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1 Introduction 

Soil moisture is an important Essential Climate Variable (ECV) which has impact on regional 
to global terrestrial water, energy and carbon fluxes. Soil moisture controls the partitioning of 
the available energy into latent and sensible heat flux and conditions the amount of surface 
runoff. By controlling evapotranspiration, it is linking the energy, water and carbon fluxes 
(Koster et al., 2004; Dirmeyer et al., 2006; Seneviratne and Stöckli, 2008). Due to its long 
term memory, soil moisture provides important information for seasonal climate forecasts 
(Fischer et al., 2007). 

Up to now, soil moisture observations are based on either in situ measurements (Dorigo et al., 
2011) or satellite observations. Recently, the first multidecadal satellite based soil moisture 
record has become available (Liu et al., 2011). 

The purpose of the present study is to evaluate potential applications of this novel soil 
moisture data set for climate modelling applications with the Max-Planck-Institute for 
Meteorology Earth System Model (MPI-ESM, Giorgetta et al., 2012). The overarching 
objectives of the analysis in the present study are: 

• Evaluate the potential of using satellite soil moisture observations for climate model 
evaluation 

• Evaluate the potential of using satellite soil moisture data for climate model 
development 

• Analyze the use of long term soil moisture data for climate studies 

After a brief introduction to the datasets and models used, the analysis methods applied are 
briefly described. Results of the analysis are presented and discussed afterwards and an 
outlook on further potential use of satellite soil moisture data is given. 

2 Data and models 

2.1 MPI-ESM land surface model (JSBACH) 

The model used in the present study is the land surface scheme of the MPI-ESM, JSBACH 
(Reick et al., 2012). The model is implicitly coupled to the atmospheric component of MPI-
ESM (ECHAM6) and simulates all relevant land surface water, energy and carbon fluxes in 
an interactive manner (Figure 1). A new soil hydrology scheme with multiple layers for the 
zone until the bedrock allows for the simulation of soil moisture dynamics in varying depths. 
The soil layers have a thickness of dz=[0.065,0.254,0.913,2.902,5.9] [m]. As satellite 
observations provide soil moisture information for the upper few centimeters of the soil only, 
the new scheme allows for a comparison with the satellite data. 

The present analysis uses version 2.03 of JSBACH which is comparable to the model version 
which was used for the Coupled Model Intercomparison Project 5 (CMIP5) (Taylor et al., 
2012). The only major difference between the CMIP5 model and the model version used in 
the present study is the inclusion of the new 5-layer soil hydrology scheme. 
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Figure 1: Components of JSBACH 

 

2.2 WATCH forcing data 

JSBACH simulations can be performed either by forcing the land surface scheme with any 
kind of meteorological forcing data (e.g. station measurements, reanalysis data) or by 
coupling JSBACH directly to a Global Circulation Model (GCM), like ECHAM. 

For the present study, we use model simulations that are forced with observed meteorological 
data. This allows for a direct comparison of the satellite soil moisture observations with the 
model simulations and enables to quantify the accuracy of the soil moisture simulations with 
help of the satellite observations. The forcing data set, created in the EU WATCH project is 
used for that purpose. 

The Watch Forcing Data (WFD) were created in the framework of the WATCH project 
(www.eu-watch.org) and are documented in Weedon et al. (2010, 2011). Originally, they 
comprise the period from 1958 to 2001 and include a wide range of meteorological forcing 
variables, e.g. surface temperature, precipitation, radiation fluxes and wind speed. The data set 
is available at 0.5° spatial resolution and sub-daily time steps. 
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The WFD is based on ERA40 reanalysis data (Uppala et al., 2005). An extensive post-
processing was conducted in which the data were bi-linearly interpolated from the original 
Gaussian 1.125° grid to a rectangular 0.5° resolution grid. An elevation correction took place 
for most variables. Furthermore, rainfall and snowfall were subject to a wet day, bias and 
undercatch correction ensuring that the monthly statistics are similar to the GPCC 
observations while the daily variability resamples ERA40. 

Recently, an extension of the WFD became available that applied the WFD methodology to 
the ERA-Interim data for the time period of 1979 to 2009. Similar to the WFD, the WFDEI 
have a spatial resolution of 0.5°. In order to serve as forcing for JSBACH they were remapped 
conservatively to a T63 grid (about 1.8° to 1.8°). 

2.3 Soil moisture data 

Different soil moisture datasets are analyzed in the present study (Table 1). The usage of 
different datasets allows for analysis of the consistency and differences between the different 
datasets. Two remote sensing based soil moisture datasets are used, including the recently 
released multidecadal soil moisture data record developed by partners from the ESA CCI soil 
moisture team (ECV_SM v0.1). The different datasets will be briefly introduced in the 
following. 

 

Table 1: List of used datasets in the present study 

Dataset Version Timeperiod References 

VUA AMSR-E soil 
moisture 

V0.5 07/2002 – 10/2011 Owe et al., 2008 

ESA ECV Soil Moisture 
(ECV_SM) 

V0.1 11/1978 – 12/2010 Liu et al., 2011; Liu et al., 
2012 

ERA-Interim - 1979 - 2010 Dee et al., 2011 

GPCP V2.2 1979 - 2010 Adler et al., 2003 

2.3.1 AMSR-E soil moisture (VUA) 

The AMSR-E soil moisture dataset from VUA is based on the Land Surface Parameter 
Retrieval Model (LPRM) (Owe et al., 2008) which allows for a joint retrieval of soil moisture 
and vegetation optical depth using an analytical approach (Meesters et al., 2005) and prior 
land surface temperature estimates. It has been widely used by the land surface research 
community. 

The recent version 0.5 of the dataset comprises different retrieval results from X- and C-band. 
It provides individual soil moisture retrievals from LPRM for ascending and descending orbits 
including soil moisture errors as derived from error propagation (Parinussa et al., 2011). 
Further the LPRM retrieval results are normalized to the climatology of the Noah land surface 
model using CDF matching. The CDF matching reference is the same as used for 
ECV_SM v0.1. Within this report, the different data products will be analyzed. 
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2.3.2 ESA ECV Soil Moisture (ECV_SM) v0.1 

The ESA ECV_SM v0.1 data product has been released in summer 2012 as a result of the 
ESA WACMOS project. This first ever multidecadal satellite-based soil moisture dataset 
covers the period from 1978 to 2010. It combines radiometer based products from SMMR 
(11/1978 – 08/1987), SSM/I (07/1987 – 2007), TMI (1998-2008) and AMSR-E (07/2002 – 
2010) with scatterometer-based products from ERS-1/2 (07/1991 – 05/2006) and ASCAT 
(2007-2010). 

In time periods, where data from different sensors is available, a binary merging technique 
was developed that only uses data from a single sensor in a specific time period (Liu et al., 
2011). The dataset generation as well as first analyses of the dataset are reported in detail in 
Liu et al. (2011,2012) and Dorigo et al. (2012). 

Data pre-processing 

As the data pre-processing and harmonization has a major impact on some of the conclusions 
drawn in this report, a summary of the major preprocessing steps developed for the generation 
of ECV_SM is given, which is basically a summary of the more detailed description as given 
by Liu et al. (2012). 

The ECV_SM dataset is a compilation of soil moisture observations from various instruments 
on different satellite platforms. These were merged into a harmonized product, whereas the 
observations of a particular sensor are used for specific periods in time and dedicated regions 
over the globe. Figure 2 shows the general temporal and spatial coverage of the datasets used 
for the final ECV_SM generation. 

 

Figure 2: Spatial and temporal data coverage of soil moisture from different sensors in the 

final long term ECV_SM dataset (Fig. 13, Liu et al., 2012) 

 

The passive microwave instruments are used in regions with sparse vegetation, identified by a 

typical vegetation optical thickness (VOD) , while the active microwave observations 

were used for more denser vegetated areas (VOD ). Regions with similar skill in 
representing soil moisture dynamics were identified through a correlation analysis between 

active and passive microwave observations. In case of a correlation , observations 
from both, active and passive microwave sensors were used for the final product (for details 
see Liu et al., 2012). The resulting spatial and temporal field of this “binary” blending is 
shown in Figure 3. It shows, that e.g. over Europe, the coverage is dominated by observations 
from the active microwave sensors. 
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Figure 3: Spatial and temporal coverage of passive (blue) and active (red) microwave 

products in the final blended ECV_SM product. Transitional zones with information from 

both instrument types are indicated in orange colors. Areas with high vegetation density or 

permanents snow/ice cover are masked. (Fig.14 in Liu et al., 2012) 

 

To generate the blended ECV_SM data product, the ECV_SM team first generated two 
independent time series from active and passive microwave observations, which were then 
blended like discussed before (Figure 4). First (step 1), the different passive microwave 
observations were harmonized using AMSR-E observations as a common reference and the 
active microwave observations were harmonized likewise (step 2). 

 

 

Figure 4: General workflow to generate ECV_SM data product (Fig.2, Liu et al., 2012) 
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The passive microwave retrieval scheme (Owe et al., 2008) provides volumetric soil moisture 
in units of [m³/m³], while the scatterometer based soil moisture retrievals are based on a 
change detection approach which provides soil moisture in terms of relative saturation degree. 
For the generation of a combined product, it is therefore necessary to a) translate between 
relative and absolute soil moisture values as well as to b) compensate for potential biases in 
the individual products. 

The approach which was applied for ECV_SM is the so called CDF matching procedure, 
which is described in detail in Liu et al. (2011). Given two time series of soil moisture for a 
given location (Figure 5), one can calculate the cumulated distribution function (CDF) from 
each of the timeseries and match them using e.g. lower order polynomials. Figure 6 shows 
examples of CDFs calculated from the timeseries of Figure 5. To harmonize the timeseries of 
passive and active microwave observations over a longer time period, a common reference is 
needed. For ECV_SM, the common reference chosen was the soil moisture data product from 
the Noah land surface model. The remote sensing based soil moisture observations are 
therefore matched to the Noah soil moisture dynamics on a grid point basis using the CDF 
matching procedure. As a consequence, the soil moisture statistics (percentiles) of the blended 
ECV_SM soil moisture product resembles the soil moisture dynamics of the Noah land 
surface model. It is however emphasized, that this rescaling just affects the overall soil 

moisture statistics (e.g. mean, percentiles) but not the time series information contained 

in the remote sensing based soil moisture observations. Thus, temporal autocorrelation 

structures as well as soil moisture anomaly structures are not expected to be affected by 

the applied blending approach. 

 

 

Figure 5: Example soil moisture timeseries for passive (blue) and active (red) soil moisture 

products as well as Noah GLDAS land surface model (black) (Fig. 2 from Liu et al., 2011) 
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Figure 6: Example of CDF for three different soil moisture datasets (top); their relationship 

(middle) and final CDF statistics after matching of remote sensing datasets to Noah-LSM 

statistics (Fig. 3, Liu et al., 2011) 

 

2.3.3 ERA interim soil moisture 

ERA-Interim is the latest global reanalysis of the European Centre for Medium Range 
Weather Forecasts (ECMWF). It covers the period the period from 1979 until present and is 
based on a variational data assimilation system that assimilates a multitude of in situ and 
satellite observations in a consistent framework (Dee et al., 2011). 

Soil moisture is a prognostic variable in ERA-Interim and is provided for four soil layers with 
thickness of 0.07, 0.21, 0.72 and 1.89 [m]. The ERA-Interim soil moisture data was extracted 
from the ERA-Interim data archive for the period 1979-2010. 

2.4 GPCP precipitation data 

The rainfall data used in this study is based on gauge corrected satellite retrievals. The Global 
Precipitation Climatology Project (GPCP, v2.2) (Adler et al., 2003) data product is used in the 
present study. It has a spatial resolution of 2.5° x 2.5° and has been available since 1979. It is 
based on a blended gauge-satellite product which combines precipitation retrievals from 
polar-orbiting passive microwave imagers (SSM/I) as well as geostationary observations (IR 
data). 

The GPCP data is independent from the reanalysis data used as a forcing for the MPI-ESM 
model. It therefore allows for the analysis of precipitation and soil moisture dynamics 
independently from the reanalysis data which was used for the forcing of JSBACH. 
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3 Methods 

3.1 Data preprocessing 

A harmonized pre-processing of the input datasets is applied (Figure 7). These comprise: 

1) Data quality flagging: The satellite soil moisture data sets provide a multitude of 
quality flags which indicate if a reliable soil moisture estimate is expected to be 
delivered in the data product. Snow covered areas or frozen ground is typically 
masked and no data is available. In addition, dense vegetated areas with high optical 
depth are not expected to provide reliable soil moisture estimates. The following data 
was excluded from the analysis: 
AMSR-E: quality flags: missing data, swath edges, water bodies, snow and 
glaciers/frozen ground 
ECV_SM: quality flags: regions with frozen ground or with soil temperatures 
below zero, region with dense vegetation, regions without valid soil moisture 
estimates 

2) Daily totals: ERA-Interim comprise subdaily data. These were averaged prior to any 
further post-processing. 

3) Overlay creation: The AMSR-E data sets provides daily data for ascending and 
descending orbits. An overlay was created that merges both datasets by using the 
average of both sets if both are available and the one or the other if the ascending or 
descending field contains missing values at a given grid cell and time step. This 
procedure decreases the overall amount of missing data. 

4) Regridding: The soil moisture data is regridded from the native resolution of the 
original datasets to the MPI-ESM grid which has a resolution of T63 (approx. 2°) 
using a conservative remapping functionality of the Climate Data Operators (cdo)1. 
Some data gaps were removed by this procedure. 

5) Temporal smoothing: The data was smoothed by calculating a five days running 
mean filter (via cdo) that removed very high frequency variations from the data. 
Additionally, it was used to fill short data gaps and therefore compensated some 
missing data. 

 

 

                                                 
1 Climate data operators are available from: https://code.zmaw.de/projects/cdo 
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Figure 7: Analysis flowchart 

3.2 Model simulations 

To allow for a consistent comparison of JSBACH soil moisture simulations and satellite 
observations, only offline simulations of JSBACH with WATCH forcing data were 
conducted. Simulations were done for the period 1979-2009 on a T63 model grid. The model 
was initialized with PFT distributions from the LSP2 dataset (Hagemann, 2002). 

3.3 Data analysis 

The analysis methods are guided by the following research questions: 

1) How reliable are the spatiotemporal soil moisture patterns simulated by JSBACH? 

2) Does JSBACH show comparable soil moisture memory effects like the satellite 
observations? 

3) Is the surface soil moisture a good proxy for root zone soil moisture dynamics in 
JSBACH? 

4) How do satellite and model based soil moisture estimates relate to precipitation 
dynamics? 

5) What can be learned about interannual and decadal soil moisture variability from the 
ECV_SM v0.1 dataset? 

3.3.1 Soil moisture statistics 

The spatiotemporal soil moisture patterns of all datasets are analyzed by comparing 

a) climatological and seasonal means of global soil moisture fields 

b) the percentile distribution of soil moisture for each data grid point 

c) the temporal evolution of zonal mean soil moisture 

The similarity between spatial fields of percentiles and global mean soil moisture fields are 
analyzed by calculating the correlation between two maps of soil moisture fields from the 
different datasets. 



                                                     Document Ref.: D3.1_v1B SM Assessment 

CMUG Deliverable  
Number:  D3.1_v1B   

Due date:   October 2012  

Submission date:   22. November 2012 

Version:  0.5 
 
 

12 of 48 

3.3.2 Autocorrelation analysis 

The memory effect in a soil moisture timeseries  can be estimated from its autocorrelation 

function  which is given by 

 

whereas  is the lagtime and  is the average of the soil moisture timeseries. The 
autocorrelation function is calculated for each soil layer of JSBACH and ERA-interim as well 
as for the satellite soil moisture datasets based on the preprocessed daily timeseries. The 

autocorrelation length , defined as the lag where , is used to compare the soil 
moisture memory effects in the different soil moisture datasets. 

3.3.3 Representativeness of the surface soil moisture information 

As satellite soil moisture data provides only information on the soil moisture content of the 
upper few centimeters of the soil, it is crucial to investigate how the surface soil moisture 
dynamics relates to the deeper soil moisture dynamics. The JSBACH surface soil moisture 
time series are therefore correlated with the deeper soil moisture layers. The Pearson-Product 
Moment coefficient is used for that purpose. 

3.4 Application for climate studies 

The capability to capture significant climate anomalies is a crucial property of an ECV data 
record. Dorigo et al. (2012) have analyzed global linear soil moisture trends based on the 
ECV_SM v0.1 dataset. They found significant changes in the surface soil moisture in 
different regions of the globe. 

In the present analysis we focus on the analysis of a long term and a short term climate 
anomaly and their respective representation in the CCI data product to evaluate the general 
information content of the ECV_SM data record. 

3.4.1 The Sahel drought 

The devastating drought in the Sahel belt in Africa in the last half of the 20th century has been 
the largest climate anomaly observed so far in recent times using satellite observations. The 
negative precipitation anomalies started in the 1960ies with a minimum around 1980 (Figure 
8). Since this minimum, the rainfall recovered and it has been shown in various studies that 
the vegetation in the Sahel recovered subsequently (Olsson et al., 2005; Hickler et al., 2005; 
Fensholt et al.2012). 

The ECV_SM data set is the first ever available observation-based soil moisture data product 
that allows for investigation into the relationship between soil moisture, precipitation, 
vegetation dynamics in the Sahel for over three decades. In this report, we analyze whether 
the soil moisture observations are able to capture the observed precipitation anomalies as well 
as how the observed soil moisture dynamics are related to the observed vegetation dynamics. 
Global observations of Normalized Vegetation Index (NDVI) from the GIMMS data set are 
used for that purpose (Tucker et al., 2005). 
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Figure 8: Sahel rainfall anomalies (1900-2011) 

3.4.2 The European heat wave 2003 

The European heat wave of the summer 2003 was an extreme climate anomaly that affected 
large parts of the European continent. The mean summertime temperatures exceeded the 
1961–1990 average by about 3°C to 5°C regionally which corresponds to 5 standard 
deviations (Schär et al., 2004). During the first heat wave in May 2003, temperatures raised 
up to 30°C in Central and Southern Europe (Ferranti and Viterbo, 2006). It was very likely the 
hottest summer over the past 500 years (Luterbacher et al., 2004). The socioeconomic impact 
was disastrous. An excess above the mean mortality rate was observed across Europe, 
resulting in an increase of the mortality by 70 000 heat related deaths (MunichRe, 2008). 
Forest fires in Portugal resulted in an economic loss of US$ 1.6 billion (Heck et al., 2004) and 
the severe drought resulted in uninsured crop losses in Europe totaling about US$ 12.3 billion 
(Schär & Jendritzky, 2004). Alone in France the official statistics estimated a decrease of crop 
yield in the order of 15%– 28% (Zaitchik et al., 2006). 

The evolution of the year 2003 heat wave has been simulated using Regional Climate Models 
(RCM) (Ferranti and Viterbo, 2006; Fischer et al., 2007). It was found, that the remarkable 
positive temperature anomalies, which resulted from an anomalous increase of sensible heat 
flux, are highly likely to be amplified by the spring soil water deficit, although it was not the 
cause of the event. 

The analysis in this report will analyze, how the used soil moisture data sets capture the 
anomalous year 2003 soil moisture deficit in spring 2003 and its evolution throughout the year 
2003. 
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4 Results 

First, the impact of the data pre-processing is analyzed and it is investigated how 
representative the JSBACH surface soil moisture is for the soil moisture profile. The satellite 
soil moisture datasets and ERA interim and JSBACH are compared thereafter. 

Finally, the detailed analyses of the two test cases (Sahelian drought, European heat wave) are 
presented. 

4.1 Spatiotemporal data coverage 

The satellite soil moisture data sets have data gaps which are due to an insufficient spatial 
daily coverage of the used sensors. Different pre-processing steps (section 3.1) have been 
performed to merge data from the same date and regrid the data to the appropriate grid of the 
MPI-ESM. Figure 10 shows an example of the effect of the different pre-processing steps on 
the completeness of the data for AMSR-E (X-band). By merging the two original (ascending, 
descending) data products, a daily composite image is obtained which has already nearly 
global coverage (except for snow covered and frozen areas). A gap free dataset is obtained by 
temporal smoothing of the data using a running mean 5-day average kernel. 

Figure 11 shows the overall fraction of missing data in each grid cell compared to the entire 
time period analyzed. For the AMSR-E combined product, the mean fraction of missing data 
is 50% ± 19% and 57% ± 20% for the ascending and descending orbits respectively. Through 
the combination of the two products, the fractional coverage of the data increases 
significantly. Only 40% ± 28%of the data is missing on average. However, there are still large 
fractions of data gaps in the tropics due to dense vegetation as well as in the Northern 
latitudes. By aggregating the data to the coarse scale model grid (T63, 2.5 x 2.5 degree), most 
of the gaps in the tropics vanish due to the fact that each grid cell contains also areas where 
the satellite observations are sensitive to soil moisture dynamics. The temporal filtering with a 
5-day average kernel reduce further the amount of time periods without data (16% 26% of 
missing data). Data gaps for up to 50% of the time nevertheless remain in the Northern 
Latitudes. 

Figure 12 shows the fraction of missing data for the ESA ECV_SM v0.1 dataset in different 
preprocessing steps. The raw ECV_SM data contains on average data gap fraction of 73% (± 
17%). The remapping and smoothing of the timeseries decreases here also the fraction of data 
gaps to 60% (± 16%) after remapping and 30% (± 23%) after temporal smoothing. However 
the fraction of data gaps is in general higher for ECV_SM v0.1 than for AMSR-E. This is in 
particular the case for the high latitudes in the Northern Hemisphere. The ECV_SM dataset is 
based on data from a multitude of sensors. Especially in the first decade of the dataset, a large 
number of data gaps occurred due to the poor spatial coverage of the instruments (Figure 9). 
In the first pentad of the 1980ies, nearly 50% of the year was without data coverage. This 
explains a large portion of the data gaps still observed in the finally pre-processed dataset. 
Further, the merging technique, developed by Liu et al. (2011) is based on a binary blending 
of different soil moisture products (see Fig. 11 in Liu et al., 2011). This binary blending 
technique is applied for different time periods. In case of a failure of a particular instrument, 
no soil moisture data is reported in the ECV_SM dataset. 
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Figure 9: Number of days per year without any soil moisture observations in ECV_SM v0.1 

 

 

 

Figure 10: Example of effect of data preprocessing on data coverage for AMSR-E X-band for 

15
th

 of December 2005: original ascending/descending data coverage (left), daily merged 

mosaic (middle), resampled data on T63 grid and 5-day average (right) 

 

 

• The ECV_SM v0.1 data provides unique multidecadal soil moisture information from 

satellite observations 

• The spatial and temporal data coverage is very heterogeneous and several 

preprocessing steps are required to generate a dataset which is compareable to 

climate model simulations. 

• Major limitations in the data coverage are before 1988. 
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Figure 11: Effect of data pre-processing on fractional coverage of missing data for AMSR-E 

combined product. 

 

 

 

 

Figure 12: Fractional coverage of missing data for ECM_SM v0.1 in different pre-processing 

steps. 
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4.2 How representative is surface soil moisture? 

As satellite observations provide only information on surface soil moisture dynamics, it is of 
vital interest to investigate how the surface soil moisture dynamics in JSBACH relates to the 
root zone soil moisture dynamics. The correlation between the surface soil moisture and the 
lower soil layers in JSBACH were therefore calculated for a) daily soil moisture data and b) 
daily soil moisture anomalies. Figure 13 shows the correlation coefficient between the 
uppermost soil moisture layer of JSBACH and the layers below while Figure 14 shows the 
correlation of surface soil moisture with the root zone soil moisture. Very high significant 
correlations are obtained for the second soil layer (0.19 m) and significant correlations are 
obtained for the deeper soil layers for most parts of the globe. The last soil layer (6.98) shows 
significant correlations for a much smaller number of grid boxes. The reason for the different 
behavior of the last soil layer is, that this soil layer is not active in all grid boxes for the 
JSBACH simulations as for large parts of the world the depth of the bedrock is already 
reached after the first four soil layers. Figure 14 shows in general high correlation of the 
surface soil moisture with the root zone soil moisture content. 

In general, there is a very good agreement of the first JSBACH soil moisture layer with at 
least the upper first meter of the soil and even deeper soil layers. This linkage between the soil 
layers is likely to be even further enhanced when analyzing lagged correlations between the 
surface soil moisture and the root zone soil moisture, as the soil moisture dynamics in the 
deeper soil is typically damped and temporally lagged compared to the surface soil moisture 
dynamics. 

These initial results indicate that surface soil moisture observations might be a reasonable 
proxy for deeper soil moisture dynamics, which is more relevant for the memory effects of 
soil moisture in JSBACH. 
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Figure 13: Correlation coefficient for unlagged correlation between surface and deeper soil 

layers (top-bottom) in JSBACH. Left: daily soil moisture data, right: daily soil moisture 

anomalies. Only significant (p<0.05) correlations are shown. 

 

 

Figure 14: same as Figure 13, but for correlation between surface soil moisture and total root 

zone soil moisture. 
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4.3 Global analysis 

4.3.1 Do model simulations and observations show similar soil moisture dynamics? 

4.3.1.1 Global mean fields 

The global mean soil moisture field for the years 2003-2009 and its coefficient of variation 
(CV) is shown in Figure 15. The time-latitude diagrams of zonal mean soil moisture are 
shown in Figure 16 for the whole period. 

The ECV_SM v0.1 and AMSR-E CDF-matched data set show very similar mean fields. 
Contrary, the combined AMSR-E soil moisture product differs largely from the other data 
sets. Especially in the Northern Latitudes, the soil moisture values exceed physically 

meaningful values ( ). This is a well known problem in the existing dataset and is 
under investigation by the data providers (R. de Jeu, pers. comm.). The reason is still 
unknown and might be related to ponding in wetland areas (Gouweleeuw et al., 2012) or 
instrument related artefacts as it was observed that high soil moisture values occur much more 
often for AMSR-E observations than for e.g. Windsat observations. 

The JSBACH simulations show a reasonable good agreement with the ECV_SM data set. 
ERA-interim is in general wetter than ECV_SM and JSBACH. The spatial pattern of the CV 
differs largely among the different datasets. JSBACH shows a much larger (relative) soil 
moisture dynamics compared to the other datasets. Especially in semiarid areas in Africa and 
Australia, the CV exceeds 50%. Contrary, ERA-interim shows very small temporal 
variability. On global scale, the CV rarely exceeds 15%. 

The time-latitude diagrams in Figure 16 show distinct differences in the spatiotemporal mean 
soil moisture fields. The biases between the different datasets are clearly observable. 
Inconsistencies in the ECV_SM data record are clearly detectable in the figure. A drying of 
the zonal mean soil moisture is for instance observed in 2002 (integration of AMSR-E data). 
Further discontinuities can be observed in 1991 (ERS scatterometer), 1978 and 2006/2007 
(METOP). Between 1988 and 2006, the latitudes between 30°S and 18°S are wetter than in 
the other years, while a the data coverage in latitudes below 30°S is becoming more sparse. 
As discontinuities in ECV time series can easily introduce artificial trends in timeseries that 
could be misinterpreted as a climate signal, a careful analysis of such kind of timeseries is 
important (Loew and Govaerts, 2010). Dorigo et al. (2012) have evaluated global trends in 
surface soil moisture based on the ECV_SM v0.1 dataset. To minimize the effect of outlieres 
and discontinuities they used a non-parameteric rank correlation technique. 
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Figure 15: Mean surface soil moisture of different data sets (left) and coefficient of variation 

(CV) of soil moisture (right) for the period 2003-2009 
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Figure 16: Time-latitude diagrams for the 5-daily smoothed surface soil moisture data sets. 

Colors represent zonal mean soil moisture. Be aware that the AMSR-E data is only available 

since 2002. Scaling on x-axis therefore differs from the other plots 

 

4.3.1.2 Percentile distribution 

The percentiles of the soil moisture were calculated from the time series of each datasets for 
each grid cell. Figure 17 and Figure 18 show the 5% and 95% percentiles for the different 
surface soil moisture data sets which are considered as the lower (dry) and upper (wet) limits 
of the soil moisture dynamics. The AMSR-E data shows again unrealistically high (>0.6) soil 
moisture for the 95% percentiles in the Northern Latitudes. ECV_SM and CDF matched 
AMSR-E show very similar patterns for the 5% as well as the 95% percentile respectively 
which would be expected as both datasets were statistically matched on the same GLDAS 
reference soil moisture data set. The JSBACH soil moisture fields show very good agreement 
with the ECV_SM 5% and 95% percentiles, while ERA-interim shows in general wetter 
values for both, the dry and wet case. 

The similarity between the spatial patterns of each percentile was compared by calculating the 
correlation coefficient between the percentile maps of two datasets. Results of this correlation 
analysis are shown in Figure 19. Overall the JSBACH model shows very good agreement in 
the percentile distribution with the ECV_SM dataset. The correlation over all percentiles is in 
the order of r=0.8. The original AMSR-E data shows smallest values in the percentile 
correlation, while the AMSR-E CDF matched data product is in reasonable agreement with 
JSBACH and ECV_SM.  
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Figure 17: Maps of 5% percentiles for different soil moisture datasets 

 

 

 

 

Figure 18: Maps of 95% percentiles for different soil moisture datasets 
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Figure 19: Correlation coefficients (left) and NRMSE (right) for relationship between soil 

moisture percentiles of the dataset specified in the plot title and the other soil moisture 

datasets. All analysis is based on data smoothed with a 5-day running mean filter. NRMSE 

corresponds to the root mean square error, normalized by the data range. 

 

 

 

 

 

 

 

 
 
 
 
 

• JSBACH percentile distribution shows very good agreement with ECV_SM and 

AMSR-E CDF matched data. It remains however unclear, if this is a good argument for 

a skillful model or an artifact of the CDF matching procedure that simply reveals 

similarities between the Noah land surface model and the other land surface models 

investigated here. 



                                                     Document Ref.: D3.1_v1B SM Assessment 

CMUG Deliverable  
Number:  D3.1_v1B   

Due date:   October 2012  

Submission date:   22. November 2012 

Version:  0.5 
 
 

24 of 48 

4.3.1.3 Correlation between soil moisture fields 

Figure 20 shows the correlation between the surface soil moisture and surface soil moisture 
anomalies of all datasets investigated. Very high significant correlations are observed for the 
5-daily mean timeseries between all datasets. This indicates in general a very good skill of 
either the observational datasets as well as the land surface models to reproduce soil moisture 
dynamics at the model grid scale. Larger differences are observed in the Northern Latitudes 
due to the poor data coverage due to snow and frozen soil conditions. Negative correlations 
are here especially observed between the observations and both models. 

 

 

 

 

a) 

b) 

Figure 20: Correlation coefficient for the linear correlation between the different surface soil 

moisture datasets: upper triangle is based on 5-daily smoothed soil moisture values for the 

common period 2003-2009 while lower triangle is based on soil moisture anomalies 

• Both, models and observations show reasonable agreement in the observed and 

simulated surface soil moisture fields. 

• No useful comparison seems to be possible in high latitude areas. 
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4.3.1.4 Discussion 

The previous analyses have shown consistencies and inconsistencies between the various soil 
moisture datasets in terms of a) mean soil moisture fields, b) the temporal and spatial 
variability, c) correlation between soil moisture datasets and d) comparison of the statistical 
distribution of the datasets on a grid cell basis. 

The purpose of this analysis was to use the satellite soil moisture observations as an 
independent dataset to evaluate the reliability of the soil moisture dynamics in JSBACH. It 
was assumed that JSBACH would have a reliable soil moisture dynamics and statistics of the 
spatial pattern of the soil moisture percentiles between JSBACH and ECV_SM would be in 
agreement. The latter was shown in the previous analysis. 

However, the soil moisture statistics (percentiles) in ECV_SM v0.1 are not based on 
observational data, as the whole data record was constructed using a CDF matching 
technique, which used the Noah land surface model as a common reference (Liu et al., 2011). 
By doing so, the soil moisture dynamics in each grid cell is, by definition, bounded to the soil 
moisture dynamics in the Noah model and thus highly dependent on the parameterization of 
the Noah soil hydraulic properties. The latter are based on the FAO soil map, which is also an 
input to the soil map of JSBACH. Thus comparing JSBACH soil moisture statistics against 
ECV_SM v0.1 soil moisture statistics corresponds to indirectly compare the soil moisture 
statistics of two different offline land surface models. The major conclusion that can be drawn 
from the analysis is therefore that the Noah and JSBACH soil moisture statistics are in 
reasonable agreement. 

 

 

 

 

 

What one would expect from a soil moisture Climate Data Record (CDR) is, that it provides 
information on the spatial distribution of soil moisture percentiles from observational 
evidence. This information is available in the original soil moisture datasets which have been 
merged in the ECV_SM v0.1 product, but it is lost due to the CDF matching technique 
normalizing the data to the Noah land surface soil moisture statistics. Errors in the soil 
moisture parameterization of the Noah model directly translate into errors in the ECV_SM 
statistics. Contrary, if one believes in the Noah model statistics, there would be no need to use 
ECV_SM for climate model evaluation studies if one could directly compare with the Noah 
GLDAS output. 

• The ECV_SM v0.1 dataset is therefore unfortunately not providing a model 

independent reference that can be used to evaluate the general soil moisture 

statistics of a climate model or offline land surface scheme. The major problem is 

the use of a model based soil moisture climatology as a common reference. 
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Thus, the ECV_SM is expected to loose information on the spatial pattern of soil moisture 
statistics. It is however emphasized that the temporal dynamic in the dataset is not affected by 
the normalization procedure. Thus, comparing temporal soil moisture anomalies and compare 
these against observed precipitation anomalies might provide additional insight in the added 
value provided by ECV_SM. This will be done in the next section. 

4.3.2 Relationship of soil moisture and precipitation dynamics 

The relationship between precipitation and soil moisture dynamics was analyzed by 
comparing GPCP monthly rainfall data with the surface soil moisture data. Figure 21 shows 
the correlation coefficients between monthly GPCP and the surface soil moisture fields as 
well as between detrended GPCP precipitation anomalies and detrended soil moisture 
anomalies. The anomalies were obtained by first removing any linear trend in the dataset for 
each grid cell individually and then removing the mean seasonal cycle from timeseries of each 
grid cell. 

The ECV_SM shows data set shows significant correlation with GPCP. ERA-

interim shows worst correlation with GPCP ( ) with significant negative 
correlations in the Northern latitudes, while JSBACH shows highest correlation values with 

GPCP ( ). The frequency distribution for the correlation with GPCP shows a 
clear bimodal distribution for ERA-interim. While the distribution of correlation coefficients 
is rather similar to that of JSBACH, ERA-interim shows much more negative correlation 
values. This might be related to snow effects in the Northern Latitudes. The ECV_SM data set 
shows significant positive correlations for most part of the globe. The correlations with GPCP 
are however much lower than for ERA-interim or JSBACH. The modal value for ECV_SM is 

. 

The soil moisture timeseries still contain the typical precipitation and soil moisture seasonality 
as well as potential long term trends in precipitation and soil moisture. To analyze the skill of 
the different soil moisture datasets to reproduce precipitation anomalies, a correlation analysis 
was performed also on the detrended soil moisture anomaly timeseries. JSBACH shows the 

highest correlation  between GPCP anomalies and soil moisture anomalies. 
The ERA-interim shows lower skill in simulating the soil moisture anomalies 

( ) and ECV_SM shows smallest anomaly correlations with monthly 

precipitation anomalies ( ). The frequency distributions in Figure 21 show a 
shift of the correlation coefficients to smaller values for all datasets. However, only a small 
shift is observed for JSBACH, which indicates still a strong dependence of JSBACH surface 
soil moisture to precipitation dynamics at monthly timescales. This relationship is smaller for 
ERA-interim, where the correlations drop faster than for JSBACH. The histogram of the 
ECV_SM dataset is skewed to lower correlation values, which indicates that the high 
correlation values observed between GPCP and ECV_SM were mainly due to common 
seasonality between precipitation and soil moisture. 

We conclude from this analysis that JSBACH, forced with the WATCH forcing data provides 
reasonable estimates of soil moisture dynamics. One might argue, that the results indicate that 
satellite based soil moisture information do not provided additional information for land 
surface modeling as long as they are not superior to the precipitation data. However, the used 
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GPCP precipitation data has still large uncertainties and the opposite might be actually true, 
namely that the deviation of the ECV_SM data to the precipitation data reveals additional 
information about evaporative loss of surface soil moisture or different timescales of soil 
moisture and rainfall dynamics. Several studies have proven the general applicability of 
surface soil moisture information to reduce uncertainties in remote sensing based precipitation 
and evaporation data sets (Crow & Zhan, 2007, Liu et al., 2011a, Miralles et al., 2011). 

Information on the soil moisture temporal dynamic is contained in the soil moisture 
autocorrelation function and provides insight into similarities and differences of temporal soil 
moisture dynamics of the different datasets. Details of the results of the autocorrelation 
analysis will be discussed in the following. 

 

• Further more detailed analysis of the soil-moisture precipitation interrelationship 

in different regions would be needed with additional in situ reference data to 

answer analyze the actual absolute performance of the different soil moisture 

datasets. 
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a) 

b) 

c) 

d) 

Figure 21: Significant correlation of monthly GPCP precipitation data with soil moisture 

(left) and GPCP anomalies with soil moisture anomalies (right) for ERA-interim (a), 

ECV_SM v0.1 (b) and JSBACH (c). Frequency distribution of correlation coefficient for the 

different datasets (d). 
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4.3.3 Soil moisture memory effect 

The temporal autocorrelation was calculated based on the 5-daily average timeseries. Figure 
22 shows examples of the estimated autocorrelation functions (ACFs) for the different soil 
moisture datasets and different regions. The ACFs were derived from either the original soil 
moisture values or the soil moisture anomalies, where the mean seasonality has already been 
removed. For the grid cell in North America, the JSBACH simulations show a very similar 
shape of the autocorrelation function and autocorrelation length compared to the 
ECV_SM v0.1 dataset for both, the soil moisture values as well as the soil moisture 
anomalies. AMSR-E and especially ERA-interim differ significantly from JSBACH and 
ECV_SM v0.1 for the absolute soil moisture ACF. For the soil moisture anomalies, AMSR-E 
shows a very similar autocorrelation pattern than ECV_SM, which indicates that both data 
products observe soil moisture dynamics in a coherent way. In the other example (Central 
Asia), the JSBACH model simulations are in between ECV_SM and ERA-interim for the 
ACF based on soil moisture values, while it is getting closer to the observations for the 
anomalies. 

The results indicate that there might be good potential to exploit the surface soil moisture 
memory to evaluate whether a land surface model is reproducing realistically the temporal 
autocorrelation structures of the soil moisture dynamics. Deviations between model 
simulations and observations might be used to re-calibrate the land surface model’s hydraulic 
properties on a regional to global scale. 

 

 

 

 

Figure 22: Autocorrelation functions for surface soil moisture datasets based on either 

original soil moisture values (left) and soil moisture anomalies (right). Two different regions 

are shown: North America (top), Central Asia (bottom) 
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The autocorrelation length was calculated for each of the model grid cells and all datasets. 
Figure 23 shows the autocorrelation length for JSBACH root zone soil moisture. The 
autocorrelation length is between one and two months for large parts of the globe. The 
autocorrelation length for soil moisture anomalies shows larger correlation lengths than for 
the soil moisture values in the order of six months to a year. Figure 24 shows the 
autocorrelation maps for surface soil moisture for the different datasets. The ACF length is in 
the order of one month which is consistent with previous findings (Rebel et al., 2011) and 
here the anomalies show a smaller autocorrelation length than the surface soil moisture data 
itself. The different datasets show distinct differences in the spatial pattern of the 
autocorrelation in some areas, while they show large agreement (e.g. in the Sahelian belt) in 
other areas. These differences are linked to different soil moisture dynamics as observed in 
the different satellite based data products as well as the different land surface models. The 
observed differences might offer the potential to gain further insight into the soil moisture 
dynamics in particular regions and might be used to recalibrate model specific parameters that 
control the soil moisture dynamic in JSBACH. 

The good thing is, I also see this behavior in ERA-Interim. The bad thing is it cannot be 
validated using surface satellite observations but perhaps we can get our hands on some 
observations (or the behavior is already explained in the literature, I still have to look it up). In 
any case it is an interesting feature to discuss more deeply in a publication later on 

While these preliminary results are promising, a more thorough investigation is needed, as it 
as shown that the autocorrelation functions of active and passive microwave observations are 
different in both space and time (Wanders et al., 2012; Dente et al., 2012). As the ECV_SM 
dataset is based on both, active and passive microwave instruments, the reason for the 
difference autocorrelation functions needs to be further investigated and its impact needs to be 
assessed. 

 

 

 

 

 

 

• Using the satellite observations might therefore allow for a re-calibration of some 

model specific parameters. 
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Figure 23: Autocorrelation length for JSBACH root zone soil moisture based on soil moisture 

timeseries (left) and soil moisture anomaly timeseries (right) 

 

 

Figure 24: Temporal soil moisture autocorrelation length for soil moisture (left) and soil 

moisture anomaly (right) for the different soil moisture data sets 
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4.4 Regional test cases 

4.4.1 European heat wave 2003 

The severe European heat wave 2003 is not contained in the ECV_SM record. While it has 
been shown that remote sensing soil moisture data can provide very meaningful information 
on the soil moisture anomalies in the year 2003 (Loew et al., 2009), the ECV_SM data record 
is lacking this information. The reason for this data gap is the binary merging of different data 
products into the ECV_SM dataset, like introduced in Liu et al. (2011, see Fig. 11). The 
problem is well known and will be tackled in the frame of the ESA CCI_soil moisture project 
(pers. communication, W. Dorigo). 

A further detailed analysis of the representation of the year 2003 European heat wave is 
therefore not possible in this study. 

4.4.2 Sahelian drought and soil moisture variability 

The precipitation in the Sahelian Region recovered since the minimum in the mid of the 
1980ies. An increase in vegetation and precipitation was observed since then (e.g. Olsson et 
al., 2005; Huber et al., 2011; Fensholt et al., 2012). Figure 25 shows the linear trends over 
time for precipitation (GPCP). A clear increase in precipitation (JJAS) is observed in the 
Sahelian area throughout the time period covered by these datasets (1984-2005). Dorigo et al. 
(2012) found in the same region a significant negative trend of surface soil moisture, as 
derived from the ECV_SM v0.1 dataset. The positive trend precipitation and negative trend in 
surface soil moisture seem to be contradictory, but could be related to an increase in 
evapotranspiration by the increased abundance of vegetation in the area. 

Figure 25 shows the linear trends of precipitation and soil moisture for the period 1979-2009 
as derived from the datasets investigated in this study. ECV_SM shows significant decrease of 
surface soil moisture, like ERA-interim, while JSB shows no significant trends in most 
regions. Contrary, GPCP shows a significant increase during the same period. 

We will investigate in the following the interannual and decadal variability of surface soil 
moisture as observed by ECV_SM v0.1 and as simulated by ERA-interim and JSBACH. As it 
has been shown already in section 4.3 that the different datasets show considerable biases 
between each other, the analysis will focus exclusively on soil moisture and precipitation 
anomalies. 

4.4.2.1 Interannual pattern of soil moisture and precipitation anomalies 

Figure 26 - Figure 29 show time-latitude diagrams for soil moisture and precipitation 
anomalies for the Sahelian region for all datasets. The figures differ in their input data, as they 
are either based on monthly mean anomalies or data from only the Sahelian rainfall season 
(JAS). To compare the anomalies also without a potential linear trend, the existing linear 
trends in the data were removed prior to the calculation of the anomalies (Figure 28,Figure 
29). 

ERA-interim and ECV_SM v0.1 show both a significant negative trend in soil moisture in the 
Sahel, while the JSBACH doesn’t show such a decrease in the moisture content. The GPCP 
precipitation data shows a positive trend in the precipitation. This positive trend is however, 
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mainly caused by the strong negative precipitation anomalies in the 1980ies and not 
significant if these years are not included in the data analysis (Loew, 2012). These negative 
trends in surface soil moisture for ERA-interim and ECV_SM v0.1 are even more pronounced 
when only the JAS season is analyzed (Figure 27). If all linear trends of the data are removed, 
the anomaly patterns in the different dataset evolve more clearly. The ERA-interim timeseries 
shows some discontinuities. A drier period (1983-1995) is followed abruptly by a wetter 
period which lasts until approx. 2001. A further drier period follows after 2006. It is unclear 
where these discontinuities are coming from, but they might be caused by a change in the 
observation system used in the reanalysis system. 

Contrary, the ECV_SM v0.1 and JSBACH surface soil moisture shows consistent anomaly 
patterns with precipitation if the linear trend is removed from the data. The ECV_SM v0.1 
data reproduces very well the dry and wet anomalies that are observed in the GPCP record. 

 

a) b) 

c) d) 

Figure 25: Pearson product moment coefficient for temporal trend of precipitation (a), 

ECV_SM v0.1 (b), ERA-interim soil moisture (c) and JSBACH soil moisture (d) for the 

Sahelian rainfall season (June, July, August, September). Only grid cells with significant 

correlations (p < 0.1) are shown. 
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Figure 26: Time-latitude diagrams for monthly anomalies of surface soil moisture and 

precipitation for ERA-interim, ECV_SM v0.1, JSBACH, GPCP (top-down) in the Sahel region 

(20W-45E,10N-20N). Anomalies are calculated by removing the mean seasonal climatology 

derived from the whole timeseries (1979-2009). 
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Figure 27: same as Figure 26, but for rainfall season (June,, July, August) only. 
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Figure 28: same as Figure 26, but for all datasets, the longterm linear trend was removed. 
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Figure 29: same as Figure 28, but for rainfall season (June,, July, August) only. 

 

 

 

 

 

 

 

 

• A negative temporal trend in soil moisture is observed while a positive 

precipitation trend was observed during the same time 

• The use of soil moisture data from re-analysis does not ensure a 

consistent homogeneous timeseries, as changes in the observation 

system might affect also the soil moisture estimates in reanalysis data. 
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4.4.2.2 Regional differences of precipitation-soil moisture relationship 

Precipitation dynamics in the Sahel differs largely between the western, central and eastern 
parts. It was therefore analyzed in more detail how the relationship between surface soil 
moisture and precipitation differs. 

A regional mean was calculated for each of the datasets and the regions specified in Table 2 
(Figure 25). Figure 30 shows the timeseries of monthly soil moisture and precipitation data, 
their anomalies and the anomalies where the linear trend has been removed. Correlations 
between the ECV_SM v0.1 data and the surface soil moisture of ERA-interim and JSBACH 
are shown. Further, the correlation between the GPCP data (anomalies) and the soil moisture 
data (anomalies) is shown. One can observe clearly the negative trend in surface soil moisture 
for ERA-interim and ECV_SM v0.1. In general all datasets show a good significant 
correlation between each other, either for the original data or the anomalies. The 
ECV_SM v0.1 soil moisture anomalies show good agreement (r=0.3) with the GPCP 
precipitation anomalies. Figures for all sub-regions are given in the Annex, but show a similar 
coherent picture. 

The anomaly correlation coefficients between precipitation and soil moisture are summarized 
in Figure 31. The ECV_SM correlates best with the precipitation anomalies in the western and 
eastern central part of the Sahel. ERA-interim shows higher correlations in the Western Sahel, 
while ECV_SM outperforms the ERA-interim data in the central and eastern parts. The 
maximum anomaly correlation for ERA interim is at the Guinea west coast (W1). JSBACH 
shows overall the best correlations with GPCP anomalies in all regions with maximum 
anomaly correlations of r=0.79 (E1). 

It has been discussed that the soil moisture and precipitation show temporal trends with 
reversed sign. These reversed linear trends might mask some of the anomaly correlations 
between the different datasets. Figure 31 therefore shows also the correlations between GPCP 
anomalies and soil moisture anomalies for the case where all longterm linear trends have been 
removed from the data. One can observe an increase of the correlation for all soil moisture 
datasets while the relative ranking between the datasets and regions remains the same. 

 

Table 2: Regions used for regional analysis 

Region Bounding coordinates [°] 

W1 20W-10W / 10N-20N 

W2 10W-00W / 10N-20N 

C1 00W-15E / 10N-20N 

C2 15W-25E / 10N-20N 

E1 25W-40E / 10N-20N 

Sahel 20W-40E / 10N-20N 
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Figure 30: Analysis of surface soil moisture and precipitation for specific regions in the Sahel 

(Table 2): left: timeseries of soil moisture and precipitation, middle: scatterplot between 

ECV_SM v0.1 (x-axis) and ERA-interim, JSBACH soil moisture; right: scatterplot between 

GPCP and the soil moisture datasets; top: original data; middle: anomalies; bottom: 

detrended anomalies; colors correspond to: JSBACH=green, ERA-interim=blue, 

ECV_SM v0.1=red, GPCP=black 

 

 

Figure 31: Correlation coefficient between GPCP precipitation anomalies and surface soil 

moisture data for anomalies (left) and detrended anomalies (right) 

 

 

 

 

 

 

• ECV_SM shows good skills in reproducing the Sahelian interannual rainfall 

anomalies 

• JSBACH offline simulations however show significantly higher anomaly 

correlations with precipitation data 

• Surface soil moisture trends in ERA-interim and ECV_SM are contrary to the 

observed increase in precipitation in the Sahel. Potential interpretation could be 

an increase in evapotranspiration by the vegetation 
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5 Conclusions 

The objectives of the present report were to assess various aspects of potential applications of 
multidecadal soil moisture data derived from satellite observations. Different soil moisture 
and precipitation datasets were used for that purpose. The research focused on the assessment 
of the potential of the ECV_SM v0.1 dataset for 

• Climate model evaluation studies 

• Climate model process development and 

• Regional climate studies. 

It is emphasized that all results relate exclusively to the JSBACH land surface scheme 

used as part of MPI-ESM. Especially the relationship between surface soil moisture and root 
zone soil moisture as well as the investigated memory effects are highly dependent on the 
parameterization of the soil hydraulic model and might therefore differ in other model setups 
and parameterizations. 

The ECV_SM dataset is unique, as it is the first and only existing soil moisture data record for 
multiple decades. The analysis has shown that the present dataset shows in general good 
agreement with other soil moisture datasets from modeling studies as well as rainfall data. In 
particular the following key advantages of the dataset have been identified: 

• Assessing soil moisture memory effect: It has been shown that the dataset is very 
useful to assess the soil moisture memory effect. Differences between the memory 
signal in the observed and simulated soil moisture timeseries might be used to improve 
model specific parameters. 

• Sahelian soil moisture dynamics: The ECV_SM dataset has been proven to show 
good agreement with Sahelian soil moisture anomalies which makes it a very useful 
observational dataset that can be used in combination with other observational records 
to get a better understanding on interannual to decadal land surface dynamics in the 
Sahel. 

However, the present study has identified several deficits of the ECV_SM dataset for its 
application in climate models. These are: 

• Limited coverage before 1987: The date coverage before 1985 is limited to 

approximately 50% of the days of a year. The reason is the poor spatial and temporal 

coverage of the input data. Users of the dataset therefore need to take into account this 

temporal and spatial varying information in their analysis methods using appropriate 

statistical techniques. 

• Monthly data: A unique feature of the ECV_SM dataset is that provides information 

for 30-years. In climate applications, users are often interested in monthly mean values 

or even seasonal climatologies. It is recommended to deliver a monthly and 

climatological data product for the CCI SM dataset. This data product should reflect 

appropriately the effect of different data density on the uncertainties of the 

monthly/seasonal values. 
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• CDF matching: The ECV_SM statistics is based on a CDF matching approach like 

was discussed in section 4.3.1. This is considered as a major disadvantage of the 

dataset, as the soil moisture dynamics is not based on the evidence from the satellite 

observations any more, but is dependent on the dynamics of the Noah land surface 

model used as a reference for the CDF matching procedure. The dataset can therefore 

not be used to evaluate whether a climate model is reproducing realistically the 

temporal soil moisture dynamics. Such a comparison would only reveal if a model is 

consistent with the Noah land surface model dynamics and nothing else. It is 

recommended to develop different data harmonization methods that preserve the soil 

moisture dynamics of the original observations. This would provide a model 

independent soil moisture statistics which could be better used for climate model 

evaluation studies. It is however emphasized, that the dataset might still provide useful 

insight into the temporal dynamics of soil moisture which could be exploited e.g. by 

correlation based analysis. 

• Temporal inconsistencies: The analysis in section 4.3 has also revealed 

inconsistencies in the timeseries which is likely to be an artifact of the usage of 

different observation systems. Any kind of trend analysis based on the ECV_SM 

dataset needs to carefully take into account these potential inhomogeneities. It is 

recommended to develop appropriate screening techniques to detect abrupt changes in 

soil moisture timeseries and properly correct and document for these changes in the 

envisaged CCI SM dataset. 

• Varying autocorrelation lengths: As shown by Wanders et al. (2012) and Dente et 

al. (2012), the data from different sensors used to compile the ECV_SM dataset show 

different autocorrelation lengths. It would be expected that a soil moisture climate data 

record is best harmonized in a way that differences in autocorrelation structure are a 

function of changes in the geophysical variable. In a best case, the user could use the 

uncertainty information in the data product to weight the different samples 

appropriately to estimate the autocorrelation function in a consistent manner. 

• High latitude problem: comparisons between models and observations resulted in 

reasonable agreement for large parts of the globe. In Northern Latitudes however, even 

negative correlation between soil moisture and model output was observed. This high 

latitude problem is likely to be caused by inconsistent information on snow cover and 

frozen ground between model and observations. It is unclear, how reliable the soil 

moisture estimates are in these high latitude areas. 

• Data gaps due to blending: The data blending procedure applied for ECV_SM is not 

optimal, as it results in the lack of observations in some areas. The European heat 

wave 2003 is such an example. It is suggested to develop other blending techniques 

for the ESA CCI soil moisture data product. 
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• Information or noise? The present study has shown that the ECV_SM soil moisture 

data shows good agreement with observed precipitation anomalies. It has however also 

be shown that the MPI-M land surface model JSBACH, forced with WATCH forcing 

data shows even better correlation and anomaly correlation between soil moisture and  

precipitation. It is evident that the model soil moisture is related to its precipitation 

forcing. The smaller agreement of the ECV_SM with the observed precipitation 

dynamics could be interpreted in two different ways: 

o The observed relationship between ECV_SM and precipitation is really 

weaker. This would mean that the noise in the soil moisture observations is 

reducing the correlation. 

o The difference and weaker correlation is due to the effect of other relevant 

processes. Soil moisture dynamics is not solely influenced by precipitation, but 

also by vegetation dynamics and evapotranspiration. In that case, the 

differences between soil moisture dynamics and precipitation dynamics might 

reveal additional insight into land surface dynamics which could be used to 

improve the process understanding and description in climate model land 

surface schemes. A further analysis is beyond the scope of the present study 

but will be subject of further investigations. 

Overall, the ECV_SM dataset provides a first unique dataset that provides relevant 
information for climate studies. The possibility to retrieve relevant patterns information on the 
memory characteristics of soil moisture is important for further applications like climate 
model initialization and improvement of seasonal to multiannual climate forecasting 
applications. 
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7 ANNEX 

 

Figure 32: same as Figure 30, but for region W1 

 

Figure 33: same as Figure 30, but for region W2 

 

Figure 34: same as Figure 30, but for region C1 
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Figure 35: same as Figure 30, but for region C2 

 

Figure 36: same as Figure 30, but for region E1 
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