

climate change initiative

RIVER DISCHARGE

Multispectral images-based river discharge

Paolo Filippucci, Debi Prasad Sahoo, Angelica Tarpanelli

Silvia Barbetta, Christian Massari

User Workshop

Météo-France, Toulouse

03-04 June 2024

UNCLASSIFIED - FOR ESA Official Use Only

Methodology: Algorithms

Several combination of the signals have been developed according to the selected site characteristics

CM	CMW1	CMW2
CVM	CVMW1	CVMW2

Methodology

Algorithms

6

Methodology: Spatial resolution

Sentinel-3 Spatial Resolution = 300 m

MODIS Spatial Resolution = 230 m

LANDSAT Spatial Resolution = 30 m

Sentinel-2 Spatial Resolution = 10 m

Kernel application (x 2)

45 Sites		
Estimated river width variation	10	400
Sentinel 2 kernel	0	20
Landsat kernel	0	6
MODIS kernel	0	1

Two kernels are selected for each site: one **large** and one **small**

Methodology

Algorithms Kernels CM CMW1 **River** Small CMW2 discharge proxy from multispectral CVM Large data CVMW1 CVMW2 2 6

Methodology: Temporal variability

Two calibrations methods:

Multiple calibration

Algorithms

24 potential approaches adapting to different environments

Products

Products: Spatial resolution

COARSE RESOLUTION MODIS (500-250 m) MERIS, Sentinel-3

LANDSAT (30 m)

Products: Temporal resolution

→ THE EUROPEAN SPACE AGENCY

Study area

54 sites spread over different climates and environments

A few numbers....

24 methods * 25000 images * 54 stations = 32,400,000 images

Limitations

RGB

$$Q \propto \frac{C}{M}$$

Clouds on C => Overestimation of Q

Clouds on M => Underestimation of Q

Cloud shadows on C => Underestimation of Q

Cloud shadows on M => Overestimation of Q

Limitations

$$Q \propto \frac{C}{M}$$
 Snow/Ice on C => Overestimation of Q Snow/Ice on M => Underestimation of Q

Calibrated Results

Calibration

Calibration on 23 stations where observed data are available in the recent period

Calibration

Methodology

Calibration: Merging

Merging procedure

Step 1: Scaling CM data of different sensors (with respect to the one with more data) according to min and 75th percentile of concurrent days

Calibration: Merging

 Step 2: Merge the products (daily interpolated) with weights decreasing according to the temporal distance from the observation day

Step 3: statistical noise removal and temporal filtering are applied to the merged data

Calibration: Merging

Combinations:

- 1) MOD, MYD, S3, L5, L7, L8, L9, S2 GEE, MERIS
- 2) MOD, MYD, S3, L5, L7, L8, L9, S2 SH, MERIS
- 3) MOD, MYD, S3, L8, L9, S2+Landsat, MERIS
- 4) MOD, MYD, S3, L5, L7, L8, L9, S2 GEE
- 5) MOD, MYD, S3, L5, L7, L8, L9, S2 SH
- 6) MOD, MYD, S3, L8, L9, S2+Landsat

Calibration: Results

Uncalibrated Results

Methodology

- Cities
 Roads
 → C
- Forest $\Rightarrow V_S$

- Fields $\Rightarrow V_a$
- Water \Rightarrow W
- Water/Soil \Rightarrow M

How to find M?

- Find correlation with Land features: C, V_f , V_a over the river area
- Extract Land correlation, T, for each pixels as the max between the correlation with C, V_f , V_a
- Extract correlation with Water, W
- Select those pixels that are lowly correlated with W and with T:

The selected pixel are all used as M

Calibration:	Multiyear: if braided river
	Full: elsewhere
Kernel:	Not needed: already multipixel
Method:	CM: small river or small variation or Amazon
	CMW: elsewhere
W1, W2, C, CV: It depends upon M. First approximation W1 and C Limited effect for uncalibrated areas	

Conclusions and suggestions for the Roadmap

- ✓ The multispectral images are used to extract **long time series of reflectance indices** that are useful to identify **variations of river discharge** over several environments.
- ✓ The uncalibrated procedure is consistent with the those calibrated and represents a valid tool for ungauged sites.
- ✓ The uncalibrated procedure needs to be improved with the ingestion of a more detailed water mask: Sentinel-1 or Global Surface Water (Pekel et al., 2016 Nature) can support the identify the signal of water
- ✓ The multiyear calibration should be improved when the data in the common period are scarce in number or when the cloud coverage is significant. Alternative methods are necessary.
- ✓ Clouds effect should be improved: cold periods can be identified with albedo; at seasonal level the noise can be removed.

Thank you for your attention