

EO IN SUPPORT OF THE UNFCCC PARIS AGREEMENT

Michaela I. Hegglin University of Reading

Colocation Meeting 07/10/2021

ESA UNCLASSIFIED - For ESA Official Use Only

MANDATE BY THE UNFCCC PARIS AGREEMENT

The Paris Agreement highlights in a request to the Parties to "... strengthen scientific knowledge on climate, including research, systematic observation of the climate system and early warning systems, in a manner that informs climate services and supports decision-making" (Article 7.7c).

However, it does not tell us how this needs to happen in practice

MANDATE BY THE UNFCCC PARIS AGREEMENT

The Paris Agreement highlights in a request to the Parties to "... strengthen scientific knowledge on climate, including research, systematic observation of the climate system and early warning systems, in a manner that informs climate services and supports decision-making" (Article 7.7c).

However, it does not tell us how this needs to happen in practice!

Provides opportunity for EO community to help define these needs

METHODOLOGY

 Aims at deriving a conceptual framework from reality, rather than deriving 'reality' from a conceptual framework.

(adapted from E. F. Schumacher – Small is Beautiful 1973)

Hegglin et al., in preparation

STEP 1: IDENTIFYING TOP-DOWN POLICY NEEDS Breading

The study of the legal text of the Paris
 Agreement uncovers the political goals of
 the international treaty, and thus indirectly its
 needs.

STEP 2: IDENTIFYING BOTTOM-UP POLICY NEEDS Reading

• Involvement of national agencies in the discourse revealed implications of these policy needs for work on the ground.

+

THE UNFCCC PARIS AGREEMENT

→ THE EUROPEAN SPACE AGENCY

\$

+

STEP 3: IDENTIFYING TOP-DOWN SCIENCE NEEDS Reading

• Integrated knowledge of the Earth system is needed to inform policy of potential pitfalls and suitable approaches.

+

IMPORTANCE OF SYSTEM PERSPECTIVE

- Cause-effect network to reflect system-dependencies, helps avoiding pitfalls.
- What we need to know is not directly measurable and using indicators of progress can be dangerous; we need attribution!

Hegglin et al., in preparation

- The link between *emissions and temperature* change (the PA targets) can only be measured if climate feedbacks and climate sensitivity are known.
- Climate adaptation and loss and damage can only be measured if the climate system response to GHG forcings is known.
- *Decision-relevant metrics* as in the NDCs and NAPs do not map directly onto physically measurable quantities (from EO).

STEP 4: IDENTIFYING EO CAPACITIES

 Assessment of case studies of how Earth observations are currently used reveal potential of EO to support the Paris Agreement.

CASE STUDIES

 21 case studies have been identified, show-casing the potential of EO to answer policy needs in different key areas of the Paris Agreement. Big thanks to all CCI projects for their input!!

CLIMATE STATE

- Global climate indicators have already wide applications: IPCC, WMO, GCOS, CarbonBrief, BAMS, C3S ...
- High-quality CDRs (such as provided by ESA CCI) are crucial to build these indicators.
- Do currently not inform on the full complexity of the Earth system necessary for the attribution to climate feedbacks.

MITIGATION

- Currently the **best developed EO capacity** in direct support of the UNFCCC PA.
- Global view, but still limited temporal & spatial coverage.
- Generally, lack of accuracy and precision.

SCIAMACHY and S5P CH₄ observations

- EO are used to detect hotspots of GHG emissions.
- Informs policy makers and industry of *mitigation opportunities.*

Case study courtesy Michael Buchwitz and Heinrich Bovensmann

SINKS AND RESERVOIRS

- Focus on **AFOLU** (agriculture, forestry & other land use).
- Key task is the global *assessment of the temporal change* in sink and reservoir sizes and *attribution to natural* (e.g., fires, drought, diseases) and *anthropogenic drivers* (e.g., logging, agricultural & urban expansion).
- Information is necessary to assess effectiveness of mitigation measures.

 + 25 km →
 degradation deforestation new secondary forest
 -24 0 24 Mg C ha⁻¹
 500 km
 500 km

Remotely sensed carbon dynamics in the Brazilian Amazon and illustration of associated land-cover changes.

- Information ultimately delivers change in aboveground C.
- Observations: Landsat, Sentinels

Case study courtesy RECCAP: Dominic Fawcett and Ana Bastos

ADAPTATION

- Adaptation has no global target and common indicators are lacking since it is dependent on location-specific economic, social, and environmental conditions.
 - \rightarrow co-development of adaptation indicators needed!

From LST to urban heat island effect and thermal discomfort index

- Adaptation strategies

 (e.g., greening) are
 measurable over time,
 thereby also addressing
 demands by the PA to
 help the poor to adapt.
- Observations: high-res LST data

Case study courtesy Darren Ghent

LOSS & DAMAGE

- Loss and damage occurs due to both *sudden-onset* (e.g., cyclones, flooding, heat-waves, fires) and *slow-onset* (e.g., sea-level rise, glacial melting, droughts) events.
- It can be both *economic* (e.g., resources, goods or services) and *non-economic* (e.g., health, culture, biodiversity).
 - \rightarrow Again, co-development of indicators needed!

Case study courtesy Gemma Kulk and Shubha Sathyendranath

Flooding during extreme monsoon season in 2018 Kerala, India

- Areal maps of flooding help assess extent and damage of event.
- Aso key for disaster management and emergency responses.
- Observations used: Sentinel-1A and -1B SAR images

SUMMARY AND CONCLUSIONS

Hegglin et al., in preparation

- EO shows great potential to support the UNFCCC Paris Agreement at both the national (via the ETF) and global level (via the GST).
- However, its full potential needs still to be realized, i.e. the transformation to actionable information useful to decision-making.
- Key in this process will be the *co-development* through collaboration across communities (research, private sector, governments), also internationally.
- This move to trans-disciplinary research will require a radical overhaul of both the way we think and work!

WAYS FORWARD

- The development and production of high-quality, long-term, and stable climate data records (CDRs) for the purpose of monitoring climate change should be continued. Increased attention should go into:
 - cross-ECV consistency (see also Popp et al., BAMS 2021),
 - improved spatial and temporal resolution,
 - increased timeliness of data delivery,
 - enhancing CDRs through exploitation of AI.
- To inform mitigation, multi-ECV satellite observations should be integrated into data assimilation systems of full Earth system models to quantify, attribute, and predict changes in the carbon cycle.
 - Also, should be anchored by observations from high-quality in-situ measurement networks.
- To inform adaptation, a case study approach focusing on nation-specific needs should be envisaged.
 - Adopt cross-ECV approaches to gather integrated information on local systems.
 - Develop high-resolution, self- and inter-consistent, collocated EO information, enhanced by socio-economic information.
- Enhance outreach, education, and capacity building to raise awareness of the immediacy of climate change.
- More programmatically, scientific exploitation of EO should be aligned with the lighthouse activities within the World Climate Research Programme 'Explaining and Prediction Earth System Change' and 'Digital Earths'.