMS database for all glaciers in RGI zone 
8 (black dots) (Scandinavia), simulated and observed for one of the glaciers (green and red dots, 
respectively) and the centered running average using a 9 year window (red line).  

 

Summary of Results 

CCI Glacier 

CCI Glacier data (Randolph Glacier Inventory, RGI v4 and v5) was found to be very useful for 
evaluating and improving the setup of the glacier sub-model in the Arctic-HYPE model, 
especially in combination with additional information from other data on glacier mass balance 
(WGMS) and glacier volume (Huss and Farinotti, 2012): 

1. The use of CCI glacier data drastically changed the total area of glaciers compared to 
previous model versions. Glacier area estimated from the class “permanent snow and ice” 
from CCI Land cover v1.4 and GlobCover 2004-2006 was found to overestimate the 
glacier area derived from RGIv4 by 30 % and 140 %, respectively (Figure 35; Table 5).  

2. The individual RGI (v4) glacier areas and glacier type information were used to calibrate 
the area-volume scaling parameters used in the Arctic-HYPE model, by fitting the total 
glacier volume per RGI region in the Arctic area versus regional glacier volume estimates 
from Huss and Farinotti (2012).  

3. Furthermore, the RGI data enabled the derivation of basin specific corrections of the area-
volume scaling coefficients to correct for errors in the volume estimation when lumping or 
dividing individual glaciers by the hydrological model sub-basin delineation. 

4. Compared to estimates with the scaling parameters used in Arctic-HYPE version 2.5, the 
new scaling parameters implies a decreased glacier volume by 8% when applied on the 
individual RGI glacier areas for all glaciers in the arctic RGI regions (Table 6). However, 
when applied on the total glacier area within the Arctic-HYPE sub-basins, the area-volume 
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scaling resulted in a 37% overestimation of the total glacier volume if the new sub-basin 
corrections without the scaling parameters. 

5. If the overestimation of glacier area in previous model version is also taken into account, 
the total overestimation of glacier volume in previous model version was even larger (44%, 
Table 4).  

6. RGI glacier outlines could probably also be further used for improving sub-basin 
delineation following the glacier outlines. The data also includes additional information 
that could be further used to improve the glacier sub-model parameterizations: mean, 
maximum and minimum elevation, slope and length, as well as the detailed hypsography, 
but none of these potential values of the CCI glacier data have been assessed yet. 

 
A first preliminary analysis of RGI v5 showed substantial improvements in North Asia, where 
previously many glaciers were only marked by a circle area without a real outline (Figure 38). 
Previous glaciers outlines were also improved and many of them shifted laterally in this region – 
some glaciers rather large shifts. It has not been not assessed if these updates have been adopted 
in the CCI Land cover data v1.6.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 38: Comparison of Glacier area derived from CCI Glacier (RGI v4 and v5) and CCI 
Land cover ´permanent snow and ice’ v 1.6. Glaciers with unknown outline but known existence 
and known area were represented by circles in RGI 4.0 (example in lower right panel from 
upper part of River Ob basin). 
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Table 6: Glacier volume estimated for RGI regions in the arctic region and in the Arctic-HYPE 
model per RGI region, comparing data from Huss and Farinotti (2012) with data estimated by 
area-volume scaling with glacier areas based on CCI glacier (RGI v4), CCI land cover v1.4 and 
GlobCover 2004-2006. 

RGI region 

All glacier areas Arctic-HYPE model domain 

HF2012 

Area-volume scaling based 

on RGI v4 

Area-volume scaling 

Based on RGI v4 

Based on 

Land Cover 

v1.4 

Calibrated 

parameters 

Reference 

parameters 

calibrated calibrated reference reference 

subbasin 

corrected 
uncorr. uncorr. uncorr. 

km3 % of HF2012 km3 % of sub-basin corrected 

01 Alaska 20402 99% 118% 2112 153% 182% 212% 

02 Western Canada/US 1025 96% 115% 109 298% 356% 1463% 

03 Arctic Canada North 34399 101% 94% 34705 123% 114% 127% 

04 Arctic Canada South 9814 97% 79% 9476 134% 114% 210% 

06 Iceland 4441 103% 61% 4555 104% 62% 74% 

07 Svalbard 9685 95% 80% 9015 166% 140% 155% 

08 Scandinavia 256 99% 78% 216 200% 148% 276% 

09 Russian Arctic 16839 99% 74% 16516 158% 112% 133% 

10 North Asia 140 118% 141% 71 288% 344% 922% 

Total 97001 99% 92% 76777 137% 116% 144% 

 
 
 
CCI Land cover 
CCI land cover v1.4 was compared to the precursor data GlobCover 2004-2006 with regard to 
differences in land cover distribution. The “climate quality” of the information in the land cover 
time series (2000, 2005, 2010) was of special interest, since the on-going changes in the Arctic 
regions (mainly climate related) are expected to be expressed for instance in the distribution of 
vegetation, surface water, and snow and ice. Furthermore, a initial assessment was made 
comparing CCI land cover v1.4 and v1.6 for the Arctic region. 

 
Results to date:  
� More surface water area in CCI Land cover data sets compared to the pre-cursor GlobCover 

2004-2006): 
1. Arctic-HYPE water surface area based on CCI Land cover v1.4 increased with about 6-

20% compared to the precursor based on GlobCover 2004-2006 (Figure 39), with 
ranges depending on how the land cover data was combined with the GLWD lake 
vector data. This is a very important improvement for understanding Arctic hydrology 
which is dominated by large rivers and a large number of small and large lakes. The 
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total water body area in the Arctic domain further incr
v1.6.  

2. More realistic distribution and higher resolution of water bodies in CCI Land cover 
v1.6: 

3. CCI Land cover v1.6 includes a new water body mask with higher spatial resolution 
(150m), which represented small lakes and ri

4. The new 150 m resolution water mask has also been re
cover products with similar improvements in the represen
compared to v1.4 (Figure 

5. By vectorizing the water body pix
distribution within the hydrological model sub
lake runoff generating parameters, which was helpful for improving the river discharge 
simulations in the model.

 
 

Figure 39: Land cover data from the area around the Ob River showing a clear increase in 
surface water area from Left: GlobCover to Right: CCI land cover.
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total water body area in the Arctic domain further increased with about 1% from v1.4 to 

More realistic distribution and higher resolution of water bodies in CCI Land cover 

CCI Land cover v1.6 includes a new water body mask with higher spatial resolution 
(150m), which represented small lakes and river outlines much realistically than v1.4.
The new 150 m resolution water mask has also been re-sampled in the v1.6 300 m land 
cover products with similar improvements in the representations of water bodies 
compared to v1.4 (Figure 40).  

water body pixels, statistics on number of lakes and lake size 
distribution within the hydrological model sub-basins where further used to regionalize 
lake runoff generating parameters, which was helpful for improving the river discharge 

e model. 

Figure 39: Land cover data from the area around the Ob River showing a clear increase in 
from Left: GlobCover to Right: CCI land cover. 

eased with about 1% from v1.4 to 

More realistic distribution and higher resolution of water bodies in CCI Land cover 

CCI Land cover v1.6 includes a new water body mask with higher spatial resolution 
ver outlines much realistically than v1.4. 

sampled in the v1.6 300 m land 
ations of water bodies 
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lake runoff generating parameters, which was helpful for improving the river discharge 

 
Figure 39: Land cover data from the area around the Ob River showing a clear increase in 
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Figure 40: ESA CCI Land Cover Water bodies 2010 showing the difference between (top panels) 
v1.4 and (bottom panels) v1.6, as well as the difference between the 150 m resolution water body 
mask (ESACCI-LC-L4-WB-Map-150m) and the 300m land cover product in v1.6 (ESA CCI LU v 
1.6), with examples from the Lena River delta (left panels) and the Mackenzie River (right 
panels). 
 
 
 
� The class “water bodies” is constant throughout the three epochs and water bodies are not 

included in the seasonal products.  
1. From a “climate quality” perspective, it would be interesting to get information on the 

trends and seasonal variation in the spatial distribution of surface water. Variation in 
small water bodies is a relevant ECV related to permafrost melting, which is of highest 
interest in the Arctic region. 

� The fraction of deciduous needle leaf trees was reduced in the latest epoch (2008-2012) 
compared to previous periods in eastern Siberia (based on v1.4, still to be evaluated in v1.6).  
1. Field observations suggest that this might be due to increasing precipitation during the 

period.  
2. This will affect the ‘climate quality’ of the land cover time-series data. 
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3. Analysis of relation to observed and simulated river discharge still to be analyzed.
4. Improved distribution of lichens and mosses in v1.6 compared to v1.4:
5. In Land cover v1.4 there was no lichens and mosses in the Eurasian part of the Arctic 

region. In v1.6 this is improved (Figure 
bare soils. Summarized over the entire Arctic
lichens and mosses increased by 1% and 2% respectively, between v1.4 and v1.6, 
whereas sparse vegetation and bare soil classes were reduced by 1.5% and almost 1% 
respectively. There were also minor reductions in forests and other remaining classes 
(Figure 41). 

  
 

Figure 41: Changes in some aggregated land cover classes between CCI land cover v1.4 and 
v1.6, summarized over the Arctic
 
 

Quality relevant outcomes
• Disagreement between CCI Glacier and CCI Land cover:

o The CCI Land cover class
area derived from the glacier outlines in CCI Glacier 
HYPE model domain 30% too large (
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Analysis of relation to observed and simulated river discharge still to be analyzed.
Improved distribution of lichens and mosses in v1.6 compared to v1.4:
In Land cover v1.4 there was no lichens and mosses in the Eurasian part of the Arctic 
region. In v1.6 this is improved (Figure 41), mainly by replacing sparse vegetation and
bare soils. Summarized over the entire Arctic-HYPE model domain, water bodies and 
lichens and mosses increased by 1% and 2% respectively, between v1.4 and v1.6, 
whereas sparse vegetation and bare soil classes were reduced by 1.5% and almost 1% 
respectively. There were also minor reductions in forests and other remaining classes 

1: Changes in some aggregated land cover classes between CCI land cover v1.4 and 
v1.6, summarized over the Arctic-HYPE model domain. 

Quality relevant outcomes 
Disagreement between CCI Glacier and CCI Land cover: 

The CCI Land cover class “permanent snow and ice” is larger than the glacier 
area derived from the glacier outlines in CCI Glacier - in total over the Arctic
HYPE model domain 30% too large (Figure 24; Table 5). 

Analysis of relation to observed and simulated river discharge still to be analyzed. 
Improved distribution of lichens and mosses in v1.6 compared to v1.4: 
In Land cover v1.4 there was no lichens and mosses in the Eurasian part of the Arctic 

), mainly by replacing sparse vegetation and 
HYPE model domain, water bodies and 

lichens and mosses increased by 1% and 2% respectively, between v1.4 and v1.6, 
whereas sparse vegetation and bare soil classes were reduced by 1.5% and almost 1% 
respectively. There were also minor reductions in forests and other remaining classes 

 
1: Changes in some aggregated land cover classes between CCI land cover v1.4 and 

“permanent snow and ice” is larger than the glacier 
in total over the Arctic-
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o The CCI Land cover documentation reveals that the CCI Glacier outlines have 
been used to assign “permanent snow and ice” to all land cover pixels within the 
outlines – however, areas outside of the CCI Glacier outlines classified as 
“permanent snow and ice” have not been reset to “unclassified” or any other land 
cover class. In addition, the latest version of land cover (v1.6) does not seem to be 
updated to the latest version of glacier data (RGI v5). 

o Previous discussions with Science Leaders from CCI Glacier and Land cover 
confirmed that CCI glacier area was added to “permanent snow and ice”. It was 
suggested to include a sub-class under “permanent snow and ice” separating 
pixels under ice and other snow pixels. But as we can see, it has not been 
implemented yet in CCI LandCover v1.6. 

• No ice thickness in CCI Glacier data (RGI v4 or v5): 
o Glacier thickness is not included in RGI even though estimates of each glacier 

exist based on modelling and observations (Farinotti and Huss, 2012). 
o The model estimates can be requested from the CCI Glacier team on request. 

However this information is not yet clear in the CCI Glacier documentation. 
• No temporal information in CCI Glacier (RGI v4 or v5): 

o The RGI data provide the date of the source data, but information is still needed 
for proper initialisation of glacier models for previous time periods. 
Recommended practices on how to model historical glacier extents and volumes 
would be useful as an extension of the CCI Glacier. 

• The need for a CCI Hydrography 
o Hydrography data (river network, sub-basin delineation, lake and water 

delineation, flow directions, man-made and natural diversions, dams, etc) is one 
of the most important inputs for hydrological models. Arctic-HYPE uses a 
polygon based partitioning of the landscape into sub-basins derived from digital 
elevation data (Hydro1K), vectorised lake delineation (GLWD) and discharge 
station metadata (location and upstream area). Other models uses gridded 
hydrography (Flow directions), but the importance for model development and 
evaluation is nevertheless essential. The most used datasets on the global scale are 
the USGS Hydro1K (1km2 resolution) and only available below 60°N 
HydroSheds (90 m2 resolution), which both provide hydrologically constrained 
digital elevation and flow direction data.  

o Just like land cover, the river and lake network may change as a result of 
hydrological, climatological, morphological and anthropogenic processes. Both 
river morphology, flow directions, number and extend of lakes is changing in the 
Arctic region and in other regions of the world. 

o The CCI Land Cover mask include excellent information of water bodies and the 
latest version 1.6 provide a major improvement of identified water bodies and 
spatial detail. However, water pixels are not linked to lakes and river network 
data. For instance, separating water pixels into lake and river pixels would be a 
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important first step towards and improved usefulness of the CCO water mask data 
in hydrological modelling. The ultimate goal of a CCI Hydrography could be to 
contribute to a global high resolution hydrography dataset, including lakes and 
river outline data, and gridded hydrologically constrained elevation and flow 
direction data.  
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3.12 Cross-assessment of CCI-ECVs over the Mediterranean domain 
[WP3.10] 

 
Some key outcomes of the CMUG research activity on this topic are that: 

• The CCI Sea-Level ECV is adequate to assess the performance of the state of the art 
regional climate models over the Mediterranean basin. 

• There is a significant positive impact of the assimilation of the CCI Sea Level ECV in the 
ocean reanalyses that are used for the Atlantic lateral boundary conditions of the 
Mediterranean regional climate models. 

• The uncertainty on the ECV local trends seems to be over-estimated. 
 
Aim 
 
The activity within the context of this Work Package is in the continuity of the Météo-France 
activity in the context of CMUG Phase 1. Its main objective is to evaluate the performances 
(mean climate, variability and trends) of the Med-CORDEX regional climate system models 
over the Mediterranean domain with a sub-set of atmosphere, marine and surface CCI-ECVs. 
The first scientific question to address is the following: are the state of the art RCSMs able to 
reproduce observed Mediterranean climate trends and variability over the last decades?  
 
Summary of results 
 
During CMUG Phase 1, the SSH simulated by the so-called RCSM4 coupled regional climate 
model (Sevault et al., 2009) developed at CNRM and applied in the Med-CORDEX international 
simulation exercise, was confronted with the CCI Sea Level ECV and its precursor over the 
1993-2010 period (see Phase 1 deliverable 3.1). Some results of this confrontation have been 
recently published in the scientific literature as part of a presentation of the evaluation of the 
ocean component of the RCSM4 model (Sevault et al, 2014). 
 
One main conclusion from this confrontation was that the CCI SSH is suitable for regional 
climate studies over the Mediterranean basin, even at a scale of a few tens of kilometres. The 
results of the model concerning trends of sea level change are encouraging. It also let some open 
questions concerning the way to facilitate the comparison between the modelled and observed 
sea levels. These questions come from the fact that climate models are not directly calculating 
the contributions to sea level changes that are due to mass changes implied by glaciers and ice 
sheet melting or by changes in continental water storage. In addition, in the specific case of 
regional climate models simulating the Mediterranean domain, the contribution to mass change 
in the Mediterranean Sea due to the mass flux at the Gibraltar Strait need also to be carefully 
taken into account.  
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Since the beginning of CMUG Phase 2, thanks to the development of a new version of the 
Mediterranean Sea model, and thanks to the availability of a new 
possible to improve the comparison between the modelled and the satellite
 
The operational ocean reanalysis system (ORAS4; Balmaseda et al., 2013) has been 
implemented at ECMWF and it spans the period 1958 to the pres
suitable for MedCORDEX simulations since it can be used to constrain the oceanic component 
of a regional climate model in the Atlantic buffer zone over the ERA
2013). Contrary to the so-called COMBINE rea
satellite-derived SSH anomalies from the AVISO dataset (the precursor used in Phase 1). It also 
includes sea level contributions from ice sheet mass loss, glaciers ice melt, changes in land water 
storage and global thermal expansion. This makes great difference because this potentially 
allows to account for sea level changes due to mass changes in the simulated Mediterranean sea 
level through the boundary condition applied in the Atlantic buffer zone (see Phase 1 d
3.1). The results presented below confirm that this is indeed the case.
 
The new version of the Mediterranean Sea model is NEMOMED12, a regional version of 
NEMO v3.2 model simulating the free surface evolution associated to the convergence of th
oceanic current and to the fresh water flux at the ocean surface, as this was the case for 
NEMOMED8 used during Phase1. Compared to this last, the resolution is improved on the 
horizontal (1/12° versus 1/8°) and on the vertical (75 vertical levels versus
integrated over the period 1980
downscaling of ERA-Interim using the ALADIN
relaxation toward ORAS4 in the Atlantic buffer zone of the model 
salinity, 2D for SSH). However, since ORAS4 underestimate the mean seasonal cycle of the 
SSH over the basin (see Figure 
in order to reproduce on average the mean annu
1993-2010 period. This correction also applies before the satellite observing period.

Figure 42: Seasonal cycle of mean sea level anomaly over the buffer zone (left) and over the 
Mediterranean Sea (right) for the CCI sea level (green dotted line), ORAS4 ocean reanalysis (orange 
dashed line), the coupled regional climate system model RCSM4 (dark blue line) and the Nemomed12 
Mediterranean sea model (light blue line).
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Since the beginning of CMUG Phase 2, thanks to the development of a new version of the 
Mediterranean Sea model, and thanks to the availability of a new ocean reanalysis, it was 
possible to improve the comparison between the modelled and the satellite-

The operational ocean reanalysis system (ORAS4; Balmaseda et al., 2013) has been 
implemented at ECMWF and it spans the period 1958 to the present. This make this reanalysis 
suitable for MedCORDEX simulations since it can be used to constrain the oceanic component 
of a regional climate model in the Atlantic buffer zone over the ERA-

called COMBINE reanalysis previously used, ORAS4 assimilates 
derived SSH anomalies from the AVISO dataset (the precursor used in Phase 1). It also 

includes sea level contributions from ice sheet mass loss, glaciers ice melt, changes in land water 
l thermal expansion. This makes great difference because this potentially 

allows to account for sea level changes due to mass changes in the simulated Mediterranean sea 
level through the boundary condition applied in the Atlantic buffer zone (see Phase 1 d
3.1). The results presented below confirm that this is indeed the case. 

The new version of the Mediterranean Sea model is NEMOMED12, a regional version of 
NEMO v3.2 model simulating the free surface evolution associated to the convergence of th

and to the fresh water flux at the ocean surface, as this was the case for 
NEMOMED8 used during Phase1. Compared to this last, the resolution is improved on the 

1/12° versus 1/8°) and on the vertical (75 vertical levels versus
integrated over the period 1980-2013 with an atmospheric forcing from ALDERA (a dynamical 

Interim using the ALADIN-Climat regional climate model) and a 
relaxation toward ORAS4 in the Atlantic buffer zone of the model (3D for temperature and 
salinity, 2D for SSH). However, since ORAS4 underestimate the mean seasonal cycle of the 

igure 42), it has been previously corrected in the Atlantic buffer zone 
in order to reproduce on average the mean annual cycle obtained from the CCI

2010 period. This correction also applies before the satellite observing period.

: Seasonal cycle of mean sea level anomaly over the buffer zone (left) and over the 
the CCI sea level (green dotted line), ORAS4 ocean reanalysis (orange 

dashed line), the coupled regional climate system model RCSM4 (dark blue line) and the Nemomed12 
Mediterranean sea model (light blue line). 

Since the beginning of CMUG Phase 2, thanks to the development of a new version of the 
ocean reanalysis, it was 
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includes sea level contributions from ice sheet mass loss, glaciers ice melt, changes in land water 
l thermal expansion. This makes great difference because this potentially 

allows to account for sea level changes due to mass changes in the simulated Mediterranean sea 
level through the boundary condition applied in the Atlantic buffer zone (see Phase 1 deliverable 

The new version of the Mediterranean Sea model is NEMOMED12, a regional version of 
NEMO v3.2 model simulating the free surface evolution associated to the convergence of the 

and to the fresh water flux at the ocean surface, as this was the case for 
NEMOMED8 used during Phase1. Compared to this last, the resolution is improved on the 

1/12° versus 1/8°) and on the vertical (75 vertical levels versus 43). The model was 
2013 with an atmospheric forcing from ALDERA (a dynamical 

Climat regional climate model) and a 
(3D for temperature and 

salinity, 2D for SSH). However, since ORAS4 underestimate the mean seasonal cycle of the 
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from the CCI-ECV over the 
2010 period. This correction also applies before the satellite observing period. 

 
: Seasonal cycle of mean sea level anomaly over the buffer zone (left) and over the 

the CCI sea level (green dotted line), ORAS4 ocean reanalysis (orange 
dashed line), the coupled regional climate system model RCSM4 (dark blue line) and the Nemomed12 
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The results presented in Figure 
mean seasonal cycle from the CCI
fact that the relaxation coefficients toward the corrected ORAS4 are decreasing in the eastern 
part of this zone. But NEMOMED12 also reproduces fairly well the Mediterranean Sea mean sea 
level inferred from the CCI-
surface (in Phase 1 deliverable 3.1, RCSM4 sea level was presented after adding the thermosteric 
component of sea level inferred from the simulated temperature changes only over the basin to 
account for missing terms in the model equations). 
 

Figure 43: Time series of mean sea level anomalies averaged over the Mediterranean Sea over the period 
1980-2013 for the CCI sea level (dashed green line), the tide gauge derived sea level reconstructions of 
Meyssignac et al. (dotted grey line) and Calafat and Jordà (dotted brown line), for the coupled regional 
climate system model RCSM4 (dark blue line) and the Ne
line). 
 

The positive impact of the assimilation of satellite
to constrain the ocean model in the Atlantic
series of mean sea level over the Mediterranean Sea. NEMOMED12 is indeed able to reproduce 
the sea level change over the period as observed from tide gauges and by the CCI
also illustrates that the mean sea level change in the Mediterranean Sea mainly dep
mass flux change at the Gibraltar Strait. Here again, without the thermosteric term contribution, 
the RCSM4 model has low performance due to the absence of SSH assimilation in the 
COMBINE reanalysis used to constrain the model in the Atlantic.
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The results presented in Figure 43 show that the NEMOMED12 model reproduces correctly the 
mean seasonal cycle from the CCI-ECV over the buffer zone, small differences coming from the 
fact that the relaxation coefficients toward the corrected ORAS4 are decreasing in the eastern 

NEMOMED12 also reproduces fairly well the Mediterranean Sea mean sea 
-ECV, and with a much better agreement than the RSCM4 free 

surface (in Phase 1 deliverable 3.1, RCSM4 sea level was presented after adding the thermosteric 
onent of sea level inferred from the simulated temperature changes only over the basin to 

account for missing terms in the model equations).  

: Time series of mean sea level anomalies averaged over the Mediterranean Sea over the period 
3 for the CCI sea level (dashed green line), the tide gauge derived sea level reconstructions of 

Meyssignac et al. (dotted grey line) and Calafat and Jordà (dotted brown line), for the coupled regional 
climate system model RCSM4 (dark blue line) and the Nemomed12 Mediterranean sea model (light blue 

positive impact of the assimilation of satellite-derived sea level in the ocean reanalysis used 
to constrain the ocean model in the Atlantic is also illustrated in Figure 

mean sea level over the Mediterranean Sea. NEMOMED12 is indeed able to reproduce 
the sea level change over the period as observed from tide gauges and by the CCI
also illustrates that the mean sea level change in the Mediterranean Sea mainly dep
mass flux change at the Gibraltar Strait. Here again, without the thermosteric term contribution, 
the RCSM4 model has low performance due to the absence of SSH assimilation in the 
COMBINE reanalysis used to constrain the model in the Atlantic. 

the NEMOMED12 model reproduces correctly the 
ECV over the buffer zone, small differences coming from the 

fact that the relaxation coefficients toward the corrected ORAS4 are decreasing in the eastern 
NEMOMED12 also reproduces fairly well the Mediterranean Sea mean sea 

ECV, and with a much better agreement than the RSCM4 free 
surface (in Phase 1 deliverable 3.1, RCSM4 sea level was presented after adding the thermosteric 

onent of sea level inferred from the simulated temperature changes only over the basin to 

 
: Time series of mean sea level anomalies averaged over the Mediterranean Sea over the period 
3 for the CCI sea level (dashed green line), the tide gauge derived sea level reconstructions of 

Meyssignac et al. (dotted grey line) and Calafat and Jordà (dotted brown line), for the coupled regional 
momed12 Mediterranean sea model (light blue 

derived sea level in the ocean reanalysis used 
is also illustrated in Figure 43 showing the time 

mean sea level over the Mediterranean Sea. NEMOMED12 is indeed able to reproduce 
the sea level change over the period as observed from tide gauges and by the CCI-ECV. This 
also illustrates that the mean sea level change in the Mediterranean Sea mainly depends on the 
mass flux change at the Gibraltar Strait. Here again, without the thermosteric term contribution, 
the RCSM4 model has low performance due to the absence of SSH assimilation in the 
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This analysis of the added-value of the CCI Sea Level ECV using the CNRM regional climate 
coupled and uncoupled models was completed by a multi-model intercomparison, considering 
two additional coupled regional climate system models used within the context of the Med-
Cordex project (Adloff et al., 2016). The first one is the so-called LMDZ-MED model 
(L’Hévéder et al., 2013) coupling the LMDz4 regional atmospheric component with the 
NEMOMED8 regional configuration of the NEMO ocean model with a horizontal resolution of 
9 to 12km. For this model, the mean sea level in the Atlantic buffer zone is kept constant. The 
second is the MORCE-MED model (Lebeaupin-Brossier et al., 2013) coupling the WRF 
atmospheric model with NEMOMED12. As for the CNRM-RCSM4 and the NEMOMED12 
models, the simulated SSH is here relaxed toward a reference dataset in an Atlantic buffer zone. 
Over the period 2002-2008, it comes from the GLORYS-1 reanalysis (Ferry et al., 2010) which 
assimilates the AVISO satellite sea level. Over the period 1989-2001, the reference SSH varies 
seasonally but not interannually.  
 
 

 
Figure 44: Trends in mm/year of Mediterranean sea surface height anomalies over the period 1993-2008 
for the three coupled regional climate system model (RCSM4, LMDZ-MED and MORCE-MED), the 
NEMOMED12 Mediterranean Sea model (MED12) and the CCI Sea Level (CCI-ECV). 

 
We have also reproduced in Figure 44 the simulated and observed sea level trends for the 16-
year of the simulations common period (1993-2008). For the three coupled models, to account 
for the imperfect boundary conditions applied to the sea level in the Atlantic buffer zone, the 
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reproduced trends are calculated as the sum of the calculated dynamic component and a spatially 
constant thermosteric component of the sea level change. This consists in neglecting the 
contribution of salinity changes in the computation of modeled sea level change at the 
Mediterranean basin scale as justified by previous analyses (see Phase 1 deliverable 3.1). 
However, whatever the hypothesis made to correct the trend averaged at the basin scale, the 
spatial trend variability reproduced in Figure 44 only results from the simulated dynamical 
processes and sea surface fresh water fluxes.  
 
Here RCSM4 and NEMOMED12 display very similar performances because the different 
boundary conditions have little impact on the spatial trend variability. But this also proves that 
this variability is not too much affected by the coupling between the atmosphere and the 
Mediterranean Sea. The LMDZ-MED model also shows important similarities with the 
observations, showing that the spatial variability of the local trends is not significantly affected 
by the specification of the lateral boundary conditions. The difficulties of the models to 
reproduce the observed trends in the western part of the Mediterranean basin can be attributed to 
their difficulty to reproduce the circulation in the Alboran region (Adloff et al., 2016). The 
patterns are differently reproduced by the different models in this region. The patterns are better 
reproduced in the eastern part of the basin and in particular due to their ability to reproduce the 
recovery following the so-called “Eastern Mediterranean Transient” (EMT) anomaly. There is 
thus a model dependence of the results and the CCI-ECV can be used to assess the performances 
of the models.  
 
In addition, the level of agreement between the models and the CCI-ECV observations shows 
that the uncertainty on local trends estimated to be 3mm/yr, might have been overestimated by 
the CCI Sea level team. The models are indeed consistent between them and with the 
observations in many regions with differences that have the same order of magnitude than this 
estimated error.  
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3.13 Assessment of sea ice concentration observational uncertainty 
from a data assimilation point of view [WPO3.11] 

 
Sea ice concentration (SIC) is arguably one of the best-monitored essential climate variables 
(ECV) at high latitudes. SIC records date back to the late 1970s and are global (Cavalieri et al, 
1996), which makes them central for climate studies. In addition, SIC is an essential term in the 
sea ice mass budget and is the primary information on which the skill of contemporary climate 
models is estimated in polar regions (e.g. Guemas et al, 2014). However, satellites do not 
measure SIC directly. Rather, they sense sea surface brightness temperature; since water and ice 
have different passive microwave signatures at a certain frequency, it is possible to estimate the 
relative amount of sea ice in a grid cell (that is, sea ice concentration) given the brightness 
temperature information. This conversion between brightness temperature and SIC comes at the 
price of numerous assumptions which, added to the instrumental uncertainty, make SIC products 
intrinsically uncertain. The comprehensive review by Ivanova et al. (2016) documents 
advantages and pitfalls of different algorithms for SIC retrieval and discusses these issues in 
detail. 
 
By contrast, sea ice thickness (SIT) is a poorly observed variable, although it is thought to carry 
a significant share of sea ice predictability, at least for the summer season. Indeed, thin ice melts 
more easily, so that SIT anomalies are directly related to SIC anomalies a few months later, with 
possible re-emergence up to a year later (see Guemas et al., 2014). Defining SIT anomalies is not 
trivial, given the sparsity and intermittency of existing records. Efforts from many projects, 
including ESA-CCI, to make these products routinely available are therefore more than 
welcome, given the valuable information that they represent for the climate community. 
 
The quality of observational sea ice products is critical for accurate initialization of climate 
predictions. Within the CMUG phase 2, the Earth Sciences Department of the Barcelona 
Supercomputing Center (BSC-ES) is implementing a sophisticated method of data assimilation 
for SIC, namely the ensemble Kalman Filter (EnKF; Evensen, 2003, 2007). The assimilation of 
SIT is currently under investigation and will be assessed in a later stage of this project. The 
EnKF works in two steps: (1) a forecast step, during which an ensemble of N (N=24 in our case) 
climate simulations is forwarded in time, each element (“member”) of the ensemble being 
subject to a perturbation and (2) an analysis step, during which all members are updated based 
on new information available from observations (Figure 45). 
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The EnKF can be considered as a sophisticated data assimilation method for two reasons. First, it 
is multivariate: partial observations will have a global impact. For example, the observation of 
SIC alone can lead to a substantial correction of other, non
also sea surface temperature, salinity or even currents. The mechanism for updating these “non
observables” will not be discussed here in detail but illustrated in several examples. The o
strength of the EnKF is the fact that this filter accounts for both model and observational 
uncertainties. In regions where the model is relatively confident (e.g., the interior of the Arctic 
sea ice pack in winter), updates will be minor; while they 
where the position of modelled ice edge is usually uncertain. At the same time, updates will be 
large where observations are relatively confident
therefore a key piece of information
 
To the best of our knowledge, only two products provide estimates of uncertainty
reprocessed sea ice concentration product (Eastwood et al., 2014) and the ESA
concentration product, abbreviated SICCI hereinafter (Sea Ice CCI). 
compare uncertainties in these two products and assess the impact on updates from the EnKF.
 
Comparison of sea ice concentration uncertainty
The two products mentioned above, OSI

                                                 
2 The term « uncertainty » is here used to refer to the statistics of errors in modeled/observed SIC.

Figure 45: Principle of the ensemble Kalman Filter (EnKF). During the forecast step, 
model error is explored by integrating N model versions, each subject to a perturbation. 
The ensemble is then updated during the analysis step. The update is proportional to the 
misfit of forecasts to the observation, and is weighted by the relative uncertainties in 
observations and forecasts. A new fore
analysis step as initial conditions for the new forecast step
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can be considered as a sophisticated data assimilation method for two reasons. First, it 
is multivariate: partial observations will have a global impact. For example, the observation of 

antial correction of other, non-observed variables including SIT but 
also sea surface temperature, salinity or even currents. The mechanism for updating these “non
observables” will not be discussed here in detail but illustrated in several examples. The o
strength of the EnKF is the fact that this filter accounts for both model and observational 

. In regions where the model is relatively confident (e.g., the interior of the Arctic 
sea ice pack in winter), updates will be minor; while they will be larger in the marginal ice zone 
where the position of modelled ice edge is usually uncertain. At the same time, updates will be 
large where observations are relatively confident. The specification of SIC uncertainties is 

formation for data assimilation with the EnKF.  

To the best of our knowledge, only two products provide estimates of uncertainty
reprocessed sea ice concentration product (Eastwood et al., 2014) and the ESA

abbreviated SICCI hereinafter (Sea Ice CCI). In this deliverable, w
compare uncertainties in these two products and assess the impact on updates from the EnKF.

Comparison of sea ice concentration uncertainty 
The two products mentioned above, OSI-SAF and SICCI, both deliver SIC uncertainty as the 

 
» is here used to refer to the statistics of errors in modeled/observed SIC.

the ensemble Kalman Filter (EnKF). During the forecast step, 
model error is explored by integrating N model versions, each subject to a perturbation. 
The ensemble is then updated during the analysis step. The update is proportional to the 

ts to the observation, and is weighted by the relative uncertainties in 
observations and forecasts. A new forecast cycle is then started using the result of
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grid-point standard deviation of the probability distribution of SIC errors. However, the products 
come at different resolutions: 10 km for OSI-SAF and 25 km for SICCI. Because of this 
difference, a direct comparison of uncertainty in SIC retrievals from the two sources is difficult, 
since error statistics are scale-dependent. A thorough regridding of the errors would require 
knowledge of the spatial correlation of these errors, which is neither provided by OSI-SAF nor 
SICCI. We assume therefore uncorrelated errors.  
 
The OSI-SAF and SICCI standard deviation in SIC were gridded using a bilinear scheme to a 
common grid, that of the ocean sea ice model NEMO3.6 (Madec et al, 2016) used for 
assimilation. The target grid (ORCA1) is tripolar and has a resolution of ~50km in the Arctic and 
the Antarctic. From analyses of several pairs of SIC data during the overlapping period where 
both products are available (1992-2008), a systematic pattern emerges (Figure 47): 

• The SICCI product provides lower uncertainty (i.e., is more confident) inside the sea ice 
pack and over the open ocean, while 

• The OSI-SAF product provides lower uncertainty around the marginal ice zone. The 
example of September 2007 is striking in that respect (the tongue pattern of that year is 
standing out). 

 
We now compare this uncertainty to the one provided by a 24-member ensemble of simulations 
carried with the ocean sea ice model NEMO3.6-LIM3, for which a CMIP6 version has recently 
been released (Madec et al 2016). LIM3 (Vancoppenolle et al, 2009), the sea ice component of 
the model, is a dynamic-thermodynamic sea ice model that simulates SIC and SIT, among 
others. The model features an explicit ice thickness distribution (ITD), meaning that SIC and SIT 
are modelled for different categories of sea ice thickness, in order to resolve the non-linear 
thermodynamic processes more accurately. How to transfer information from total SIC (available 
from observations) to each category is a separate question that we do not treat here; the interested 
reader is redirected to Massonnet et al (2015) for further information. 
 
NEMO3.6-LIM3 is run with perturbed versions of the atmospheric Drakkar Forcing Set 5.2 
(DFS5.2, Dussin and Barnier, 2015). In this pilot experiment, only the 2m temperature is 
perturbed, but perturbations are generated to match the spatial and temporal covariances of the 
original data set. All simulations start on the first of January 1993. Data of SIC is assimilated at 
the end of each month, either from the OSISAF SIC or the SICCI SIC. 
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Impact of observational uncertainty on assimilated sea ice concentration
 
The ensemble spread in the model
date (1st of February 1993) for the Southern Hemisphere. The reason for picking the Southern 
Hemisphere is that the most interesting behavior of the data assimilation
the year (February corresponds to austral summer, and thus to a greater variability in SIC as well 
as larger errors). The innovations, defined as the misfit of the mean of model forecasts to the 
observations, show hardly any difference whe
(center and right upper panels of Fig
these two products are very close to each other (not shown here). However, as pointed out in 

Figure 46: Difference (SICCI minus OSISAF) in sea ice concentration uncertainty 
(measured as standard deviation) for two dates: 1
September 2007 (right) for the Arctic (upper row) and the Antarctic (lower row).
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Impact of observational uncertainty on assimilated sea ice concentration

the model SIC is shown in Figure 47 (upper left panel) for one particular 
of February 1993) for the Southern Hemisphere. The reason for picking the Southern 

interesting behavior of the data assimilation 
the year (February corresponds to austral summer, and thus to a greater variability in SIC as well 

The innovations, defined as the misfit of the mean of model forecasts to the 
observations, show hardly any difference when the OSISAF is used instead of the SICCI product 
(center and right upper panels of Figure 47). This follows from the fact that the estimated SIC in 

close to each other (not shown here). However, as pointed out in 

: Difference (SICCI minus OSISAF) in sea ice concentration uncertainty 
(measured as standard deviation) for two dates: 1st February 1993 (left column) and 1
September 2007 (right) for the Arctic (upper row) and the Antarctic (lower row).
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September 2007 (right) for the Arctic (upper row) and the Antarctic (lower row). 
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Figure 46, the uncertainty provided by these products vary, with the SICCI being in general 
more certain. The bottom row of Fig
state after assimilation and the forecast) resulting from the assimilation of SIC from t
product (lower left panel) and the OSISAF product (lower center panel). To quantify the 
magnitude of the correction that these two products allow in the model, we finally display the 
difference of absolute updates in the lower right panel. Althoug
corrections are generally larger (regardless of their sign) for the SICCI product, which confirms 
the results of Figure 46. 

 
 
 

 
Figure 47: Spread of SIC in the forecasts, measured as the standard deviation of the 
member ensemble (left) versus innovations of SIC (mean forecast minus observational 
reference) for the two products considered (center: SICCI and right: OSISAF). Second row: 
Updates in SIC (mean of analyses minus mean of forecasts) for the two products 
(left: SICCI and center: OSISAF) and the difference in absolute values of these updates 
(right). The situation refers to that of the 1
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provided by these products vary, with the SICCI being in general 
more certain. The bottom row of Figure 47 shows the updates (difference between the model 
state after assimilation and the forecast) resulting from the assimilation of SIC from t
product (lower left panel) and the OSISAF product (lower center panel). To quantify the 
magnitude of the correction that these two products allow in the model, we finally display the 
difference of absolute updates in the lower right panel. Although regional variability is present, 
corrections are generally larger (regardless of their sign) for the SICCI product, which confirms 

Figure 47: Spread of SIC in the forecasts, measured as the standard deviation of the 
member ensemble (left) versus innovations of SIC (mean forecast minus observational 
reference) for the two products considered (center: SICCI and right: OSISAF). Second row: 
Updates in SIC (mean of analyses minus mean of forecasts) for the two products 
(left: SICCI and center: OSISAF) and the difference in absolute values of these updates 
(right). The situation refers to that of the 1st of February 1993. 

provided by these products vary, with the SICCI being in general 
shows the updates (difference between the model 

state after assimilation and the forecast) resulting from the assimilation of SIC from the SICCI 
product (lower left panel) and the OSISAF product (lower center panel). To quantify the 
magnitude of the correction that these two products allow in the model, we finally display the 

h regional variability is present, 
corrections are generally larger (regardless of their sign) for the SICCI product, which confirms 

 

 

 

Figure 47: Spread of SIC in the forecasts, measured as the standard deviation of the 25-
member ensemble (left) versus innovations of SIC (mean forecast minus observational 
reference) for the two products considered (center: SICCI and right: OSISAF). Second row: 
Updates in SIC (mean of analyses minus mean of forecasts) for the two products considered 
(left: SICCI and center: OSISAF) and the difference in absolute values of these updates 
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Conclusions and outlook 
 
A prototype of assimilation of sea ice concentration (SIC) has been implemented and tested with 
two observational products: European Space Agency’s SICCI and Norwegian Met Office’s 
OSISAF products. The conclusions are as follows: 

• The more recent product (SICCI) displays lower uncertainty except in the marginal ice 
zone. The reasons for these differences are yet to be identified. As discussed by Ivanova 
et al. (2016), the methodology for deriving SIC has benefited from accumulated 
knowledge about many other products, and there are therefore good reasons to believe 
that this product is intrinsically of higher quality. 

• While estimated SICs are close to each other in these two observational references, 
information about uncertainty has much importance. This is verified in the data 
assimilation experiment proposed, that shows that more certain observations are prone to 
yield larger corrections to climate models. In view of the large biases of SIC, especially 
in the Southern Ocean, this represents an important aspect towards model improvement. 

 
In spite of these efforts to report systematically observational uncertainties in SIC products, an 
essential aspect is still missing: a quantification of correlation of errors across space. This would 
not only allow for a more realistic constraint for the models; but it would also allow for a clean 
comparison of observational uncertainties (unlike what is presented in Figure 46, where this 
spatial correlation is assumed to be null) and a realistic way to propagate local errors to the 
basin-wide level. This would provide invaluable information for large-scale climate modelers, 
which focus frequently on integrated quantities (sea ice area/extent) for a first order evaluation of 
their models. 
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3.14 Assessment of Antarctic ice sheet ECVs for modelling [WP3.12] 
 
Will be reported on in version 3 of this report in 2017. 
 
 
 
 

3.15 Assessment of Greenland ice sheet ECVs for modelling 
[WP3.13] 

 
Will be reported on in version 3 of this report in 2017. 
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