

Integration of Fire and Land Cover CCI products into MPI ESM model

<u>Iryna Khlystova</u> Silvia Kloster, Alex Loew

with contributions from the JSBACH Team in Hamburg

Max-Planck-Institut für Meteorologie

MPI-M ESM

- b) Partly coupled: land&atmosphere driven by model simulations,
- c) Fully coupled:land&atmosphere& ocean

The MPI-ESM consist of

- Atmospheric model ECHAM6,

- The Ocean model MPIOM + ocean Biogeochemistry model HAMMOCC,

- Land-Biosphere model JSBACH (land carbon and nitrogen cycle, surface albedo, dynamic vegetation, fires)

- OASIS3 is the interface between the Ocean and Atmopshere

- Land and Atmosphere are coupled directly over water, energy & carbon (in CO2?) fluxes.

Integration of the CCI Fire pre-curser dataset (GFEDv3) into the land model JSBACH

JSBACH - Jena Scheme for Biosphere-Atmosphere Coupling in Hamburg (JSBACH)

FIRES IN THE EARTH SYSTEM

At a global scale, changing levels of fire emissions influence 8 out of the 13 radiative forcing terms identified in the IPCC 4th Assessment (Bowman et al., 2009).

FIRE MODEL: CARBON EMISSIONS

* Combustion Completeness

• Burned area

- (a) simulated dynamically with a fire model implemented in a vegetation model
- (b) prescribed as boundary condition from observations in a vegetation model

Fuel Load (Biomass available for burning)

- (a) simulated dynamically within a vegetation model
- (b) prescribed from observations (only limited observations are available)

JSBACH MODEL SPIN-UP

- Dynamic simulations of fuel loads requires long spin-up phases (~600 years) to get the biomass that is stored in the different vegetation pools (stems, roots, soil, etc,) into equilibrium
- The fuel load simulated in the vegetation model depends on the burned area , which leads to the consumption of biomass and emissions of carbon into the atmosphere.

JSBACH FIRE MODEL: ORIGINAL

JSBACH burned_fpc. / 13 years (since 0600) / plot: lryna.Khlystova@zmaw.de

JSBACH carbon_2_atmos. / 13 years (annual) / plot: lryna.Khlystova@zmaw.de

JSBACH has an standard fire algorithm based on thresholds of moisture and temperature.

INTEGRATION OF BA

- GFEDv3 provides an excellent dataset on Burned area for the time period from 1997 – 2010 (based on ATSR/MODIS);
- For JSBACH, the interface was developed that allows to prescribe a satellite dataset (i.e. burned area) in the format similar to GFED (netCDF, monthly);

BA GFEDv3 available

GFEDv3/BF as fraction of GFED grid cell approx. to gaussian T63/1997-2010

PREPROCESSING OF SATELITE DATA

Observation data cannot be used directly in models!

- Pre-processing procedure is complex, each step requires detailed and careful data analysis.
- Otherwise high potential to lost the valuable information.

Sea-Land mask difference between satellite and model results in a complex intermediate step for simultaneous transfer of ocean pixels to land.

RESULTING CARBON EMISSIONS

x4!

Iryna.Khlystova@zmaw.de

2000

150

150

100.0

GLOBAL TOTALS

r - LINE ACTED 2011 BYTER REGARDING ON ACCEPTED ACCEPTED	122 DICLOY, HYDR. RUIVARD/2116W.UB JSBACH BOCCO2_IU	x_2_almos. / 14 years avg. / MPI-H. 2012/ plot by: hyna.Kniystova@2		
MODEL	C emission from fires [Pg C/y]	Equivalent CO ₂ rate [ppm/y]		
GFEDv3.1	2.0	1		
JSBACH standart	~2.1	1		
JSBACH +GFED BA	~8.8	2		
JSBACH + GFED BA + GFED TCD	~2.5	1		

8.7 Pg/y

TOTAL Anthropogen C. (Le Quiere et al, 2009)

Total CO₂ (GFEDv3) = 48% * Dry Matter(CO₂+CO+CH₄) * EF(CO₂)

Coefficient according to van der Werf et al., 2010

of the dry mass carbon content 3

Taken from Andreae and Merlet, 2001

JSBACH BA to Carbon Emissions

EXPERIMENT 2: PRESCRIBED TCD

Integration of CCI Land Cover

SATELLITE LAND COVER CLASSES

NO WAY FOR DIRECT CONVERSION TO MODEL PFTs!

Satellite: spectral classes

Land Surface parameters are derived :

- -background surface albedo,
- -surface roughness,
- -length due to vegetation,
- -fractional vegetation cover,
- -leaf area index for the growing dormancy season,
- -forest ratio,
- -plant-available soil water holding capacity, and
- -volumetric wilting point

- \rightarrow needed for semantic translation
- \rightarrow Resolve the satellite mixed classes
- \rightarrow Same class in different climates

ACCEPTED GENERAL SCHEMA

CONVERSION TO PFTs

File conversion and aggregation

- Convert from TIFF to netCDF format
- Tile by type

• Reducing resolution to 0.5x0.5 (in order to apply other satellite datasets for further conversion, e.g. KG Biomes classification)

(slightly modified schema by Poulter et al., 2011)

- reduce to general types (forest, herbac, crop)
- apply biome mask (Climate classification)
- scale not used types (e.g. anthrop. water on land)
- Step 3 **Regrid** to Model Resolution (T63/T31)

Adapted from Poulter et al, 2011

Step 2 Reclassification

JSBACH PFT concept

The Plant-Functional Type concept is different for different models!

- MPI-M Land component JSBACH has 21 PFTs converted by a different method using the on Olson classification (AVHRR 1992, Olson 1994) with bioclimatic limits from (Stich et al. 2003) – older datasets.
- The PFT functionality includes: Photosynthesis, Vegetation (height, roughness length, litter, Carbon content., litter and leafs lifetime)

JSBACH Conversion Matrix (conversion step 1)

** ASCII Table re-c	lassifica	tion fro	m GlobCo	v to Phy	siology	(Poulter	et al.,	2011)	*****	*****
	BrEv	BrDe	NeEv	NeDe	NatGr	ManGrPs M	lanGrCrop	ShrubA]]	bare	water
]bcov_type11	0	0	0	0	0	0	1	0	0	0
lbcov_type14	0	0	0	0	0	0.5	0.5	0	0	0
lbcov_type20	0	0	0.1	0.1	0.1	0.25	0.45	0	0	0
lbcov_type30	0	0	0	0	0.25	0.25	0.25	0.25	0	0
lbcov_type40	0.5	0.5	0	0	0	0	0	0	0	0
lbcov_type50	0	1	0	0	0	0	0	0	0	0
lbcov_type60	0	1	0	0	0	0	0	0	0	0
lbcov_type70	0	0	1	0	0	0	0	0	0	0
lbcov_type90	0	0	0.5	0.5	0	0	0	0	0	0
lbcov_type100	0.25	0.25	0.25	0.25	0	0	0	0	0	0
lbcov_type110	0.2	0.2	0.2	0.2	0	0	0	0.2	0	0
lbcov_type120	0.1	0.1	0.1	0.1	0.2	0.2	0	0.2	0	0
lbcov_type130	0	0	0	0	0	0	0	1	0	0
lbcov_type140	0	0	0	0	0.5	0	0	0.5	0	0
lbcov_type150	0.1	0.1	0.1	0.1	0.4	0	0	0.2	0	0
lbcov_type160	0.5	0.5	0	0	0	0	0	0	0	0
lbcov_type170	0.5	0.5	0	0	0	0	0	0	0	0
lbcov_type180	0.1	0.1	0.1	0.1	0.2	0.2	0	0.2	0	0
lbcov_type190	0	0	0	0	0	0	0	0	1	0
lbcov_type200	0	0	0	0	0	0	0	0	1	0
lbcov_type210	0	0	0	0	0	0	0	0	0	1
lbcov_type220	0	0	0	0	0	0	0	0	1	0

Weighted assignment of GlobCover classes to general biomes is a subjective approach!

RESULTS FOR PRINCIPLE CLASSES

JSBACH original

DIFFERENCES BETWEEN PRINCIPLE CLASSES

Diff. in classification and definitions

GlobCover Glacies

GlobCover BARE

GlobCover Water Body

JSBACH BARE

Anthropogenic and inland water body \rightarrow current deficit in models \rightarrow model improvement needed!

Model benchmarking suite

OUTLOOK: Fire CCI

model development:

- drive JSBACH with observed meteorology (instead of climate model data)
- Incorporate the daily representation of GFED information (Ma et al., 2011)
- Integration of alternative fire products (fire burned scars->BA or fire radiative power),
- Integration of SAT_EFs for calculation of other trace gases (similar to GFED trace gases);

model application:

- investigate the impact of temporal resolution of the burned area (monthly/daily) on simulated fire carbon emissions
- investigate the impact of new land cover classification in JSBACH on simulated fire carbon emissions

Khlystova et al., EGU 2011

OUTLOOK: Land Cover CCI

- Pre-processing of satellite data is a time-consuming procedure, as for fire as for land cover products!
- Land Cover transformation requires additionally a complex processing connected closely to some specific expert knowledge of a model PFT,
- Each product integration required some new model development, because no standard interfaces exist and because model functionality is often limited by thresholds (not considering any dependency on the new data),
- New dataset should be used for exchange of several model parameters (not only cover fraction, but also vegetation ratios and albedo need to be updated simultaneously!)
- Integration of Fire and Land products may be advantageous (e.g. calculation of the fuel load for Fires based on Land Cover),

• ..

JOINT EXPERIMENT (Inter-model)

Joint experiments with LC CCI CRG

by CMUG + CRG of Land Cover-CCI

- Decided to perform a Coordinated set of experiments:
 - » Take Different models (JSBACH, OHIDEE, JULES,?),
 - » Use possible same forcing (climate, re-analysis),
 - » Make possibly simple first step simulations (offline, no dynveg),
 - » Use a consistent method to translate land cover data to PFTs,
 - » Same spatial resolution (spatial aggregation);

To be continued...

MPI-H Land Model JSBACH

Expansion of Cropland

JSBACH PFT CONCEPT

- JSBACH PFTs are based on Olson classification (Olson 1994) derived from International Geosphere Biosphere Program 1 km AVHRR data
- The bio-climatic climatic limits taken from (Stich et al., 2003)
- Land Surface parameters are derived :
 - background surface albedo,
 - surface roughness,
 - length due to vegetation,
 - fractional vegetation cover,
 - leaf area index for the growing dormancy season,
 - forest ratio,
 - plant-available soil water holding capacity, and
 - Volumetric wilting point
- JSBACH plant functional types (PFTs) concept is used in the Biosphere-Energy-Transfer-Hydrology Scheme (BETHY) (Knorr, 2000)