

climate change initiative

RIVER DISCHARGE

WP 3.2: River discharge from altimeters and ancillary data

Laetitia GAL User Workshop

Météo-France, Toulouse

03-04 June 2024

UNCLASSIFIED - For ESA Official Use Only

Objectives (1/1)

Objective: Compute long-term discharge time series at selected locations from altimetry WSE and ancillary data

- 18 basins
- 54 stations

Selected Basins

Selected Stations

- 2-AMAZON-SAO-FELIPE

- 7-CHAD-GUELENGDENG 8-COLVILLE-UMIAT
- 9-CONGO-CHEMBE-FERRY 11-CONGO-KINSHASA
- 12-DANUBE-BOGOJEVO
- 15-DANUBE-CEATAL
- 16-GANGA-BRAHMAPUTRA-YANGCUN • 17-GANGA-BRAHMAPUTRA-HARDINGE-BRIDGE • 29-IRRAWADDY-PYAY
- 18-GANGA-BRAHMAPUTRA-BAHADURABAD
- 19-GARONNE-LAMAGISTERE
- 20-GARONNE-TONNEINS

- 21-GARONNE-MARMANDE 33-LIMPOPO-SICACATE
- 25-INDUS-TARBELA

- 31-LIMPOPO-FINALE 32-LIMPOPO-BEITBRUG
- 43-NIGER-NIAMEY 44-NIGER-LOKOJA

35-MACKENZIE-NORMAN-WELLS

36-MARONI-LANGA-TABIKI

37-MARONI-DEGRAD-ROCHE

- 45-NIGER-MALANVILLE
- 46-NIGER-ANSONGO
- 48-OB-SALEKHARD
- 49-PO-PONTELAGOSCURO
- 50-PO-BORGOFORTE
- 52-ZAMBEZI-KASAKA
- 53-ZAMBEZI-KABOMPO-PONTOON
- 54-ZAMBEZI-MATUNDO-CAIS

Step 1 (1/3)

Objective: Compute long-term discharge time series at selected locations from altimetry WSE and ancillary data

Compile all available data from in-situ and/or model discharge (Q) and merged WSE from altimeters (WP3.1)

Step 1:

Define Cal/Val periods

Step 2:

Compute Rating Curve

Step 3:

Compute Uncertainties

Step 4:

Step 1 (2/3)

Objective: Compute long-term discharge time series at selected locations from altimetry WSE and ancillary data

- Compile all available data from in-situ and/or model discharge (Q) and merged WSE from altimeters (WP3.1)
 - Identify overlap data = Closest date with time gap < 24H between WSE and Q

<u>Step 1:</u>

Define Cal/Val periods

Step 2:

Compute Rating Curve

Step 3

Compute Uncertainties

Step 4:

Step 1 (3/3)

(31 stations : time overlap

4 stations : not enough time overlap

19 stations: without time overlap

Objective: Compute long-term discharge time series at selected locations from altimetry WSE and ancillary data

Compile all available data from in-situ and/or model discharge (Q) and merged WSE from altimeters (WP3.1)

Identify overlap data = Closest date with time gap < 24H between WSE and Q **Divided** common period **into Calibration/Validation** periods:

First 1/3 part : Validation period - Last 2/3 parts: Calibration period

<u>CONDITION</u>: If number of common date < 15 = no common period considered, all common data will be used for validation

<u>Step 1:</u>

Define Cal/Val periods

Step 2:

Compute Rating Curve

Step 3:

Compute Uncertainties

Step 4:

Step 2 (1/3)

Objective: Compute long-term discharge time series at selected locations from altimetry WSE and ancillary data

Step 1:
Define Cal/Val periods

Step 2:

Bayesian Approach to compute Rating Curve between overlap WSE and Q:

- Probabilistic model : $Q = a \cdot (h-z0)^b$
- Prior distribution : $a \in [0; 3000] b \in [0; 5] z0 \in [min(WSE)-50; min(WSE)$
- Parameters estimation through Markov Chain Monte Carlo (MCMC) sampling and the Metropolis-Hasting sampler "MH" algorithm

Step 3:

Compute Rating Curve

Compute Uncertainties

Step 4:

Step 2 (2/3)

Case 3:

Arctic basins

Objective: Compute long-term discharge time series at selected locations from altimetry WSE and ancillary data

Probabilistic model : $O = a \cdot (h - z0)^b$

Prior distribution : $a \in [0; 3000] - b \in [0; 5] - z0 \in [min(WSE)-50; min(WSE)$

Parameters estimation through Markov Chain Monte Carlo (MCMC) sampling and the Metropolis-Hasting

2009-04-05 to 2022-09-22

451.0 451.5

450.0 450.5

wse (m)

sampler "MH" algorithm

Step 1:

Step 2:

Compute Rating Curve

Step 4:

Method 1: Overlap

General

Case 2:

Bayesian Approach to compute Rating Curve between overlap WSE and Q:

Frozen period time to time --> remove point based on temperature

wse (m)

Halti.m

Step 2 (3/3)

Objective: Compute long-term discharge time series at selected locations from altimetry WSE and ancillary data

Method 1:

Overlap

Case 1:

General

Bayesian Approach to compute Rating Curve between overlap WSE and Q:

- Probabilistic model : $Q = a \cdot (h-z0)^b$
- Prior distribution: a ∈ [0; 3000] b ∈ [0; 5] z0 ∈ [min(WSE)-50; min(WSE)
- Parameters estimation through Markov Chain Monte Carlo (MCMC) sampling and the Metropolis-Hasting sampler "MH" algorithm

Case 2:

Frozen period time to time
--> remove point based on temperature

Case 3:

Arctic basins
--> Multiples rating curves

<u>Step 2:</u>

Step 1:

Compute Rating Curve

Method 2:

No Overlap

Quantile Approach to compute Rating Curve between non-overlap WSE and Q (Tourian et al., 2013):

- Obtain quantile functions of WSE and discharge by sorting ascendingly and normalizing the sorted data using: Pi = Ki ÷ (N + 1)
- Apply Bayesian approach to estimate rating curve parameters

Step 3

Compute Uncertainties

Step 4:

Step 3 (2/2)

Objective: Compute long-term discharge time series at selected locations from altimetry WSE and ancillary data

$$\partial(Q) = \sqrt{\left(\frac{\partial Q}{\partial a} \cdot \partial a\right)^{2} + \left(\frac{\partial Q}{\partial WSE} \cdot \partial WSE\right)^{2} + \left(\frac{\partial Q}{\partial b} \cdot \partial b\right)^{2} + \left(\frac{\partial Q}{\partial z0} \cdot \partial z0\right)^{2}}$$

Step 1:

$\frac{\partial(Q) = \sqrt{(WSE - z \, 0)^b (\sigma a)^2 + (a \cdot b \cdot (WSE - z \, 0)^{b-1} \cdot \sigma WSE)^2}}{+(a \cdot (WSE - z \, 0)^b \cdot \ln(WSE - z \, 0)(\sigma b)^2 + (-a \cdot b \cdot (WSE - z \, 0)^{b-1} \cdot \sigma z \, 0)^2}$

WARNING: independent variables!

Step 2:

Step 3:

Compute Uncertainties

Step 4:

First prior of an end to end uncertainty budget

Sd of power law's coefficients:

Comes from Bayesian approach

Step 3 (2/2)

Objective: Compute long-term discharge time series at selected locations from altimetry WSE and ancillary data

$$\partial(Q) = \sqrt{\left(\frac{\partial Q}{\partial a} \cdot \partial a\right)^{2} + \left(\frac{\partial Q}{\partial WSE} \cdot \partial WSE\right)^{2} + \left(\frac{\partial Q}{\partial b} \cdot \partial b\right)^{2} + \left(\frac{\partial Q}{\partial z0} \cdot \partial z0\right)^{2}}$$

Step 1:

Define Cal/Val periods

Step 2:

Compute Rating Curve

Step 3:

Compute Uncertainties

Step 4:

Compute long term River
Discharge timeseries

$\frac{\partial(Q) = \sqrt{((WSE - z \, 0)^b \cdot \sigma \, a)^2 + (a \cdot b \cdot (WSE - z \, 0)^{b - 1} \cdot \sigma WSE)}}{+(a \cdot (WSE - z \, 0)^b \cdot \ln(WSE - z \, 0) \cdot \sigma b)^2 + (-a \cdot b \cdot (WSE - z \, 0)^{b - 1} \cdot \sigma z \, 0)^2}$

WARNING: independent variables!

First prior of an end to end uncertainty budget

- Sd of power law's coefficients:
- Comes from Bayesian approach
- Sd of WSE:
- error per mission between WSE and In-situ water heigh anomalies

Step 3 (2/2)

Objective: Compute long-term discharge time series at selected locations from altimetry WSE and ancillary data

$$\partial(Q) = \sqrt{\left(\frac{\partial Q}{\partial a} \cdot \partial a\right)^{2} + \left(\frac{\partial Q}{\partial WSE} \cdot \partial WSE\right)^{2} + \left(\frac{\partial Q}{\partial b} \cdot \partial b\right)^{2} + \left(\frac{\partial Q}{\partial z0} \cdot \partial z0\right)^{2}}$$

Step 1:

Define Cal/Val periods

Step 2:

Compute Rating Curve

$\frac{\partial (Q) = \sqrt{((WSE - z \, 0)^b \cdot \sigma a)^2 + (a \cdot b \cdot (WSE - z \, 0)^{b-1} \cdot \sigma WSE)^2}}{+(a \cdot (WSE - z \, 0)^b \cdot \ln(WSE - z \, 0) \cdot \sigma b)^2 + (-a \cdot b \cdot (WSE - z \, 0)^{b-1} \cdot \sigma z \, 0)^2}$

WARNING: independent variables!

First prior of an end to end uncertainty budget

- Sd of power law's coefficients:
- Comes from Bayesian approach
- Sd of WSE:
- error per mission between WSE and In-situ water heigh anomalies
- Sd applied per mission over all stations/dates to avoid giving more weight to one station
- . Sd independent for extreme latitudes stations and other latitudes

Step 3:

Compute Uncertainties

	TP	ers2	Envisat	Jason 1	Jason 2	Jason 3	Saral	Sentinel3a	Sentinel3b	Sentinel6
Arctic	-	0.50 (26)	1.13 (681)	-	0.86 (605)	1.02 (550)	1.12 (110)	1.02 (515)	0.87 (274)	-
Other	1.01 (1094)	0.91(131)	0.83 (663)	0.91(740)	0.65 (2550)	0.62 (2534)	0.71 (190)	1.02 (253)	0.32 (124)	0.51 (752)

Step 4:

Step 4 (1/2)

Step 4 (2/2)

climate.esa.int/projects/river-discharge