

CCI+ PHASE 1 – NEW ECVS

PERMAFROST

D2.5 PRODUCT VALIDATION PLAN (PVP)

VERSION 3.0

22 DECEMBER 2020

PREPARED BY

D2.5 Product Validation	CCI+ PHASE 1 – NEW ECVS	Issue 3.0
Plan (PVP)	Permafrost	22 December 2020

Document Status Sheet

Issue	Date	Details	Authors
1.0	28.02.2019	Final version WP 210	BH, MW, CP, RD, CB, SW, AB
2.0	30.11.2019	Update in situ data to be used, summary of year 1 validation results Final version WP 220	BH, MW, AB
3.0	22.12.2020	Update in situ data to be used, summary of year 1 and 2 validation results Temporal Stability Final version WP 230	BH, MW, AB

Author team

Birgit Heim, AWI

Mareike Wieczorek, AWI

Cécile Pellet, UNIFR

Reynald Delaloye, UNIFR

Chloé Barboux, UNIFR

Sebastian Westermann, GUIO

Annett Bartsch, B.GEOS

Tazio Strozzi, GAMMA

ESA Technical Officer:

Frank Martin Seifert

EUROPEAN SPACE AGENCY CONTRACT REPORT

The work described in this report was done under ESA contract. Responsibility for the contents resides in the authors or organizations that prepared it.

TABLE OF CONTENTS

E	Executive	e summary	.5
1	Intro	oduction	.6
	1.1	Purpose of the Document	.6
	1.2	Structure of the Document	.6
	1.3	Applicable Documents	.6
	1.4	Reference Documents	.7
	1.5	Bibliography	.7
	1.6	Acronyms	.7
	1.7	Glossary	.8
2	CCI	project guidelines	10
3	Rule	s for unbiased validation and validation criteria	13
	3.1	Unbiased Validation	13
	3.2	Validation Criteria	14
4	Vali	dation activities	15
	4.1 Vali	dation Data Sets	15
	4.2 Con	textual Data relevant for Permafrost-related Applications	28
	4.3 Vali	dation Strategies	32
	4.4 Vali	dation Experiment in Mountain Permafrost	38
5	VAL	LIDATION DOCUMENTS AND ENDORSEMENTS	41
6	Refe	rences	12
	6.1 Bibl	iography	42
	6.2 Acro	onyms	45

EXECUTIVE SUMMARY

Within the European Space Agency (ESA), the Climate Change Initiative (CCI) is a global monitoring program, which aims to provide long-term Earth Observation (EO)-based Essential Climate Variables (ECVs) products to serve the climate modelling and climate user communities. Permafrost has been selected as one of the ECVs which are elaborated during Phase 1 of CCI+ (2018-2021). The required parameters by the Global Climate Observing System (GCOS)/World Meteorological Organisation (WMO) for the Permafrost ECVs are a) Permafrost temperature, and b) Thickness of the active layer. An additional parameter is permafrost extent (fraction), the fraction within an area (pixel) at which the definition for the existence of permafrost (ground temperature <0 °C for two consecutive years) is fulfilled. The variables to be retrieved and validated in Permafrost_cci comprise therefore: a) permafrost temperature, b) active layer thickness and c) permafrost fraction. The generation relies on a ground thermal model (CryoGrid CCI) that is forced by EOs Land Surface Temperature (LST) and Snow Water Equivalent (SWE) with boundary conditions of EO Land-Cover.

A critical step in the acceptance of the Permafrost_cci products is to provide reliable information on the product quality. The Committee on EO Satellites-Working Group on Calibration and Validation (CEOS-WGCV) defines validation as 'The process of assessing, by independent means, the quality of the data products derived from the system outputs' (http://lpvs.gsfc.nasa.gov/). The CEOS Quality Assurance framework for Earth Observation (QA4EO) provides guidelines, e.g. on Fiducial Reference Measurements (FRM) using meteorological standards. However, commonly, for geoscientific EO applications, accuracy can only be measured in terms of an agreement, or in terms of omission and commission errors. Therefore, if validation against precise FRM is not possible, validation against suitable in-situ reference data or against other sources using expert knowledge is feasible. According to QA4EO, the validation data need to be independent from the retrieval process of the product. In the QA4EO sense, suitable validation data are characterised by protocols and community-wide management practices, and published openly. The validation data shall be a part of a collaborative user environment within an international framework.

The World Meteorological Organisation (WMO) and GCOS delegated the global ground-based monitoring of the ECV Permafrost to the Global Terrestrial Network for Permafrost (GTN-P) managed by the International Permafrost Association (IPA). GTN-P/IPA established the Thermal State of Permafrost Monitoring (TSP) for permafrost temperature monitoring and the Circumpolar Active Layer Monitoring program (CALM) for active layer thickness monitoring. Both GTN-P monitoring programs, TSP and CALM, require standards for measurements and data collection and publish data sets (Biskaborn et al. 2015, 2019). The validation in Permafrost cci is fully independent as the validation team is independent of the algorithm development team and uses the global GTN-P data and monitoring networks such as the mountain permafrost monitoring program PERMOS in Switzerland and the meteorological monitoring network ROSHYDROMET in Russia. The characterisation of errors and uncertainties is carried out with comparative statistics, using bias, absolute error, relative percentage error and Root Mean Square Error (RMSE) as well as a qualitative assessment of permafrost properties and value ranges in specific permafrost landscapes. In situ data sets on ground temperature and active layer depth are available over longer time periods and for different permafrost conditions, land-cover, topography and climate. This allows extending the validation to characteristics important for climate research, e.g. interannual variability.

1 INTRODUCTION

1.1 Purpose of the Document

This document is the Product Validation Plan (PVP) version 3 (update of [RD-10]) of the ESA project Permafrost_cci. The PVP describes and defines the reference data sets, and the validation methods and strategies used for the validation of the Permafrost_cci product following CCI and QA4EO guidelines.

The variables of the Permafrost_cci product comprise Mean annual ground temperature (MAGT) and active layer thickness (ALT). MAGT forms also the basis for the variable Permafrost extent (fraction). The generation of ground temperature and active layer thickness time-series relies on the ground thermal model CryoGrid CCI that is forced by EO-derived time series of LST and SWE with boundary conditions of EO land-cover [RD-1]. The Permafrost_cci PVP focuses on the validation of permafrost temperature and permafrost fraction in lowlands and mountain permafrost regions and active layer thickness in lowland permafrost regions in the Arctic, and mountain permafrost regions such as in the Alps. The project also undertakes validation experiments for mountain permafrost areas using rockglacier abundance and kinematics, and geophysical information or binary-based validation on permafrost abundance. Validation results according to the data and methods described in this PVP v3.0 are presented in [RD-9]

1.2 Structure of the Document

Chapter 2 provides information on how the validation follows the overall project guidelines of CCI. In chapter 3, unbiased validation, including independency of the validation from the algorithm development team and validation criteria are described. The validation activities are presented in chapter 4, giving an overview on the validation data from GTNP/TSP ground temperature and CALM active layer thickness time series in lowland permafrost areas and the Swiss mountain permafrost monitoring network PERMOS. Chapter 4 also describes the compilation of discrete and interpolated ground temperature-depth time series for validation, the collection of ambient metadata on vegetation, ground ice content and lithology, and the strategies for validation using Match-up techniques and functional validation. Information on Permafrost_cci deliverables with validation activities and validation output is given in chapter 5.

1.3 Applicable Documents

[AD-1] ESA 2017: Climate Change Initiative Extension (CCI+) Phase 1 – New Essential Climate Variables - Statement of Work. ESA-CCI-PRGM-EOPS-SW-17-0032

[AD-2] Requirements for monitoring of permafrost in polar regions - A community white paper

in response to the WMO Polar Space Task Group (PSTG), Version 4, 2014-10-09. Austrian Polar Research Institute, Vienna, Austria, 20 pp

[AD-3] ECV 9 Permafrost: assessment report on available methodological standards and guides,

1 Nov 2009, GTOS-62

[AD-4] GCOS-200, the Global Observing System for Climate: Implementation Needs (2016

GCOS Implementation Plan, 2015.

[AD-5] GEO/CEOS Quality Assurance framework for Earth Observation (QA4EO) protocols 3-4

[AD-6] ESA Climate Change Initiative. CCI Project Guidelines. EOP-DTEX-EOPS-SW-10-0002

1.4 Reference Documents

[RD-1] Bartsch, A.; Grosse, G.; Kääb, A.; Westermann, S.; Strozzi, T.; Wiesmann, A.; Duguay, C.; Seifert, F. M.; Obu, J.; Goler, R.: GlobPermafrost – How space-based earth observation supports understanding of permafrost. Proceedings of the ESA Living Planet Symposium, pp. 6.

[RD-2] Heim, B., Wieczorek, M., Pellet, C., Barboux, C., Delaloye, R., Bartsch, A., B. Kroisleitner, C., Strozzi, T. (2019): ESA CCI+ Product Validation and Intercomparison Report, v1.0

[RD-3] Bartsch, A., Matthes, H., Westermann, S., Heim, B., Pellet, C., Onacu, A., Kroisleitner, C., Strozzi, T. (2019): ESA CCI+ Permafrost User Requirements Document, v1.0

[RD-4] Bartsch, A., Westermann, Strozzi, T., Wiesmann, A., Kroisleitner, C. (2019): ESA CCI+ Permafrost Product Specifications Document, v3.0

[RD-5] IPA Action Group 'Specification of a Permafrost Reference Product in Succession of the IPA Map' (2016): Final report.

 $https://ipa.arcticportal.org/images/stories/AG_reports/IPA_AG_SucessorMap_Final_2016.pdf$

[RD-6] Nitze, I., Grosse, G., Heim, B., Wieczorek, M., Matthes, H., Bartsch, A., Strozzi, T. (2019): ESA CCI+ Climate Assessment Report (CAR), v1.0

[RD-7] Bartsch, A., Westermann, S., Heim, B., Wieczorek, M., Pellet, C., Barboux, C., Kroisleitner, C., Strozzi, T. (2019): ESA CCI+ Permafrost Data Access Requirements Document, v1.0

[RD-8] Westermann, S., Bartsch, A., Strozzi, T. (2019): ESA CCI+ Product Validation and Assessment Report, v2.0

[RD-9] Heim, B., Wieczorek, M., Pellet, C., Delaloye, R., Bartsch, A., Jakober, D., Pointner, G., Strozzi, T. (2020): ESA CCI+ Product Validation and Intercomparison Report, v2.0

[RD-10] Heim, B., Wieczorek, M., Pellet, C., Delaloye, R., Barboux, C., Westermann, S., Strozzi, T. (2019): ESA CCI+ Product Validation Plan, v2.0

[RD-11] Bartsch, A., Westermann, S., Heim, B., Wieczorek, M., Pellet, C., Barboux, C., Delaloye, R., Kroisleitner, C., Strozzi, T. (2020): ESA CCI+ Permafrost Data Access Requirements Document, v2.0

1.5 Bibliography

A complete bibliographic list that support arguments or statements made within the current document is provided in Section 6.1.

1.6 Acronyms

A list of acronyms is provided in section 6.2.

1.7 Glossary

The list below provides a selection of terms relevant for the parameters addressed in Permafrost_cci [RD-3]. A comprehensive glossary is available as part of the Product Specifications Document [RD-4].

active-layer thickness

The thickness of the layer of the ground that is subject to annual thawing and freezing in areas underlain by permafrost.

The thickness of the active layer depends on such factors as the ambient air temperature, vegetation, drainage, soil or rock type and total water con-tent, snow-cover, and degree and orientation of slope. As a rule, the active layer is thin in the High Arctic (it can be less than 15 cm) and becomes thicker farther south (1 m or more).

The thickness of the active layer can vary from year to year, primarily due to variations in the mean annual air temperature, distribution of soil moisture, and snow-cover.

The thickness of the active layer includes the uppermost part of the permafrost wherever either the salinity or clay content of the permafrost allows it to thaw and refreeze annually, even though the material remains cryotic (T < 0 °C).

Use of the term "depth to permafrost" as a synonym for the thickness of the active layer is misleading, especially in areas where the active layer is separated from the permafrost by a residual thaw layer, that is, by a thawed or non-cryotic (T> 0 °C) layer of ground.

REFERENCES: Muller, 1943; Williams, 1965; van Everdingen, 1985

continuous permafrost

Permafrost occurring everywhere beneath the exposed land surface throughout a geographic region with the exception of widely scattered sites, such as newly deposited unconsolidated sediments, where the climate has just begun to impose its influence on the thermal regime of the ground, causing the development of continuous permafrost.

For practical purposes, the existence of small taliks within continuous permafrost has to be recognised. The term, therefore, generally refers to areas where more than 90 percent of the ground surface is underlain by permafrost.

REFERENCE: Brown, 1970.

discontinuous permafrost

Permafrost occurring in some areas beneath the exposed land surface throughout a geographic region where other areas are free of permafrost.

Discontinuous permafrost occurs between the continuous permafrost zone and the southern latitudinal limit of permafrost in lowlands. Depending on the scale of mapping, several subzones can often be distinguished, based on the percentage (or fraction) of the land surface underlain by permafrost, as shown in the following table.

D2.5 Product Validation	CCI+ PHASE 1 – NEW ECVS	Issue 3.0
Plan (PVP)	Permafrost	22 December 2020

Permafrost	English usage	Russian Usage
Extensive	65-90 %	Massive Island
Intermediate	35-65 %	Island
Sporadic	10-35 %	Sporadic
Isolated Patches	0-10 %	-

SYNONYMS: (not recommended) insular permafrost; island permafrost; scattered permafrost.

REFERENCES: Brown, 1970; Kudryavtsev, 1978; Heginbottom, 1984; Heginbottom and Radburn, 1992; Brown et al., 1997.

mean annual ground temperature (MAGT)

Mean annual temperature of the ground at a particular depth.

The mean annual temperature of the ground usually increases with depth below the surface. In some northern areas, however, it is not un-common to find that the mean annual ground temperature decreases in the upper 50 to 100 metres below the ground surface as a result of past changes in surface and climate conditions. Below that depth, it will increase as a result of the geothermal heat flux from the interior of the earth. The mean annual ground temperature at the depth of zero annual amplitude is often used to assess the thermal regime of the ground at various locations. van Everdingen, 1998

permafrost

Ground (soil or rock and included ice and organic material) that remains at or below 0 °C for at least two consecutive years.

Permafrost is synonymous with perennially cryotic ground: it is defined on the basis of temperature. It is not necessarily frozen, because the freezing point of the included water may be depressed several degrees below 0 $^{\circ}$ C; moisture in the form of water or ice may or may not be present. In other words, whereas all perennially frozen ground is permafrost, not all permafrost is perennially frozen. Permafrost should not be regarded as permanent, because natural or man-made changes in the climate or terrain may cause the temperature of the ground to rise above 0 $^{\circ}$ C.

Permafrost includes perennial ground ice, but not glacier ice or icings, or bodies of surface water with temperatures perennially below 0 °C; it does include man-made perennially frozen ground around or below chilled pipelines, hockey arenas, etc.

Russian usage requires the continuous existence of temperatures below 0 $^{\circ}$ C for at least three years, and also the presence of at least some ice.

SYNONYMS: perennially frozen ground, perennially cryotic ground and (not recommended) biennially frozen ground, climafrost, cryic layer, permanently frozen ground.

REFERENCES: Muller, 1943; van Everdingen, 1976; Kudryavtsev, 1978.

2 CCI PROJECT GUIDELINES

A critical step in the acceptance of the CCI products by GCOS and Climate Science communities is providing confidence in the quality of each CCI product and its uncertainties through validation against independent data such as in situ reference measurements or alternate estimates. In general, CCI recommendations focus on validation of Level 2 products. Further discussions and developments are still needed regarding validation of Level 1, Level 3 and Level 4 products. Permafrost_cci will produce a Level 4 product simulated by a ground thermal model that is forced by EO products.

In response to the Permafrost_cci Statement of Work [AD-1] and CCI project guidelines [AD-6], we have summarised in Table 2.1 how the validation activities for each of the products will meet those requirements.

Recommendations for validation	Permafrost Temperature GCOS ECV	Active Layer Thickness GCOS ECV	Permafrost Fraction WMO OSCAR RRR
CCI [V-1] All CCI projects should use the definition of validation approved by the CEOS-WGCV	Validation for all p	roducts is compliant with the	e definition.
CCI [V-2] All CCI project Product Validation Plans (PVP) shall adhere to the described three requirements regarding independence.	All three rules for in each product.	ndependence of validation a	re adopted for
CCI [V-3] The CCI consortia shall use established, community accepted, traceable validation protocols where they exist. If such protocols do not exist, then CCI projects may adapt existing protocols if appropriate and in any event shall offer their final protocol for future community acceptance.	GTN-P TSP offers pro- tocols on in situ meas- urements, data pro- cessing and data publica- tion. Accepted statistical measures will be applied (mean, std dev., RMSE) in the validation process.	GTN-P CALM offers protocols on in situ measurements, data processing and data publication. Accepted Statistical measures will be applied (mean, std dev., RMSE) in the validation process.	Experimental validation with a range of reference data sets with all levels of quality of documentation. The binary validation uses GTN-P TSP ground temperature data.
CCI [V-5] The CCI programme should hold a dedicated session (or workshop) on common validation infrastructure during a CCI co-location meeting	This will be feasible when are available	the results of the Round Ro	bin (RR) and validation

Table 2.1: Validation in Permafrost_cci compared to the overall project guidelines [AD-5; V1-V6] and as outlined in the Statement of Work (SoW) [AD-1; RD-5, TR]

Table 2.1 cont.

Recommendations for	Permafrost	Active Layer	Permafrost Fraction
validation	Temperature	Thickness	WMO OSCAR
	GCOS ECV	GCOS ECV	RRR
CCI [V-6], SoW [RD-5], [TR-14] The PVP shall fully describe the validation process for each CCI project. An independent international review board of experts should be invited to review the PVP of each project team. Each CCI project should involve experts from the CRG throughout their validation activities. A CCI product will be deemed to be validated once all steps of the validation process documented in the PVP have been completed and documented accordingly.	GCOS ECVGCOS ECVRRRPermafrost_cci is involving the permafrost research community, the IPA and stakeholders and the CRG to give feedback on the validation procedure and published validation protocols on the Permafrost_cci product. We will use dedicated workshops and outreach on relevant Polar community and Po- lar political conferences. Independent assessment is specifically sought from the IPA Permafrost Mapping Action Group. This collaboration will be doc- umented in all versions of the Climate Assessment Report (CAR). Dr. Isa- belle Gärtner-Roer, University of Zuerich, CH, Vice president of IPA, leader of the IPA Permafrost Mapping Action Group [RD-5] and Science Officer of the World Glacier Monitoring Service (WGMS), is stating in [RD-6] that a very profound validation is being performed in Perma- frost_cci by using the in-situ data from the GTN-P repository and from PERMOS. The validation of the Permafrost_cci ground temperature product is considered as the most important as it builds the base for the other prod- ucts, such as active layer thickness and permafrost extent. Members of the IPA will be engaged in the validation and assessment activities via the Vis- iting Scientist program.		
	Peer-reviewed joint pape the outcome of the collect Science Data ESSD publ pact factor (e.g. Scopus 1	rs are planned to document etion of reference data may r ications which is highly attr 2.5, accessed November 20	the results. Specifically, result in Earth System active due to its high im- 20).
[TR-21] An independent validation shall be performed against metrics pre-defined defined by the contractor and endorsed by the user community.	The validation is fully in team is independent of th team and uses the global ing networks such as the program ROSHYDROM permafrost is addressed b land. The characterisatio tainties is carried out usin of bias, absolute error an RMSE difference.	dependent as the validation the algorithm development GTN-P data and monitor- meteorological monitoring ET in Russia. Mountain by PERMOS in Switzer- n of the errors and uncer- ing conventional evaluation d Root Mean Square Error	Permafrost abundance provided by users will be compared with CCI permafrost fraction. The regional assess- ment will be carried out specifically in in- teraction with the IPA Permafrost Mapping Action Group.
TR-28] A full validation of all permafrost ECV products produced shall be performed	A full validation for all p	ermafrost ECV products is	being performed

Table 2.1 cont.

Recommendations for	Permafrost	Active Layer	Permafrost Fraction
validation	Temperature	Thickness	WMO OSCAR RRR
	GCOS ECV	GCOS ECV	
[TR-29] Validation shall quantify the uncertainty of the permafrost ECV products as well as the quality of the product uncertainty estimates themselves.	Validation is quantify- ing the uncertainty (RMSE in °C) and rela- tive percentage error for the ensemble mean of annual average ground temperature per depth as well as the quality of the product uncertainty estimates themselves. Mountain permafrost regions will be ad- dressed separately as here the uncertainties are expected to be sig- nificantly higher.	Validation is quantifying the uncertainty (RMSE in cm) and relative percentage error for ensemble mean of active layer thickness as well as the quality of the product uncertainty estimates themselves.	Validation is quantify- ing the uncertainty of the permafrost fraction product Mountain per- mafrost regions is ad- dressed separately as here the uncertainties are expected to be sig- nificantly
[TR-30] The long-term stability of the Permafrost_cci time series of delivered epochs shall be assessed	The reference data sets on ground temperature and active layer depth in lowland and mountain permafrost areas are available over longer time periods and for different permafrost conditions, land cover, topography and climate. This allows to extent the validation to investigate the temporal stability of the Permafrost_cci products that is an important characteristic important for climate research. We apply two approaches to investigate the temporal stability: i) 'Gleichläufigkeit' (g-score) and ii) Bias Stability,		

3 RULES FOR UNBIASED VALIDATION AND VALIDATION CRITERIA

3.1 Unbiased Validation

The project team shall ensure independency for the validation implying that the assessment of the Permafrost_cci product, as well as its uncertainties, is established with independent data sets and suitable statistical approaches [AD-1, 5, 6]. The validation needs to be carried out by teams not involved in the final algorithm selection [AD-5, 6].

The validation in Permafrost_cci is fully independent as the validation team is independent of the algorithm development team and uses fully independent validation data sets from the global GCOS Global Terrestrial Network for Permafrost (GTN-P) program and further national measurement networks such as PERMOS in Switzerland and ROSHYDROMET in Russia [AD-1, RD-7]. WMO and GCOS delegated the ground-based monitoring of the ECV Permafrost to the Global Terrestrial Network for Permafrost (GTN-P) managed by the International Permafrost Association (IPA). GTN-P/IPA established the Thermal State of Monitoring (TSP) and the Circumpolar Active Layer Monitoring program (CALM, Brown et al., 2000), including standards for measurements and data collection (Clow 2014). The need to develop a suitable benchmark dataset has been stressed by users, as it does not yet exist [RD-3, 1, 2]. To validate the Permafrost_cci products, we are thus optimising the GTN-P ground data. This comprehensive dataset includes variable timeframes from hourly over annually to sporadic measurements and covers a wide range of different vegetation and permafrost types, however with incomplete data as well as metadata coverage and a considerable large percentage of misplaced coordinates which mostly relates to older boreholes and depend on region/data author [RD-7].

The validation and evaluation efforts innovatively consider high-mountain permafrost regions, using insitu observations of ground temperatures, and velocities of permafrost creep, provided by national dataservices such as GTN-P PERMOS in Switzerland. In addition, the EO derived inventory on rock glacier abundance, extent, and creep, which was developed by the ESA Data User Element (DUE) GlobPermafrost program since 2016 and which is continued in Permafrost_cci, will be used. The PERMOS monitoring data and ESA GlobPermafrost rock glacier inventory will support the validation in mountain areas, where the Permafrost_cci products contain the highest uncertainties [RD-7].

Independent assessment is also sought from the IPA Permafrost mapping action group. This collaboration is documented in all versions of the Climate Assessment Report (CAR). Dr. Isabelle Gärtner-Roer, University of Zuerich, CH, Vice president of IPA, leader of the IPA Permafrost mapping action group [RD-5] and Science Officer of the World Glacier Monitoring Service (WGMS), is stating in the CAR [RD-6] that a very profound validation is beeing performed in Permafrost_cci by using the in-situ data from the GTN-P repository and from PERMOS. Still, in-situ data are clustered in regions with active permafrost monitoring programs/projects, and that therefore some regions are underrepresented and validations are less detailed. For the validation in Permafrost_cci, IPA further provides the recommendation that the validation of the Permafrost_cci ground temperature product is the most important as it builds the base for the other products, such as active layer thickness and permafrost extent.

3.2 Validation Criteria

The required parameters by GCOS for the Permafrost ECV are [AD-1,4]

a) permafrost temperature (K), and

b) active layer thickness (m).

The main focus of Permafrost_cci lies on the ECV permafrost temperature. Since EO-based algorithms operate at the spatial scale of pixels, the spatial resolution of the output must be set in context with the spatial variability of permafrost temperatures and active layer thickness. In many permafrost regions, these can display a strong variability at spatial scales of meters, which is much finer than the footprint of EO sensors. For this reason, it makes sense to add an additional variable,

c) permafrost extent (fraction),

as mapped permafrost variable, which is the fraction within an area (pixel) at which the definition for the existence of permafrost (ground temperature < 0 °C for two consecutive years) is fulfilled.

The assessment of the products is performed with the optimised and harmonised validation data sets that are independent from the production of the Permafrost_cci product using a range of statistical approaches [RD-8]. The characterisation of errors and uncertainties is carried out using conventional evaluation measures of mean bias, absolute error difference and Root Mean Square Error (RMSE).

The validation in all versions is described in the Product Validation and Intercomparison report [RD-2, RD-9]

- Point-wise site-specific Match-up analyses per ground temperature profile per standardised depth and time stamp for annual time scales provide average bias, mean absolute error and RMSE of Permafrost_cci MAGT.
- Point-wise site-specific Match-up analyses per Active Layer Depth site per year time for annual time scales provide average bias, mean absolute error and RMSE of Permafrost_cci ALT.
- Point-wise site-specific Match-up analyses per MAGT in the first two meters and per ALT per year for annual time scales provide average bias, mean absolute error and RMSE of Perma-frost_cci PFR.
- Functional validation on circum-Arctic scale will provide the relative MAGT error per pixel by classifying the site-specific Match-ups related to CCI-Landcover. Coming from these classes to class specific relative errors per pixel, this method provides the relative error per pixel in the CCI product on a circum-Arctic scale.

4 VALIDATION ACTIVITIES

4.1 Validation Data Sets

Special emphasis in Permafrost_cci is placed on validation using data from international and national permafrost monitoring networks and in cooperation with the permafrost community [AD-1]. These available ground data sets and their characteristics and data availability (data access via data portals and program websites) are described in detail in the DARD [RD-7, RD-11]. The data sets used for the second validation are described in the PVIR version 2 [RD-9]. In the following sub-chapters we provide more details on used and also on planned data sets.

4.1.1 Time series on ECV permafrost temperature

Data sets on permafrost temperature for the validation of terrestrial permafrost are managed and made publicly available at no costs via large-scale international and regional programs where several of the team members are in close cooperation with. GTN-P together with the Arctic Portal provides a dynamic GCOS GTN-P database for upload and download of data containing CALM and TSP data in the Arctic, Antarctic, Central Asia and mountain regions [RD-7]. The national monitoring networks also sustain national databases and portals for downloading data, such as GTN-P PERMOS in Switzerland. For Canadian datasets, Nordicana D is the data repository of the Canadian Centre d'études Nordiques (CEN). Nordicana D curates long-term time series of permafrost borehole temperatures, and also hosts and publishes datasets of shallow ground and air temperature in high temporal resolution that are not in full extent part of the GTN-P database.

Region	Data on ground temperature, active layer	Contributor
Circumpolar Arctic and Antarctica	temperature data (borehole, soil,), active layer depths, several decades for some sites	CALM, dynamic GCOS GTN-P database
North American Permafrost Regions	temperature data (borehole, soil,), active layer depths, several decades for some sites	CALM, GIPL/UAF and NPS published in NSF Arctic Data Centre (Wang et al. 2018), dynamic GCOS GTN-P database, NORDICANA D
Siberian Permafrost Regions	temperature data (borehole, soil) active layer depths	dynamic GCOS GTN-P database, CALM ROSHYDROMET
European high- latitude Permafrost Regions	temperature data (borehole, soil,)	ROSHYDROMET, dynamic GCOS GTN-P database

Table 4.1: Ground data for sub-ground thermal	properties available for validati	ion in Permafrost_cci.
---	-----------------------------------	------------------------

D2.5 Product Validation	CCI+ PHASE 1 – NEW ECVS	Issue 3.0
Plan (PVP)	Permafrost	22 December 2020

Table 4.2: Overview on GCOS GTN-P ground temperature data collections, as downloaded in late 2018.

GCOS GTN-P data collections	No. of boreholes
GCOS GTN-P boreholes	1360
GCOS GTN-P boreholes containing data	485
GCOS GTN-P boreholes containing measured in situ temperature data	372
GCOS GTN-P boreholes containing measured in situ data without empty datasets	369
GCOS GTN-P boreholes containing measured in situ data without empty datasets in mountain permafrost regions	35
GCOS GTN-P boreholes not in mountain permafrost regions containing measured in situ data without empty datasets	334
GCOS GTN-P boreholes not located in the permafrost zone (continuous, discontinuous, patchy, isolated)	63
GCOS GTN-P boreholes containing measured in situ data without empty datasets within the permafrost zone (continuous, discontinuous, patchy, isolated, permafrost probability >0.1)	270

Table 4.3: Ground temperature monitoring records from ROSHYDROMET by permafrost zone (as downloaded in late 2018).

Definition from	Permafrost	Boreholes		
	C (=Continuous)	40		
	D (=Discontinuous)	25		
Permafrost Extent	I (=Isolated patches)	54		
NSIDC	S (=Sporadic)	32		
	NA	65		
	≤1	46		
	≤0.8	13		
	≤0.6	18		
Permafrost Probability	≤0.4	52		
	≤0.2	73		
	0	10		
	NA	4		

D2.5 Product Validation	CCI+ PHASE 1 – NEW ECVS	Issue 3.0
Plan (PVP)	Permafrost	22 December 2020

code	GTN-P	start	lat [DD]	long [DD]	height	depth	morphology	surface type	permafrost	
ATT_0108	CH 01	2008	46.09677	7.273075	2661	26	talus slope	talus slope coarse blocks		
ATT_0208	CH 02	2008	46.09675	7.273682	2689	21	talus slope	coarse blocks	>20 m	
ATT_0308	CH 03	2008	46.0966	7.274924	2741	15	talus slope	coarse blocks	no	
COR_0200	CH 14	2000	46.42853	9.82202	2672	63	rock glacier	coarse blocks	>62 m	
COR_0287	CH 13	1987	46.42879	9.821836	2670	62	rock glacier	coarse blocks	>60 m	
DRE_0104	CH 04	2004	46.27333	6.889508	1580	15	talus slope	coarse blocks	no	
FLU_0102	CH 05	2002	46.74887	9.943555	2394	23	talus slope	debris	ca. 5 m	
GEM_0106	CH 06	2006	46.60125	8.610422	2905	40	crest	bedrock	no	
GEN_0102	CH 07	2002	46.08371	7.302472	2888	20	moraine	debris	>20 m	
JFJ_0195	CH 31	1995	46.54611	7.973192	3590	21	crest	bedrock		
LAP_0198	CH 08	1998	46.10612	7.284349	2500	20	talus slope	coarse blocks	>20 m	
LAP_1108	CH 32	2008	46.10623	7.284724	2500	40	talus slope	coarse blocks	ca. 15 m	
LAP_1208	CH 33	2008	46.10564	7.283808	2535	35	talus slope	coarse blocks	ca. 20 m	
MAT_0205	CH 09	2005	45.98232	7.676049	3295	53	crest	bedrock	>53 m	
MBP_0196	CH 10	1996	46.4964	9.931076	2946	18	talus slope	debris	>18 m	
MBP_0296	CH 11	1996	46.49657	9.93141	2942	18	talus slope	debris	>18 m	
MUR_0199	CH 12	1999	46.50757	9.927823	2536	70	rock glacier	coarse blocks	no	
MUR_0299	CH 34	1999	46.50723	9.927338	2539	64	rock glacier	coarse blocks	ca. 18 m	
MUR_0499	CH 35	1999	46.50723	9.927703	2549	71	rock glacier	coarse blocks	>15 m	
RIT_0102	CH 15	2002	46.17469	7.849835	2690	30	rock glacier	coarse blocks	>13 m	
SBE_0190	CH 16	1990	46.49738	9.926302	2754	67	rock glacier	coarse blocks	>16 m	
SBE_0290	CH 17	1990	46.4988	9.925215	2732	60	rock glacier	coarse blocks	>25 m	
SCH_5000	CH 19	2000	46.55828	7.834426	2910	101	crest	debris	>100 m	
SCH_5198	CH 18	1998	46.55828	7.834621	2910	14	crest	debris	>13 m	
SCH_5200	CH 20	2000	46.55828	7.834426	2910	100	crest	debris	>100 m	
STO_6000	CH 21	2000	45.98679	7.824201	3410	100) crest debris		>100 m	
STO_6100	CH 22	2000	45.98655	7.824057	3410	31	crest	debris	>17 m	
TSA_0104	CH 23	2004	46.10905	7.548442	3040	20	crest	bedrock	>20 m	

Table 4.4: ground temperature monitoring in the Swiss National GTN-P PERMOS monitoring

D2.5 Product Validation	CCI+ PHASE 1 – NEW ECVS	Issue 3.0
Plan (PVP)	Permafrost	22 December 2020

ROSHYDROMET is the national Russian meteorological monitoring network providing long-term ground temperature records close to meteorological stations. Permafrost_cci is compiling these ground temperature records from GTN-P and ROSHYDROMET (RHM, see Table 4.1 to 4.3, [RD-7, RD-11]), and further national permafrost monitoring programs from which data compilations are provided in the data repositories of the US National Science Foundation (NSF) and PANGAEA and from individual members of the Permafrost research community. While the GTN-P data collection that we use in the Permafrost_cci validation were downloaded from the database end of 2018, the dynamic GTN-P data collection was not regularly updated anymore and we received further data directly from PIs of GTN-P. These new ground data are not yet available in the official GTN-P database.

While all ROSHYDROMET-datasets contain temperature measurements down to a depth of maximum 3.2 m, the GTN-P dataset consists of a variety of deep boreholes and shallow profiles with 2-dimensional temperature measurements per specific depths in the sub-ground. About 35 % of the GTN-P data come from borehole measurements that are more shallow than 5 m depth (Figure 4.1). A majority of these shallow sites originates from Russia (containing some sites, which are in the ROSHYDROMET dataset as well) and from the United States (Table 4.5).

Figure 4.1: Borehole-depth and their frequency within the GTN-P dataset, separated in shallow boreholes ≤ 5 m depth (orange bars) and deeper boreholes (blue bars), (dataset as downloaded in late 2018).

Table 4.5: Responsible Countries: shallow (≤ 5 m) boreholes in GTN-P (dataset as downloaded in late2018).

Country	Borehole<=5m
United States	30
Russia	56 (~30 of these in RHM)
Canada	5
Greenland	1
Antarctica	2

D2.5 Product Validation	CCI+ PHASE 1 – NEW ECVS	Issue 3.0
Plan (PVP)	Permafrost	22 December 2020

Table 4.6. Origin and number of datasets compiled in dataset v2 (2020). C = Continuous Permafrost,
d = Discontinuous Permafrost, S = Sporadic Permafrost, I = Isolated Permafrost; classification
according to NSIDC map of Brown et al. (2002).

	0	1	5	(,	
Source	No.	С	D	S	I	NA
RHM	190	38	22	33	49	48
*PANGAEA	96	28	26	30	1	11
NSF	66	48	17	0	0	1
GTN-P	80	45	25	1	4	5
Nordicana D	5	2	2	0	0	1
**PI Ulrich	2	2	0	0	0	0
***PI Kholodov	13	8	0	0	0	5

*PANGAEA: several sources: ESSD data collections using GTN-P, NSF, USGS **PI Ulrich M: Uni Leipzig & AWI-Teams, DE

***PI Kholodov A: (GTN-P Team V. Romanovsky, (Uni Fairbanks Alaska, US))

Ground temperature accuracy – estimated impact on ground temperature 0.1K. Ground Temperature in soil profiles or boreholes is measured either by lowering a calibrated thermistor into a borehole, or recorded using permanently installed multi-sensor cables Measurements are recorded either manually with a portable temperature system or by automated continuous data logging. The reported measurement accuracy of the temperature observations, including manual and automated logging systems, varied from ± 0.01 to ± 0.25 °C with a mean of ± 0.08 °C. Previous tests have shown the comparability of different measurement techniques to have an overall accuracy of ± 0.1 °C. Thermistors are the most commonly used sensors for borehole measurements. Their accuracy depends on (1) the materials and process used to construct the thermistor, (2) the circuitry used to measure the thermistor resistance, (3) the calibration and equation used to convert measured resistance to temperature, and (4) the aging and resulting drift of the sensor over time. Thermistors are typically calibrated to correct for variations due to (1) and (2).

About 10 to 20 % of the boreholes are visited once per year and measured using single thermistors and a data logger. In this case, the system is routinely validated in an ice-bath allowing correction for any calibration drift. The accuracy of an ice-bath is $\sim \pm 0.01$ °C. Using the offset determined during this validation to correct the data greatly increases the measurement accuracy near 0 °C, an important reference point for permafrost. The remaining systems are permanently installed and typically ice-bath calibrated at 0 °C before deployment. The calibration drift is difficult to quantify as thermistor chains are not frequently removed for re-calibration or validation. In many cases, removal of thermistor chains becomes impossible some time after deployment, e.g. because of borehole shearing.

The drift rate among bead thermistors from different manufacturers was <0.01 °C per year during a 2-year experiment at 0, 30, and 60 °C. The calibration drift of glass bead thermistors was found to be 0.01 mK per year, at an ambient temperature of 20 °C. A single drifting thermistor in a chain is detectable through its anomalous temporal trend. Such data are excluded from final data sets.

The above discussion of accuracy relates to the absolute temperature values measured, but the detection of temperature change is more accurate because errors in calibration offset have no impact,

D2.5 Product Validation	CCI+ PHASE 1 – NEW ECVS	Issue 3.0
Plan (PVP)	Permafrost	22 December 2020

sensor nonlinearities are generally small and not of concern. We therefore consider <0.1 °C a conservative average estimate of the accuracy of temperature change on an individual sensor basis.

Synthesized reference time series data

GTN-P and ROSHYDROMET time series provide climate research data sets, however no easy-to use time series depth data that are data fit for validation and RR exercises. The GCOS GTN-P data collection is described in (Biskaborn et al., 2015) and accessible via http://gtnpdatabase.org/boreholes and comprised 1360 sites with metadata entries, when accessed in late 2018 (Table 4.2). Within this active GCOS GTN-P data collection, only 485 sites contained -in addition to the metadata entries - also datasets on measurements to date, of which 113 had satellite-derived DUE Permafrost satellite products on LST and Surface Moisture and no in-situ ground temperature data. Several PIs, (e.g., China with a share of around 200 sites) had up to date not submitted GTN-P borehole data to the data portal. There still are some issues with technical data output from the data portal with empty data sets leaving 369 GTN-P sites with measured in situ data. 270 sites with ground temperature datasets are placed in lowland regions within the permafrost zone.

After screening the GTN-P data collection, we found that ~40-50 % are usable for validation in Permafrost_cci. The ground temperature time series frequently contain large data gaps, data input errors or further artefacts. Also ROSHYDROMET data are known to have artefacts like wrong temperature data that were manually put in, and problems concerning geo-location, having only two decimal digits.

The various datasets contain measured temperature at many different depths with several depths available at a high frequency (Figs 4.3, 4.4). The 'Alaska shallow' ground temperature data collection (blue bars) contains already interpolated temperature data at four depths (0.25 m, 0.5 m, 0.75 m, 1 m) for many Alaskan ground temperature soil profiles (Wang, 2018; Wang et al., 2018).

Figure 4.3: Number of boreholes/sites (x-axis) with sensors (2019 dataset) at a given depth (in meter, y-axis). Only sensors in ≤ 2 m depth are given for GTN-P, ROSHYDROMET and the synthesized Alaska ground temperature data collection (Wang, 2018; Wang et al., 2018). Measurements from temperature sensors in ≤ 2 m depth are omitted for deep boreholes (5 m and deeper).

Figure 4.4: Number of boreholes/sites (x-axis) with sensors (2019 dataset) at a given depth (in meter, y-axis). Only sensors in >2 m depth are given for GTN-P and ROSHYDROMET.

Version 2 synthesised permafrost temperature - discrete depths

Permafrost_cci Match-up data set in phase 2, Version 2 [RD-9]: standardised ground temperature per depth GTD data with annual resolution from 1997 and 2018 with a circum-Arctic geographic coverage.

D2.5 Product Validation	CCI+ PHASE 1 – NEW ECVS	Issue 3.0
Plan (PVP)	Permafrost	22 December 2020

This mean annual GTD data set from 1997 to 2018 is compiled from all the discrete depths and time stamps and national and international programs available: depths are at 0, 0.2, 0.25, 0.4, 0.5, 0.6, 0.75, 0.8, 1.0, 1.2, 1.6, 2.0, 2.4, 2.5, 3.0, 3.2, 4.0, 5.0, 10.0, 15.0, 20.0 m. The complete data set has been compiled from

• GTN-P (https://gtnp.arcticportal.org/) [global monitoring programme]

• Roshydromet RHM (http://meteo.ru/data/164-soil-temperature) [national monitoring programme, Russia]

- Nordicana-D [world data repository for Polar research, Canada] (http://www.cen.ulaval.ca/nordicanad/dpage.aspx?doi=45291SL34F28A9491014AFD; Allard et al., 2016, CEN 2013),
- PANGAEA [world data repository for environmental research, Germany] (https://doi.pangaea.de/10.1594/PANGAEA.905233; Boike et. AL. 2019; https://doi.pangaea.de/10.1594/PANGAEA.884711, GTN-P 2018, https://doi.pangaea.de/10.1594/PANGAEA.912482, Bergstedt & Bartsch 2020,
- Arctic Data Center [world data repository for Polar research, United States] (https://arcticdata.io/catalog/ #view/doi:10.18739/A2KG55; Wang et al. 2018)
- from individual members of the Permafrost research community (V. Romanovski & A. Kholodov (GTN-P, University of Alaska Fairbanks (UAF), US), M. Ulrich (University of Leipzig, DE)).

This Permafrost_cci GT Match-up data collection contains data from 300 in situ measurement locations (GTN-P n = 66, RHM n = 151, Nordicana-D n = 5, PANGAEA n = 15, Arctic Data Center n = 66, PIs = 7), with overall n = 13695 Match-up pairs in time and depth (depths ≤ 10 m, $\emptyset \sim 720$ values per depth). 142 in situ measurement locations with 3185 Match-up pairs in time and depth fall into the Match-up group of mean annual GT <1 °C.

The results of the second validation activity [RD-9] show that simulated Permafrost_cci MAGT Matchup has a better performance now in the overall Match-up collection, including the 'warm' GT range in regions where in situ MAGT reaches temperatures >1 °C, but at the cost of an optimized performance in the permafrost temperature regime <1 °C.

The Match-up results of the second depth- and time specific validation activities [RD-9] further revealed that Match-up results are now also robust for shallow depths from the top down to 40 cm [RD-10 j]. Please note that we excluded all sites that are not representative of the landscape-scale of in-situ measurements from all three Match-up data collections: these are mountain sites (n = 18) that are specifically assessed by PERMOS, small-scale landscape anomalies such as very local peatland patches or in-situ measurements in pingos (ice hills, n = 3). Please also note that in the Year 2 validation we needed to exclude all sites within the Siberian Yedoma area (shape file from Bryant et al., 2017) due to incorrect parameterisation of Permafrost_cci CryoGrid-3 of Yedoma stratigraphy (n = 7).

Figure 4.5. Northern hemisphere Permafrost_cci permafrost probability and in situ ground temperature stations (grouped by data source).

Version 2 synthesised data set - interpolated depths

As especially the Russian boreholes have only few measurements at exactly 1 or 2 m depth, we interpolated temperature values for the Permafrost_cci focus depths (Group III, Figure 4.6). To achieve this, we only used sites with at least three sensors in the lower depth down to 1.20 m. Interpolation was conducted by linear regression between two single measurement depths, resulting in separate equations for each sensor-pair and year.

Table 4.7: Example of how the compiled dataset provides yearly values. Mxx = Ratio of missing values per month/year at depth xx m. mMxx = Number of completely missing months per year at depth xx m.

1	Site	Year	Туре	M0	M0.2	M0.25	M0.4	M0.5	M0.7	75 M0.8	M1	mM0	mM0.2	mM0.2	mM0.4	mM0.5	mM0.7	7 mM0.8	mM1	0	0.2	0.25	0.4	0.5	0.75	0.8	1
2	FB_dry_	2006	Mean	1	1	1	1	1		1 1	1	12	12	12	12	12	12	12	12	NA	NA	NA	NA	NA	NA	NA	NA
3	FB_dry_	2006	Max	1	1	1	1	1		1 1	1	12	12	12	12	12	12	12	12	NA	NA	NA	NA	NA	NA	NA	NA
4	FB_dry_	2006	Min	1	1	1	1	1		1 1	1	12	12	12	12	12	12	12	12	NA	NA	NA	NA	NA	NA	NA	NA
5	FB_wet	2006	Mean	0.414	0.414	0.414	0.416	0.414	NA	NA	NA	5	5	5	5	0	NA	NA	NA	1.33	1.64	1.56	1.35	1.12	NA	NA	NA
6	FB_wet	2006	Max	0.414	0.414	0.414	0.416	0.414	NA	NA	NA	5	5	5	5	0	NA	NA	NA	18.9	12.7	12	10.4	8.07	NA	NA	NA
7	FB_wet	2006	Min	0.414	0.414	0.414	0.416	0.414	NA	NA	NA	5	5	5	5	0	NA	NA	NA	-19.1	-12	-11.5	-10.2	-8.95	NA	NA	NA
8	FB_dry_	2007	Mean	0.581	0.581	0.581	0.581	0.581		1 0.586	0.699	7	7	7	7	7	12	7	8	-3.58	-2.65	-2.53	-2.38	-2.44	NA	-2.4	-2.59
9	FB_dry_	2007	Max	0.581	0.581	0.581	0.581	0.581		1 0.586	0.699	7	7	7	7	7	12	7	8	13.6	10.4	9.31	8.01	4.87	NA	1.73	0.63
10	FB_dry_	2007	Min	0.581	0.581	0.581	0.581	0.581		1 0.586	0.699	7	7	7	7	7	12	7	8	-21.9	-17.5	-16.9	-16	-14.6	NA	-11.9	-8.83
11	FB_wet	2007	Mean	0	0	0	0	0	NA	NA	NA	0	0	0	0	0	NA	NA	NA	-5.99	-5.41	-5.62	-5.48	-5.63	NA	NA	NA
12	FB_wet	2007	Max	0	0	0	0	0	NA	NA	NA	0	0	0	0	0	NA	NA	NA	17.8	15.2	11.7	10.6	7.49	NA	NA	NA
13	FB wet	2007	Min	0	0	0	0	0	NA	NA	NA	0	0	0	0	0	NA	NA	NA	-30.2	-23.3	-22.7	-21.3	-20.3	NA	NA	NA

Figure 4.6: Discrete depths are provided small-scaled in shallower depths and larger scaled in deeper depths. In deep boreholes (Group II, >5 m depth), <1.5-2 m measurements were discarded due to their inaccuracy in large borehole set-ups. In step 2 (Group III), temperature data are interpolated for shallow and deep temperature profiles down to the maximum sensor depth. Also here, the upper 1.5-2 m temperature measurements of deep boreholes are discarded.

4.1.2 Time series on Active Layer Thickness

A comprehensive collection of active layer thickness (ALT) time series is available from the Circumpolar Active Layer Monitoring Network (CALM, Table 4.7, Brown et al., 2000, Fagan and Nelson, 2017). The data are available for download on https://www2.gwu.edu/~calm/ - some as the ALT in a specific year expressed as maximum thaw depth measured in late summer at the CALM long term monitoring grids. The single ALTgrid point measurements are either averaged per grid, or provided as single grid measurement values of thaw depths. Only few published CALM datasets have no observation data on thaw depth but contain metadata only. Round 60 % of the CALM data are also available in the Arctic Portal GTN-P data collection for download (http://gtnpdatabase.org/activelayers) (Table 4.7).

About half of the CALM datasets consist of up to 10 measurements (though not necessarily in ten consecutive years), ~15 % of the data provide more than 20 years and up to a maximum of 29 years of observations on ALT.

Version 2 synthesised Active Layer Thickness Match-up collection (1997 to 2018) (2020, [RD-9])

Permafrost_cci Match-up data set in phase 2, Version 2: standardised ALT data with annual resolution from 1997 and 2018 with a circum-Arctic geographic coverage. The collection contains data from 156 sites with 1835 Match-up pairs. Please note that we excluded all sites in Mongolia, Central Asia, and on the Tibetan Plateau.

Thaw depth accuracy – estimated impact on thaw depth 0.02 m

[Thaw depth is an essentially instantaneous value that is always less than or equal to the thickness of the fully developed active layer. Probing of the active layer is performed mechanically with a graduated rod. The typical probe is a 1 m long stainless-steel rod. The probe rod is inserted into the ground to the point of resistance. A distinctive sound and feel is apparent when ice-rich frozen ground is encountered. At sites where thaw depth is very large (e.g., 1-3 m), it is very difficult, however, to extract a probe in deeply thawed soils, or stony soils. Optimally executers should have experience with this measurement and body strength].

Active Layer Thickness accuracy- estimated impact on ALT 0.05 m

Nelson and Hinkel (2003, in "Methods for measuring active-layer thickness. In: A Handbook on Periglacial Field Methods") highlight that the term of thaw depth is distinct from the term of active layer thickness. The permafrost ECV ALT is used in reference to the maximum development of the thawed layer, reached at the end of the warm season. This is distinct from the term active layer depth referring to the thickness of the thawed layer at any time during its development in summer.

ALT is usually measured on grids of 10, 100 or 1000 m with evenly spaced nodes at 1, 10 or 100 m. Fagan and Nelson (2017) showed, that a systematic stratified unaligned design has advantages over a systematic design, but that the inaccuracy of a systematic design is only small in comparison stratified unaligned design. Active-layer thickness can vary substantially on an inter-annual basis. In general, it is greater in years with warmer summers and thinner in those with cooler temperatures (Brown et al., 2000).

For an estimation of the ECV ALT it is relevant to measure active layer depths in the grid at the end of the thawing season (https://www2.gwu.edu/~calm/data/north.html). For some measurements in the

D2.5 Product Validation	CCI+ PHASE 1 – NEW ECVS	Issue 3.0
Plan (PVP)	Permafrost	22 December 2020

CALM data collection, metadata information is provided if a value was measured earlier during a year. These measurements are discarded from the validation data set on ALT.

Please also note that we excluded in the 2020 validation also all sites within the Siberian Yedoma area (Bryant et al., 2017) due to incorrect parameterisation of Permafrost_cci CryoGrid of Yedoma stratigraphy.

Table 4.8: Regional overview of active layer measurements from CALM website and GTN-P Arctic Portal respectively, as downloaded in late 2018.

CALM Website							
Country	No. Of sites with Data						
Antarctica	27	15	Antar				
South America	14	5					
Canada	31	31	Canac				
China	11	7	China				
Denmark (Greenland)	3	3	Green				
Kazakstan	3	3	Kazak				
Mongolia	47	47	Mong				
Norway/Svalbard	3	3	Norw				
Poland/Svalbard	4	4					
Russia	68	68	Russi				
			Svalb				
Sweden/Svalbard	2	2	Swed				
Switzerland	2	2	Switz				
United States	67	66	Unite				
SUM	283	256					

GTN-P Arctic Portal			
Country	No. Of sites	with Data	
Antarctica	12	1	
Canada	31	9	
China	11	0	
Greenland	3	2	
Kazakhstan	3	0	
Mongolia	46	0	
Norway	1	0	
Russia	68	65	
Svalbard	7	1	
Sweden	1	0	
Switzerland	2	0	
United States	67	26	
	252	104	

6 of these not on CALM-Website

Figure 4.7. Northern hemisphere Permafrost_cci permafrost probability and in situ sites of active layer depth ALT (GTN-P CALM programme)

4.2 Contextual Data relevant for Permafrost-related Applications

Vincent et al. (2017) formulated the '3-layer permafrost Earth system approach' integrating geosystem and resilience frameworks. Their definition goes beyond the classical 2-layer permafrost system with the permafrost overlain by the seasonally dynamic active layer. The geocryology or phase composition of soil/rock, ice, air, unfrozen water, organic content, and cryotexture, and cryostructure define all thermal sub-ground properties of the two layers in the geosystem. Vincent et al. (2017) formulated how in natural environments the 3rd layer, the buffer layer, consists of the above-ground vegetation, from polar desert soil crusts to tundra grasses, forbs, and lichens to shrubs and trees farther to the south (Figure 4.8). In engineered environments, the buffer layer includes the infrastructure. In both cases, this surface buffer layer strongly affects the transfer of heat between the atmosphere and the active layer. This effect is compounded by the accumulation of snow in the buffer layer, which is determined not only by the regional precipitation regime, but also by the snow-trapping efficiency of above-ground vegetation or engineered structures. Permafrost lands vary greatly in horizontal space, and the properties of each of the three layers and their interfaces can change over short length scales. In discontinuous permafrost, units are interspersed with non-permafrost units including lakes, bogs, rivers, and unfrozen ground.

Figure 4.8 (Fig. 4 in Vincent et al., 2017): The three-layer model applied to natural landscapes. As illustrated here, the buffer layer varies greatly in its geometry (thickness), albedo, and other physical properties, both within and between landscapes, and as a function of vegetation type and season. The arrows indicate exchanges of heat, water, and gases and the white bands indicate interface zones. Upper left: Ward Hunt Island, Nunavut; upper right: Daring Lake, Northwest Territories; lower left: BGR valley, Nunavik; lower right: Umiujaq region, Nunavik.

Therefore, in Permafrost_cci, we will assemble

I) a data collection on 'ground temperature' and 'thaw depth' in time (with annual time stamp) and in space (geographic coordinates with decimal degree with minimum of 4 digits) and ground depth (single depth or depth interval)

II) a data collection on metadata (Figure 4.9)

- a) on the 2-layer system permafrost and active layer (stratigraphy, organic layer (abundance, thickness), ground ice content, dominating lithology and texture)
- b) on the buffer layer (vegetation composition, height of vegetation, infrastructure, surface habitus (boulders, gravel, ...)).

We will use all published information available, the detailed GTN-P CALM metadata and contextual data if available, and will also retrieve this information from the PIs directly. To avoid having to discard older measurements, where meta-information is not available, we will provide best guesses based on surrounding measurements, field photos, remote sensing data, and expert knowledge. A quality index for these values will then help users working with the dataset, to assess the value of the data (Tables 4.8-4.11).

Figure 4.9: Permafrost_cci metadata collection planned on stratigraphy, organic layer, ground ice content, dominating lithology and texture and on the buffer layer (vegetation composition, infrastructure, ...) will be provided at the best quality available and including a quality index (cf. Tables 4.8 - 4.11).

D2.5 Product Validation	CCI+ PHASE 1 – NEW ECVS	Issue 3.0
Plan (PVP)	Permafrost	22 December 2020

Table 4.9: table on 'thickness of the insulating organic layer' could look like this, although final decisions on the quality indexes for the different sources are still pending

Organic-Layer (O-L)	O-L detail	O-L origin	O-L quality index
thickness: 12 cm; type: moss layer	quantitative, qualitative	PI, CALM metadata, publication	1 = best quality
'thick moss layer' >5 cm thickness or 'thin moss layer' <5 cm thickness or no moss layer	qualitative	Indirect from published Site Pictures, CALM landscape description	2
'thick moss layer' >5 cm thickness or 'thin moss layer' < 5cm thickness or no moss layer	qualitative	Information on comparable locations close by (e.g. same landscape type)	3
'thick moss layer' >5 cm thickness or 'thin moss layer' <5 cm thickness or no moss layer	qualitative	high spatial resolution satellite data, other sources	4
'thick moss layer' >5 cm thickness or 'thin moss layer' <5 cm thickness or no moss layer	qualitative	best guess with few information available	5 = worst quality

Table 4.10: A table on vegetation cover could look like this, although final decisions on the quality indexes for the different sources are still pending

Vegetation-Cover (V-C)	V-C detail	V-C origin	V-C quality index
Forest tundra (tree height 5 m, 25 % coverage) with dwarf-shrubs (15 %), moss layer layer (75 %)	quantitative, qualitative	PI, CALM metadata, publication	1 = best quality
'Forest tundra' or 'Polygonal tundra' or 'Tundra' or []	qualitative Indirect retrieval of vegetation cover (in classes?), from published Site Pictures, CALM landscape description		2
'Forest tundra' or 'Polygonal tundra' or 'Tundra' or []	qualitative	Information on comparable locations close by (e.g. same landscape type)	3
'Forest tundra' or 'Polygonal tundra' or 'Tundra' or []	qualitative	high spatial resolution satellite data, other sources	4
'Forest tundra' or 'Polygonal tundra' or 'Tundra' or []	qualitative	best guess with few information available	5 = worst quality

Table 4.11: A table on ice content could look like this, although final decisions on the quality indexes for the different sources are still pending

Ice Content (I-C)	I-C detail	I-C origin	I-C quality index
`40-60 %`	quantitative	PI, CALM metadata, publication	1 = best quality
'High Ice content' or 'Medium Ice content' or 'Low Ice content'	Indirect retrieval of ice content (in classes?), published Site Pictures, CALM landscape description		2
'High Ice content' or 'Medium Ice content' or 'Low Ice content'	qualitative Information on comparable locations close by (e.g. same landscape type)		3
'High Ice content' or 'Medium Ice content' or 'Low Ice content'	qualitative	high spatial resolution satellite data, other sources	4
'High Ice content' or 'Medium Ice content' or 'Low Ice content'	qualitative	best guess with few information available	5 = worst quality

D2.5 Product Validation	CCI+ PHASE 1 – NEW ECVS	Issue 3.0
Plan (PVP)	Permafrost	22 December 2020

maexes for the different sources are still penaing			
Lithology and Texture (L-T)	L-T detail	L-T origin	L-T quality index
'60 %' silt [0 – 1 m] '40 %' sand [0 – 1 m] [1 – 2 m]	quantitative	PI, publication	1 = best quality
'silt-dominance' or 'sand-dominance' or 'clay-dominance'	qualitative	Indirect retrieval of dominance of lithography sand, silt, clay content published Site Pictures, CALM landscape description	2
'silt-dominance' or 'sand-dominance' or 'clay-dominance'	qualitative	Information on comparable locations close by (e.g. same landscape type)	3
'silt-dominance' or 'sand-dominance' or 'clay-dominance'	qualitative	?	4

Table 4.12: A table on lithostratigraphy could look like this, although final decisions on the quality indexes for the different sources are still pending

4.3 Validation Strategies

'silt-dominance' or

'clay-dominance'

'sand-dominance' or

4.3.1 Point-wise validation of the ECVs permafrost temperature and active layer thickness

qualitative

The Match-up process can be compared to the meteorological validation using FRM in the QA4EO sense that a Match-up represents a measurement of a traceable variable in space and time that can adequately be matched by another measurement of the same variable if it is sufficiently close in space and time. The Match-up is carried out pairwise time- and depth-specific. A direct comparison between the 'Match-ups' at the individual sites still suffers from the scale incompatibility between the local representativeness of the reference measurement and the km-scale of the EO-derived Permafrost_cci product.

best guess with few

information available

5 = worst

quality

Validation of the MAGT time series (Match-up v1 on CRDPv0, 2019): In year 1, we conducted pointwise site-specific Match-up analyses per borehole or soil temperature profile-derived MAGT per standardised depth and per year versus Permafrost_cci ensemble derived MAGT per depth and year, providing average bias, absolute error, standard deviation and RMSE and more statistical metrics [RD-2].

We focused on Match-up datasets down to 10 m depth for i) gaining the widest value range between minimum and maximum ground temperature that towards deeper depths gets reduced until zero variability at the depth of zero annual amplitude ZAA, ii) enabling RR for climate and land surface models that do not contain adequate parameterisation of the deeper sub-ground and where the simulation skills deteriorate towards deeper depths iii) enabling RR for the EO microwave-derived product that

contains signal information on the shallow subsurface. The results of the first depth- and time specific validation activities [RD-2] revealed that Match-ups are more robust for depths of 40 cm and deeper. For mountain permafrost, the surface temperature at 0 m was valid for assessing the dynamics in time, but deeper ground temperature time series did not correspond to the temporal dynamics [RD-2]. We therefore excluded the shallow depths down to 40 cm from the validation data set for lowland permafrost landscapes but kept the surface and the shallow depth-time series for assessing mountain permafrost.

Validation of the MAGT time series (Match-up v2 on CRDPv1, 2020): In year 2, we conducted pointwise site-specific Match-up analyses per borehole or soil temperature profile-derived MAGT per standardised depth and per year versus Permafrost_cci ensemble derived MAGT per depth and year, providing average bias, absolute error, standard deviation and RMSE and more statistical metrics [RD-9], focussing on data up to 10 m depth. We furthermore used ground temperature data gained by interpolation between two sensors to especially include RHM datasets in the validation of the Permafrost_cci product in polar stereographic projection, provided in depths not covered by these in situ data. The second depth- and time specific validation activities [RD-9] revealed that Match-ups at shallow depth are now more robust and can be included in the validation activity. We excluded all MAGT Match-up data of the sites that are not representative of the landscape-scale of in-situ measurements from all three Match-up data collections: these are mountain sites (n = 18) that are specifically assessed by PERMOS, small-scale landscape anomalies such as very local peatland patches or in-situ measurements in pingos (ice hills, n = 3). Please also note that we excluded all sites within the Siberian Yedoma area (shape file from Bryant et al., 2017) due to incorrect parameterisation of Permafrost_cci CryoGrid-3 of Yedoma stratigraphy (n = 7).

Validation of the ground temperature time series in year 3: In year 3, we plan to conduct point-wise specific Match-up analyses per borehole or soil temperature profile-derived MAGT per standardised depth and per year versus Permafrost_cci ensemble derived MAGT per depth and year, providing average bias, absolute error, standard deviation and RMSE and more statistical metrics [RD-9], focussing on data up to 20 m depth

Validation of the ALT time series (Match-up v1 on CRDPv0, 2019 and v2 on CRDPv1, 2020): We conducted point-wise site-specific Match-up analyses per CALM measurement grid with ALT time series – the mean grid value of maximum thaw depth per year (measured grid-wise on 10 m x 10 m, 100 m x 100 m or 1000 m x 1000 m fields). These CALM ALT grid data per year were matched with Permafrost_cci ensemble derived ALT per year providing average bias, standard deviation and RMSE [RD-2]. We needed to exclude in the year 2 validation all ALT measurement sites within the Siberian Yedoma area (Bryant et al., 2017) due to incorrect parameterisation of Permafrost_cci CryoGrid of Yedoma stratigraphy [RD-9].

Validation of the ALT time series in year 3: In year 3, we plan to conduct point-wise specific Match-up analyses of yearly Active Layer Thickness. In this next validation in year 3 the ALT measurement sites within the Siberian Yedoma area can be used for the Match-up analyses.

4.3.2 Binary point -wise validation of Permafrost abundance

Validation using binary point-wise observation of permafrost abundance

Binary point-wise observation of permafrost abundance from ground temperature and thaw depth can be compared with the Permafrost_cci product of permafrost fraction.

Validation of the Permafrost abundance time series (Match-up v1 on CRDPv0, 2019 and v2 on CRDPv1, 2020): In [RD-2] we conducted a first binary point-wise and time-wise Match-up assessment of the Permafrost cci Permafrost Extent CRDPv0. We allowed a small variability around Permafrost cci MAGT CRDPv0 0 °C not setting "permafrost" strictly as in situ MAGT < 0 °C in two consecutive years. We compared simulated Permafrost_cci MAGT CRDPv0 to in situ MAGT at all depths down to 240 cm, analysing the amount of simulated and measured temperatures being both ≤ 0.5 °C ("permafrost") or both >0.5 ("no permafrost"). We analysed the bulk data set and additionally the "warm" (MAGT >0 °C) and the "cold" (MAGT <1 °C) temperature groups. As Permafrost_cci MAGT CRDPv0 was simulated 'too cold' for the 'warm temperature range of MAGT >0 °C, the Match-up of Permafrost cci Permafrost extent CRDPv0 showed the lowest accuracy performance of all Permafrost cci CRDPv0 products. Also with shallow depths <40 cm excluded, data characteristics of in situ MAGT data set do not match with any of the five Permafrost_cci MAGT CRDPv0 ensembles. The binary Match-up was therefore characterised by a relatively high uncertainty of around 65 % (within the 5 to 95 % Quantile). In [RD-9] we also conducted the binary point-wise and time-wise Match-up assessment of the Permafrost_cci Permafrost Extent CRDPv1. We allowed a small variability around Permafrost_cci MAGT CRDPv1 0 °C not setting "permafrost" strictly as in situ MAGT <0 °C in 2 consecutive years. We compared simulated Permafrost_cci MAGT CRDPv1 to in situ MAGT at all depths down to 240 cm, analysing the amount of simulated and measured temperatures being both ≤ 0.5 °C ("permafrost") or both >0.5 ("no permafrost"). We analysed the bulk data set and additionally the "warm" (MAGT >0 °C) and the "cold" (MAGT <1 °C) temperature groups. Additionally, we included active layer thickness and active layer depth measurements into our PFR analyses, using all sites/years with an active layer thickness and active layer depth measurements as PFR=100%

Validation using ALT time series and ALT measurements in year 3:

In year 3, we plan to conduct point-wise specific Match-up analyses of yearly Permafrost Extent. In this next validation in year 3 the ground temperature and active layer thickness and active layer depth measurement sites within the Siberian Yedoma area can be used for the Match-up analyses.

4.3.4 Validation of temporal stability of Permafrost_cci time series

According to the validation recommendations (Table 2.1), the long-term stability of the Permafrost_cci time series of delivered epochs shall be assessed [TR-30].

In general, ground temperatures in shallow depths are frequently characterised by a wide spread between minimum and maximum annual ground temperature and high inter-annual variability (Figure 4.10, example from PERMOS). Also, CALM ALT time series show high inter-annual variability depending on the annual air temperature and precipitation regimes.

Permafrost lands vary greatly in horizontal space and the properties of each of the three conceptual layers (permafrost, active layer and buffer layer) and their interfaces can also change over short length scales (Vincent et al. 2017). Ground temperature distribution may be heterogeneous due to e.g. variability in ground ice content, lithology and moisture conditions, like in wet versus drier regimes. Some PIs in the permafrost research community specifically set up permafrost measurement fields on heterogeneous terrains spanning dry to wet regimes to optimally investigate functional relationships between the three layers (permafrost, active layer, buffer layer) and the atmosphere. Examples are, for example GIPL permafrost measurement fields on the North Slope, Alaska such as Franklin Bluff, or in Russia the Nadym and Vaskiny Dachy permafrost measurement fields and the AWI permafrost measurement fields in Svalbard (Boike et al. 2018) and in the Lena River Delta (Boike et al. 2019). A first analysis of the GIPL Franklin Bluff ground temperature records shows the difference in shallow ground temperatures between a wet and a dry site that are located close together and their high inter-annual variability (Figure 4.11).

Figure 4.10: High inter-annual variability of MAGT, min annual GT and max annual GT in mountain permafrost

Figure 4.11: High inter-annual and spatial variability of MAGT at Franklin Bluff (data from Wang 2018)

We follow two approaches to assess the stability of the Permafrost_cci product time series throughout time.

'Gleichläufigkeit' (g-score) approach

First, we will check in how many cases, Permafrost_cci MAGT and Permafrost_cci ALT follow the same year-to-year trend like the in-situ measurements. This means, if within both, the Permafrost_cci product time series and the in-situ measurement time series the slopes decrease/increase simultaneously in the same direction (positive or negative), the value of 1 is given. If the two slopes develop in different directions, the value 0 is given, and if one slope changes direction while the other slope is constant, the value of 0.5 is given. The mean value of these year-to-year trend-values then gives the fraction of synchronized curve development. This approach, in dendrochronology called Gleichläufigkeit or g-score, gives an impression on how well the Permafrost_cci variable follows the actual temperature and ALT trend, respectively. This method does not provide any information on the bias.

Bias Stability approach

Additionally, we will check for the magnitude of the interannual variability of the bias. We assume that the bias should not change in magnitude from one year to the next. We thus calculate temporal stability

$$ts = \frac{bias_j - bias_i}{year_i - year_i}$$

with i being the current year/bias and j being the previous year/bias. The difference is only calculated on a year-to-year basis and rejected, for every missing year at a specific site/depth.

D2.5 Product Validation	CCI+ PHASE 1 – NEW ECVS	Issue 3.0
Plan (PVP)	Permafrost	22 December 2020

4.4.4 Spatial Representativeness

Permafrost_cci MAGT shows a negative bias and/ or a high standard deviation (i.e. a high yearly variability of the bias) frequently at sites close to surface waters. Other sites have only a small bias in MAGT, but with a high standard deviation (e.g. site Sangary AMSG, Figure 4.12)

Figure 4.12 Left Panel: Yellow point=Locality of Sangary AMSG (Dataset 24652 from RHM, Long 127.46, Lat 63.96), Map source: Google Earth Pro ©, Version 7.3.2. Right panel: MAGT of site Sangary AMSG for depths of 40, 80 and 160 cm. Solid lines= in situ mean MAGT [°C], broken lines= Permafrost_cci mean MAGT [°C] of CRDPv0. The deviation of Permafrost_cci and in situ MAGT data varies both, between depths and between years (mean bias -0.27 °C, SD of bias 1.86 °C).

In multi-site permafrost networks, nearby sites can show very different magnitudes of bias (Figure 4.13). The reason for such spatial small-scale variations can be found in small scale differences of topography, soil or vegetation cover in comparison to the 1 km² grid cell size (Figure 4.14).

Figure 4.14 Overview of sites with an in situ MAGT < 1 °C and depths ≥ 40 cm. Map background gives Permafrost_cci MAGT in 1 m depth for the year 2017 (from DRDP v0). Coloured dots depict the range of bias (Permafrost_cci MAGT minus in situ data) over all years and all depths. Right: satellite imagery from Google Earth Pro ©. Version 7.3.2.

4.4 Validation Experiment in Mountain Permafrost

The validation and evaluation efforts are also carried out in high-mountain permafrost regions. Binary point and grid-wise regional comparison to ground temperature measurements, geophysical transects and regional inventories of rock glaciers including the kinematic state (or active rate) are performed. In addition to the PERMOS borehole temperature data, the EO derived inventory on rock glacier abundance, extent, and creep, which was developed by the ESA DUE GlobPermafrost program since 2016 and continues in Permafrost_cci is used to validate the binary permafrost extent product in mountain areas. The GTN-P PERMOS monitoring data and the EO derived rock glacier inventory supports the validation of Permafrost_cci products in mountain areas, where the Permafrost_cci products contain the highest uncertainties.

4.4.1 PERMOS Mountain Permafrost Network

Amongst the 35 GTN-P mountain permafrost boreholes, 27 belong to the Swiss permafrost monitoring network PERMOS. The PERMOS boreholes cover the whole range of typical mountain permafrost landforms (i.e. talus slope, rock glacier, rock walls, mountain crest and summit) (Table 4.4) and are spatially distributed over the different geographical region within the Swiss Alps (Figure 4.15).

Figure 4.15: Overview on PERMOS borehole and geophysical and meteorological measurement sites.

The longest record totalises more than 30 years of observation, whereas the majority of the PERMOS boreholes has between 10 and 23 years of observation. In addition to borehole temperatures, the PERMOS network also collects long-term observations of ground surface temperature, permafrost creep velocities, permafrost resistivities and meteorological data in the Swiss Alps.

4.4.2 Binary point- and grid-wise Validation of Permafrost Abundance

The binary validation approach using active rock glacier abundance (Figure 4.16) is solely based on remote sensing products (e.g. optical images or InSAR) and thus well suited for regional validation in any remote mountain area. However, such inventories as is are not usable for temporal validation since active rock glaciers will be on the same place for decades. To improve this point, it is suggested to develop regional indices of kinematic evolution based on velocity changes observed at large scale using EO InSAR data. The rock glacier creep rate (kinematics) being dependent on the permafrost temperatures, this approach will enable region-wide temporal model validation in mountain permafrost (Figure. 4.17).

Figure 4.16: Example of typical rock glacier (left panel) and rock glacier inventory in the Swiss Alps, which includes the state of activity of each landform (right panel).

D2.5 Product Validation	CCI+ PHASE 1 – NEW ECVS	Issue 3.0
Plan (PVP)	Permafrost	22 December 2020

The regional assessment is carried out specifically in regions with existing ground data or EO data availability as well as regional expertise by PERMOS and the Permafrost_cci Mountain Permafrost team. This work is undertaken in close collaboration with the ongoing **IPA-funded Action Group on Rock Glacier Inventories and Kinematics** (2018-2020), which aims at i) defining widely accepted standard guidelines for inventorying rock glaciers in mountain permafrost regions, including information on the activity rate and ii) promoting the use of satellite SAR interferometry, e.g. Sentinel-1 data, for monitoring the rock glacier activity at a regional scale. The latter objective also entails to set up standard guidelines for selecting an appropriate number of rock glaciers per region that can be used to assess temporal trends with decadal to intra-decadal time steps.

Figure 4.17: Schematic representation of the proposed regional kinematic indices computation.

5 VALIDATION DOCUMENTS AND ENDORSEMENTS

Table 5.1 provides an overview on deliverables with information on product validation and the results of the algorithm selection. Apart from those that are already part of the project deliverables, we also seek for documenting the results in additional publications, such as a peer-reviewed paper in a scientific journal. Whereas the former will be prepared by the Permafrost_cci consortium, the latter will be prepared together with the interested community and PI data providers of reference data sets. We will seek for an open review process of all results achieved by informing the respective group of scientists and stakeholders such as the IPA, specifically involvement of the **IPA Permafrost Mapping Action Group**, **IPA Rock Glacier Inventory and Kinematics Action Group**, the RR participants, and the CRG, when these documents are accessible. We will also seek outreach via the international community relevant mailings lists Permalist and Cryolist to participate in the validation activities. If the results of the validation and RR activities of the individual Permafrost_cci products can be presented in form of publications, the largest possible endorsement is achieved.

Deliv. No.	Name	Date	Comment
D1.3	DARD	January 2019 December 2020	describes data accessibility
D2.1	PVASR	February 2019 November 2019 May 2021	summarises algorithm selection
D2.3	E3UB	February 2019 November 2019 March 2021	defines sources of errors and uncertainties
D2.5	PVP	February 2019 November 2019 December2020	outlines planned validation strategies
D4.1	PVIR	September 2019 September 2020 May 2021	provides a summary on quality and uncertainty of ECV products
D4.2	CRDP	May 2020 February 2021	describes the Climate Research Data Package, a fully uncertainty characterised, long time series of Permafrost_cci products in compliance with CCI Data standards. The validation reference data will be part of the CRDP.
D4.3	PUG	August 2019 August 2020 February 2021	describes delivered Permafrost_cci products in the CRDP
D5.2	CAR	October 2019 October 2020 May 2021	describes the Climate Science study cases using the CCI products and the user's feedback. Validation, specifically the validation and upscaling experiments in lowland permafrost and mountain permafrost, will be part of the Climate Science studies.

Table 5.1: Documents related to validation of the Permafrost_cci product.

6 **REFERENCES**

6.1 Bibliography

- Allard, M., Sarrazin, D., L'Hérault, E., 2016, Borehole and near-surface ground temperatures in northeastern Canada, v. 1.4 (1988-2016). Nordicana D8, doi: 10.5885/45291SL-34F28A9491014AFD.
- Bergstedt, Helena; Bartsch, Annett, 2020, Near surface ground temperature, soil moisture and snow depth measurements in the Kaldoaivi Wilderness Area, for 2016-2018. PANGAEA, https://doi.org/10.1594/PANGAEA.912482.
- Biskaborn, B.K.; Smith, S.L.; Noetzli, J.; Matthes, H.; Vieira, G.; Streletskiy, D.A.; Schoeneich, P.;
 Romanovsky, V.E.; Lewkowicz, A.G.; Abramov, A.; Allard, M.; Boike, J.; Cable, W.L.; Christiansen, H.H.; Delaloye, R.; Diekmann, B.; Drozdov, D.; Etzelmüller, B.; Grosse, G.; Guglielmin, M.; Ingeman-Nielsen, T.; Isaksen, K.; Ishikawa, M.; Johansson, M.; Johannsson, H.; Joo, A.;
 Kaverin, D.; Kholodov, A.; Konstantinov, P.; Kröger, T.; Lambiel, C.; Lanckman, J.-P.; Luo, D.;
 Malkova, G.; Meiklejohn, I.; Moskalenko, N.; Oliva, M.; Phillips, M.; Ramos, M.; Sannel, A.B.
 K.; Sergeev, D.; Seybold, C.; Skryabin, P.; Vasiliev, A.; Wu, Q.; Yoshikawa, K.; Zheleznyak, M.,
 Lantuit, H., 2019, Permafrost is warming at a global scale. Nature Communications, 10, 264, https://doi.org/10.1038/s41467-018-08240-4.
- Biskaborn, B.K., Lanckman, J.-P., Lantuit, H., Elger, K., Streletskiy, D.A., Cable, W.L., Romanovsky, V.E., 2015, The new database of the Global Terrestrial Network for Permafrost (GTN-P). Earth Syst. Sci. Data, 7, 245–259, https://doi.org/10.5194/essd-7-245-2015.
- Boike, J., Nitzbon, J., Anders, K., Grigoriev, M., Bolshiyanov, D., Langer, M., Lange, S., Bornemann, N., Morgenstern, A., Schreiber, P., Wille, C., Chadburn, S., Gouttevin, I., Burke, E., Kutzbach, L., 2019, A 16-year record (2002–2017) of permafrost, active-layer, and meteorological conditions at the Samoylov Island Arctic permafrost research site, Lena River delta, northern Siberia: an opportunity to validate remote-sensing data and land surface, snow, and permafrost models, Earth System Science Data, 11, 261-299, https://doi.org/10.5194/essd-11-261-2019.
- Boike, J., Juszak, I., Lange, S., Chadburn, S., Burke, E., Overduin, P.P., Roth, K., Ippisch, O., Bornemann, N., Stern, L., Gouttevin, I., Hauber, E., Westermann, S., 2018, A 20-year record (1998–2017) of permafrost, active layer and meteorological conditions at a high Arctic permafrost research site (Bayelva, Spitsbergen), Earth System Science Data, 10, 355-390, HTTPS://DOI.ORG/10.5194/ESSD-10-355-2018.-
- Brown, J., Hinkel, K.M., Nelson, F.E., 2000, The Circumpolar Active Layer Monitoring (Calm) Program: Research Designs and Initial Results. Polar Geography 24, 166–258. HTTPS://DOI.ORG/10.1080/10889370009377698.
- Brown, J., Ferrians, O.J., Heginbottom, J.A., Melnikov, E.S., 1997, Circum-arctic map of permafrost and ground ice conditions. International Permafrost Association, US Geological Survey.
- Brown, J., Ferrians, O., Heginbottom, J. A. and Melnikov, E., 2002. Circum-Arctic Map of Permafrost and Ground-Ice Conditions, Version 2. [Indicate subset used: permaice.shp]. Boulder, Colorado

USA. NSIDC: National Snow and Ice Data Center, doi: https://doi.org/10.7265/skbg-kf16, [Date Accessed: 11.10.2018].

- Brown J., 1970, Permafrost in Canada: Its influence on northern development. University of Toronto Press, Toronto 234 p.
- Bryant, R.N., Robinson, J.E., Taylor, M.D., Harper, William, DeMasi, Amy, Kyker-Snowman, Emily, Veremeeva, Alexandra, Schirrmeister, Lutz, Harden, Jennifer and Grosse, Guido, 2017, Digital Database and Maps of Quaternary Deposits in East and Central Siberia: U.S. Geological Survey data release, https://doi.org/10.5066/F7VT1Q89.
- Center for Northern Studies in Canada, CEN, 2013, Environmental data from Northern Ellesmere Island in Nunavut, Canada, v. 1.0 (2002-2012). Nordicana D1, doi.org/10.5885/44985SL-8F203FD3ACCD4138.
- Clow, G.D. 2014, Temperature data acquired from the DOI/GTN-P Deep Borehole Array on the Arctic Slope of Alaska, 1973–2013, Earth System Science Data, 6, 201–218, https://doi.org/10.5194/essd-6-201-2014.
- Fagan, J.D. and Nelson, F.E., 2017, Spatial Sampling Design in the Circumpolar Active Layer Monitoring Programme. Permafrost and Periglacial Processes 28, 42–51. https://doi.org/10.1002/ppp.1904.
- GTN-P, 2018, GTN-P global mean annual ground temperature data for permafrost near the depth of zero annual amplitude (2007-2016). PANGAEA, https://doi.org/10.1594/PANGAEA.884711
- Heginbottom, J.A., 1984, The mapping of permafrost. Canadian Geographer, 28, 1, 78-83.
- Heginbottom, J.A., and Radburn, L.K., 1992, Permafrost and Ground Ice Conditions of Northwestern Canada (Mackenzie Region). National Snow and Ice Data Center, Boulder, CO, USA.
- Muller, S.W, 1943, Permafrost or permanently frozen ground and related engineering problems. U.S.Engineers Office, Strategic Engineering Study, Special Report No. 62. 136p. (Reprinted in 1947, J. W. Edwards, Ann Arbor, Michigan, 231p.).
- Nelson, F.E. and Hinkel, K.M., 2003, Methods for measuring active-layer thickness. in: O. Humlum and N. Matsuoka, eds., a Handbook on Periglacial Field Methods. Longyearbyen, Norway: University of the North in Svalbard.
- van Everdingen, R.O., 1976, Geocryological terminology, Canadian Journal of Earth Sciences, 13:862-867, https://doi.org/10.1139/e76-089.
- van Everdingen R.O., 1985, Unfrozen permafrost and other taliks. Workshop on Permafrost Geophysics, Golden, Colorado, October 1984 (J. Brown, M.C. Metz, P. Hoekstra, Editors). U.S. Army, C.R.R.E.L., Hanover, New Hampshire, Special Report 85-5, pp.101-105.
- van Everdingen, Robert, ed. 1998 revised May 2005. Multi-language glossary of permafrost and related ground-ice terms. Boulder, CO: National Snow and Ice Data Center/World Data Center for Glaciology, https://doi.org/10.4224/20386561, (http://nsidc.org/fgdc/glossary/; accessed 23.09.2009).

D2.5 Product Validation	CCI+ PHASE 1 – NEW ECVS	Issue 3.0
Plan (PVP)	Permafrost	22 December 2020

- Vincent, W., Lemay, F., and Allard, M. 2017, Arctic Permafrost Landscapes in Transition: Towards an Integrated Earth System Approach. Arctic Science 3(2): 39–64. https://doi.org/10.1139/as-2016-0027.
- Wang, K., 2018, A Synthesis Dataset of Near-Surface Permafrost Conditions for Alaska, 1997-2016. https://doi.org/10.18739/a2kg55.
- Wang, K., Jafarov, E., Overeem, I., Romanovsky, V., Schaefer, K., Clow, G., Urban, F., Cable, W.L., Piper, M., Schwalm, C., Zhang, T., Kholodov, A., Sousanes, P., Loso, M., Hill, K., 2018, A Synthesis Dataset of Permafrost-Affected Soil Thermal Conditions For Alaska, USA. Earth Syst. Sci. Data, 10, 2311–2328. https://doi.org/10.5194/essd-10-2311-2018.
- Williams, J.R., 1965, Ground water in permafrost regions: An annotated bibliography. U.S. Geological Survey, Professional Paper 696, 83p.

6.2 Acronyms

AD	Applicable Document
AWI	Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research
B.GEOS	b.geos GmbH
CALM	Circumpolar Active Layer Monitoring
CCI	Climate Change Initiative
CEOS	Committee on Earth Observing Satellites
CEN	Canadian Centre d'études Nordiques
CMUG	Climate Modelling User Group
DUE	Data User Element
ECV	Essential Climate Variable
EO	Earth Observation
ESA	European Space Agency
FRM	Fiducial Reference Measurement
GAMMA	Gamma Remote Sensing
GCOS	Global Climate Observing System
GIPL	Geophysical Institute Permafrost Laboratory
GT	Ground Temperature
GTN-P	Global Terrestrial Network for Permafrost
GUIO	Department of Geosciences University of Oslo
InSAR	Interferometric Synthetic Aperture Radar
IPA	International Permafrost Association
LST	Land Surface Temperature
MAGT	Mean Annual Ground Temperature
maxAGT	maximum Annual Ground Temperature
minAGT	minimum Annual Ground Temperature
NSF	National Science Foundation
NSIDC	National Snow and Ice Data Center
OSCAR	Observing Systems Capability Analysis and Review Tool
PERMOS	Swiss Permafrost Monitoring Network
PVP	Product Validation Plan
R	Requirement

RD	Reference Document
RHM	Roshydromet
RMSE	Root Mean Square Error
RR	Round Robin
RRR	Rolling Requirements Review
SI	International System of Units
SWE	Snow Water Equivalent
std dev.	Standard Deviation
TSP	Thermal State of Permafrost
TR	Technical Requirement
UAF	University of Alaska, Fairbanks
UNIFR	Department of Geosciences University of Fribourg
QA4EO	Quality Assurance framework for Earth Observation
WGCV	Working Group on Calibration and Validation
WMO	World Meteorological Organization