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1. Summary 

This document specifies the theoretical basis for the algorithms used to produce the five thematic 
parameters of the Lakes Essential Climate Variable (ECV) under the Lakes_cci. The document 
presents, for each algorithm contributing to product generation, the detail required for users to 
gain an informed understanding of the technical and scientific considerations underlying these 
products, ranging from the scientific description to functional (inputs, outputs) and mathematical 
definitions of the algorithms as well as references to literature underpinning the performance of 
these algorithms. Readers interested in a comparative analysis of candidate algorithms are referred 
to the Product Validation and Intercomparison Report (PVIR). The scope of this document is the 
entire product generation chain.  
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2. Introduction 

The lakes cci benefits from pre-existing, mature processing systems that are used in operational 
context. These are joined in a modular, distributed fashion to generate the Lakes_cci climate data 
records. The main challenges for the lakes cci are to produce an internally consistent ECV consisting 
of five domains:  

- Lake water level (LWL) and lake water extent (LWE) 
- Lake surface water temperature (LSWT) 
- Lake Ice Cover (LIC) 
- Lake Water-Leaving Reflectance (LWLR) 

These are distinct domains with respect to their algorithm basis, with the exception of LWL and 
LWE which may be linked through hypsometry (see below). Alternative approaches to determine 
LWE are also discussed in this document whereas the final LWE algorithm will be issued in a future 
update of this document. All outputs from WP6 devoted to New Methodologies for LWE are included 
in this document. 

The algorithms for each of the domains listed above are described in detail over the following 
chapters.  
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3. Lake Water Level (LWL) algorithms 

3.1. Description 

Altimetry was originally designed for oceanography in the 1970s. It was used to study favourable 
continental surfaces, especially in hydrology and glaciology, two themes for which monitoring the 
height of water or ice surfaces is crucial. The principles of measurement have not changed over 
time but the interpretation of measurements becomes more complex with increasing heterogeneity 
of the target, or the presence of slopes. Altimetry is not a singular measurement - one speaks of 
altimetry missions because multiple sensors on board a satellite contribute to the quality of the 
measurement. Accurate orbit positioning sensors are crucial, as well as radiometers to determine 
the influence of atmospheric moisture on the signal. Dual-frequency altimeter systems for 
correcting the ionospheric delay are combined onto the same platform to gain the required 
precision in height measurement. However, these auxiliary sensors do not work for all continental 
surfaces as they do on ocean surfaces. This chapter, therefore, discusses the proposed solution for 
the particular challenge of altimetry of lake surfaces.  

Satellite altimeters are designed to measure the two-way travel time of short radar (or laser) pulses 
reflected from the Earth’s surface which gives the distance between the satellite and the reflected 
surface, called “range”. The shape of the reflected signal, known as the “waveform”, represents 
the power distribution of accumulated echoes as the radar pulse hits the surface. The waveforms 
that are acquired using a tracking system placed on-board the satellite are called “trackers”, and 
can be modelled by a theoretical shape from which the time for the signal to be bounced back can 
be determined. The travel time is calculated using a predefined analytic function, which fits the 
time distribution of the reflected energy. The first altimetry missions were designed for the ocean 
domain and the corresponding algorithm, the so-called Brown model (Brown 1977) was fitted to 
classic ocean surfaces. There it is considered that thermal noise is followed by a rapid rise of the 
returned power called ‘leading edge’, and a gentle end sloping plateau known as ‘trailing edge’. 
However, over the continents the waveforms are generally contaminated by noise resulting from 
multiple land returns such as vegetation, bare sands, or steep shorelines. Consequently, the shape 
of the echoes reflected by continental waters is often very different from that reflected by the 
ocean surface. It can thus become difficult, if not impossible, to calculate the water level of a river 
or small lake using the classic Brown analytic function. One way of working around this is to use 
alternative and more suitable re-tracking functions of the waveforms. Moreover, several corrections 
that are commonly well measured over ocean are also degraded over continental surface and lead 
to use specific models.  

3.2. LWL algorithm definition  

Here, LWL is measured using satellite radar altimetry (alternatively, Lidar altimetry, for example 
on ICESat-1 missions, can also be considered). 

Radar altimeters send an electromagnetic pulse to the satellite nadir and record the propagation 
time to and from the emitted wave and its echo from the surface. The electromagnetic bands of 
interest are the Ku and Ka bands, with are reflected perfectly – without penetration – by water 
(which is not the case for snow and ice). Multiplied by the speed of light c, half the time it takes for 
the transmission t gives length R (the range) between the satellite and the reflective surface: 

𝑅 =  𝑐 
௱௧

ଶ
  [3.1] 

The height H of the reflective surface is given by the following equation: 

 

H = a - (R+ Σ Cp+ Σ Cg)  [3.2] 
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where a is the orbital altitude of the satellite with respect to the ellipsoid. Corrections must be 
made for propagation in the atmosphere (Cp) and also vertical movements of the Earth’s crust (Cg). 

The ellipsoidal height is then converted into elevation h, taking the local undulation of geoid N into 
account: 

ℎ = 𝐻 − 𝑁 [3.3] 

The Cp and Cg terms in Equation 3.2 correspond to sets of corrections that must be subtracted to 
arrive at an accurate estimation of H.  

There are two types of corrections:  

 propagation corrections (Cp) needed because the radar pulse propagates through the 
atmosphere at a speed below the speed of light c used in Eq. 4.1 

 geophysical corrections (Cg) linked to the vertical movements of the Earth surface (tides, 
for example) and for which we want to correct the measurement in order to apply it to a 
fixed geodetic datum in the terrestrial reference frame.  

Finally, we can express the height of a lake by the full following equation: 

h = a − R − DTC − WTC − IC − ET − PT − LT – SSB – N [3.4] 

where DTC is the dry tropospheric correction, WTC the wet tropospheric correction, IC the 
ionospheric correction, ET the Earth tide, PT the polar tide, LT the lake tide and SSB the 
instrumental so-called sea state bias. The means to calculate these terms to determine mean lake 
height are given in the following section. 

3.2.1. LWL input data and corrections 

The altitude of the satellite (a) is calculated by the ground segment of each mission and is usually 
provided by the so called GDRs (Geophysical Data Records) that are made available by ESA, CNES 
and NASA on freely web access. We use the AVISO web site service to extract the altitude of the 
satellite as well as other parameters.  

Over continental waters, the radar echo which is assembled into so-called waveforms in the LRM 
mode usually does not fit with the Brown model, for which the on-board tracking algorithm was 
adapted. Hence, alternate algorithms that are run during post-processing, the so-called retracking 
algorithms, are used to calculate the range (R). One of these algorithms is the Ice-1 algorithm, 
based on an Offset Center Of Gravity (OCOG) scheme, which outperforms alternatives and is 
considered most suitable for lakes. This retracker determines the shape of the waveform in terms 
of its amplitude, width, and centre of gravity, allowing the leading-edge position (LEP) of the 
waveform, which is directly linked to the range, to be calculated. The Ice-1 has proven to be robust 
for non-Brownian waveforms, such as those generally registered over lakes and rivers. It is, 
therefore, often used in the application of satellite altimetry for hydrology studies. 

The DTC is directly proportional to the atmospheric pressure and it is given by the GDRs. Altitude of 
the lake is taken into account for atmospheric pressure used in the calculation of the DTC since the 
launch of Jason-2. 

WTC is related to the water vapor contained in the air column that the electromagnetic wave 
intersects. This correction can be estimated in two ways: either with an onboard bi- or tri-
frequency radiometer or from a global meteorological model, as used for dry tropospheric 
correction. It has been pointed out that the correction using a radiometer is highly erroneous over 
continental water or coastal regions, due to land contamination, up to a distance of 20 to 30 km 
from the coastline. Therefore, apart from very large lakes, the WTC used in continental water 
comes directly from a model based on climate gridded data sets of multi-layer water vapour and 
temperature fields based on the ECMWF reanalysis. WTC varies geographically and seasonally and 
can amount to several decimetres. The WTC model also takes lake altitude into account. 

The IC correction is related to the interaction of the electromagnetic wave with free electrons in 
the upper atmosphere. It is proportional to the Total Electronic Content (TEC) in this layer of the 
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atmosphere and inversely proportional to the square of the pulse frequency. It has been shown that 
over lakes, this correction could be erroneous due to land contamination if the measurement is 
taken close to the shoreline. Therefore, it may be preferable to use the IC derived from the Global 
Ionospheric Maps (GIM), inferred from the GNSS worldwide network. This correction is provided also 
in the GDRs. 

The Earth tide (ET) and Pole tide (PT) are estimated using models and are provided within the 
GDRs. PT is related to changes in centrifugal forces, and thus the flattened shape of the Earth, by 
variations created through fluctuations in the rotational axis of the Earth. The vertical movements 
of the surface of the Earth associated with this tide are at the centimetre level and are well 
modelled. ET is linked to astronomical gravitational forces surrounding the Earth, essentially 
variations in lunar and solar attraction based on their position in the sky. The vertical movements of 
the surface of the Earth related to the ET are around twenty centimetres. They are relatively well 
modelled. 

LT and SSB are not considered in our calculation but are minor compared to other corrections. For 
large lakes the measurements may also be biased due to seiche effects that can amount to 
decimetres in the worst cases.  

In addition, some altimeter biases must be taken into account. They depend on several factors, 
including instrumental electronic bias and error due to geoid bias between several satellite tracks 
over a given lake. They are calculated prior to the estimation of lake height and are provided for 
each of the tracks on each of the lakes in a so-called directory file. This methodology is detailed in 
Cretaux et al. (2011, 2018). 

The term N in Eqs. 3.3 and 3.4 corresponds to the geoid correction that must be applied to each 
altimetry measurement and is also provided in the GDRs. However, current corrections in the GDRs 
are not accurate enough at short wavelengths for lakes. Work by Birkett (1995) and Cretaux and 
Birkett (2006) shows that a specific computation must be performed to correctly account for the 
slope of the geoid over a distance of several hundred metres, which is much finer than the current 
geoid model resolution. The “repeat track technique” is used to solve this problem. The geoid slope 
is recalculated for each of the satellite tracks of the satellite and averaged using all cycles. The 
result of this calculation is a mean vertical profile along the track which serves as geoid correction 
(Cretaux et al. 2016). 

3.3. LWL quality assessment 

Quality assessment is carried out by comparing the retrieved LWL with independent in situ 
measurements. In situ measurements are available for some lakes on national hydrological services, 
for example in Canada or Brazil, for selected lakes and reservoirs, or they are released to the 
project team by the State Hydrological Institute of St Petersburg within the framework of the 
Hydrolare data centre. A set of approximately 20 lakes regularly serve as validation data sets for 
altimetry products. The accuracy of lake height measurement depends on several factors: range, 
orbit and correction errors. Range errors result from surface roughness and quality of the retracking 
of the altimeter waveform. It is also important to emphasize that the altimeter measurement is an 
average over the footprint which intrinsically differs from a single point measurement of a ground 
gauge, and which is furthermore generally done along the coast line. 

Performing comparisons over a set of several lakes and reservoirs of varying morphology and from 
different regions addresses the recurring question of accuracy of altimetry for lakes and reservoirs 
and its dependency on the size of the water bodies. It is not clear whether a minimum size 
threshold exists below which the altimeter does not provide valid water levels. Past studies (see 
Cretaux et al. 2016) have shown that the accuracy of LWL is largely sub-decimetre for large lakes 
and that lake size influences the quality of the measurement. However, these results also show that 
accuracy is dependent on the lake environment: mountain lakes or those with ice and snow in 
winter, as well as large but narrow reservoirs have degraded accuracy. For Lake Onega for example, 
the RMS accuracy was twice as good when winter months were excluded compared to the year as a 
whole. Past studies further show that accuracy of LWL products ranges from a few centimetres for 
very large lakes to a few decimetres for small or narrow lakes (Ričko et al. 2012, Cretaux et al. 
2016). However, new missions like the Sentinel-3 constellation present new technological 
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developments from which improved accuracy may be expected, owing to acquisition in SAR mode. 
This will have little effect for large lakes (Cretaux et al. 2018) but prompts new assessment to 
gauge the extent of improvements over smaller lakes.  

3.4. LWL references 

Birkett C.M. (1995). Contribution of TOPEX/POSEIDON to the global monitoring of climatically 
sensitive lakes, Journal of Geophysical Research, 100, C12, 25,179-25,204 

Brown G. S. (1977). The Average Impulse Response of a rough surface and its applications, IEEE 
Trans. Antennas Propag, Vol. 25, pp. 67-74. 10.1109/TAP.1977.1141536 

Crétaux J-F. and Birkett C.M. (2006). Lake studies from satellite altimetry, C R Geoscience, 
10.1016/J.crte.2006.08.002 

Crétaux J-F., Calmant S., Romanovski V., Perosanz F., Tashbaeva S., Bonnefond P., Moreira D., 
Shum C.K., Nino F., Bergé-Nguyen M., Fleury S., Gegout P., Abarca Del Rio R., Maisongrande P. 
(2011). Absolute Calibration of Jason radar altimeters from GPS kinematic campaigns over Lake 
Issykkul, Marine Geodesy, 34: 3-4, 291-318,  10.1080/01490419.2011.585110  

Cretaux J-F, Abarca Del Rio R., Berge-Nguyen M., Arsen A., Drolon V., Clos G., Maisongrande P. 
2016. Lake volume monitoring from Space, Survey in geophysics, 37: 269-305. 10.1007/s10712-016-
9362-6 

 Cretaux J-F., Bergé-Nguyen M. Calmant S., Jamangulova N., Satylkanov R., Lyard F., Perosanz F., 
Verron J., Montazem A.S., Leguilcher G., Leroux D., Barrie J., Maisongrande P. and  Bonnefond P. 
(2018). Absolute calibration / validation of the altimeters on Sentinel-3A and Jason-3 over the lake 
Issykkul, Remote sensing, 10, 1679. 10.3390/rs10111679 

Ričko M., C.M. Birkett, J.A. Carton, and J-F. Cretaux. (2012). Intercomparison and validation of 
continental water level products derived from satellite radar altimetry, J. of Applied Rem. Sensing, 
Volume 6, Art N°: 061710. 10.1117/1.JRS.6.061710 



D2.2: Algorithm Theoretical Basis Document (ATBD) 

 

  13/53 

4. Lake Water Extent (LWE) algorithms 

LWE can be expressed as the presence of water (on a map), or as the total areal extent of a 
waterbody (a single number). It is practically very challenging, if not impossible, to process the high 
spatial resolution satellite imagery required to generate maps of water presence for hundreds, if 
not thousands, of lakes every few days. For this reason, the strategy adopted is twofold. First, for 
each lake, we collect a set of images (SAR and/or optical) spread out over a long period. To choose 
the images we use the water level time series (calculated using satellite altimetry) to determine 
when the lake was at low, medium and high level. A relationship (a first or second order 
polynomial) can then be establish using a set of about 10 to 15 couples of (LWL,LWE) and a simple 
least square adjustment. Knowing the function LWE=f(LWL) we can thus relate LWL from altimetry 
to LWE using the hypsometry process. This allows us to achieve a high temporal resolution without 
overwhelming image processing requirements. 

To determine LWE maps to feed into the hypsometry curve, it is determined from contrasts in the 
optical and/or radar reflectance of water compared to surrounding land. In Lakes_cci, both optical 
and synthetic aperture radar (SAR) approaches are being investigated to generate LWE. Because the 
processing chains differ between these methodologies, candidate algorithms are described 
separately for SAR and optical techniques, in the following sections. 

4.1. SAR LWE estimates 

4.1.1. Description 

The SAR approach is divided into three stages: pre-processing, lake water classification and 
labelling and results generation. The lake water classification-labelling stage is considered the core 
of the methodology. Figure 1 shows the processing chain as a block diagram. Some of the processing 
stages currently have two branches, where alternative and complementary methods are being 
evaluated to ultimately optimize the retrieval in a unified scheme. More information on the 
candidate algorithms and how selection takes place is provided in the PVASR-ADP document, 
whereas the PVP details the validation approach to either methodology. For the time being, and to 
illustrate the complementarity of the methodologies, we describe the processing chain as one 
entity, to help identify common steps that can be shared or interchanged in future. 

The steps corresponding to each block are described in the following sections. 
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Figure 1: Block diagram of the methodology employed to obtain the Lake Water Extent using 
SAR images. 

 

4.1.1.1. Pre-processing 

The pre-processing accounts for manipulations done on the original input image stack to ease the 
lake water extent calculation. The output of this chain of processes forms the input for Lake Water 
classification/labelling. Two SAR images formats are accepted, GRDH (Norce) and SLC (Tre-
Altamira), with the following order of processes, respectively: 

4.1.1.1.1. Ground Range Detected High resolution (GRDH) input 

The pre-processing part of GRDH input imagery in the NORCE algorithm involves performing a 
precision SAR geocoding on all SAR images using the GSAR (Generic Synthetic Aperture Radar) 
software (Larsen et al. 2005). We use the calibrated Sentinel-1 IW GRDH product, which is sampled 
with 10 m pixel spacing on the ellipsoid. The geocoding steps performed are as follows:   

 Calibration using an annotated lookup table (from the GRDH product)  
 Multilooking, 2 × 2 pixels averaging to suppress speckle  
 Mapping the selected Universal Transverse Mercator (UTM)-projected output grid to the 

radar coordinates using the best available digital elevation model from a variety of sources 
(e.g. SRTM, http://kartverket.no) and precision orbit vectors available from the European 
Space Agency (ESA) (https://qc.sentinel1.eo.esa.int)  

 Projection of the backscatter product to the output grid, using radar coordinate mapping 
(from previous step) and cubic interpolation. 
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The output radar backscatter amplitude images in VV and VH polarization are stored as a GeoTIFF 
image using the corresponding UTM zone, WGS-84 projection. 

4.1.1.1.2. Single Look Complex (SLC) input 

The pre-processing part of the TRE-Altamira is a stack of SAR SLC images of the lake area. The 
default input images are Sentinel-1 IW, but the methodology allows images from any existing sensor 
to be used. In the case of Sentinel-1, we consider the bursts overlapping the area of interest plus a 
spatial buffer zone. Under this default mode the following processing steps are applied to both 
cross and co-polarization images. The images are first co-registered to a common grid in SAR 
coordinates. The image amplitudes are then inter-calibrated and a Lee despeckling filter is applied. 
Using the precise orbits and a DEM, the corresponding shadow and layover masks are generated. 
These are then applied to the images to avoid false positives during the lake area 
classification/labelling stage. The amplitude images are transformed to decibels and scaled to a 0-
255 range based on the significant values histogram. The initially selected area is then further 
cropped to the final area-of-interest, i.e. the lake and immediate surroundings.  

Lake surface classification and labeling. These steps are in place to identify lake water pixels from 
the amplitude images obtained after pre-processing. An initial classification takes place, which is 
common to the two processing lines. Following classification, complementary processing chains are 
again evaluated, here denoted NORCE (Methodology 1) and TRE-Altamira (Methodology 2). It is 
important to stress that both methodologies use the same input and yield equivalent results: a 
binary lake water map that is employed to calculate the water extent. The separate methodologies 
are in place to define the best combination of processing steps, i.e. yielding the most accurate 
results.  

4.1.1.1.3. Classification 

The classification algorithm applies the K-means unsupervised clustering method to segment the 
image into a defined number of clusters. The method therefore allows for variable cluster (class) 
centers to which a pixel is assigned, which is preferable since the absolute backscatter values 
associated with water can vary from acquisition to acquisition due to for example meteorological 
factors. In these situations, a fixed threshold would not be as effective. The clustering is currently 
performed using seven classes. By over-segmenting the lake there is the possibility to merge classes 
to represent the water area as part of the following steps. 

The LWE classification algorithm takes the SAR backscatter amplitude images in cross- and co-
polarization as inputs together in the NORCE approach whereas the TRE-Altamira approach uses 
them separately, both with a radar layover/shadow mask and a lake maximum area mask. The 
purpose of the masks is to reduce the image area where water is to be detected and areas where 
the radar cannot image the surface, therefore reducing computational requirements.  

4.1.1.1.4. Methodology 1 (NORCE) 

In the first approach, a multi-temporal correction is applied to the set of classified images in order 
to replace unclassified pixels, for example those that have missing data, or radar layover/shadow 
overlapping the lake area. This is done by selecting the latest preceding image in the time series 
acquired at a different viewing geometry, which represents a reference image. The classification of 
the reference image is used to assign pixel classes to the pixels in the current image that were 
unclassified. Once this correction is performed, the water area is mapped by extracting the pixels 
in the lowest 4 classes. Only the largest coherent water region is retained in the final geocoded 
lake area. All images in the dataset are manually accepted or rejected based on a visual 
comparison of the final lake map with the original backscatter images. 
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4.1.1.1.5. Methodology 2 (Tre-Altamira) 

In the second approach, water class selection is achieved using entropy (Zhihui et al. 2012) and 
coefficient of variation/contrast (Martinis et al. 2009 and 2011, Landuyt et al., 2019) images. The 
images are divided into blocks of 100 x 100 pixels. Different values can be tested choosing the 
optimal in terms of entropy and contrast histogram separation.  

First, low entropy pixels are selected by applying the Kernel Density Estimator (Gramaki 2018) to 
the entropy histogram since water has low entropy and these pixels have the highest probability of 
representing water. A binary map is generated using these pixels and this is done separately for the 
cross and co-polarization channels, which are binary added. From this combined map, the largest 
water surface segment is extracted, discarding outer water bodies. By superimposing the water 
entropy mask on the classification map, the classes belonging to the largest water surface segment 
are determined. Using the classes contained within the water surface segment (derived from 
entropy images) the classes are selected from the original classification map to create a final binary 
map representing water.  Again, only the largest coherent water segment is retained for the final 
lake region. 

Lake borders may not be clearly defined in the amplitude image as humidity or low vegetation on 
the lake surroundings may present similarly low backscatter to the lake water, resulting in low 
contrast between surroundings and water. Complementary to the entropy analysis and the lake 
mask, a lake “margin” area is calculated. Among the blocks containing this border area, the lake 
pixels of the corresponding cross or co-polarization map presenting the maximum contrast between 
both are selected and added to the existing inner map obtaining the final lake binary map in SAR 
coordinates. 

4.1.1.2. Product Generation 

Up to this point, the lake water maps for each of the processed images are available. Those 
corresponding to Methodology 1 are already geocoded. In the case of Methodology 2 they are still in 
SAR coordinates so a geocoding step takes place. From these geocoded lake water maps (in GeoTiff 
format), the lake area extents are retrieved and exported to a csv file.  

4.1.2. Algorithm definition 

4.1.2.1. Input data 

SAR processing for LWE relies on the following input data sources: 

 GRDH and SLC SAR images 
 Maximum lake area mask (GeoTIFF) 
 Radar layover/shadow mask (GeoTIFF or SAR) 

The default images are Sentinel-1 IW (VH, VV) but the algorithm is valid for the most common SAR 
missions: ERS, ENVISAT-ASAR, Radarsat-1, Radarsat-2, ALOS-PALSAR, PALSAR-2, TerraSAR-X, PAZ 
and Cosmo-Skymed.  

4.1.2.2. Output data 

The SAR processing procedures result in the following outputs: 

 Binary lake/water map. Water is assigned a value of 1, 0 elsewhere (GeoTIFF) 
 LWE time series (one CSV file containing the lake water extent in square kilometres and the 

corresponding acquisition date for each of the employed images). 
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4.1.2.3. Mathematical statement 

K-means clustering (Jin et al., 2011) is a variant of the Expectation-Maximization algorithm, and as 
an unsupervised clustering algorithm requires no manual intervention. It works by separating the 
data samples into a specified number of clusters of equal variance by minimizing the sum of the 
square difference between the data samples and cluster mean (often called centroids), given by  

Σ(xi - µi)2 [4.1] 

The first stage of the algorithm selects initial values for each cluster centroid, for example by 
taking actual sample values from the dataset. A sample is assigned to the cluster whose centroid is 
closest to the sample value and the mean of the samples in each cluster is calculated, which 
becomes the new centroid. The process is iterated by re-assigning samples to the nearest cluster 
based on the updated value of the cluster centroid and the mean of the samples in each cluster is 
calculated again. The process eventually converges when the difference between the previous 
cluster centroid and the updated value (mean of the samples in the cluster) is less than some 
threshold value (tolerance) or the maximum number of iterations has been reached.  

Other mathematical operations that are implemented within the data processing steps include the 
Lee filter (Lee 1986) and the Kernel Density Estimator (Gramaki, 2018). Two mathematical 
operators are also used. The first is the coefficient of variation or contrast Cv: 

Cv = µx / σx [4.2] 

where µx is the mean value of the amplitude pixels x over an image block and σx the standard 
deviation of the amplitude pixels x over the same image block. The second is the entropy H: 

H = - Σk pk log2(pk) [4.3] 

where k is the number of quantified amplitude levels and pk is the probability associated with 
quantified level k. 

4.1.2.4. Quality assessment 

A pixel accuracy figure is not provided as part of the result. This is mainly due to the use of the K-
Means classification method and the entropy and contrast operators. The nature of these methods 
does not allow for the error of water pixel misclassification to be calculated. Some general 
indicators could be calculated by assessing for example the amplitude, entropy and contrast 
histograms. These reliability indicators could be generated for the images present in the data stack. 
At the present time this remains an open issue under discussion. In order to calculate the accuracy 
of the lake water maps, ground truth data are required. 

4.2. Optical LWE estimates 

For optical LWE estimation we investigate two unsupervised approaches, Otsu’s method (Otsu 1979) 
and KMeans, and two supervised methods, SVM and Random Forest, applied to High resolution 
sensors with a SWIR channel, i.e. Landsat 5, Landsat 8, Sentinel-2. The Kmeans approach is 
identical to its use on SAR imagery and is not repeated here. The following sections detail the 
OTSU, SVM and Random Forest approaches. 



D2.2: Algorithm Theoretical Basis Document (ATBD) 

 

  18/53 

4.2.1. Algorithm 1: Adaptive sampling for SVM classification 

4.2.1.1. Description 

An accurate and precise sampling is essential for training an efficient supervised classification. One 
of the challenges regarding water surfaces classification is the dynamic nature of such systems; 
seasonality and meteorological conditions have great impacts on the open water surface. As a 
result, if the classification algorithm is to be trained on each image, training samples cannot be 
static and have to be adapted to each image from the time series. On the other hand, in the 
context of a large scale water surface extraction, creating a high quality sampling would require 
either a very time consuming photo-interpretation work, or an already high quality algorithm 
capable of distinguishing water and non-water pixels. The use of an a priori water surface database 
could help by reducing the processing area to where water is most likely present. The method used 
here for creating these automatic samples is a combination of the said a priori database and the 
radiometric information obtained from each image of the time series. 

The most relevant a priori water surface database would be the Global Surface Water (GSW) 
produced by the Joint Research Centre (Pekel et al., 2016). Apart from being a state-of-the-art 
global dataset, the accuracies presented in the associated paper are high and the dataset has been 
used and cited in high quality scientific work (Weiss et al. 2018, Yamazaki et al. 2017). These 
factors motivated the use of GSW as a priori inland water surfaces dataset. 

As illustrated by Figure 2, each satellite image of the time series is processed individually, 
extracting “water” and “non-water” samples. A machine learning algorithm then exploits both the 
image and the training dataset to perform a supervised classification of water as LWE. The Support 
Vector Machine (SVM) is widely used and considered one of the most suitable machine learning 
algorithms for water detection, showing high and stable performance (Martinis et al., 2017).     

 

 

Figure 2: Algorithm 1 workflow 

Water masks derived from the time series are then cropped with the lake area of interest. Water 
areas are calculated and reported in a table in order to visualise LWE curve in time 



D2.2: Algorithm Theoretical Basis Document (ATBD) 

 

  19/53 

4.2.1.2. SVM Algorithm definition  

4.2.1.2.1. Input Data 

The optical LWE estimation relies on the following input data: 

 Sentinel-2 L1C/L2A or Landsat-8 time series 
 Global Surface Water database  
 Lake area of interest in vector format 

4.2.1.2.2.  Output Data 

The output data from optical LWE estimates are analogous to the SAR outputs, noting that instead 
of a raster map a vector is produced: 

 Lake Water Extent derived from each EO image, in vector format 
 Spreadsheet (Excel format) summarizing for a given lake, all water surfaces by acquisition 

date 

4.2.1.2.3. Mathematical statement 

The LibSVM library, implemented in the Orfeo Toolbox, is used with a linear kernel type. SVM is a 
powerful machine learning procedure created by Vapnik (1995) and is useful because of 
applicability in a large range of applications (Vapnik 1998, Cherkassky and Mulier 1998). The power 
of SVMs relies on the kernel function which can adapt dimension function compared to the mapping 
input (Cortes and Vapnik 1995). In addition, the kernel can adapt itself into a matrix kernel instead 
of high dimensional space if the classes are not separable in the input space.  

4.2.1.3. SVM Accuracy 

Validation of the algorithm has been performed in the ESA-ASAPTERRA project (Advancing SAR and 
Optical Methods for Rapid Mapping). The overall accuracy of LWE produced by the same algorithm 
over the Poyang Lake test site was 98.65%. A reference classification produced by visual 
interpretation was used as ground truth in this evaluation. 

4.2.2. Algorithm 2:  MNDWI thresholding using the OTSU method 

4.2.2.1. Description 

Thresholding is one the most basic classification methods. From a greyscale image, a value is 
computed as the limit between two or more classes. The OTSU method selects an optimal threshold 
by reducing the within-class variance, or by maximizing the between-class variance. This method is 
easy to implement and computationally efficient. 

It is anticipated that applying the OTSU algorithm to the area corresponding to water following a 
so-called ‘water-index’ will increase the performance of the process compared to single raw band 
thresholding. The Modified Normalized Difference Water Index, MNDWI has been demonstrated to 
be one of the most efficient indices when detecting water for satellite images. 

Furthermore, focusing the study on an a priori known region where the water class is expected 
makes ideal conditions for an OTSU application for water identification. For this reason, it is 
important to use good reference polygons, delimiting the areas of interest, here referred to as the 
Lake Area of Interest. This area delineates where the largest observed water extent is expected to 
occur and may include some of the surrounding land area.  
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The raw water masks derived from the satellite time series are then cropped to the lake area of 
interest. Water areal extent is calculated and reported in a table to synthesize LWE dynamics over 
time. 

Time series of a given sensor are subsequently classified using a single MNDWI threshold. All images 
from a sensor collection over a given Lake AOI are reduced to a single median image. This image is 
used to compute the threshold using the OTSU method which is then sufficiently accurate to be 
applied to the individual images. 

4.2.2.2.  Algorithm definition 

4.2.2.2.1. Input Data 

The input data for the Optical thresholding approach include: 

 Sentinel-2 L1C/L2A, Landsat- 8 as well as Landsat-5 time series obtained from ESA Science 
Hub, USGS portal or Google Earth Engine. 

 Lake area of interest in vector format: the maximum water extent masks derived from ESA 
Landcover cci.  

4.2.2.2.2. Output Data 

Lake Water Extents derived using the optical thresholding approach will be provided in a vector 
format (shapefiles). In addition, a spreadsheet summarizes the water extent per water surface 
within a given time series, separated by acquisition date.  

4.2.2.2.3. Mathematical statement 

The OTSU method was first expressed by Otsu (1979). If we consider that an image is composed of 
grey level values. Each pixel ni in the image has a grey level value i. The total number of pixels is: 

 [4.4] 

The grey-level probability distribution is expressed as: 

 [4.5] 

Let’s suppose that the image is divided in two classes using the grey values: class A with grey levels 
from 1 to t, and class B from t+1 to L. A and B probabilities are: 

 [4.6] 

Mean grey levels in each class are:  

 [4.7] 

And the total mean grey value is: 
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  [4.8] 

Class variances are given by: 

 [4.9] 

  [4.10] 

The Otsu method tends to maximize the between-class variance to make the two classes as distinct 
as possible. 

 [4.11] 

The calculated threshold is then the value that maximizes this between-class variance. 

 

4.2.3. Algorithm 3: Random Forest (RF) 

4.2.3.1. Description 

This approach is based on machine learning pipeline using Random Forest. Training samples are 
derived from the GSW database.  

4.2.3.1.1. Pre-processing 

For each image in the time series a deep stack is produced. This stack is built with a selection of 
image bands and relevant indices (Figure 3). The bands and indices were defined based on previous 
studies on water bodies mapping led by ICube-Sertit. 

 

 

Figure 3: Illustration of the Sentinel-2 stack creation 
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4.2.3.1.2. Training 

The Random Forest is proven to be a robust algorithm for classifications task. In order to build an 
efficient machine learning model, a collection of Sentinel-2 tiles from the time series with the 
correspondent labels from the GSW database is selected for the training (Figure 4).  

The model will learn from multiple dates representing different seasons and Lake Surface dynamics 
which enables for model generalization (temporal and spatial). 

 

 

Figure 4: Illustration of the RF pipeline 

4.2.3.1.3. Prediction 

The trained model pipeline is saved and applied to the complete time series (Figure 5). 

 

Figure 5: Illustration of the prediction from pre-trained models on the entire Sentinel-2 time 
serie 

4.2.3.2. Algorithm definition 

4.2.3.2.1.  Input Data 

Input data to the Random Forest method for optical LWE estimation include: 

 Sentinel-2 data L1C/L2A 
 Lake area of interest in vector format 
 GSW samples  

4.2.3.2.2. Output Data 

The Lake Water Extents derived using the Random Forest method for optical LWE estimates will be 
provided in a vector format (shapefiles). 
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4.2.3.2.3. Mathematical statement 

The random forest algorithm is part of the ensemble classifiers family. This technique is popular 
within the remote sensing community due to the accuracy of its classifications. 

It was first introduced by Tin Kam Ho (1995). The method was extended by Breiman (2001)  
highlighting important concepts like bagging (bootstrap aggregating) and Out-of-bag error (OBB). 

The bootstrap sampling allows for the decorrelation of the trees and therefore improve the results 
and the robustness of the model. The OBB error can be used to determine the importance of 
features used for the training. 

An important concept for random forest is bagging or bootstrap aggregation. For a given vector x to 
predict, T number of trees and m the number of variables for each tree: 

1. Select a random sub-sample of size m with replacement from the data 

2. Train the tree Ti on the bootstrapped sample  

The final estimate of the prediction for is an average of estimation from each tree Ti  

 [4.12] 

The RF model uses bagging to form an ensemble of decision trees. It only uses a sub-sample of the 
training data and a selection of features for each tree.  

The random forest algorithm adds an extra step to the bagging algorithm, which is feature selection 
(feature bootstrapping) 

For a given vector x to predict, T number of trees and m the number of variables for each tree: 

1. Select a random sub-sample of size m with replacement from the data 

2. Train the tree Ti on the bootstrapped sample with a selection of n random features from the 
dataset (main difference between bagging and RF) 

The prediction of x is similar to the bagging process, an average (or vote) over all the trees. 

The values of T, m and n are part of the hyper parameters that need to be fine-tuned in order to 
optimize the RF results. 

4.2.3.3.  Quality assessment 

The data used to train the random forest model for the lake extent extraction is divided into three 
sub-datasets (60, 20 and 20): 

 Training: data used for training only (approx. 60%) 
 Development: samples used to fine-tune the model and estimate good hyper parameters 

(approx. 20%) 
 Validation: samples used for the model training validation (approx. 20%) 

This approach allows the estimation of the model performance. However, these indicators cannot 
evaluate how well the model will perform on the entire time series. A more thorough inspection of 
the models results, compared to others, is needed to evaluate the final accuracy of this method. 



D2.2: Algorithm Theoretical Basis Document (ATBD) 

 

  24/53 

4.2.4. Algorithm 4: simple threshold approach based on MNDWI index 

4.2.4.1. Description 

The final optical water detection algorithm is based on threshold definition using the Normalized 
Difference Water Index (NDWI) which was first introduced by McFeeters (1996) and expressed as the 
band ratio: 

NDWI = (Green-NIR)/(Green+NIR) [4.13] 

The modified Normalized Difference Water Index is: 

MNDWI = (Green-SWIR)/(Green+SWIR) [4.14] 

The water extent (in km2) is subsequently calculated using the sum of individual pixel classified as 
water pixel within the ROI. 

Processing steps are as follows. Starting with a number of pre-processing steps: 

 For each image a Region Of Interest (ROI) is defined including the target lake.  
 All pixels that are already detected as cloud pixel in the input product are excluded. 
 A geolocalised grid at native resolution is produced with the NDWI index. 

Images are subsequently individually processed. A cloud index is provided with sentinel-2 L2 images 
sourced from the THEIA database (https://labo.obs-mip.fr/multitemp/quantitative-comparison-of-
cloud-masks-from-maccsmaja-sen2cor-and-geosys-hand-made/) and corresponding pixels are 
excluded. However, cloud pixels located within the permanent lake interior (at a distance farther 
than 10 km from the shoreline) are converted to water pixels. Only images with cloud cover lower 
than 5% of the total image are selected. 

For Sentinel-2: a pixel is classified as water when NDWI is higher than 0.1, or NDWI equal to 1 or 
NDWI equal to -1 and when at the same time  Band 4 reflectance is lower than 400. 

For Landsat 5 a pixel is classified as water when NDWI is higher than 0.02 and for landsat 8 when 
NDWI is higher than 0.1. 

4.2.4.1.1.  Input Data 

Input data to the MNDWI method for optical LWE estimation include: 

 Sentinel-2 data L1C/L2A, landsat 5, and 8 
 Polygon of the Region of interest 
 Maximum Water Extent polygons from an external database (GLWD) 

4.2.4.1.2. Output Data 

A file of Lake Water Extents derived from each EO image, with associated lake water level is 
produced (in text format) for a set of 10-15 different dates, serving as input file for the inversion of 
the hypsometry of each lake. In order to calculate the hypsometry coefficient for each of the lake 
in the Database, we need to produce a set of vector (LWL,LWE) for about 10 – 15 images collected 
and processed at different dates corresponding to different water level. These value of (LWL,LWE) 
is therefore then used as input for the hypsometry inversion. 

4.2.4.2. Quality assessment 

The LWE is calculated by a combination of hypsometry and water height measured from satellite 
altimetry. The hypsometry is represented by a linear or a quadratic polynomial, depending on lake 
morphology, and is estimated using a set of 10-15 vectors (LWL, LWE) for a selection of dates at 
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different levels. A way to estimate the associated uncertainty is to calculate the RMS of the 
differences between the theoretical (calculated from hypsometry’s coefficient) and the measured 
LWE (directly from satellite imagery) for the dates that have been chosen to build the hypsometry. 
A first test done over a set of 10 lakes have shown that the estimated RMS of LWE was lower than 
2% of the total extent for each of the 10 lakes 

4.2.5. Final determination of the LWE: approach based on hypsometry 

4.2.5.1. Input data 

To calculate the LWE we use the vector (LWL,LWE) calculated previously (see above) to estimate, 
by simple least square adjustment, the coefficients representing the 2d-polynomial subsequently 
used as hypsometry curve.  

The satellite altimetry height (LWL) of lake water surface is then used together with the 
hypsometry coefficient to determine the LWE variable. 

4.2.5.2. Method 

We first use the water level time series inferred from satellite altimetry and released as LWL 
products, in order to determine some key periods when the lake was at extreme heights and some 
intermediate values. Then, satellite images are selected at the same dates for the water mask 
detection using approaches described above. It is not realistic to determine water extent of a lake 
for each measurement of its water level, especially when a lake is too large and is not covered by 
only one image. We select between 10 and 15 images at different dates and calculate the 
hypsometry relationship (dLWE/dLWL) which is then applied to determine surface extent of the 
lakes each time a water level is calculated using satellite altimetry. The hypsometry is expressed as 
a polynomial of degree 1, 2 or 3 depending on the linearity of the couples of water level and 
surface extent of the lake. In such processing, we do not need to process a large amount of satellite 
images and this is a practical way to produce lake surface extent together with lake water level. 
We don’t extrapolate the water surface for water height outside of the maximum and minimum 
values used to determine polynomial coefficients. Therefore we try to collect satellite images from 
different sensors (radar, optical) as close as possible to the maximum and minimum level observed 
from satellite altimetry. The method is applied and described in Cretaux et al., (2015, 2016). A 
final estimation of accuracy is calculated as expressed in 4.2.4.2 with all vectors used to calculate 
the hypsometry coefficients. 

4.2.5.3. Output data 

LWE time series are produced for the time span corresponding to the LWL products in the form of 
text files. 
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5. Lake Surface Water Temperature (LSWT) algorithms 

5.1. Description 

This section describes the algorithm for Lake Surface Water Temperature (LSWT) production chain. 
For consistency with data produced in heritage projects, the version (v4.1) described here refers to 
the scientific versioning of the climate data record in a manner already familiar to users of data 
from these projects, with GloboLakes offering the most recent product generation as v4.0 (Carrea 
et al. 2019). 

The algorithm described here is consistent with the previous Globolakes v4.0 algorithm, with the 
exception of the following advances: 

 V4.1 includes an additional harmonised sensor, namely, the Advanced Very High Resolution 
Radiometer (AVHRR) on Metop B 

 

The latter aspect makes v4.1 a minor increment over v4.0, because use of new re-analysis data 
necessitates reprocessing of the complete time series for consistency. 

The LSWT climate data record (CDR) is based on Along-Track Scanning Radiometer (ATSR) and 
AVHRR series instruments. The scope of this description applies to the following steps:  

(1) identification of water-only pixels for valid retrieval,  

(2) the LSWT retrieval itself,  

(3) estimating the daily average LSWT from the instantaneous skin observation,  

(4) assigning a pixel quality level,  

(5) remapping the data to a regular global grid,  

(6) cross-sensor LSWT harmonization. 

5.2. Algorithm definition 

The LSWT processing sequence is described in Figure 6. The individual processing steps are 
described in turn below.  
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Figure 6: Major steps in LSWT processing 

5.2.1. Water detection 

Water detection is applied to potential inland water pixels. It operates by calculating a score 
against several metrics, derived from reflectance channels available. For this reason, LSWT 
products are in this version obtained only from daytime scenes.  

The score for a given metric is defined as: 

𝒔 = ൞

𝟎 if  𝑿 ≤ 𝒕𝟎
𝑿ି𝒕𝟎

𝒕𝟏ି𝒕𝟎
if  𝒕𝟎 < 𝑿 < 𝒕𝟏

𝟏 if  𝑿 ≥ 𝒕𝟏

 [5.1] 

The score is a linear ramp between 0 and 1, similar to well-known concepts of “fuzzy logic” (the 
scores are like probabilities). 

The values of the terms in Eq. 5.1 are given in Table 1. The first three metrics based on red, near 
infra-red and shortwave infra-red bands use the expectation that reflection from a cloud-affected 
pixel exceeds that from a clear view of a lake, with values appropriate to different wavelengths.  

The MNDWI is the modified normalised difference water index. The NDVI is a normalised difference 
vegetation index. The setting of the thresholds was done (within GloboLakes) using AATSR imagery 
tuned to a probability of cloud image derived from MERIS 300 m imagery. The tuning of thresholds 
was done one-at-time across metrics, maximising the posterior probability that a certain pixel is 
cloudy or cloud free.  

Table 1: Thresholds test for water detection 

𝑿, metric Score definition Thresholds 

R670 

𝒔 =

⎩
⎨

⎧
0 if  𝑋 ≥ 𝑡଴

𝑋 − 𝑡଴

𝑡ଵ − 𝑡଴

if  𝑡ଵ < 𝑋 < 𝑡଴

1 if  𝑋 ≤ 𝑡ଵ

 

t0 = 0.132 

t1 = 0.032 

L1b 

Water Detection 

LSWT Retrieval 

Quality Level 

Remapping 

L2P L3U 

Collation 

L3C 
 Bias correction with ref. 
to AVHRR MetOpA 

L3S 

LSWT prior NWP 

Lake mask 
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𝑿, metric Score definition Thresholds 

R870 

𝒔 =

⎩
⎨

⎧
0 if  𝑋 ≥ 𝑡଴

𝑋 − 𝑡଴

𝑡ଵ − 𝑡଴

if  𝑡ଵ < 𝑋 < 𝑡଴

1 if  𝑋 ≤ 𝑡ଵ

 

t0 = 0.097 

t1 = 0.022 

R1600 

𝒔 =

⎩
⎨

⎧
0 if  𝑋 ≥ 𝑡଴

𝑋 − 𝑡଴

𝑡ଵ − 𝑡଴

if  𝑡ଵ < 𝑋 < 𝑡଴

1 if  𝑋 ≤ 𝑡ଵ

 

t0 = 0.048 

t1 = 0.012 

MNDWI 

𝒔 =

⎩
⎨

⎧
0 if  𝑋 ≤ 𝑡଴

𝑋 − 𝑡଴

𝑡ଵ − 𝑡଴

if  𝑡଴ < 𝑋 < 𝑡ଵ

1 if  𝑋 ≥ 𝑡ଵ

 

t0 = 0.295 

t1 = 0.515 

NDVI 

𝒔 =

⎩
⎨

⎧
0 if  𝑋 ≥ 𝑡଴

𝑋 − 𝑡଴

𝑡ଵ − 𝑡଴

if  𝑡ଵ < 𝑋 < 𝑡଴

1 if  𝑋 ≤ 𝑡ଵ

 

t0 = -0.085 

t1 = -0.245 

MNDWI-NDVI 

𝒔 =

⎩
⎨

⎧
0 if  𝑋 ≤ 𝑡଴

𝑋 − 𝑡଴

𝑡ଵ − 𝑡଴

if  𝑡଴ < 𝑋 < 𝑡ଵ

1 if  𝑋 ≥ 𝑡ଵ

 

t0 = 0.375 

t1 = 0.685 

  

The first three metrics use the expectation that reflection from a cloud-affected pixel exceeds that 
from a clear view of a lake, with values appropriate to different wavelengths. The MNDWI is the 
modified normalised difference water index. The NDVI is a normalised difference vegetation index. 
The setting of the thresholds was done (within GloboLakes) using AATSR imagery tuned to a 
probability of cloud image derived from MERIS 300m imagery. The tuning of thresholds was done 
one-at-time across metrics, maximising the posterior probability that a certain pixel is cloudy or 
cloud free.  

 

5.2.2. LSWT retrieval 

The retrieval scheme is the optimal estimation (OE) scheme (MacCallum et al. 2012), the equation 
for which is: 

𝒙ෝ = 𝒙𝒂 + 𝑮൫𝒚 − 𝑭(𝒙𝒂)൯ [5.2] 

The retrieved state is the prior state plus an increment of 𝐆൫𝒚 − 𝐹(𝒙௔)൯. 𝐹 is the forward model, 
i.e. the radiative transfer model (RTM) run for the prior re-analysis data and prior LSWT. The matrix 
𝐊 expresses how the observations change for departures from the prior state 𝑥௔, i.e., it is a matrix 
where a given row contains the partial derivatives of the BT in a particular channel with respect to 
each element of the state vector in turn. The partial derivatives are the tangent linear outputs 
from the forward model 𝐅. 𝐒ఌ is the error covariance of the differences between the model and 
observed BTs. This error covariance matrix is the sum of the radiometric error covariance in the 
observations (𝐒௢) and estimated error covariance of the forward model (𝐒௠). 𝐒௔ is the error 
covariance matrix for the prior state variables. 

Standard OE theory also enables estimation of the retrieval uncertainty (to be output), a diagnostic 
of fit (the 𝜒ଶ of the retrieval fit) and the sensitivity of the retrieval to the true LSWT (“averaging 
kernel” in retrieval theory). The latter two outputs are used within quality level attribution (see 
below). 
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5.2.3. Quality Level 

Quality level is treated as a concept that is distinct from uncertainty: a highly uncertain LSWT can 
have the highest quality level if all the conditions for giving a valid LSWT and valid LSWT 
uncertainty are met: the quality level reflects the degree of confidence in the validity of the 
uncertainty estimate and not the magnitude of data uncertainty. 

The quality level assigned to a pixel will be the lowest level (row of table) which matches any of 
the conditions shown in Table 2. The assignments are compatible with GHRSST conventions: i.e., a 
particular level is given if none of the conditions higher up any column of the table are met. In the 
table d is the distance to land.  

  

Table 2: Quality level criteria 

Level Meaning 

Water 
detection 
score 
(0.5<d<=1.5) 

Water 
detection 
score 
(d>=1.5) 

Sensitivity 2 Other 

0 No data <0 <0     No data; non-
lakes pixel 

1 Bad data <0.5 <0 <0.1 >3 LSWT < 273.15 

2 Worst quality <2 <0.5 <0.5 >2 Limb (θsat > 55) 

3 Low quality <3.5 <2 <0.9 >1   

4 
Acceptable 
quality <4.5 <3.5   >0.35   

  

For instance, any pixel where s is unavailable (value is less than zero), required input BTs are 
unavailable, or which is over land will be assigned quality level of 0. Next, any pixels close to land 
which have s < 0.5, calculated LSWT sensitivity < 0.1 etc. will be assigned quality level of 1 and so 
on. 

 Quality level 0 pixels should contain no other data  
 Quality level 2-5 pixels should always contain valid data 
 Quality level 1 pixels contain data but the data is not suitable for use (bad_data). For 

instance, the LSWT retrieval may have been attempted, but rejected as bad_data due to 
low sensitivity etc 

We recommend using quality level 4 and 5, and consideration of use of quality level 3 with caution, 
depending on the user’s application. 

5.2.4. Remapping (L3U) 

The remapping from the L2 data in swath projection to the fixed L3 grid proceeds as follows: 

 Identify L2 pixels contributing to a L3 cell 
 Select highest quality level pixel(s) in the L3 cell 
 Calculate average LSWT from the pixels that share the highest quality level and propagate 

uncertainties to the uncertainty in this average (Bulgin et al. 2015a) 

When averaging from the pixel scale to L3 grid scale, the component or uncertainty from 
uncorrelated errors reduces (uncertainty in the mean is scaled by the familiar “1 √n⁄ ”). Uncertainty 
in the correlated error components are not reduced by averaging, since over these small scales the 
degree of correlation will be very high, and is taken to be perfect (“r = 1”). The total uncertainty in 
the average is found by combining the propagated component uncertainties. 



D2.2: Algorithm Theoretical Basis Document (ATBD) 

 

  32/53 

If the grid cell contains pixels which were not included in the averaging (e.g. due to the presence of 
cloud etc.), then there is an additional uncertainty due to incomplete sampling. This is calculated 
following Bulgin et al. (2015b) (derived for application to sea surface temperature uncertainty 
estimation) and is added to the uncorrelated component. 

5.2.5. Daily Collation (L3C) 

The polar orbiting satellite carrying the AVHRR/ATSR sensors typically complete 14-15 orbits each 
day resulting in the same number of L2P or L3U products. While L3U files are on a global grid, they 
are very sparse as the sensor will only observe a small fraction of the Earth’s surface in each orbit. 
For ease of use the LSWT outputs are collated to produce one file for each 24-hour period, 
corresponding to day-time observations. 

Following the GHRSST conventions [D1], when collating observations from overlapping orbits in the 
same day the L3C will contain the highest quality observation available in the 24-hour period. The 
selection of best observation is done as follows: 

 Choose input cells with the highest quality level 
 If multiple observations have the same quality level, then average. 

5.2.6. Inter-sensor adjustment (L3S) 

The adjustment due to different sensors has been carried out using as reference the AVHRR on 
MetOpA since the validation in GloboLakes indicated a better agreement throughout the lakes with 
the in situ data. The inter-sensor adjustment has been calculated per lake averaging per month and 
per lake and it has been applied only if: 

 Enough observations where available to estimate the adjustment for the lake (more than 3 
months of data). 

 The uncertainty of the adjustment was < 0.049 – which was valid for 80% of the lakes. 

  

A flag indicating whether the adjustment has been applied is present in the files and the 
uncertainty of the bias correction is included in the total uncertainty. For lakes where the flag is 
not set, the impact of changes in sensor on the long-term trends in LSWT is less well constrained, 
and trends should be treated with caution. 

5.3. Input Data 

5.3.1.  AVHRR 

The AVHRRs are a series of multipurpose imaging instruments carried onboard the National Oceanic 
and Atmospheric Administration (NOAA) Polar Operational Environmental Satellites (POES) and 
EUMETSAT Polar System (EPS) MetOp satellites. There are four AVHRR instruments still in operation 
with the final AVHRR launched onboard MetOpC in November 2018 (which is still too recent to 
harmonise). For the LSWT v4.2  which are generated for the CCI Lake dataset the data from AVHRR 
on the MetOpA and MetOpB satellites are processed. Only the EPS AVHRRs are used because only for 
them do we have access to global 1.1 km data. 

The EPS AVHRR is an across-track scanning radiometer using six spectral channels, three visible and 
three infrared, with a spatial resolution of approximately 1.1 km at nadir. There are 2048 pixels in 
each scan for a swath width of about 2800 km. MetOpA (Oct 2006 – present) and MetOpB (Jan 2013 – 
present) are both in stable orbits with local equator crossing time (LECT) of 09.30. AVHRR L1b data 
are available from EUMETSAT: https://navigator.eumetsat.int/ 
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5.3.2. ATSR 

The ATSR instruments were well calibrated, dual-view radiometers intended to produce long-term, 
consistent LSWT observations. Three ATSR instruments have flown on board ESA’s two European 
Remote Sensing (ERS) satellites and Envisat satellite. All three satellites were in stable sun-
synchronous orbits with near-constant Local Equator Crossing Times (LECTs) – the ERS-1 and ERS-2 
platforms had a LECT of 10:30 and Envisat had a crossing time of 10:00 all of which were 
maintained within a few minutes. ATSR-2 (on ERS-2, Aug 1995 – June 2003) and Advanced ATSR 
(AATSR, on Envisat, July 2002 – April 2012) are used in v4.2. 

The ATSRs have a nadir resolution of 1 km, with a second, forward, view at ~55°. Because of 
unsolved challenges using both views over topography in relation to small lakes, only the nadir view 
is used in v4.2. ATSR L1b are available from ESA: https://earth.esa.int/web/guest/data-access  

5.3.3.  Re-analysis data 

ERA-5 profiles are used as an input for the atmospheric profile for the RTM required by the retrieval 
algorithm, mainly the temperature and humidity profiles but also surface variables (see Table 3). 
The ERA-5 surface temperature is not used for the prior LSWT, since this aspect of the re-analysis is 
not adequate. Therefore a climatology from v4.0 LSWT products is used for the GloboLakes lakes of 
the CCI list while for the other lakes a climatology derived through a slightly different processing is 
utilised. 

 

Table 3: Variables from re-analysis data used in RTM and retrieval 

Parameter Type Used in 

Atmospheric temperature Analysis, profile RTM 

Atmospheric water vapour Analysis, profile RTM 

Surface pressure Analysis, surface RTM 

Mean sea level pressure Analysis, surface RTM 

10m wind U-component Analysis, surface RTM 

10m wind V-component Analysis, surface RTM 

2m air temperature Analysis, surface RTM 

2m dew point temperature Analysis, surface RTM 

Lake surface water 
temperature 

Created as a climatology RTM, retrieval 

Total Column Water Vapour Analysis, surface retrieval 

  

5.4. Output Data 

The LSWT-specific output data are in netCDF4-classic format and follow the GHRSST data 
specifications (https://www.ghrsst.org/wp-content/uploads/2016/10/GDS20r5.pdf) which are fully 
compatible with CCI data standards. For the multi-variable (merged) lakes product, see the 
relevant product user guide. The LSWT file names have the format: 

<Date><Time>-<RDAC>-<Level>-LSWT-<Dataset>-v02.0-fv01.0.nc 

The variable components within braces: <component> are summarised in below and detailed in the 
following sections. The fixed version string “v02.0-fv01.0” indicates that the file is a GDS 2.0 



D2.2: Algorithm Theoretical Basis Document (ATBD) 

 

  34/53 

format file and the file version is 1.0 (only incremented if a replacement file is later generated). 
The CDR version is indicated by the <Dataset> string.  

Table 4: Filename description of LSWT products 

Component Definition Description 

<Date> YYYYMMDD The identifying date for this 
file in ISO8601 basic format 

<Time> HHMMSS The identifying time for this 
file in ISO8601 basic format 

<RDAC> LakesCCI The RDAC where the file was 
created 

<Level> L3S The data processing level 
(gridded supercollated) 

<Dataset> v5.0 LSWT version number 

  

L3S LSWT-only files are supplied on a regular latitude/longitude grid and variables have dimensions: 

time:           1 (defined as unlimited) 

lat:              Number of latitude points (3600) – i.e. 0.05 grid 

lon:             Number of longitude points (7200) – i.e. 0.05 grid 

  

Table 5: Main output variables of LSWT products 

Variable name Description 

lake_surface_water_temperature Best estimate of LSWTskin as observed by the 
satellite, in kelvin 

lswt_uncertainty Total uncertainty in LSWTskin , in kelvin 

quality_level Quality level of the LSWT: 0 for no data; 1 for 
bad data; 2 for worst usable data; 3 for low 
quality; 4 for good quality; 5 for best quality 

obs_instr The instruments used for the correspondent 
observation  

flag_bias_correction It indicates if a bias correction (to harmonise 
across sensors) has been applied 

lake_id Lake IDs as used in Globolakes (v4.0) for 
backward compatibility described in (Carrea et 
al. 2015a) and available at (Carrea et al. 
2015b) 

cci_lake_id Lake IDs consolidated within the Lakes CCI 

5.5.  Quality Assessment 

The quality assessment exercise is carried out mainly comparing the retrieved LSWTs with 
independent in situ measurements. An in situ database has been compiled and updated towards the 
end of each year. Quality control checks are performed on the in situ data ranging from unrealistic 
values to comparison with the climatology together with its variability. The lakes where in situ data 
are available are distributed globally although European and especially North American lakes are 
the most monitored. The assessment of the differences between reference data and satellite LSWT 
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is carried out using robust statistics which is resistant to outliers and bad data in both satellite and 
in situ measurements. Each LSWT is accompanied by its uncertainty which will be validated using 
independent reference data as well.   
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6. Lake Ice Cover (LIC) algorithms 

6.1. Description 

Lake ice cover corresponds to the extent (or area) of a lake covered by ice. The generation of a 
lake ice cover (LIC) product from satellite observations requires implementation of a retrieval 
algorithm that can correctly label pixels as either ice (snow-free and snow-covered), open water or 
cloud. From such product, one can determine ice dates and ice cover duration at the pixel scale 
(ice-on and ice-off) and lake-wide scale (complete freeze-over (CFO) and water clear of ice (WCI)) 
(Duguay et al., 2015). From a climate perspective, determination of ice onset (date of first pixel 
covered by ice), CFO, melt onset (date of first pixel with open water) and WCI are of most 
relevance to capture important ice events during the freeze-up and break-up periods. Duration of 
freeze-up and break-up periods and duration of ice cover over a full ice season can be determined 
from these dates. 

The LIC product generated for Lakes cci uses MODIS (Terra and Aqua) data as to provide the most 
consistent and longest historical record globally to date (2000-present). The full processing chain 
and retrieval algorithm are described next. 

6.2. Algorithm definition 

An overview of the implemented processing chain is given in Figure 7. It includes three modules: 
data import, retrieval, and data export. Data is processed one day at a time. As part of global 
initialization, a water mask is loaded. Then, the data for each day is processed. One execution of 
the processing chain processes one day of data. 

MODIS (Aqua and Terra) surface reflectance and brightness temperature bands are used for feature 
retrieval (i.e. for labelling as water, ice, or cloud). The surface reflectance bands are available at 
250 m (QKM) and 500 m (HKM) resolutions. Brightness temperature bands are available in 1 km 
(1KM) resolution. Geolocation is provided at 1 km resolution and is interpolated to 250 m. 

Prior to applying retrieval, pixels of interest are identified as “good” or “bad” using quality bands 
from the original MODIS surface reflectance products. Pixels of interest are labelled as cloud-
covered or cloud-free; cloud-free pixels are then labelled as ice-covered or ice-free (water). 
Labelled pixels are resampled to the output grid. The processing chain has been revised for 
cci_lakes to generate the output grid based on specifications of the harmonized product. 
Aggregation is performed by taking a majority vote between ice and water, ties broken by selecting 
ice. If there are zero ice and water pixels, then the cell is labelled as cloud if there are non-zero 
cloud pixels; otherwise the output cell is labelled as “bad”. 

More specifically, the processing steps presented in Figure 7 are: 

Step 1: Load surface reflectance (bands 2, 3, 4, 6/7), brightness temperature (bands 20, 31, 32), 
geolocation (latitude and longitude), and quality bands as rasters from MODIS Terra/Aqua 
Atmospherically Corrected Surface Reflectance 5-Min L2 Swath (MOD/MYD 09) products. 

Step 2: Identify lake (water) pixels of interest based on maximum water extent from ESA CCI Land 
Cover (v4.0) 150-m resolution product. 

Step 3: Identify pixel quality and label pixels of interest from application of retrieval algorithm for 
the detection of clouds, ice and open water. 

Step 4: Resample labelled pixels acquired in a day from individual swaths to the output grid at 
1/120 degrees resolution and perform temporal (daily) and spatial aggregation in terms of each cell 
in the output grid. 

Step 5: Filter the output grid to discard cells (1/120 degrees resolution) which contain land pixels 
using maximum water extent observed in ESA CCI Land Cover (v4.0) 150-m resolution product. 
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Step 6: Write and export the daily lake ice cover product in the required format (NetCDF) with 
metadata. 

 

 

Figure 7: Overview of the processing chain for generation of MODIS LIC daily product 

6.2.1. Input Data 

Satellite input data: 

 MODIS Terra/Aqua Atmospherically Corrected Surface Reflectance 5-Min L2 Swath, 
Collection 6 (Vermotte et al., 2015). 

Lake water boundaries: 

 Maximum water extent observed in ESA CCI Land Cover (v4.0) at 150-m resolution. 

6.2.2. Output Data 

The output data is produced in the harmonized grid format. The edge of each grid cell subtends 
1/120 degrees latitude or longitude. The list of variables included in the LIC product are provided in 
Table 6. 

 

Table 6: Output variables in LIC product 

Band Variable name Description Values 

1 lake_ice_cover Label assigned to grid cell 1: water, 2: ice, 
3: cloud, 4: bad 

2 lake_ice_cover_uncertainty Uncertainty of the label (%); 
currently determined from 
accuracy assessment of 
individual 250-m products 
(internal evaluation) 

1.15: water, 8.29: 
ice,  
4.37: cloud 

 

6.2.3. Retrieval Algorithm 

The retrieval algorithm consists of two parts, one for cloud detection (clear-sky or cloud cover) and 
other for ice detection (ice or open water). 

To develop and validate the retrieval algorithm, 17 lakes distributed across the Northern 
Hemisphere were selected (Figure 8 and Table 7). Samples were collected for three ice seasons 
(2002-2003, 2009-2010, 2016-2017) as to include MODIS data from Terra (2000-present) and Aqua 
(2002-present), and provide a good temporal spread (15 years) to ensure algorithm stability. For 
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each lake, one image acquired during freeze-up (FU) and one image during break-up (BU) were 
selected. False colour composites (R: Band 2, G: Band 2, B: Band 1) with a 250 m spatial resolution 
were used as reference images to manually collect areas of interest (AOI) with labels (lake ice, 
open water, and cloud). In total, 108 images (40 from FU, 68 from BU) were selected and 552,006 
pixels were sampled from the selected AOIs. 

 

 

Figure 8: Geographical distribution of lakes used for LIC algorithm development and validation 

 

 

Table 7: List of lakes for LIC algorithm development and (internal) validation 

Lake Country Latitude Longitude Elevation (m) Area (km2) 

Amadjuak Canada 64.925 -71.149 113 3,115 

Athabasca Canada 59.424 -109.34 213 7,900 

Baikal Russia 53.525 108.207 456 31,500 

Erie Canada/USA 42.209 -81.246 174 25,821 

Great Bear Canada 66.024 -120.61 186 31,153 

Great Slave Canada 61.579 -114.196 156 28,568 

Huron Canada/USA 44.918 -82.455 176 59,570 

Inari Finland 69.048 27.876 118 1,040 

Ladoga Russia 60.83 31.578 5 18,135 

Michigan USA 43.862 -87.093 177 58,016 

Nettilling     Canada 66.42 -70.28 30 5,542 

Onega Russia 61.75 35.407 35 9,890 

Ontario Canada/USA 43.636 -77.727 75 19,009 

Superior Canada/USA 47.945 -87.32 183 82,367 
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Taymyr Russia 74.538 101.639 6 4,560 

Vanern Sweden 58.88 13.22 44 5,650 

Winnipeg Canada 52.421 -97.677 217 23,750 

 

6.2.3.1. Cloud detection 

The Simple Cloud Detection Algorithm (SCDA) proposed by Metsämäki et al. (2011) has been 
selected and slightly modified for cloud detection in the LIC processing chain (Figure 9). The 
original SCDA is applied to MODIS TOA L1 while the current lakes_cci LIC processing chain uses 
MODIS surface reflectance products. The main approach of SCDA relies on the difference in 
brightness temperature (TB) between MODIS Band 31 (11 µm) and Band 20 (3.7 µm). The difference 
value of cloudy observations is a large negative value due to the strong reflectance of solar 
radiation at 3.7 µm. In order to cope with the difficulty of cloud detection over regions where snow 
is present, Diffthre is introduced in the algorithm. Diffthre is defined by the regional brightness 
temperature (Band 32), resulting in colder features obtaining a lower threshold. However, Diffthre 
cannot be higher than a value of -6 (determined from empirical testing). The combination of 
Scenario 1 (for opaque clouds) and Scenario 2 (for non-opaque clouds) determines if a pixel is 
obscured by cloud. The Normalized Snow Difference Index (NDSI) and TOA reflectance in Band 4 are 
also considered in the conditions. NDSI is calculated from the normalized difference of visible (Band 
4) and shortwave infrared (Band 6) for MODIS Terra (MOD). Since some detectors of the Aqua MODIS 
Band 6 are either noisy or non-functional, Band 7 is used for Aqua images (MYD) instead. This 
algorithm has previously been tested using nine images from AATSR compared to three images from 
the NASA MODIS cloud product (MOD35) under different atmospheric conditions and solar zenith 
angles. Based on a visual evaluation, cloud masks generated by SCDA compared well to the NASA 
MODIS cloud product, and did provide some improvements, particularly in cold regions (Metsämäki 
et al., 2011). 

 

 

Figure 9: Cloud detection threshold-based algorithm 
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6.2.3.2. Ice detection 

The reflectance of ice and snow is high in the visible and near-infrared portions of the spectrum 
(Svacina et al., 2014). Previous studies show that the near-infrared (NIR) MODIS Band 2 is the most 
suitable band for discriminating ice from open water (Nonaka et al., 2007; Jönsson and Eklundh, 
2004; Šmejkalová et al., 2016). However, the usage of Band 2 alone is not sufficient for 
distinguishing ice from open water in areas of lakes where sediment loads are high. As an example, 
as the RGB colour composite (image on the left) of Figure 10 shows, Slave River can transport large 
amounts of sediment into Great Slave Lake, Canada. By using MODIS NIR Band 2 alone in the ice 
detection algorithm, the area of the lake with a high sediment load is misclassified as ice cover 
(image on the right). Adding MODIS Band 3 (blue) and Band 4 (green) in the retrieval algorithm 
results in correct identification of open water (image in centre). 

 

Figure 10: Example where open water is falsely identified as ice covered (image on right) in an 
area of Great Slave Lake (Canada) due to high sediment load (clearly seen in 

RGB image on left) from the Slave River entering the lake. False detection of ice 
occurs when only MODIS NIR band 2 is used. Open water is correctly retrieved 

(image in centre) when MODIS bands 3 (blue) and 4 (green) are used in addition 
to NIR band 2 

 

The ice detection algorithm is a computationally low-cost threshold-based classifier that uses MODIS 
bands 2 (NIR), 3 (blue) and 4 (green). The thresholds for these three bands have been optimized 
using training data composed of a random 70% selection of sampled data (n = 386,309). The training 
data were randomly and evenly separated into 100 groups. An objective function for optimization 
was applied based on a tradeoff equation (Eq. 6.1). 

 

tradeoff value= ε2+ s2 [6.1] 

where ε2 is the mean classification error of the training data and s2 is the variance of 100 errors 
computed from each group. Using the three MODIS bands, the algorithm iterates through each 
possible combination of bands for surface reflectance values between 0 and 0.15 at an interval of 
0.001, resulting in a total of 3,375,000 combinations. Each combination has been tested using the 
tradeoff value and the combination with the lowest tradeoff value was selected as the most 
optimal. Figure 11 shows the optimal thresholds values obtained and implemented in the processing 
chain. 
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Figure 11: Ice/open water detection threshold-based algorithm 

6.3. Quality Assessment 

Quality assessment of the LIC product is accomplished by comparing retrieved ice, water and cloud 
pixels against those obtained from visual interpretation of RGB colour composite images from MODIS 
Terra/Aqua Atmospherically Corrected Surface Reflectance 5-Min L2 Swath. The images are 
selected to include several lakes across the Northern Hemisphere over a few ice seasons of MODIS 
Terra/Aqua record (2000-2019). Other approaches to quality assessment, such as comparison with 
in-situ observations (from lake shore) and satellite-based LIC products generated by other groups is 
envisaged (see PVP for details). Uncertainty values reported in LIC are currently derived from 
overall classification errors for each class (ice, water and clouds).  
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7. Lake Water Leaving Reflectance (LWLR) algorithms 

7.1. Description 

LWLR processing inherits the Calimnos processing chain that was initially developed for the UK-
based GloboLakes project, in turn based on the first global inland waterbodies processing chain 
using a comprehensive library of algorithms and resultant products in the ESA Diversity-2 project. 
These processing chains were built to process archived ENVISAT-MERIS data at full resolution 
(300m).  

Calimnos is presently used to deliver the Copernicus Land Monitoring Service (CLMS) – Lake water 
quality products (LWLR, Turbidity, Trophic State Index) at 10-day aggregation intervals. For CLMS, 
archived MERIS full resolution data are presently available from Calimnos v1.1, operational 
processing of Sentinel-3 OLCI uses Calimnos v1.2 and Sentinel-2 MSI scenes are being processed for 
selected regions using Calimnos v1.3. The incremental versions represent evolutions of the chain to 
handle newly introduced satellites, as well as updated dependencies such as POLYMER for 
atmospheric correction or Idepix for land/cloud/water masking. 

Lakes cci extends Calimnos to include per-pixel product uncertainties, use of MODIS-Aqua, and 
inter-sensor bias corrections. Extension of the data record to SeaWiFs has lower priority and is not 
yet discussed in this document. It should be noted that Calimnos is a processing chain with many 
processing stages, each of which are described in documents referred to in the following sections as 
relevant. The algorithms that form the core of atmospheric correction and retrieval of water 
column optical properties are all based on published literature whereas algorithm-specific tuning 
and their assignment to specific optical water types is unique to Calimnos. The algorithm basis 
described here is equivalent to the ATBD provided for CLMS, with algorithm evolution and new 
elements for lakes cci specified in additional detail.  

7.2. Algorithm overview 

Calimnos combines data discovery, subsetting by target area (individual water bodies), radiometric 
and atmospheric corrections, pixel identification (land/cloud/water/ice), optical water type 
classification, individual algorithms (per parameter and water type), algorithm blending, conversion 
and aggregation into a single processing chain. 

A schematic overview of Calimnos is given in Figure 1. The main processing stages and their 
corresponding algorithms are given below, with stages in current development for lakes CCI 
highlighted:  

To produce Lake Water-Leaving Reflectance: 

- Data discovery. Following download of new satellite passes at L1B these are entered into a 
geospatial database. Target regions are similarly specified in a geospatial database and 
satellite products which overlap any of the target regions are queued for processing. In the 
context of re-processing, any duplicate passes are removed. The procedure relies on in-
house python scripts and postgres database functionality.  

- Subsetting. For best processing performance, satellite passes are subset to bounding boxes 
around each target area. The subsetting routine is part of the SNAP toolbox, called through 
the Graph Processing Tool (GPT). 

- Radiometric corrections. Any radiometric corrections defined following the release of the 
data are applied to the L1B imagery before submitting the data to atmospheric correction. 
For MERIS reprocessing the 3rd reprocessing and subsequently published radiometric 
corrections are used as part of the SNAP toolboxes using GPT. The 4th reprocessing of MERIS 
will be used once it becomes available. Radiometric correction for OLCI is currently 
pending, and not yet implemented. Radiometric corrections for MODIS will be added in this 
project.  

o Bias corrections: If inter-sensor bias corrections can be determined at top-of-
atmosphere they will be included here to correct the input data. Whether this is 
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indeed possible depends on the atmospheric correction procedure used (e.g. is it 
adjusted to use un-corrected data)  

- Pixel identification. The Idepix neural network routine is applied for initial pixel 
identification as water, land, cloud/haze, or snow/ice. Idepix is called through SNAP using 
the GPT. Pixel identification masks are stored for later masking of invalid (non-water) 
pixels.  

- Atmospheric correction. POLYMER is applied to the corrected L1B data of MERIS and OLCI 
sensors and yields water-leaving reflectance wavebands. The outputs are fully normalized 
water-leaving reflectance per waveband. POLYMER is called using a function wrapper in 
Python. For MODIS data, investigations of the most reliable atmospheric correction are 
ongoing with POLYMER and l2gen as candidate algorithms.  

To produce derived water-column properties (turbidity and concentrations of chlorophyll-a as well 
as other water constituents once these reach methodological maturity): 

- Optical water type classification. The optical water type (OWT) classification developed in 
the GloboLakes project (Spyrakos et al. 2018) is applied to each pixel to determine the 
similarity of the observed water-leaving reflectance spectrum to thirteen known types. 

- Algorithm mapping and blending. For each OWT a best-performing algorithm (see section 4) 
has been selected and tuned against the global in situ reference LIMNADES data set, as part 
of the GloboLakes project. Further updates of the tuning parameters for algorithms for 
chlorophyll-a and turbidity are under development for newly introduced sensors. Insofar as 
bias correction has not already been corrected within the top-of-atmosphere product (see 
radiometric correction above), this step includes further corrections per algorithm, optical 
water type and sensor.  

For uncertainty characterization: 

- Uncertainty mapping. The uncertainty mapper uses results from in-situ validation, 
separated by optical water type, to produce bias and root-mean-square uncertainties per 
pixel. A predetermined set of uncertainty functions expresses, per output product (LWLR or 
derived water constituent concentrations), any non-linearity in product uncertainty as a 
function of (for the time being) optical water type membership.  

For merged lakes ECV product format consistency: 

- Aggregation. Aggregation is done on a per-lake basis using all imagery available on a given 
day, after applying masks to select data for water pixels. When multiple LWLR products are 
available for a given day, preference is given to the MERIS or OLCI derived cloud-free 
results closest to solar noon, over e.g. MODIS or averaging of LWLR spectra. Merged 
product from multiple sensors will be considered as an alternative strategy to enhance 
spatio-temporal coverage. Product uncertainty will be the primary inclusion criterion.  The 
aggregated products which contain the reflectance, chlorophyll-a and turbidity parameters 
are then mapped to a global grid according to Lakes_cci specifications.   

- Mosaicking. For consistency with other thematic lakes cci variables, the products are 
combined on a global grid extending from -180 to 180°longitude and -90 to 90° latitude. 

7.2.1. Algorithm assumptions and known limitations 

The following assumptions relating to individual algorithms are core to the performance of the 
processing chain for LWLR and derived substance concentrations: 

- Idepix can differentiate adequately between pixels containing water and any of the 
following conditions: mixed land/water, cloud, cloud shadow, ice, snow, and haze.  

- POLYMER successfully retains the shape and amplitude of water-leaving reflectance.  
- The Optical Water Type classification sufficiently captures the diversity of natural water 

types so that the most appropriate algorithms can be used and tuned to remove systematic 
bias. 

- Tuning of reflectance algorithms for chlorophyll-a and turbidity is adequate for each water 
type, and based on sufficient in situ data availability to achieve statistical rigour.  
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Figure 12: Schematic overview of the Calimnos processing chain for LWLR, Chlorophyll-a and 
turbidity or suspended matter.  

7.2.2. Specific algorithms for LWLR 

7.2.2.1. Pixel geolocation 

The standard MERIS geometric correction needs an optimization step which is performed by the 
AMORGOS software developed by ACRI-ST and provided by ESA (see earth.esa.int/ 
services/amorgos/download/Amorgos_ICD-SUM_3.0a.pdf and earth.esa.int/services 
/amorgos/download/Amorgos_STD_i3r0p1.pdf). It includes a precise orbit determination, 
instrument pointing and performs an ortho-rectification. The improvement in the geolocation is 
documented in Bicheron et al. (2011). For Calimnos, AMORGOS geometrically corrected lat/lon 
bands are archived alongside the original L1B product, used to identify the area to be processed 
and patched in at the end of L2 processing. The resulting accuracy is improved by Amorgos and is 
specified in Bicheron et al. (2011) as  better than 70m for MERIS FR pixels.  

For OLCI, no further processing step for improving the geolocation position is required. The 
accuracy is given by ESA with 0.2 – 0.7 pixels for processing version 2.23 and <0.1 pixel for 
processing version 2.29. 

For MODIS Aqua, a GEO file is generated based on satellite attitude and ephemeris data provided by 
NASA, to produce L1B data equivalent as input to further processing.  

7.2.2.2. Radiometric corrections 

OLCI-A will be the reference system for inter-sensor bias corrections, because it has the largest 
number of spectral bands and benefits from a larger vicarious calibration network than any earlier 
sensor. A per-band system vicarious gain correction is currently available for use with POLYMER.  

For MERIS, the coherent noise equalization method reduces detector-to-detector and camera-to-
camera systematic radiometric differences and results into a diminution of the vertical stripping 
observed on MERIS L1b products following the algorithm developed by Bouvet and Ramino (2010); 
coefficients for each detector line are retrieved from MERIS archive over ice. Another step for 
radiometric improvements is the smile correction, which corrects for the small variations of the 
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spectral wavelength of each pixel along the image by the estimation of the reflectance spectral 
slope from the measurements in two neighbouring bands. Polymer uses actual pixel wavelength, so 
smile correction is not used in the current processing chain.  

For MERIS and MODIS, sensor-specific bias corrections, including any known system vicarious 
calibration gains, are applied.  

Configuration of operators: 

- MERIS: L1b Radiometric Correction v5.0.3 and sensor bias correction (TBD) 
- OLCI: System Vicarious Calibration gains (2019) 
- MODIS: Sensor bias correction (TBD) 

7.2.2.3. Pixel identification 

The cloud detection function of the Idepix algorithm developed by Brockmann Consult was used in 
several processing chains, e.g. those used in CoastColour L1P and Diversity II. Meanwhile many steps 
of the Idepix algorithm are included in the upcoming MERIS 4th reprocessing as standard algorithm 
by ESA. Due to the good performance of Idepix cloud screening in these applications, it is also 
selected for Calimnos. Idepix is based on a cloud probability derived from a neural net which has 
been trained with >60,000 manually classified pixels and which is combined with a number of 
additional tests on e.g. brightness, whiteness, glint. After clouds have been identified, a buffer can 
be defined in order to provide for a safety margin along cloud borders. This buffer radius (in pixel) 
can be parameterized and is set to 2 pixels.  

Validation is performed by applying the PixBox Validation, a procedure where manually selected 
pixels are categorized to different categories and characterized with expert knowledge, e.g. to 
clear land, clear water, totally cloudy, semi-transparent cloud, cloud shadow, snow/ice, etc. A set 
of 17k MERIS FR pixels was collected in the scope of the CoastColour project, and detailed 
validation results are provided in the corresponding report (Ruescas et al., 2014).  

Retrieval of water quality parameters is also strongly influenced by the occurrence of cloud 
shadow, which need to be identified and eliminated from further processing. Potential cloud 
shadow areas are identified by the geometry of the sun angle, viewing angle and the cloud height 
and the cloud bottom. The cloud height is gained by either the pressure or the temperature, but if 
this information is missing (not all sensors offer the respective bands), a maximum cloud height 
needs to be defined. The most difficult prediction is the height of the cloud base as it is not seen by 
the sensor. In Idepix it is defined as the minimum cloud height detected within the respective cloud 
minus an offset. Basis of good cloud shadow detection is a good cloud detection. Validation of the 
cloud shadow detection is done by visual inspection of different images under different conditions 
(cloud types and geometries). 

Configuration: 

- MERIS: Idepix.Envisat.MERIS v1.0 
- OLCI: Idepix.Sentinel3.Olci v1.0 
- MODIS: Idepix.TerraAqua.MODIS v2.2. 

In general, the most progressive combination of available cloud masks is selected, favouring 
accuracy over observation coverage.  

7.2.2.4. Atmospheric correction 

POLYMER v4.12 is the latest version of an atmospheric correction processor initially designed to 
resolve water-leaving reflectance in clear ocean (case-1) waters including areas affected by sun 
glint (Steinmetz et al. 2011). The versatility of the processor to deal with bright waters has tested 
positively with a variety of optically complex (including inland) waters compared to alternative 
processors (Qin et al. 2017, Warren et al. 2019), although systematic under-estimation of 
reflectance in turbid and productive waters is evident. POLYMER applies a spectral optimization 
based on bio-optical model in conjunction with radiative transfer models to separate atmospheric 
(including glint) and water reflectance. The principle of the algorithm is a spectral matching 
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method using a polynomial to model the spectral reflectance of the atmosphere and sun glint, and 
a bio-optical forward reflectance model for the water part. The algorithm uses the full set of 
wavebands available (user-configurable) as opposed to alternative ocean-colour methods that 
primarily extrapolate from near infra-red bands. The output are fully normalized water-leaving 
reflectances. 

Configuration: 

- POLYMER according to Steinmetz et al. (2011), updated in Steinmetz (2016 and 2018), 
parameterized to use the Park and Ruddick (2005) bidirectional reflectance distribution 
function and operating only on pixels identified as water by the Idepix module (masks 
generated by POLYMER are not used). Starting conditions for the optimization procedure 
are set to chlorophyll-a = 1 mg m-3 and total suspended matter = 1 g m-3. 

7.2.2.5. Specific algorithms for derived water quality products 

7.2.2.5.1. Optical water type (OWT) membership 

The OWT classification module was written at PML based on the work of Moore et al. (2001) and 
equivalent software developed for ESA ocean colour cci. The algorithm used for lakes relies on a 
spectral library (spectral means) defined in the GloboLakes project by the University of Stirling 
(Spyrakos et al. 2018). In contrast to OWT mapping used in earlier versions of Calimnos, CLMS and 
Lakes_cci will adopt the spectral angle (Kruse et al. 1993) rather than Mahalonobis distance as 
metric for similarity between spectra. The spectral angle is here defined over a range of 0 to 1 
where 1 implies identical spectra.  

7.2.2.5.2. Water constituent algorithms 

Weighted blending: Water constituent retrieval algorithms tuned to each OWT (Spyrakos et al. 
2018, Neil et al. 2019) are mapped to individual pixels from the OWTs with the three highest 
classification scores for that pixel. The algorithm results corresponding to those three OWTs are 
averaged using the membership score as weighting factor, after normalizing the scores between 0 
and 1 where 1 is the highest score and 0 is the score of the 4th ranking OWT. This procedure is used 
to derive maps of total suspended matter (TSM) and chlorophyll-a (Chla) without discontinuities at 
the edge of the applicable range of any single algorithm.  

Uncertainty mapping: to propagate product uncertainty from the individual algorithms, the 
weighted OWT membership score is again used, in combination with a set of uncertainty functions 
resulting from in situ algorithm validation. The uncertainty functions describe product uncertainty 
as a function of OWT membership score and target substance concentration (where relevant). The 
per-OWT uncertainties are weighted according to OWT-membership to allow propagation to the 
final product. Where in situ data are lacking in lakes to determine product uncertainties (e.g. in the 
case of a specific OWT, substance concentration range or sensors), and uncertainty cannot be 
provided this value is set to Inf (infinity).  

7.2.2.5.3. Chlorophyll-a algorithms 

Table 8 below lists the mapping of algorithms to specific OWTs as given in Spyrakos et al. (2018). 
Each algorithm is tuned to one or more OWTs, depending on their published range of applicability 
and the wavebands used in their design. The algorithms set out below are those selected for MERIS 
after extensive product validation in the GloboLakes project (Neil et al. 2019, Steele et al. in 
prep). It is noted that while the methodology of algorithm tuning is as described in Neil et al. 
(2019), tuned algorithm coefficients may differ since the former are derived from calibration of in 
situ reflectance data against LIMNADES whereas Calimnos uses coefficients optimised for POLYMER-
corrected normalized water-leaving reflectance. OLCI offers the same set of wavebands as MERIS, 
but validation of OLCI-specific algorithms is limited by scarce in situ data availability. For OLCI, 
therefore, we adopt the MERIS configuration of algorithms which may be further adjusted following 
consistency checks (preliminary analysis within CLMS suggests that no adjustment is required). For 



D2.2: Algorithm Theoretical Basis Document (ATBD) 

 

  47/53 

MODIS, algorithm selection is pending an evaluation of product consistency over time, for selected 
lakes.  

Table 8: Chlorophyll-a algorithms per optical water type 

Optical water type 
number 

Algorithm source Algorithm optimization 

3, 9, 10, 13 OC2 
oceancolor.gsfc.nasa.gov/cms/atbd/chlor_a 

Empirical re-tuning of 
algorithm parameters 
based on GloboLakes 
calibration against the 
Limnades database, 
specific to each optical 
water type (Neil et al. 
2019). 

2, 8, 11, 12 708/665 empirical band ratio based on 
Gilerson et al. (2010) 

1, 4, 5, 6 Semi-analytical NIR-Red band algorithm for 
MERIS based on Gons et al. 2005. 

7 Adapted QAA algorithm according to Mishra et 
al. (2013) 

 

Selected algorithm parameters for each of the four options were tuned in GloboLakes against the 
LIMNADES database to accommodate for variability in retrieval accuracy over the range of inland 
waters encountered in the LIMNADES dataset. This procedure also accounts for any uncertainties 
that stem from systematic bias in the retrieval of water-leaving reflectance from POLYMER. This 
whole-chain validation is applied to each algorithm in Calimnos, recognizing the fact that the most 
prominent error in inland water quality retrieval is the atmospheric correction step. It is noted that 
validation data for relatively clear inland waters are very scarce.  

The OC2 algorithm, originally formulated to retrieve chlorophyll-a concentration from relatively 
clear ocean waters where phytoplankton and other optically active substances covary, relies on a 
ratio of blue and green wavebands. The algorithm is formulated as: 

𝑙𝑜𝑔(𝐶ℎ𝑙𝑎) = 𝑎଴ + (𝑎ଵ𝑥) + 𝑎ଶ𝑥ଶ + 𝑎ଷ𝑥ଷ + 𝑎ସ𝑥ସ [7.1] 

where x is the reflectance band ratio: 

𝑥 = 𝑙𝑜𝑔 
ோೢ(ସଽ଴)

ோೢ(ହ଺଴)
. [7.2] 

The tuned algorithm coefficients used in Calimnos are a0 = 0.1731, a1 = -3.9630, a2 = -0.5620, a3 = 
4.5008 and a4 = -3.0020. Rw is the fully normalized water-leaving reflectance.  

The remaining three algorithms are variations on empirical and semi-analytical retrieval methods 
that focus on interpreting the red to near-infrared part of the spectrum. These methods are the 
most successful approach to retrieve chlorophyll-a concentration over a range of turbidity and 
trophic levels, because the red part of the spectrum is least influenced by overlapping absorption 
signatures of dissolved substances and other phytoplankton pigments.  

The Gilerson et al. (2010) algorithm is an empirically tuned ratio of bands 708 and 665 nm. The 
tuning of the algorithm is revised in Calimnos, by calibrating against the LIMNADES data set (for 
OWTs 2, 8, 11, and 12) which is much larger than the data set used in the original publication (Neil 
et al. 2019). The final configuration is a highly simplified form of the original algorithm: 

𝐶ℎ𝑙𝑎 [𝑚𝑔 𝑚ିଷ] = 𝐴 × ቀ
ோ(଻଴ଽ)

ோ(଺଺ହ)
ቁ

஻

+ 𝐶 [7.3 

Where A = 76.62, B = 0.7393 and C = -54.99 are tuning coefficients empirically calibrated against 
LIMNADES. R(λ) is the reflectance (irrespective of whether it is expressed above or below water and 
normalized for viewing geometry or not) at waveband λ.   

The Gons et al. (2005) algorithm (tuned to OWTs 1, 4, 5, 6) uses the same band ratio and 
additionally analytically retrieves the backscattering coefficient from the 778 nm band. 
Subsequently the absorption at 665 nm is analytically retrieved by inverting the Gordon reflectance 
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model and attributed to chlorophyll-a and water. Empirical tuning is restricted to the slope of the 
backscattering coefficient and a chlorophyll-a specific absorption coefficient determined from 
eutrophic inland waters. The algorithm is thus specified as follows: 

𝐶ℎ𝑙𝑎 [𝑚𝑔 𝑚ିଷ] = ቂቀ
ோ(଻଴ଽ)

ோ(଺଺ହ)
ቁ × (𝑎௪(709) + 𝑏௕) − 𝑎௪(665) − 𝑏௕

௉ቃ /𝑎௖௛௟
∗ (665) [7.4] 

Where aw(709)=0.84784 m-1 and aw(665)=0.431138 m-1 represent the absorption by pure water from 
Roettgers et al. (2011). Further, a*chl(665) = 0.025 m2 mg-1 is the chlorophyll-a specific absorption 
coefficient following calibration against LIMNADES. The empirical constant P=1.06 was not changed 
from the original formulation. The backscattering coefficient bb is considered spectrally neutral and 
derived from a single near infra-red waveband: 

𝑏௕ =
଴.଺ ×௔ೢ(଻଻ଽ)×ோೢ(଻଻ଽ)

଴.଴଼ଶି଴.଺×ோೢ(଻଻ଽ)
 [7.5] 

The Mishra et al. (2013) implementation of the Quasi-Analytical Approach (QAA) is similar to the 
analytical inversion of Gons et al. (2005) but with a slightly different set of input bands and 
subsequent tuning parameters. In Calimnos it is exclusively mapped to OWT 7. The QAA chlorophyll-
a product is derived from the phytoplankton absorption at 665nm, empirically tuned against 
LIMNADES as follows:  

𝐶ℎ𝑙𝑎 [𝑚𝑔 𝑚ିଷ] = 𝐴 × 𝑎௣௛(665)஻ [7.6] 

Where A = 63.375 and B = 0.442. The aph(665) is retrieved from a set of equations, accounting for 
non-phytoplankton absorption in this band through the interpretation of absorption in blue and 
green wavebands: 

𝑎௣௛(665) = 𝑎(665) −  𝑎௪(665) − 𝑎௬௦(665), 

𝑎௬௦(665) = 𝑎௬௦(442)𝑒ିௌ(଺଺ହିସସଶ), 

𝑎௬௦(442) =
(௔(ସଵଶ)ି௦భ×௔(ସସଶ))ି൫௔ೢ(ସଵଶ)ି(௘భ×௔ೢ(ସଵଶ))൯

௘భି௦భ
 [7.7] 

where the absorption by water aw is again obtained from Roettgers et al. (2011), S = 0.0135 nm-1 is 
the average exponential slope coefficient for yellow substances derived from LIMNADES, and e1 and 
s1 are defined as 

𝑠ଵ = 0.74 +
଴.ଶ

଴.଼ା
ೝೝೞ(రరమ)

ೝೝೞ(ఱలబ)

, 

𝑒ଵ = 𝑒ௌ(ସସଶିସଵଶ)  [7.8] 

where and the absorption in bands 412, 442 and 665 nm is obtained as 

𝑎(𝜆) =
(ଵ.଴ି௨(ఒ))×(௕್ೢ(ఒ)ା௕್(ఒ))

௨(ఒ)
.  [7.9] 

Here, bbw(λ) is the backscattering coefficient of pure water obtained from Morel (1974) assuming 
zero salinity. In turn, u(λ)is the ratio of backscattering to the sum of backscattering and absorption, 
which according to the work by Gordon et al. (1988) can be obtained from below-surface remote-
sensing reflectance rrs(λ) as: 

𝑢(𝜆) =
ି௚బାඥ௚మା(ସ×௚భ)×௥௥௦(ఒ)

ଶ×௚భ
, [7.10] 

With g0 = 0.089 and g1 = 0.125. The rrs bands are obtained from the LWLR (which corresponds to 
fully normalized water-leaving reflectance, Rw(λ)) using: 
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𝑟𝑟𝑠(𝜆) =
ோೢ(ఒ)

గ(଴.ହଶା଴.ହସ×ோೢ(ఒ))
  [7.11] 

7.2.2.5.4. Turbidity and suspended matter algorithms 

Turbidity and total suspended matter (TSM) may be retrieved from reflectance in wavebands where 
phytoplankton and dissolved organic matter absorption do not significantly influence the amplitude 
of the reflectance. Ultimately, turbidity and suspended matter algorithms are empirically related 
to efficiency of light backscattering compared to absorption. The absorption of light becomes 
increasingly predictable with waveband due to the efficiency of absorption by pure water at longer 
wavelengths. Candidate algorithms to directly convert the signal to either Turbidity or suspended 
matter dry weight, using a conversion factor of 1.17 NTU/g m-3 between suspended matter and 
Turbidity, have been formulated by Nechad et al. (2010, 2016). This conversion factor is currently 
used in Calimnos to obtain Turbidity from a number of suspended matter retrieval algorithms, 
pending validation of which algorithms perform better over specific optical water types. The 
suspended matter algorithms are selected per Optical Water Type as shown in Table 9. 

Table 9 Suspended matter algorithms per optical water type 

Optical water type 
number 

Algorithm source Algorithm optimization 

1, 7, 10 Based on Zhang et al. (2014) Empirical re-tuning of 
algorithm parameters 
based on GloboLakes 
calibration against the 
Limnades database, 
specific to each optical 
water type (analogous to 
Neil et al. 2019 for 
chlorophyll-a). 

2, 4, 6, 8, 12 Based on Vantrepotte et al. (2011) 

3, 5, 9, 11, 13 Based on Binding et al. (2010) 

 

The Binding et al. (2010) algorithm as it is implemented here is based on the analytical inversion of 
reflectance in the 754 nm band and converting the resultant particulate backscattering signal using 
a mass-specific backscattering coefficient for suspended matter:  

𝑇𝑆𝑀 [𝑔 𝑚ିଷ] =
௔ೢ(଻ହସ)×ோೢ(଻ହସ)

௙×஻×௕೅ೄಾ
∗   [7.12] 

where the absorption by water aw(754) = 2.8 m-1
, the backscattering-to-scattering ratio B=0.019. 

The TSM-specific scattering coefficient bTSM
*
 = 0.664 m2 g-1 and is the only coefficient that was 

optimized against LIMNADES.  

The Vantrepotte et al. (2011) algorithm as it is implemented here is similar but uses the 665 nm 
band and an additional empirical factor, which is also tuned to provide the best match for the 
corresponding water types: 

𝑇𝑆𝑀 [𝑔 𝑚ିଷ] =
஺×ோೢ(଺଺ହ)

ଵି
ೃೢ(లలఱ)

ಳ

+ 𝐶  [7.13] 

where the optimized empirical coefficients are A = 206.4, B = 20460.0 and C = -0.7921. 

The Zhang et al. (2014) algorithm as it is implemented here is an empirical relation between the 
709 nm band and in situ measured suspended matter dry weight, tuned as with the algorithms 
above: 

𝑇𝑆𝑀 [𝑔 𝑚ିଷ] = 𝐴 ×
ோೢ(଻଴ଽ)

గ

஻

 [7.14] 

where the optimized empirical coefficients are A = 2524.0 and B = 1.113. 
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7.3. Input products and dependencies 

Satellite input data:  

- Envisat MERIS L1B (3rd reprocessing, 4th once available) at reduced resolution 
- Sentinel 3A/B OLCI L1B (SAFE format) 
- MODIS Aqua L1A (+ GEO files) 

Lake water boundaries: 

- maximum water extent observed in ESA CCI Land Cover (v4.0) at 150-m resolution 
- polygons generated (including manual inspection) at PML (doi: 10.5281/zenodo.3349547). 

POLYMER ancillary data:  

- ECMWF ERA-Interim global atmospheric data set 

Optical water type definitions (mean spectra standardized using Simpson’s criterion) 

- GloboLakes project (Spyrakos et al. 2018) 

7.4. Output product 

The output data (product bands) are produced as variables in a NetCDF file. Variables include a 
band for each reflectance band, the derived chlorophyll-a and turbidity and the associated pixel 
uncertainty for each of these. Intermediary products are not distributed but are generally stored 
for product validation and improvement purposes. These include the specific outputs from 
individual algorithms (prior to mapping/blending) and all processor-generated flags. A detailed 
overview of the output bands, their data types and attributes is provided in the Product 
Specification Document (PSD).  

7.5. Quality Assessment 

Quality assessment of the LWLR and derived products is based on validation against in situ 
observations. This section contains an overview of product quality assessment efforts resulting from 
past and present validation activities, in order to provide the user sufficient information to 
determine which variables are suitable for their particular use case. 

Results provided here are for in situ validation carried out against observations with the MERIS 
sensor, for which by far the most in situ data are available.  

7.5.1. Quality assessment of the atmospheric correction 

The initial round-robin comparison of atmospheric correction algorithms for MERIS showed that 
POLYMER (v3.5) yielded the statistically most robust retrieval of Rw particularly with respect to 
linearity and relative errors. However, a systematic negative bias was observed in the matchup 
validation (Figure 13). Given the low number of matchups in the analysis, an expanded round-robin 
comparison of algorithms for MERIS and other sensors is foreseen in the lakes_CCI.  
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Figure 13: POLYMER v3.5 matchups with in situ reflectance data in LIMNADES, using a ±7 day 
matchup window and 3x3 pixel extraction window (source: GloboLakes).  

7.5.2. Quality assessment of derived water-column products 

The end-to-end calibration methodology with specific tuning of algorithms corresponding to sets of 
optical water types is believed to counteract the systematic bias in LWLR retrieval. Furthermore, 
the number of matchup data points for validation of chlorophyll-a and turbidity or suspended 
matter is much higher.  

Neil et al. (2019) presented the results of algorithm calibration using exclusively in situ radiometry 
and substance concentrations determined from water samples. During GloboLakes, further tuning of 
the algorithms was carried out to calibrate the algorithms against atmospherically corrected 
satellite data (using POLYMER and other candidate atmospheric correction algorithms for MERIS).  

Results shown below are from a recent uncertainty characterization analysis of the chlorophyll-a 
product in the Calimnos v1.04 data set, which is similar to the result expected in the first climate 
data record of the Lakes_cci. Further multi-sensor calibration and uncertainty characterization is 
part of the planned Lakes_cci work.  

These results (Figure 14) clearly show that applying the weighted average of a combination of (two) 
tuned algorithms for each observed pixel provides a marked improvement over selecting, for each 
lake and each observation day, the algorithm that is most suitable for the lake-wide predominant 
optical water type. One clearly visible effect is the need to select algorithms that can deal with a 
(very) high concentration range, likely associated with patchy phytoplankton blooms surrounded by 
lower biomass conditions. At the scale of the whole lake, bloom-affected pixels are a minority such 
that mid-range algorithms would perform best for the lake as a whole. A whole-lake algorithm 
selection can ignore dense (but likely patchy) blooms, shown as saturation at concentrations of 
approximately 1000 mg m-3, whereas per-pixel algorithm selection allows retrieval up to two orders 
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of magnitude higher. The dynamic algorithm selection approach is therefore preferred as it is 
better equipped to deal with optical gradients within individual lakes.  

 

Figure 14: Comparison of the performance of (left) the best chlorophyll-a algorithm for the 
predominant optical water type of each lake and (right) per-pixel selection and 

blending of the two highest ranking algorithms based on optical water type 
membership scores.  
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