

Project Details/Updates

Work initially funded via CMUG has now grown into a wider research project:

- "The First Environmental Digital Twin Dedicated to Understanding Tropical Wetland Methane Emissions for Improved Predictions of Climate Change"
- Funded as part of my 4-year UKRI Future Leaders Fellowship

As part of CMUG project:

- Focused on Africa
- We're developing an emulator for JULES wetland methane
- Will use it's explainability to show which factors matter in the model
- Will drive the emulator with CCI EO data to generate wetland fluxes
- Compare those to a CH₄ inversions performed on GOSAT/TROPOMI ESA-CCI data

As part of FLF:

- Focused on whole Tropics
- We'll extend emulator to other models from Global Carbon Project
- Develop EO ML-based wetland extent datasets
- Combine hydrological models with our land surface models to better represent wetland dynamics
- Improve methane wetland emissions in UK Earth System Model for climate predictions (including ESMValTool recipes for evaluation)
- Develop "climate services" around this capability, providing decision support to stakeholders

Complex

Alarming and Urgent

Missing Knowledge

The Problems

The First Problem.

Significant differences between the methane from models

The Second Problem.

Models fail at correctly simulating the size and location of wetlands

Parker et al., Biogeosciences, 2022

V

Tropical Wetlands?

Unexplained Increases

The key research questions that I will address:

- 1) How are tropical wetland methane emissions responding to climate change?
- 2) How will they continue to do so under future climate scenarios?

Models disagree

"Models demonstrate extensive disagreement in their simulations of wetland areal extent and CH₄ emissions, in both space and time" – Melton et al., 2013

Intercomparisons are challenging

Parker et al., Biogeosciences, 2022

Results in new capabilities to model and explain wetland methane emissions

- Emulators allow novel comparisons
- Explainable AI can be powerful
- => New understanding!

• Wetland extent = huge uncertainty "Our simulated wetland extents are also difficult to evaluate due to extensive disagreements between wetland mapping and remotely sensed inundation datasets." – Melton 2013

Partnering with Planet

- New ML-based wetland extent dataset
- Improve estimates of wetland extent

Vision

We will develop a **new world-class capability in Environmental Digital Twins**, enabling cutting-edge science and truly impacting on climate policy decision-making.

Wetland Extent

Wetland Methane

- Ensemble of simulations
- Currently 6 members but work ongoing
 - Different forcing meteorology
- Different temperature dependencies
 - Different soil types

We train a machinelearning decision-tree model (*emulator*) using JULES data to reproduce wetland extent and methane emissions.

Advantages

- ✓ We can run many simulations very fast
- ✓ No need for expert knowledge
- ✓ No need for expensive supercomputers
- ✓ We can derive useful metrics for users
- ✓ They can be deployed on web platforms
- ✓ They can integrate many types of data
- ✓ Explainable Al.

Model-data fusion

We will **drive the emulator** with input based on **ESA- CCI data** to produce new wetland CH₄ emissions, consistent with observed LST and soil moisture.

ML-based Architecture for Segmentation and Classification

Emulator emissions will be evaluated against atmospheric inversions of ESA CCI CH₄ data

Methane (CH₄)

EO Methane Obs.

Next Steps

- Continue with additional JULES simulations to extend ensemble
- Discuss with CCI teams (LST, soil moisture) on most appropriate datasets to use to drive emulator
- Develop wetland extent datasets and make use of CCI land cover

- Continue to develop emulator
 - Fairly slow process as lots of potential combinations of input features
- Evaluate against GHG-CCI CH₄
 data
 - Perform regional flux inversions

EO-based Extent

Wetland Extent

Methane (CH₄)

EO Methane Obs.

For more details, please see poster and talk to Cristina, Khunsa and Chandana ©

