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Use of Uncertainties in Models and Reanalyses 
 

1. Purpose and scope of the Technical note  
One of the main requirements for the new CCI climate data records (CDRs) is to include the 
associated uncertainties along with the measured variables for each measurement. This has 
not been available to date in most satellite climate data records. This document describes how 
these uncertainties will be used by the modelling and reanalysis communities in order to help 
guide the data providers who are providing the uncertainties in their datasets.   

2. Treatment of uncertainties in climate modelling 

2.1 Model evaluation and development 
 
Model evaluation is perhaps the most obvious example of using satellite-derived observations 
in climate modelling. It is, however, important to remember that this is not simply a question 
of comparing a model with the observations but also of using the information gained from 
such comparisons to improve the model, for example by developing better parameterizations 
of physical processes. This has important implications, both for the way the data is used by 
modellers but also for the types of product, including uncertainty estimates,that they require 
from the data providers. Whilst it is probably fair to say that the use of observational 
uncertainties by climate modellers is still in its infancy, it also true that there is now an 
increasing demand for this information and that this is likely to grow very quickly in the near 
future. This is particularly the case when the difference – as measured by some suitable metric 
– between the model outputs and the observations is of the same order of magnitude as the 
differences between the available observational products. 
 
(a) The basic problem 
 
The three most basic questions we seek to answer when comparing our models to 
observations are: (i) How good is our model? (ii) Is our model improving or getting worse as 
a result of the changes we have made to it? (iii) What is the level of confidence of the 
reference observational product? This last one is particularly important when the model 
performance is considered to be reasonable. 
 
In our model we wish to simulate a particular physical quantity, XMOD, and we would like to 
know how close this is to reality, as defined by the best available observations, XOBS. We 
want to avoid overconfidence in our simulation, i.e. inferring from XMOD = XOBS that our 
model is performing much better than it actually is but we also do not want to reject or 
penalise the model unfairly, i.e. inferring from XMOD ≠ XOBS  that our model is worse than it 
is. 
 
We would thus like to have some estimate of the observational uncertainty, XOBS ± ∆XOBS. In 
the simplest case we can then determine if our model simulation is plausible or credible, in the 
sense that it lies within the range of the observational uncertainty, ∆XOBS. In addition, if we 
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can also estimate our model uncertainty, XMOD ± ∆XMOD, for example by running an 
ensemble of simulations, we then have an even better basis for assessing the credibility of the 
model. A further level of sophistication can also be added to our evaluation if we have 
multiple observational data sets for a given quantity, XOBS1 ± ∆XOBS1 , XOBS2 ± ∆XOBS2 , etc 
 
In general modellers will probably assume that ∆XOBS is the data provider's best estimate of 
the observational uncertainty, i.e. that all of the relevant contributions to ∆XOBS such as 
measurement errors, calibration errors, spatial and temporal sampling, structural uncertainty, 
etc, have been accounted for. It is therefore very important to know if this is not in fact the 
case, so that a meaningful comparison between the model and observation can actually be 
made. A good indication of the type of information and level of detail required by modellers 
is the documentation of requirements for the Obs4MIPS activity which is part of CMIP5 
(http://obs4mips.llnl.gov:8080/wiki/FrontPage).  
 
(b) The wider context 
 
The above remarks can be generalised to the broader, multi-model context. We may then seek 
to answer questions such as: 
 

- Are climate models improving with time, e.g. between CMIP3 and CMIP5 or as 
reported in successive IPCC reports? 

- Is it possible to say that some models are demonstrably better than others, i.e. in a 
clearly-defined, objective, and quantified sense? Is the ranking of models dependent 
on the chosen metric? 

- Are some particular physical quantities more robustly simulated in models than 
others? Are there consistent strengths or weaknesses across the range of available, 
independent models? 

- Does a better comparison with currently-available observations imply more reliable 
projections? 

- Can we weight models, in terms of their skill, based on our comparisons with the 
observations? 

 
The above questions have stimulated a growing interest in the development of objective 
methods to assess model performance and the construction of reliable metrics to do this (e.g. 
Gleckler et al., 2008). This activity includes the formation of WGNE/WGCM metrics panel 
(http://www-metrics-panel.llnl.gov/wiki). They have also motivated an IPCC expert meeting 
on Assessing and Combining Multi Model Climate Projections in preparation for the 
publication of the Fifth Assessment Report (Knutti et al., 2010). 
 
(c) Model evaluation in the absence of observational uncertainties 
 
It is often the case, however, that reliable observational uncertainties are not available. What 
are the options for climate modellers if this is so? 
 
The simplest approach is to treat all data sets as being equally plausible. Here we might be 
said to be applying a “principle of indifference” and we do this because we have no evidence 
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to suggest that doing otherwise is any more valid. Following on from this we might then 
choose to define our “observational uncertainty” as, for example, the range of a particular 
parameter spanned by the available data sets. This was the approach chosen by Gleckler et al. 
(2008) when they evaluated the simulation of twentieth century climate by the CMIP3 
models. To give some indication of the effects of observational uncertainty, for most fields 
they provided a comparison of the model simulations with two different reference data sets. 
 
Alternatively, we might assume that technological or scientific developments necessarily lead 
to improved data sets, i.e. the most recent data sets are always better than their predecessors. 
This could be because they include enhanced information content (e.g. more channels, active 
vs. passive sensors to detect rainfall, etc); or improved retrieval algorithms and data 
processing methods; or more up-to-date technology (improved sensors/instrumentation). Note 
that we almost always assume that a new version of an existing data set will be an 
improvement on the last. 
 
It is also the case that we sometimes make a subjective assessment of observational data sets 
based upon our prior experience or expertise. For example, we might consider that the 
observed values of a quantity that we are presented with are so far from our theoretical 
expectations that the most likely explanation is that they are in error.  
 
Finally, we may decide to make an approximate estimate of the observational uncertainty. 
This is often based on input from the data providers themselves and is usually quite 
conservative, e.g. ± 100%. 
 
Climate modellers do of course recognize that all of these solutions are far from ideal: it is 
thus relatively straightforward to make the case for the determination and provision of reliable 
observational uncertainties by data providers. 
 
(d) Examples 
 
Figure 1 illustrates the potential dilemma when no observational uncertainties are available. 
According to the first data set (ISCCP) the newer version of the model is an improvement 
compared to the older version, but according to the second data set (CERES) the overall 
quality of the simulation deteriorates. There are also considerable regional differences 
between the comparisons depending on which of the two data sets is used for the evaluation, 
e.g. over the Atlantic Ocean. 
 
Figure 2 shows how this relatively simple approach can be made more quantitative and 
applied to a whole set of related parameters, in this case quantities of relevance to the 
hydrological cycle. In this example multiple observational data sets are used for evaluating 
each parameter of interest and the observational uncertainty has been estimated assuming that 
each of these data sets is equally valid. 
 
Figure 3 is taken from Jiang et al. (2012), which describes the evaluation of the vertical 
distributions of atmospheric water vapour and clouds in the new generation of climate models 
submitted to CMIP5. As water vapour is strongly coupled with the cloud liquid/ice water 
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content (LWC/IWC) it is informative to analyse the models' simulations of these quantities 
simultaneously. We can see that there is a much larger spread in model performance across 
the ensemble in the upper troposphere than in the middle and lower troposphere. Moreover, 
while the model simulations tend to lie within the estimated ranges of observational 
uncertainty in the lower troposphere they clearly do not higher up. Taking these results as a 
starting point we can then investigate how strongly these two model errors are coupled, and 
how much the models' physical parameterization schemes (e.g. cloud microphysics or 
convection) contribute to the biases we see.  
 
Figure 4 illustrates the problem that arises when the differences between model outputs and 
observations are of the same order of magnitude as the differences between two observational 
products. In this case it is difficult to draw any firm conclusions on the model’s performance 
without complementary information on the uncertainties of observational products. Moreover, 
information on the strengths and weaknesses of the different products is specifically required 
over the spatial domains and time periods being used for the model evaluation (in this case the 
inter-tropical region in the lower stratosphere or at the time of ozone hole deepening). 

 

 
Figure 1: The annual mean reflected shortwave radiation at the top of the atmosphere simulated by 
two versions of the Met Office climate model compared to the ISCCP-FD (upper) and CERES-EBAF 
(lower) observational products. Values shown are model minus observations in Wm-2. The two 
versions of the model chosen (earlier version on the left, later version on the right panels) are 
arbitrary and are taken from current developmental work in progress. 
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Although the above examples focus primarily on atmospheric quantities it is important to 
recognize that similar efforts are being pursued across the climate modelling community. For 
example, Luo et al. (2012) propose a framework for assessing (“benchmarking”) land models. 
 
This framework consists of four components:  
 

1) Identification of the aspects of models to be evaluated. 
2) A set of benchmarks as standardized references to test models. 
3) A scoring system (metrics) to measure and compare model performance skills. 
4) Evaluation of model strengths and deficiencies for model improvement. 

 
Clearly this framework could be applied more widely than land models to the full range of 
model evaluation activity, encompassing atmospheric, oceanic and cryospheric processes and 
parameters. 
 

 
Figure 2: Normalized assessment criteria (ratios of mean field root mean square errors) for a range of 
radiation, cloud and hydrological cycle variables for the two simulations shown in Fig. 1. These 
errors are calculated relative to a reference set of observations for each of the variables shown. The 
whisker bars are observational uncertainty, which is calculated by comparing these with alternative 
data sets. The colour coding indicates whether the performance of the new version of the model has 
improved, deteriorated, or remains unchanged compared to its predecessor. For a complete 
description of this methodology see Walters et al. (2011). 
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Figure 3: Scatter plots of tropical mean (30°N–30°S) oceanic multi-year mean atmospheric water 
vapour (H2O) versus cloud ice water content IWC at (a) 100 and (b) 215 hPa, and H2O versus cloud 
liquid water content (LWC) at (c) 600 and (d) 900 hPa. Black dots show the A-Train observed values 
and the grey area indicates the observational uncertainties. Coloured dots/circle are the values from 
the CMIP5 models and the black open-circles represent the multi-model means. [From Jiang et al., 
2012] quality of the weighted ensemble mean. They propose and apply some relatively simple statistics 
to demonstrate this. However, they also suggest that uncertainties arising from the use of different 
datasets could be naturally included in probabilistic projections of regional climate change within a 
Bayesian statistical framework. 
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Figure 4: Diagnoses of comparisons between the CCI O3 preliminary L3 product from Sciamachy 
(black lines), the CCMVal2 O3 observational product (red lines) and the CNRM-CCM O3 simulated 
in a nudging experiment towards temperatures and winds of ERA-Interim reanalysis (green lines). 
Shown are (a) the mean October 2006 vertical profiles at the equator, (b) zonal averages of the mean 
October 2006 at 3 hPa, and (c) the monthly means of O3 at 50hPa for 2006. The CCMVal2 O3 
observational product was developed by Greg Bodeker (Bodeker Scientific) and Birgit Hassler 
(NOAA) and combines measurements made by satellite-based instruments, ozonesondes, aircraft-
based instruments and lidars (version 1.1.0.6 of the data base). The CNRM-CCM is an atmospheric 
climate model including an on-line comprehensive representation of chemical processes in the 
stratosphere (Michou et al., 2011). 
 
The global observing system – including the ESA CCI – continues to offer an increasing 
number of data sets which potentially could become candidates for benchmarking climate 
models. It must be recognized, however, that many of these data sets have limited information 
content and are not always suitable for our purposes. This means that we need to thoroughly 
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assess the range of available data sets in order to develop reliable benchmarks against which 
model performance can then be both effectively and objectively evaluated. 
 

 
Figure 5: Attributed global mean temperature trends for 1900–1999 contributing to each of the four 
observational datasets indicated on the x-axis. Estimates of the attributed trends (represented with the 
asterisks) of greenhouse gases, other anthropogenic, and natural factors, together with their sum. The 
5–95% limits of the attributed trends are indicated by the vertical lines. Trends in the observations are 
also shown (black asterisk symbol) with the 5–95% uncertainty range representing an estimate of 
internal climate variability deduced from the climate model control simulation. The diamonds show 
the trends calculated after masking by the observational coverage. [From Jones and Stott, 2011] 

2.2  Detection and attribution of climate change 
Although numerous studies have clearly demonstrated that much of the recent warming in 
global near-surface temperatures can be attributed to increases in anthropogenic greenhouse 
gases (IDAG, 2005; Hegerl et al., 2007), very little has been done to assess the sensitivity of 
these findings to the choice of observational data sets, and thus to the observational 
uncertainty. Errors in these measurements arise due to a number of factors, e.g.  grid-box 
sampling, instrumental biases, and changes to the global coverage. Jones and Stott (2011) is 
the first exploration of the full impact of observational uncertainty on attribution. They 
performed a standard detection and attribution analysis using four independently-processed 
near-surface temperature data sets. The main results are summarised in Figure 5. 
 
Their principal finding is that the ‘headline’ IPCC conclusion on attribution is indeed robust 
to observational uncertainty. Clearly this type of study needs to be both developed and 
expanded to parameters other than the global mean surface temperature (Vautard and Yiou, 
2012) and the precise details of such attribution results may well depend on the observational 
data set, e.g. for smaller sub-regions. A further recommendation of Jones and Stott (2011) – 
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itself following Thorne et al. (2010) – is that structural uncertainty in data sets, as determined 
by differences between different reconstructions, should be accounted for along with other 
types of uncertainty when making comparisons with models. In particular, as the spatial 
pattern of the observed trends is often the focus for detection and attribution studies, the 
homogenization of the time series is a key component of the data reconstruction process that 
needs to be considered with specific attention to the uncertainty analysis. 

2.3 Constraining climate projections 
In a recent study Gómez-Navarro et al. (2012) examine the degree to which the evaluation and 
ranking of an ensemble of regional climate models – based on their ability to reproduce 
observed climatologies of surface temperature and rainfall – is sensitive to the choice of 
reference observational dataset. They demonstrate that, even in areas covered by a dense 
observational network (Spain in their case); uncertainties in the observations are comparable 
to those in state-of-the-art regional climate models. The clear implication of this is that model 
evaluation needs to account for the observational uncertainties. Furthermore, they point out 
that weighting models according to how well they perform against a single observational 
dataset, without acknowledging the observational uncertainties, might actually reduce the 
quality of the weighted ensemble mean. They propose and apply some relatively simple 
statistics to demonstrate this. However, they also suggest that uncertainties arising from the 
use of different datasets could be naturally included in probabilistic projections of regional 
climate change within a Bayesian statistical framework. 
 
In fact, work in this direction has already commenced (Sexton et al. 2012; Sexton and Murphy 
2012). Sexton et al. (2012) outline a method for producing probabilistic projections of climate 
change at both global and regional scales. In particular they consider the response to 
increasing atmospheric CO2 on both global, annual-mean surface temperature and regional 
climate change in summer and winter temperature and precipitation over Northern Europe.  
 
Their approach combines information from a perturbed physics ensemble (of a single climate 
model), a multi-model ensemble (CMIP3/IPCC AR4), and observations and is based on a 
multivariate Bayesian framework: this enables the prediction of a joint probability distribution 
for several variables constrained by multiple observational metrics. The use of multiple 
metrics is important because, unlike using a single metric, it reduces the risk of rewarding a 
model which scores well fortuitously (for example due compensation between large errors of 
opposite sign) rather than because it is providing a realistic simulation of the observed 
quantity. Here then, model skill can be defined as the likelihood of a model given the 
observations. Clearly, this approach also requires quantitative estimates of uncertainties in the 
observations used to constrain the climate projections. These are obtained using two or three 
alternative observational data sets for each quantity and then generating 100 “pseudo-
observations” by adding random linear combinations of the different data sources. 
 
An example of the method – applied to the global-mean surface temperature response to 
doubling CO2 – is shown in Figure 6. This shows that neglecting the observational uncertainty 
has some important negative consequences: it narrows the distribution of the surface 
temperature response; it reduces the effective sample size; and it unfairly excludes some 
models.  
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Figure 6: Probability distribution function (pdf) of the global mean temperature response (K) to 
doubling atmospheric CO2 derived from a large ensemble of climate model simulations and applying 
the Bayesian approach described in the text. The two pdfs show the impact of including (left) and 
excluding (right) the observational uncertainty [From Sexton et al., 2012] 
 
Another type of approach is suggested by studies such as Hall and Qu (2007), who try to 
constrain the snow albedo feedback in climate models using observations of the present-day 
seasonal cycle. Following on from this Fernandes et al. (2009) attempted to quantify the snow 
albedo feedback using satellite observations. Hall and Qu (2007) suggest that this approach 
could possibly be extended to other processes, such as the sea-ice feedback in the Arctic, 
although this has yet to be demonstrated. Note however that making a link between the 
performance of models on present or past climate conditions and uncertainties in model 
projections remains challenging (Knutti et al., 2010). 
 

2.4    Reconciling observations and models 
It is now generally recognised that comparisons between climate models and observational 
data require as much consistency as possible between the simulated and observed quantities – 
e.g. effective use of the information content of the measurements, temporal and spatial 
sampling – in order to draw meaningful conclusions regarding model performance. This 
contrasts with the early work in this field which often consisted of placing satellite-derived 
quantities and their model ‘equivalents’ side-by-side. In a sense climate model evaluation is 
moving more towards the more rigorous match-ups between models and observations used in 
data assimilation as part of numerical weather prediction systems. 
 
We can attempt to achieve this consistency in two ways: (i) producing observational datasets 
which match model-simulated parameters and diagnostics (the “satellite-to-model” approach); 
and (ii) simulating in the model what is actually observed by the satellite sensor (the “model-
to-satellite” approach). Here we give examples of both. 
 
(a) Top-of atmosphere radiation budget: CERES EBAF 
 
The standard NASA CERES top-of-atmosphere (TOA), global-mean radiative fluxes have a 
positive net imbalance of around 6.5 Wm-2. This is much larger than the best estimate of 0.85 
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Wm-2 based on observations of ocean heat content data and model simulations, with the major 
sources of uncertainty being related to the CERES instrument absolute calibration. 
 
This makes using the data for coupled climate model evaluation problematic, as these models 
need to be close to balance for present-day conditions to be used reliably. It also has 
implications for attempts to estimate the Earth’s global energy budget and for inferring 
meridional heat transports. 
 
To alleviate these difficulties the CERES Energy balance and filled (EBAF) TOA product 
(Loeb et al., 2009) was designed specifically for climate modellers needing a net imbalance 
constrained to the ocean heat storage term. The CERES team undertook a detailed uncertainty 
analysis and determined that the CERES instrument calibration was the largest uncertainty, 
with other aspects of the processing chain making smaller, but not negligible, contributions. 
They then derived and applied a set of adjustments to the various terms to produce a radiation 
budget data set that was consistent with the requirements of the climate modelling 
community. The CERES EBAF data set now extends from 2000 to the present and is 
considered the standard reference for climate model evaluation and other studies. 
 
(b) The GCM Oriented CALIPSO Cloud Product (GOCCP) 
 
CALIPSO combines an active lidar instrument with passive infrared and visible imagers to 
examine the vertical structure and properties of clouds and aerosols. The need for a specific 
model-oriented CALIPSO data set arises because the interpretation of the lidar backscatter 
ratio in terms of cloud products (e.g. cloud fraction) requires a set of criteria that depends on 
the vertical resolution at which the lidar scattering ratio is measured or computed.  
 
In order to allow consistent comparisons between models and the CALIPSO data, the GCM 
Oriented CALIPSO Cloud Product (GOCCP) data set has been produced (Chepfer et al., 
2010). This is an entirely new product that has been derived from the original CALIPSO 
Level-1 data. An example of its application to climate model evaluation is shown in Figure 7. 
In addition, the GOCCP data set is consistent with the CALIPSO simulator outputs derived 
from models using the satellite simulator COSP (see below). 
 
(c) Forward modelling and satellite simulators 
 
As noted above, the ‘traditional’ approach to model evaluation assumes that model-simulated 
and satellite-retrieved versions of physical quantities are essentially equivalent. This is of 
course rarely the case in practise. This lack of consistency has stimulated the development of 
satellite simulators which aim to avoid the inherent ambiguities between model and satellite-
derived parameters and allow us to make full use of the information content of measurements. 
The greatest amount of progress in this direction has been made by the cloud modelling 
community and has led to the development of the CFMIP observational simulator package 
(COSP), which has already been described in previous deliverables (CMUG, 2011; CMUG, 
2012). An example of using COSP, which compares the Met Office model to five different 
sensors, is shown in Figure 8. 
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Using satellite simulators obviously means that comparisons between models and 
observations – including the use of uncertainties – then take place in the space of the 
simulated radiances, radar reflectivities, lidar backscatter, etc, rather than derived quantities 
such as cloud fraction or cloud top altitude. This clearly has potentially important implications 
for the types of data sets required by the climate modelling community. 
 

 
Figure 7: Comparison of the IPSL climate model (left) and the GCM Oriented CALIPSO Cloud 
Product (right) for high-level, middle-level and low-level clouds.[From Chepfer et al., 2010] 
 

2.5  High resolution modelling 
 
An important current development in climate modelling is the move to much higher grid 
resolutions, both horizontal and vertical. Some centres have already submitted versions of 
their models at horizontal resolutions as high as 20km to the CMIP5 archive and this tendency 
will undoubtedly increase over the coming years and for CMIP6. The development of the 
CORDEX (COordinated Regional climate Downscaling Experiment) international project is 
also fostering the development of regional climate modelling at horizontal resolutions that are 
commonly of order 50km but including several intercomparison exercises at higher resolution  



                                                     Document Ref.: D3.3 
CMUG Deliverable  
Number:  D3.3 
Due date:   March 2013  
Submission date:   16 April 2013 
Version:  0.7 
 
 

15 of 28 

 
 

 
Figure 8. Observational and COSP diagnostics averaged over the Southern Ocean (40º-70ºS) for the DJF 
season. Shown are (left) the observational results for five sensors and the equivalent COSP diagnostics from two 
versions of the Met Office model referred to as (middle) GA2.0 and (right) GA3.0. The histograms show 
frequency of occurrence in each bin (0–1). The ISCCP, MODIS, and MISR histograms are normalized by the 
total population of the histogram (i.e., the sum of all the bins gives the total cloud fraction), whereas the 
CloudSat and CALIPSO histograms are normalized level-by-level. [From Bodas-Salcedo et al., 2012] 
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up to 12km as in MedCORDEX. Figure 9 shows an illustrative example of the new Met 
Office global climate model run at a range of resolutions from 135km down to 12km. Clearly 
there is increased regional detail as the resolution increases but is this detail plausible and how 
can we verify this? 
 
If we are to both examine the potential benefits of increased resolution and use such models 
for projections we clearly need to evaluate their performance using reliable observational data 
sets with appropriate uncertainties. A key point is that simply averaging or interpolating to 
different grids is unlikely to be adequate and we will probably require versions of data sets at 
multiple resolutions each with their own uncertainty estimates, taking into account sub-grid 
variability, for example. 
 

 
 
Figure 9: Simulation of seasonal mean rainfall for JJA 2005 using the Met Office climate model run at 
a range of horizontal resolutions: 135 km, 60 km, 40 km, 25 km, 17 km, and 12 km. Also shown are 
TRMM observations of rainfall (bottom left) for the same season. Note that this is a version of the 
model which is currently under development and the comparison is shown for illustration only. 
[Courtesy Malcolm Roberts, Met Office Hadley Centre]. 
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2.6 Summary 
A central aim of the CCI is to address the requirements of the climate modeling community 
and to increase the use of ESA-derived data sets by climate modelers generally. In addition, a 
key deliverable for all of the projects is to produce reliable uncertainty estimates for each of 
the variables they derive. The above discussion has aimed to highlight the following points: 
 

- Climate modelling requirements are multiple and evolving, often quite rapidly, and 
will certainly continue to evolve over the lifetime of the CCI. 

- The previous “one size fits all” approach, i.e. simply matching monthly mean Level-3 
products to presumed model equivalents, is now only part of what model evaluation 
entails. 

- Multiple data sets, e.g. at different temporal/spatial resolutions, with appropriate 
uncertainties, may be required for certain applications. 

- More systematic intercomparisons of different data sets within the context of specific 
applications are required to measure the strengths/weaknesses of the different 
reconstructions. 

- In some circumstances data sets produced specifically to address modelling 
applications may be needed. 

- Use of the forward modelling or simulator approach is increasing: observation groups 
should be encouraged to consider the development of appropriate simulator modules 
in collaboration with modelling community. 

- It is important to consider structural uncertainty when deriving observational data sets 
(e.g. multiple realisations of the retrieval algorithms with different settings/choices), 
and this is considered essential for applications such as detection and attribution of 
climate trends, in particular the contribution of the uncertainties in the homogenization 
processes. 

 
The principal uses of observational data in climate modelling discussed here are: 
 

- Model development and evaluation, including improving physical parameterisations. 
- Development of reliable metrics for multi-model inter-comparisons. 
- Detection and attribution of climate change and trends. 
- Testing the benefit and utility of increasing model resolution at both global and 

regional scales. 
 
In addition we can also include seasonal-to-decadal prediction and the generation of model 
ensembles. In the former, this generally involves using the observations as part of the process 
of generating the initial analyses, so that the inclusion of uncertainties is handled in a similar 
manner to numerical weather prediction. The latter is basically self-explanatory and includes, 
for example, producing multiple model simulations using boundary conditions (SST, land 
cover, etc) derived either from different data sets or from several realisations of the same data 
set. 
 
The key message is that we potentially need to consider all of these climate modelling 
applications when constructing observational data sets and determining the associated 
uncertainties. We also stress the requirement to thoroughly assess both available and future 
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observational data sets in order to determine their suitability for assessing the performance of 
climate models. 

3. Treatment of uncertainties in reanalyses  
 
This chapter describes some key issues and challenges in the production of high-quality 
climate reanalyses. The methodologies and tools that can be used for data quality assessment 
are discussed with a focus on homogeneity (e.g. related to changes in the observing system, 
including calibration issues) and uncertainty (e.g. accuracy and precision related to 
measurement error, processing methods, etc.). 
 
Reanalysis makes use of advanced statistical methods to assimilate observations from 
multiple sources into a state-of-the-art atmospheric forecast model. This generates a 
physically and dynamically coherent global dataset, typically extending over several decades 
and containing estimates of many essential climate variables (ECVs). The use of a model-
based data assimilation technique ensures that the ECV estimates are consistent with 
observations, but also with the laws of physics, and therefore with each other. Since it is 
produced with a single version of a data assimilation system, a reanalysis is more suitable for 
climate monitoring and climate research generally than archived weather analyses from 
operational forecasting systems. 

3.1 Uncertainties in reanalysis  
Users often view reanalysis data as a “true representation of the atmosphere according to 
observations" or simply “observations”. In fact, reanalysis combines inaccurate and 
incomplete observations with imperfect models, using methods and procedures that are 
technically and scientifically complex. A realistic analysis (as in true to nature) is possible 
only if the degrees of freedom in the modelling system can be adequately constrained by 
available observations. The actual impact of any given set of observations on the reanalysis 
depends on many factors, including limitations of the forecast model used for data 
assimilation, the choice of analysis method, and the description of error characteristics of the 
data. It also depends on various choices and assumptions made in the technical 
implementation of the reanalysis system (e.g. production in parallel streams). 
 
The use of atmospheric reanalysis data for climate change assessment has been, and still is, 
somewhat controversial (e.g. see Thorne and Vose 2010, and comments by Dee et al 2011a). 
This is due to well-known difficulties with the representation of low-frequency variability in 
reanalysis. Early generations of reanalyses, as well as some recent ones, show spurious shifts 
and other artefacts that can be identified with changes in the observing system, improper use 
of observations, transitions between multiple production streams, or various mistakes that can 
occur in a complex reanalysis production. Considerable progress has been achieved in this 
area in recent years, mainly due to advances in data assimilation related to the treatment of 
biases in satellite observations (Dee and Uppala 2009). It has been demonstrated that near-
surface temperature and humidity anomalies estimated from reanalysis data closely match 
those obtained independently from station observations (Simmons et al. 2004, 2010), and 
reanalysis data have begun to be routinely used to assess global climate change, e.g. in the 
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annual State of the Climate special issues of the Bulletin of the American Meteorological 
Society (SOC 2010; 2011; 2012).  
 
It is always preferable to verify trend estimates derived from reanalysis by comparing with 
independent data sets, but in many cases it is not possible to do so. Users must be aware that 
the accuracy of trend estimates (and the conclusions they lead to) can differ greatly from one 
reanalysis to another, depending on the data assimilation methodology used and choice of 
observing system. Reanalysis is a relatively young field that has seen rapid progress in recent 
years. For example, Paltridge et al. (2009) showed that specific humidity in the NCEP/NCAR 
reanalysis had a negative trend with time. Based on this, they cast doubt on the general 
consensus that the global water vapour feedback was strongly positive (e.g. Dessler and 
Sherwood, 2009). Dessler and Davis (2010) analysed several reanalysis datasets and found 
that the NCEP/NCAR was the only one affected by such a negative trend. They suggested as a 
possible explanation the fact that the specific humidity field in the NCEP/NCAR reanalysis 
was only constrained by radiosonde humidity observations, whereas humidity fields in more 
recent reanalyses are additionally constrained by the assimilation of satellite radiances. 
 
In general, uncertainty assessment for specific variables estimated by reanalysis involves the 
following questions: 
 

• How strongly is the variable constrained by observations? Is it directly or indirectly 
observed? How accurate are the constraining observations? 

• What is the spatial and temporal distribution of the assimilated observations? How 
does this change in time? 

• How accurately can the assimilating model represent the variable? Does the model 
have skill in extrapolating and/or predicting it? 

 
Climate users interested in the quality of low-frequency variability and/or trend estimates 
need to consider these aspects throughout the time period in question. In particular, the 
complexity of the observing system and its evolution over time, associated with changing 
biases in observations, can introduce spurious low-frequency signals in the reanalysis. 
Unfortunately many users do not have access to sufficient information in order to fully 
address the difficult questions listed above. On the other hand, producers of reanalysis data do 
not have the resources (nor the application-specific knowledge) to answer them either. Part of 
the solution is to provide better tools and information systems to support users in making their 
own uncertainty assessments. In particular, it should be made much easier for a user to get 
detailed information about the observations used in reanalysis, including the quality 
assessment and any adjustments produced by the reanalysis process itself. 
 
In summary, limitations and caveats of reanalysis products mainly result from 
 

• Lack of observations. The atmosphere is not now, nor ever has been, fully observed. 
• Errors in the observations, and lack of information about those errors. 
• Shortcomings in the assimilating model, and lack of information about model errors. 
• Shortcomings in data assimilation methodology. 
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• Technical errors and mistakes in reanalysis production. 
• Computational limitations (e.g. limitations in spatial and temporal resolution) 

 
The most important of these items are due to lack of information; there are fundamental 
limitations as to what can be achieved with incomplete observations and imperfect models.  
 

3.2 Quality of input observations 
Ultimately, and apart from all technicalities, the attainable realism of a reanalysis depends on 
the quality of the input observations used, and on the available information about their 
uncertainties. Especially in the modern observing period (i.e. in recent decades), the accuracy 
of current reanalysis products such as ERA-Interim (Dee et al. 2011b) is sufficiently high that 
observations must meet strict quality requirements before they can be usefully assimilated. 
The key requirements are:  
 

• The relationship between the observations and the model state variables must be 
accurately represented in the observation operator; 

• The errors in the observations must be sufficiently well understood to allow their 
statistical characterization, e.g. in terms of biases and error covariances; 

• Adequate quality control and bias correction procedures for the observations must be 
available; 

• The remaining signal in the observations (i.e. after quality control and bias correction) 
must add useful information to the reanalysis. 

 
Reanalysis provides a useful framework for assessing the quality of ECV products derived 
from different components of the global observing system. This is illustrated in figure 10 
which compares the relative departures of ozone concentrations retrieved from several 
instruments from their collocated ERA-Interim ozone analyses, at 10 hPa in the tropics. This 
type of comparison gives confidence on the quality of the reanalysis and of the data, but also 
helps spotting issues. An example is the comparison with SCIAMACHY limb data in figure 
11, which differs from ERA-Interim estimates by 40%. While the reasons for such large 
differences are not yet clear, residuals of this magnitude were only seen around 10 hPa in the 
tropics. The level of agreement between SCIAMACHY limb ozone profiles and the ERA-
Interim ozone analyses was better than 10% in the rest of the tropical stratosphere and at all 
levels in the extra-tropics.  
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Figure 10: Relative mean difference between the ERA-Interim ozone analyses and reprocessed ozone 
data from several instruments (as given in the legend, where SCIA is a short name for SCIAMACHY 
limb ozone profiles) at 10 hPa in the tropics over the period 1989-2012. With the exception of MIPAS 
during the period 2003-2004, none of the ozone data was assimilated in ERA-Interim. The calculation has 
been done as described in Dragani (2011). The plot is an adaptation of figure 5 (panel d) of Dragani (2011).  
 
The absolute observation minus reanalysis residuals can also be used to assess observation 
errors, e.g. using approaches such as the triple collocation method (e.g. Janssen et al., 2007) – 
but this requires that at least two sets of data are available in addition to the reanalysis.  
 
For observations that are assimilated in a reanalysis, the reanalysis provides a continuous on-
line observation-model confrontation. In that case the reanalysis output is clearly not 
independent of the observations. Nevertheless, the data assimilation process itself generates a 
wealth of information about the uncertainties in the input observations. For example, 
inconsistencies among the different sources of ozone information used in the reanalysis would 
be clearly visible in figure 10. More interestingly, the sequential time-stepping data 
assimilation procedure used to generate the reanalysis involves production of a short 
(typically 12-24 hours) forecast to provide a first prediction of all observations used in the 
next analysis step. This so-called background estimate depends only on past observations, and 
is therefore independent of the observations used in the next analysis. The “background 
departures” or observed-minus-forecast residuals are stored and can be used for posterior 
statistical error analysis.   
 
The background departures generated during data assimilation are part of the “reanalysis 
feedback”, which may also include estimates of observation bias generated during the 
reanalysis (see next section), and output of the automated quality control embedded in the 
reanalysis. The reanalysis feedback is an important resource for data quality assessment, 
which can be exploited to improve the description of input data uncertainties for subsequent 
reanalyses. Various methods are available to estimate error covariances from background 
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departures, e.g. see Dee and da Silva (1998), and Desroziers (2006). Reanalysis feedback has 
also been used to detect breakpoints in upper-air temperature data from radiosonde stations, 
resulting in demonstrable improvements in the historic radiosonde record (Haimberger 2007). 
 

3.3 Treatment of biases in reanalysis 
The requirement for a realistic low-frequency variability in climate reanalysis means that 
special efforts must be made to remove biases from the input observations as well as from the 
assimilating model. Systematic errors in any of the input sources inevitably introduce biases 
in the reanalysis. Most observations in fact require substantial adjustments for bias before they 
can be usefully assimilated. Standard data assimilation methods (such as the Four 
Dimensional Variational data assimilation scheme, 4D-Var, used in ERA-Interim) were 
originally designed under the assumption that all assimilated observations have well-
characterised uncertainties resulting from random errors only. It has been only recently that 
data assimilation has become “bias-aware” (Dee, 2005). 
 
Treatment of biases in satellite observations is especially critical. Systematic errors in 
radiance measurements reflect the complexity of the instruments and the indirect nature of the 
measurement, and can include large-scale flow-dependent components. In addition to the 
effects of instrument and calibration errors, biases in satellite data assimilation can result from 
systematic errors in the radiative transfer models that are either embedded in the assimilation 
system as in the case of level-1b data (radiance) assimilation or in the retrieval scheme in the 
case of derived data (retrieval) assimilation. It is important to recognize that it is generally 
preferable to assimilate radiances rather than retrievals. The reason is that error 
characterization of derived products, which include additional information to the raw 
measurements, is much more difficult. The importance of this principle was clearly 
demonstrated in the 1990s with the development of variational data assimilation methods at 
ECMWF and at NCEP, which resulted in major improvements in weather forecasting (e.g. 
Rabier et al., 2000). 
 
A reanalysis assimilates a large volume of observations from different sources, often 
constraining the same model variable. It is not unusual that these different sources of 
observations are biased one with respect to another. This is particularly the case for satellite 
data that now represent the vast majority of all existing atmospheric observations. Space 
agencies and other data providers are now investing substantial efforts to reprocess the raw 
measurement data from satellites in order to remove inter-satellite biases and generally to 
improve the information content of the data (e.g. the Global Space-Based Inter-Calibration 
System project; more information about the GSICS project can be found at 
http://www.star.nesdis.noaa.gov/smcd/spb/calibration/icvs/GSICS). 
 
It is now common practice in data assimilation to use bias predictor models to estimate (and 
then remove) systematic errors in the assimilated observations. Whether observations are 
assimilated in the form of radiances or retrievals, their bias varies in space and time, and may 
also depend on atmospheric conditions at the time they were observed. To account for this 
complexity, bias is typically represented by a predictor model involving properties of the 
observed atmospheric column (such as the integrated lapse rate) as well as the state of the 
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instrument (such as its field of view). The bias in the input observations is then described by a 
relatively small (say, < 10) number of parameters, which are the unknown coefficients for the 
predictor model. These bias parameters can be estimated separately for each channel, for 
example, by regression to some reference dataset (Harris and Kelly, 2001). 
 
In ERA-Interim, the estimation of bias parameters for satellite radiance data is handled 
automatically by a variational bias correction system (Dee and Uppala 2009). This system 
detects the appearance of a new satellite data stream, and it then initialises, updates, and keeps 
track of bias estimates for radiance observations from all channels for each sensor flying on 
the satellite. The bias parameters are updated during each analysis cycle by including them in 
the control vector used to minimise the 4D-Var cost function. This ensures that the bias 
estimates are continuously adjusted to maintain consistency of the bias-corrected radiances 
with all other information used in the analysis, which includes the conventional observations 
as well as the model background. An important practical advantage of this approach is that it 
removes the need for manual tuning procedures, which are prone to error and simply 
impractical in the modern age. 
 
Figure 11 shows an example of temporal consistency and homogeneity of the bias corrected 
observation minus the ERA-Interim model background departures (top panel) computed for 
the Microwave Sounding Unit (MSU) channel-2 radiances flown by several NOAA satellites 
over a period of over 30 years. The bias corrections applied to each instrument, to achieve 
such homogeneity, are plotted in the bottom panel. Instruments on different satellites are 
biased relative to each other and differences can be as large as 1.5K in brightness temperature. 
 

Figure 11: Bias-corrected radiance measurements from Microwave Sounding Unit flown on 
successive NOAA satellites (top panel; colours indicate different satellites). The global mean bias 
corrections for the MSU data, produced by the variational analysis in ERA-Interim, account for 
calibration differences, orbital drifts and various other instrument errors (bottom panel). 
 
Successful examples, such as the one presented in figure 11, increase the confidence in the 
latest reanalyses to address well-documented contamination of climate signals by changes in 
the observing system and possibly to accurately simulate the long-term trend in those signals. 
However, users need to be cautious when using reanalysis data for climate change assessment. 
Temporal variation in the observational constraint can still produce, in some cases, artificial 
shifts in the reanalysis time series - especially if the assimilating model has systematic errors - 
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even when using bias-corrected observations. Dee and Uppala (2008) discussed a 
stratospheric example, reproduced in figure 12 that shows how changes in the observing 
system (in this case the switch between SSU and AMSU-A) affected the ERA-Interim 
stratospheric temperature in summer 1998. The discontinuity in the upper stratosphere (at 5 
hPa and above) occurs because the assimilating model has large temperature biases there, 
while the two instruments with different measurement characteristics can only partly 
counteract those biases.  

 
Figure 12: Globally averaged analysis increments for upper-stratospheric temperature (30 hPa and 
up) in ERA-Interim during 1998, when the switch from SSU to AMSU-A took place. Courtesy of Dee 
and Uppala (2008). 
 
This example is typical of a situation where the model performs relatively poorly and the 
observing system is sparse; in this case no additional information is available to improve the 
estimates. 
 

3.4 Additional benefits (and challenges) in using a complex reanalysis system 
The complete description of a physically plausible atmosphere consistent with observations 
provided by reanalysis makes it possible to do many things that simply cannot be achieved 
otherwise. For example, it permits estimation of a large set of climate variables, even for 
variables that are not well observed, e.g. stratospheric winds, radiative fluxes, root-zone soil 
moisture, etc. These estimates are important because they are indirectly constrained by the 
observations used to initialise the model. An example is detailed diagnostics of the global 
energy budget and the hydrological cycle (Trenberth et al. 2011). Such diagnostics are 
especially useful if they involve known time-invariant properties of the climate system. These 
are (usually) conserved by the assimilating model in a reanalysis, but tend to be destroyed by 
the assimilation increments, depending on the nature of the observational constraints and on 
the method of assimilation. Budget diagnostics can be used to demonstrate shortcomings as 
well as progress in climate reanalysis (Berrisford et al. 2011). In other cases, it facilitated the 
assessment of inter-related fields to check their consistency.  
 
The drawback, however, is that in the absence of direct observations it is difficult to quantify 
the uncertainties in estimates of model-generated variables, as they depend on errors in the 
model as well as on the strength of the (indirect) observational constraint. Some insight into 
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the uncertainties can be obtained by using ensemble techniques, with the important caveat that 
it is not practical to sample more than a few selected sources of uncertainty in a reanalysis. 
 
Another potential benefit of using a complex, coupled system such as that of a reanalysis is 
the ability of producing adjustment in one variable while constraining a different one. This is 
particularly the case of data assimilation systems based on a 4D-Var scheme. Coupled data 
assimilation potentially allows for better use of observations with information about both 
meteorology and e.g. aerosols or chemistry. These are important advantages over uncoupled 
or weakly coupled systems, in which either the model integration or the analysis of 
observations (or both) is performed in separate steps. Thus, it represents in general a desirable 
aspect of complex data assimilation systems, as it permits to generate information about not 
well observed fields (e.g. stratospheric winds) by assimilating observations of different 
parameters (e.g. ozone), and thus estimate a large set of climate variables. The increased 
complexity in the system requires a proportional increase in assumptions and choices to be 
made for its implementation resulting in additional degrees of freedom in the modelling 
system. In this case, a realistic analysis can be produced only if these additional degrees of 
freedom are adequately constrained by accurate observations. This has important implications 
for climate reanalysis, since the instrumental record available e.g. for a reanalysis of 
atmospheric composition is limited, both in quality and quantity.  
 
When the observations cannot provide an adequate constraint, a negative impact can result in 
the analyses. During the production of ERA-Interim, it was noticed that the assimilation of 
ozone profile data retrieved from the ERS-2 GOME instrument could generate large and 
unrealistic changes in the upper stratospheric circulation, where the model background is not 
well constrained by observations (see Figure 13). These upper-level increments provided the 
most effective way for the 4D-Var analysis to accommodate the observed local changes in 
ozone concentration further below. It should be possible, in theory, to extract useful 
information about advection from stratospheric tracer observations in a 4D-Var analysis. In 
practice this can work well only if both the model background and the observations are 
sufficiently accurate, which is currently not the case.  
 
As a direct result of the discovery of this problem in ERA-Interim, the 4D-Var analysis in the 
operational forecast system was modified in 2007 to prevent any changes in temperature and 
wind resulting directly from the analysis of ozone data. This change was implemented across 
all applications that are run at ECMWF, including the weather forecasting system. Recent 
improvements in the data assimilation system, including implementation of variational bias 
corrections for ozone observations, have ameliorated the problem, and it is now being 
investigated whether a fully coupled 4D-Var analysis for ozone can be safely reinstated. 
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Figure 13. Impact of GOME ozone profile observations only, in a single 12h 4D-Var cycle (4 July 
1995, 0 UTC), along the latitude circle 10S for the top 20 model levels (of a 60-level model, i.e., from 
40hPa up to 0.1hPa). Ozone increments (left panel) with maximum values of about 2 mg/kg are 
concentrated in locations where the satellite track crosses 10S. They are everywhere positive in this 
vertical plane, because the model ozone concentrations are biased low. Unrealistic temperature 
increments (right panel) ranging from -6.6K to +6.3K occur at much higher levels. 
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