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1. Introduction 

This report describes the methodology used to select the most suitable algorithms to produce the 
Lakes Essential Climate Variables (ECVs) from satellite observations. This report covers the initial 
validation of the resulting products and plans to evolve the underlying algorithms.  

The selected algorithms are, for the majority of the thematic Lakes ECVs, the result of research 
activities preceding the Lakes_cci and leading up to the state-of-the-art introduced in the production 
system for Lakes_cci. As the Lakes_cci progresses, new research and development carried out during 
the CCI programme supports the evolution of algorithms within the Lakes ECV processing system. This 
document describes the status of algorithm assessment associated with version 2 of production the 
Lakes_cci Climate Research Data Package.  

Issues that are identified during algorithm selection and validation are taken up during the cyclic 
evolution of the CRDP processing systems. Plans leading to improvement of specific algorithms, 
insofar as they are currently foreseen, are therefore given in this document.   

The following sections are broken down first by thematic variable within the Lakes_cci and 
subsequently into the following topics: 

- Candidate algorithms - an overview of the algorithms selected for comparison 
- Validation results to date - leading to algorithm selection for CRDP V2.0 
- Identified issues – where further development and validation is considered necessary 
- Future improvements – an overview of which additional algorithms, or changes in existing 

algorithms, shall be explored in the period leading up to the next version of the CRDP. 

2. Lake Water Level (LWL) algorithms 

 Candidate algorithms for LWL 

The algorithm for LWL calculation was developed at LEGOS and is detailed in the ATBD. It is based on 
the state-of-the-art in calculating LWL from satellite altimetry. Since each altimeter provides a 
distinct Global Data Record, an initial phase of organising the data and the geophysical corrections is 
required to produce a coherent climate data record. Moreover, each satellite mission presents a 
specific altimeter bias which requires correcting (based on published results), to arrive at a consistent 
long-term multi-satellite LWL time series.  

The software used in this process has been previously developed and is named Hysope. It can be used 
operationally and is based on Intermediate Geophysical Data Records (IGDRs). It is operated at CLS in 
the framework of the Hydroweb database. A version for non-operational use also runs at LEGOS and 
is based on the same equations but using Geophysical Data Records (GDRs) instead of IGDRs (Cretaux 
et al., 2016).  

The procedure is run against data within a priori defined polygons of lake contours (using the common 
dataset of maximum water extent outlines created for Lakes_cci) which are then processed using the 
Hysope software which is classically using the following equation:  

LWL= Alt-Rcorr-TE        [2.1] 

Where LWL is considered with respect to a geoid, Rcorr is the measured range between the satellite 
and the lake surface, Alt is the altitude of the satellite above an ellipsoid and TE is the combination 
of all correction factors to take into account atmospheric refraction (propagation in the ionosphere 
and the troposphere), tidal effects (solid Earth, lake and polar), and geoid height above the ellipsoid. 
For readers who needs more detailed information a full discussion of the computation of LWL is found 
in Cretaux et al. (2009).  

All corrections are released in the GDRs or the IGDRs. The range is chosen from different retracking 
considering that generally the OCOG retracking is the most suitable for continental surface (see E3UB 
document). The geoid correction is calculated using the repeat track technique (see E3UB and Cretaux 
et al. 2009, 2016).  
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 Validation results for LWL 

The general algorithm used to calculate water level over lakes is well known and established in 
scientific literature. To address the issues that are listed in the following sections, we need to analyse 
lakes where reference in situ data are available. Examples of these procedures are given in Ricko et 
al. (2012) and Arsen et al. (2015), comparing different lake databases.  

Lakes_cci cooperates with the State Hydrological Institute of St Petersburg, which provides in situ 
data of LWL for a set of Russian and central Asian lakes. We also use existing databases on the web 
to increase the number of lakes that can be used for this purpose.  

The comparative analysis allows the statistically best performing retracking algorithm to be selected, 
as has been widely demonstrated for lakes as well as rivers.  

Additional metrics to validate the LWL products include comparison of individual LWL retrieval to the 
long-term LWL variability, to detect outliers. The impact of removing outliers is traced as part of this 
process.  

 Identified issues for LWL 

There are two main issues currently under investigation for processing of altimetry data over lakes. 
The first is related to the onboard tracking system, and the second is related to the processing of 
altimetry over small lakes.  

We have identified solutions to address onboard tracking issues based on new a priori information. 
For retrieval of LWL over small lakes we identify solutions based in new algorithms for SAR data. Both 
approaches are detailed in section 2.4.  

Another separate consideration of retrieval performance is the calculation of relative biases when 
several satellites of different types of orbit are used over a given lake. When we use a series of 
satellites such as Topex / Poseidon, Jason-1/2/3, we collect data from the same orbit, so that the 
relative bias between each mission is well described and calibrated (see Cretaux et al. 2009, 2011, 
2013, 2018, Bonnefond et al., 2018). When observations from different orbit are used, however, such 
as with Jason and Envisat or Jason and Sentinel-3, another bias is added. The instrumental biases are 
known, but since the tracks do not cover the same position over the lake, an additional bias due to 
geoid error has to be considered. A very simple method has been developed at Legos to correct for 
this additional bias. The LWL is calculated independently using each track, over the whole period of 
time, and during the overlapping period we interpolate the point measurement from each pass and 
calculate the average difference between all interpolate points. It then corresponds to the additional 
bias due to geoid errors.  

 Future improvements for LWL 

We have identified three main future improvements.  

1. The LWL time series are based on long term time series of altimetry data. To achieve this 
goal, we process measurements from several satellites when it is possible. Currently the 
Topex / Poseidon, ERS2, and Jason-1 are processed using only classical retracking based on 
the algorithm tuned for ocean-type waveform. For many lakes it is therefore not precise 
enough to be included in the products. The issue particularly concerns small and medium size 
lakes. In the second phase of the project, in coordination with other projects and in 
accordance to the development’s plan of Hydroweb, the waveform of these three satellites 
will be reprocessed using several retracking algorithm (OCOG, ICE-2, ICE-3). We expect from 
these reprocessing to first of all increase the number of lakes within the database, and 
secondly to also produce longer time series for existing lakes where only Envisat or Jason-2 / 
Jason-3 were processed. Length of time series of LWL is indeed essential in the framework of 
climate change studies, in order to detect climate signal within time series constrained by 
different type of periodic and non-periodic fluctuations.  
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2. For small lakes, particularly in mountain areas (Andean chain, Tibetan Plateau, Alps) the 
onboard tracking algorithm often does not capture the echo since the temporal observation 
window of the radar receiver  is not tuned in advance to the absolute height of the target. 
To solve this problem, CNES has set up an a-priori database including reference height of 
many targets over continents: on rivers, and on lakes. Coupled with the onboard navigator 
(DIODE) which provides in advance the precise orbit of the satellite, it is possible to force the 
altimeter to switch the onboard tracker to the right window, corresponding to the height of 
the target. The accuracy of reference height does not need to be very accurate, since a 
window of ±5 meters is sufficient to capture the echo. LEGOS is building a Digital Elevation 
Model (DEM) including the reference height of thousands of lakes and rivers. This DEM will be 
uploaded to some active satellites: this has been tested with Jason-3 and led to a significant 
increase in the number of lakes and rivers now measurable from this satellite. It is planned 
to do the same with Sentinel-3A and Sentinel-3B missions, and also to include this DEM with 
future missions like Jason-CS.  

3. Recent missions such as Sentinel-3 provide SAR data. One of the main advantages is to 
improve the resolution of the altimeter along the track. Using unfocused SAR processing 
techniques the resolution is improved by an order of magnitude compared to previous 
altimeters. It allows small-scale features over lakes and rivers to be captured more frequently 
and more accurately, particularly when their orientation is perpendicular to the satellite 
track.  
 
A novel approach was recently developed (Egido and Smith 2017) which performs a coherent 
integration of the SAR echoes along the satellite track. This method works as long as the 
transmitted pulse remains coherent during the target illumination time. This method, called 
Fully Focused SAR processing, can achieve decimetre along-track resolution which is more 
than two orders of magnitude of improvement with respect to unfocused conventional 
approaches. The application of this method for hydrology in general and lake studies in 
particular is revolutionary. Potentially several thousands of new lakes and reservoirs will be 
observable in future. Plans are underway between CLS and Legos to implement this method 
for future use in Hydroweb. It will allow, before the end of Lakes_cci, production of a new 
set of hundreds of lakes for LWL within the CCI database.  
 
Validation of these novel approaches will follow the same principles as laid out above.  

 LWL References 

Arsen, A., JF. Cretaux, and R. Abarca-Del-Rio. 2015. Use of SARAL/AltiKa over mountainous lakes, 
intercomparison with Envisat mission J. of Adv. Space Res. The Saral/ALtiKa satellite 
Altimetry Mission, 38, 534-548, 2015, doi: 10. 1080/01490419. 2014. 1002590  

Bonnefond, P. ; Verron, J. ; Aublanc, J. ; Babu, K. N. ; Berge-Nguyen, M. ; Cancet, M. ; Chaudhary, 
A. ; Cretaux, J-F. ; Frappart, F. ; Haines, BJ. , Laurain, O. ; Ollivier, A. ; Poisson, JC. ; 
Prandi, P. ; Sharma, R. ; Thibaut, P. ; Watson, C. The benefits of the Ka-Band as evidenced 
from the SARAL/AltiKa Altimetric mission: quality assessment and unique characteristics of 
AltiKa data, Remote Sensing. 2018, 10(1), 83, doi:1039/rs/10010083 

Cretaux, J. F., S. Calmant, V. Romanovski, et al. 2009. An absolute calibration site for radar 
altimeters in the continental domain: lake Issykkul in Central Asia, Journal of Geodesy 83 (8) 
723-735 DOI: 10. 1007/s00190-008-0289-7  

Cretaux, J. F., S. Calmant, V. Romanovski, et al. 2011 Absolute Calibration of Jason radar 
altimeters from GPS kinematic campaigns over Lake Issykkul, Marine Geodesy, 34 : 3-4, 291-
318, DOI: 10. 1080/01490419. 2011. 585110  

Crétaux J-F., Bergé-Nguyen M., Calmant S., Romanovski V. V., Meyssignac B., Perosanz F., 
Tashbaeva S., Arsen A., Fund F., Martignago N., Bonnefond P., Laurain O., Morrow R., 
Maisongrande P., 2013 Calibration of envisat radar altimeter over Lake Issykkul, J. Adv. Space 
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3. Lake Water Extent (LWE) algorithms 

Both optical and SAR data are used to estimate LWE. Since the processing chains for the two sensors 
differ, candidate algorithms are described separately in the following sections. The first section 
focuses on the optical approach, followed by SAR-based algorithm considerations.  

Daily LWE estimates in the Lakes_cci data products are based on hypsometry curves, which relate 
LWL altimetry (see section 2) to temporally sparse observations of LWE. The LWE estimates used to 
determine the per-lake hypsometry curves are considered in this section.  

 LWE-optical approach 

3.1.1. Candidate algorithms for the LWE-optical approach 

Based on results and recommendations from the CNES-funded R&T project “Extraction of information 
from multi-source flows, applied to water surfaces”, an unsupervised approach (Otsu 1979) and two 
supervised algorithms, SVM and Random Forest, were selected for evaluation.  

Thresholding is one of the most basic classification methods. From a grey scale image, a value is 

computed as the limit between two or more classes. The Otsu (1979) method allows an optimal 

threshold to be selected by reducing the within-class variance, or by maximizing the between-class 

variance. This method has a simple implementation with corresponding advantages for computation 

requirements. Concerning the Otsu threshold, an improvement based on Canny’s edge detection 

algorithm (Donchyts et al. 2016). have also be implemented and tested This added feature would 

focus on the calculation of the histogram over regions with strongly defined edges, which is the 

expected case at the interface between surface water and land. By doing so, the water signature 

becomes more strongly represented in the histogram resulting in a bimodal distribution and thus 

allows for a more adaptive threshold.   

Support-vector machines (SVMs, also support-vector networks) are supervised learning models with 
associated learning algorithms that analyse data used for classification and regression analysis. Given 
a set of training examples, each marked as belonging to one or the other of two categories, an SVM 
training algorithm builds a model that assigns new examples to one category or the other, making it 
a non-probabilistic binary linear classifier. An SVM model is a representation of the examples as points 
in space, mapped so that the examples of the separate categories are divided by a clear gap that is 
as wide as possible. New examples are then mapped in the same space and predicted to belong to a 
category based on which side of the side gap they fall.  

Random forests or random decision forests are an ensemble learning method for classification, 
regression and other tasks that operates by constructing a multitude of decision trees. Important 
concepts of RF are bagging (bootstrap aggregating) and Out-of-bag error (OBB). The bootstrap 
sampling allows for the decorrelation of the trees and therefore improves the results and the 
robustness of the model. The OBB error can be used to determine the importance of features used 
for the training.  
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3.1.2. Existing validation results for the LWE-optical approach 

Our validation procedures include inter-comparison of results and an analysis of the derived LWE over 
a set of selected case studies over several years. This inter-comparison allows a semi-qualitative 
ranking of candidate methods and it highlights their limitations in terms of performance due to local 
conditions (environment, weather, ice/snow, etc) and experimental conditions (training set selection 
procedures, inputs qualities).  

Validation of individual LWE results is subject to ongoing discussion. Lake water masks should be 
compared with an accurate reference LWE which can come from a ground truth campaign (very rare) 
or a ground truth proxy (photo interpretation on higher resolution data). The critical parameter of 
the reference layer (used for validation) is the temporal difference between its source date and the 
acquisition date analysed. In fact, the same water dynamics must be compared. The difficulty 
increases with lake size. A solution is to first work on smaller lakes up to intermediate scales of a few 
hundred km2. At these scales, VHR1 or VHR2 satellite images can be acquired and the LWE derived 
from this metric or infra metric images can serve as a reference. This is conceptually simple but has 
the following practical restrictions: 

• HR and VHR images must be acquired on the same day or with the shortest possible delay (i. 
e. within a few days). Works done in other project have highlighted this requirement 
suggesting that two days can already be too long.  

• The optical images exploited as reference and slave data need to be spectrally coherent, 
covering the same domains. Most of the approaches for Sentinel-2 or Landsat data exploit 
primitives, raw SWIR channels, or indices (MNDWI, NDWI, AWEI) derived from these SWIR 
channels, whereas the VHR data do not cover the full spectral domain, being restricted to 
VIS and NIR.  

• Reduced confidence in water extraction based on automated approaches compared to visual 
interpretation of the imagery, particularly over low water levels. With low water depth the 
reflected signal can become associated with the lake bottom rather than the water itself. In 
addition, the definition of the limits between water and wet muddy/sandy banks may not 
always be obvious. Visual interpretation is then necessary, but this is not pragmatic given the 
effort, experience and knowledge required and difficulty of reproducibility.  

If initially comparison between HR senintel2 derived LWE and SPOT 6-7 have been envisaged, over 

Colhue Lake (Argentina) and Altevatnet (Norway) to validate both the optical and SAR LWE retrieval 

approach. Finally, as the ratio of resolution, ie 10 versus 1. 5 was not so important, an approach 

associating Sentinel2 and Pleiades VHR data have been carried out. Obtained results, cf PVIR 

document, confirm the quality of LWE retrieval from Sentinel2 imagery, but it also highlights needful 

of having a quasi-synchronous acquisition of VHR and HR data, as even a 24h delay between these 

will induce a bias due to the water dynamic over the targeted lake or reservoir.  

Within CCI-Lakes a third approach of validation is carried out based on the analysis and inter-

comparison of derived hypsometric curves. The idea is that, when comparing LWE derived with 

different methodological /sensors approaches the best water times series would produce the best 

hypsometric curves and therefore statistical correlation can be used to corroborate the method.   

3.1.3. Identified issues for the LWE-optical approach 

The accuracy of the LWE estimates is found to be highly dependent on the type of lake and 

meteorological conditions during the image acquisition. For simple cases where the lake is well filled 

and close to its maximum extent and the satellite image is acquired with optimal meteorological 

conditions (e. g. little or no cloud cover), the results obtained by the different approaches are very 

similar. In the case of shallow water bodies, a large proportion of the reflected signal could originate 

from the bottom of the lake rather than from the water surface itself, leading to greater differences 

in LWE estimates between the different procedures. This may also occur in the case when the 

lake/water body has a high content of suspended material.  



Product Validation and Algorithm Selection Report (PVASR) and Algorithm Development Plan 
(ADP) 

     

 

 11/33 

• Algorithm 1, SVM: More stable approach, sensitive to the training set selection and dependent 

on the input database exploited for the training set selection.  

• Algorithm 2, Random Forest: Improves the generalization of the pre-trained, performs well 

under different image acquisition conditions.  

• Algorithm 3, OTSU: analyses the dependency of floating / submerged / wetland vegetation. 

For the Cany Otsu, obtained results are less accurate than those obtained based on OTSU 

single approach.  

Improvement and validation have been carried out for the following topics: 

• Algorithm 2, Random Forest:  

• Submerged/floating vegetation application: since the satellite imagery is sensitive to the 

properties of the targets, the detected lake water extent is dependent on how the target is 

defined i. e. whether the lake water extent is defined as only open water, or whether it 

should also include water bodies that are highly vegetated and contain targets that are not 

associated with only open water. It may be better to extract a minimum water extent that 

represents only the open water part of such water bodies or extend the definition to include 

all areas where water is present and dominant, including potentially large areas of wetlands.  

3.1.4. Future improvements for the LWE-optical approach 

Thus far, for LWE optical approach SVM appears to provide a reliable and consistent approach and 

this despite, as applied on optical imagery, its sensitivity to cloud cover. Improved detection of clouds 

or the exploitation of ancillary data such as the SAFE mask from Colorado Boulder University, can be 

tested. Should such cloud screening be successful then it can be equally applied to the OTSU and RF 

processing chains.  

The Random Forest approach, which finally appeared after a parametrization step, the most accurate 

methods to retrieve LWEs over different environment from optical imagery, could be of course still 

be improved and this in various ways: 

• Fine tune the parameters of the Random Forest (number of trees, size of the leaf, …)  

• Take advantage of the probability map produced with each classification: this would allow 

for identification of regions where the detected water is more probable than others, leading 

to more accurate delimitation of the water bodies. This could be done by adjusting of the 

probability level, for example for shallows water extent the range of probability whereas for 

a “classical lake” be more restrictive 

• Integrate deep learning techniques, especially semantic segmentation (Wieland et al., 2019).  

Another way that was partially explore but for which the first results were not satisfactory is the AI 

approach, ie CNN based on UNet architecture (Wieland and Martinis, 2019). and exploiting time 

domain (Sat Kumar and al., 2019). These approaches are promising but require a fine strategy of 

training set sampling, and most of the time a huge reference dataset.  

3.1.5. LWE-optical references 

Donchyts, G., Schellekens, J., Winsemius, H., Eisemann, E., & van de Giesen, N. (2016). A 30 m 

Resolution Surface Water Mask Including Estimation of Positional and Thematic Differences 

Using Landsat 8, SRTM and OpenStreetMap: A Case Study in the Murray-Darling Basin, 

Australia. Remote Sensing, 8(5), 386. doi:10. 3390/rs8050386 

Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE transactions on 

systems, man, and cybernetics, 9(1), 62-66.  

Sat Kumar Tomer, Ahmad Al Bitar, Muddu Sekhar, Mehrez Zribi, Soumya Bandyopadhyay, and Yann 

Kerr (2019): MAPSM: A Spatio-Temporal Algorithm for Merging Soil Moisture from Active and 
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Passive Microwave Remote Sensing. Remote Sens. 2016, 8(12), 990; https://doi. org/10. 

3390/rs8120990 

Wieland, M., Martinis, S., and Li, Y. 2019: Semantic segmentation of water bodies in multispectral 

satellites images for situational awareness in emergency response. Int. Arch. Photogramm. 

Remote Sens. Spatial Inf. Sci., XLII-2/W16, 273–277, https://doi. org/10. 5194/isprs-archives-

XLII-2-W16-273-2019, 2019 

Wieland, M., Martinis, (2019): A modular processing chain for automated flood monitoring from 

multispectral satellite data. Remote Sensing, 11, 2330, DOI: 10. 3390/rs11192330 

 LWE-SAR approach 

3.2.1. Candidate algorithms for the LWE-SAR approach 

This section provides an overview of the methods tested by TRE-Altamira and NORCE. Details on the 

methods are given in the ATBD document, which also details how the methods should converge into 

a single processing scheme. Validation of the individual methods is used to determine approaches to 

overcome uncertainties in either method. These solutions can be considered candidates for 

implementation in the final SAR processing scheme.  

The TRE-Altamira Initial Methodology operates over four different stages: pre-processing, water 

mask thresholding, image classification and results generation (Figure 1).  

 

 

Figure 1 Initial TRE-Altamira methodology to test the Lake Water Extent using SAR images.  

 

The NORCE Initial Methodology operates in three stages: pre-processing, water detection and post-
processing (Figure 2).  

  

https://doi.org/10.3390/rs8120990
https://doi.org/10.3390/rs8120990
https://doi.org/10.5194/isprs-archives-XLII-2-W16-273-2019
https://doi.org/10.5194/isprs-archives-XLII-2-W16-273-2019
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Figure 2 Initial NORCE methodology to test the Lake Water Extent using SAR images.  

3.2.2. Existing validation results for the LWE-SAR approach 

The existing validation results are based on the generation of the hypsometric curve derived from the 

SAR LWE time-series against LWL (acquired from an altimeter or measured in-situ). NORCE performed 

this kind of analysis on the Altevatn lake (Vickers et al. 2019) illustrated in Figure 3, showing the 

hypsometric curve employing different curves from Sentinel-1 LWE estimates vs in situ LWL. This 

study confirms that having a significantly populated time-series allows a fair assessment of the quality 

of the data.  

 

Figure 3 Scatter plot of the Sentinel-1 LWE estimates vs. corresponding in-situ 

measurements of lake water level, shown together with fitted natural spline 

function, polynomials of the first, second and third order, and the respective RMS 

in the LWL estimates.  

3.2.3. Identified issues for the LWE-SAR approach 

• On selected blocks with lower contrast the KDE threshold is not always properly calculated. 
This leads to a wrong selection of candidate K-Means segments, which significantly increases 
the false positive ratio, these being specially concentrated in the lake contours. At the same 
time, if increasing the contrast threshold, the density of selected blocks could be low adding 
more uncertainty to the threshold calculation. This issue was found in TRE-Altamira 
methodology.  
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• The number of classes belonging to the water class may vary depending on the lake or the 
diversity of the land cover surrounding the lake. This presents difficulties for automating the 
selection of K-means classes corresponding to water. This issue was found in both the TRE-
Altamira and Norce methodologies.  

• Kittler and Illingworth's and Otsu methods yield in general terms the same performance as 
the Kernel Density Estimator (even slightly worse), that is, they are deeply conditioned by 
the contrast in the analysed block. This issue was found in TRE-Altamira methodology.  

• Cross and co-polar images can be exploited to maximize the results quality. It has been 
observed that especially at the land/water edge they show differences that can be exploited 
to better retrieve the lake limits. This issue was found in both methodologies.  

• The entropy and the root mean square contrast operators show low values on water compared 
to the outer areas. The corresponding low lake values are distinguishable in both histogram 
images. This allows a threshold to be applied to select water pixels, provided that the 
inherent loss of spatial resolution on those operators prevents retrieval of the full extension 
so complementary steps are needed. This can be exploited to calculate the classes belonging 
to water. This issue was found after some preliminary tests done by both teams not being 
part of their strict processing chain.  

• Morphological Snakes show promising results but parameter tuning is required in order to 
achieve the best accuracy. This issue was found after some preliminary tests done by both 
teams not being part of their strict processing chain.  

• Sobel and Canny edge detectors yield interesting results. Nevertheless, fine tuning is also 
required and performances strongly depend on the presence of noise in the image. This issue 
was found after some preliminary tests done by both teams not being part of their strict 
processing chain.  

• Ice and snow can be present on lakes in a significant part of the year. In that case, the 
presented methodologies do not hold, since the reflected radar signal from snow and ice is 
very different from that associated with water. As a result, those images are discarded. 
Therefore, at least in the present time, a gap in the lake water extent time series will be 
present. This issue is mainly related to the SAR image properties.  

• Rough water surface, e. g. due to wind-induced waves and shallow waters can lead to 
misclassification since the SAR image backscatter values increase. Vegetation in the lake can 
have similar effects on the result.  

3.2.4. Future improvements for the LWE-SAR approach 

As explained in the previous section, some methodologies are preferable for exploitation in order to 
increase the quality of the extracted lake water extent. Further characterization and testing are 
needed on them.  

The combination of polarimetric information, for example use of both cross and co-polar images in 
the case of Sentinel-1, is identified to be one of the improvements that should be done in the future. 
This applies in particular to the definition of the lake outline definition, where different behaviour 
in the backscattered SAR signal associated with the two polarizations can be exploited.  

Speckle filter on the amplitude SAR images is also something to consider as a future improvement.  

A test using an Artificial Intelligence approach has been performed. The idea will be to use previous 
results from K-means classification (with manual quality inspection) as training data. The preliminary 
results showed performances similar to the K-means approach. Improved performances are expected 
if the neural network is fed with a large numbers of training data.  

A systematic exploitation of the entropy and root mean square contrast operators will be explored. 
The use of Morphological Snakes will be also included.  

Improvement on automation should also be considered. Many processing steps and operators work 
considering a spatial analysis on the images. Elements as the spatial analysis block size has to be 
automatically adapted to a particular lake.  
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Particular attention has to be focused on the error budget characterization. Classification methods 
are part of the processing core of the described methodologies, but present difficulties in providing 
an error estimate for each pixel. Work on this characterization has to be considered in future steps.  

In the present time, some SAR images have to be discarded when the SAR backscatter is affected by 
elements such as wind, ice and snow. A step further would be to develop methodologies for ice and 
snow detection to characterize the lake water extent among these conditions. In any case, a proper 
definition itself on what lake water extent means in those cases would be required.  

In summary the expected outcome would be a SAR processing chain that maximizes the lake water 
extent quality among the largest types of lakes according to their environmental conditions.  

3.2.5. LWE-SAR references 

S. Martinis, A. Twele, and S. Voigt. , “Towards operational near real-time flood detection using a 
split-based automatic thresholding procedure on high resolution TerraSAR-X data”, Nat. 
Hazards Earth Syst. Sci., 9, 303–314, 2009.  

S. Martinis and R. Christoph, “Backscatter Analysis Using Multi-Temporal and Multi-Frequency SAR 
Data in the Context of Flood Mapping at River Saale, Germany”. Remote Sensing. 2015, 7(6), 
7732-7752.  

L. Landuyt, A. Van Wesemael, G. J. -. Schumann, R. Hostache, N. E. C. Verhoest and F. M. B. Van 
Coillie, "Flood Mapping Based on Synthetic Aperture Radar: An Assessment of Established 
Approaches, " in IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 2, pp. 
722-739, Feb. 2019.  

H. Vickers, Eirik Malnes, K-A Hodga. “Long-term Water Surface Area Monitoring and Derived Water 
Level suing Synthetic Aperture Radar (SAR) at Altevatn, a Medium-Sized Artic Lake”. Remote 
Sens. 2019, 11(23), 2780.  

4. Lake Surface Water Temperature (LSWT) algorithms 

 Candidate algorithms for LSWT 

Surface temperatures from infrared observations are obtained by coefficient-based methods or 
optimal estimation (OE, Merchant and Embury 2014). Because of the varied altitudes of lakes and the 
large differences in atmospheric absorption associated with continentality, optimal estimation is the 
appropriate approach for LSWT estimation (MacCallum and Merchant, 2012).  

OE also provides comprehensive equations for uncertainty evaluation, on which basis uncertainty 
estimates are provided in LSWT products per datum.  

As well as retrieval, classification of which pixels are filled with water under clear skies is a necessary 
part of the LSWT processing. This is done by a “fuzzy logic” style approach in which a number of 
metrics with fuzzy thresholds are combined into a “water detection score” that contributes to the 
definition of the quality level attributed to the pixel. Bayesian cloud detection, as used for sea surface 
temperature, was also considered to identify clear-sky pixels but is heavily compromised in its current 
implementation for small lakes, where the spatial coherence of the temperature of the scene is not 
a good indicator of cloud (unlike in the centre of large lakes and over open ocean). Because of the 
user requirement to increase the number of measured lakes, the latter scheme is therefore currently 
inapplicable for the identification of clear-sky only water pixels.  

 Existing validation results for LSWT 

Validation results (for LSWT processor v4.1 used to generate CRDPv1.0) are summarised in the product 

validation report. The validation undertaken is a comparison of satellite to matched in situ 

temperatures. These comparisons are limited by the non-representative sample-of-opportunity (in 
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situ measurements being unfortunately hard to obtain) and by variable and often unknown in situ 

uncertainty characteristics and quality control. Validation results are too ambivalent in this case to 

be used as a discriminant between alternative algorithmic approaches, and for LSWT are not used in 

this way. As mentioned in the previous section, the retrieval algorithm is established by 

considerations rooted in physics and inverse theory.  

Nonetheless, the validation exercise is sufficient to establish that for quality level (QL) 5 (best 

quality) LSWT data, the data have low bias (<0. 1 K) and uncertainty estimates are reasonable.  

 Identified issues for LSWT 

LSWT retrieval 

1. Optimal estimation uses an observation-simulation error covariance matrix. This matrix is 
presently a simple diagonal estimate that doesn’t account for the likelihood of cross-channel 
correlations in the simulation errors.  

2. Optimal estimation uses a prior error covariance matrix. This matrix is a simple diagonal 
estimate based on experience of ERA-interim, and ideally should be updated for use with 
ERA-5.  

LSWT retrieval uncertainty 

(NB, this aspect is also addressed by the issues identified for LSWT retrieval. ) 

The decomposition of the optimal estimation uncertainty into different correlation length 
scales is an approximation; a more complete solution needs to be coded. (The decomposition 
is relevant when creating gridded data. ) 

Water detection 

The water detection to select water-only pixels relies on day time (reflectance) channels, 
and therefore cannot be applied at night. The alternative that may work at night is based on 
Bayesian cloud screening (as used in SST CCI), but for small lakes would require considerable 
research, development and modification.  

Quality level determination 

QL determination is based mainly on water detection results and also on retrieval chi-square 
results (which measure the plausibility of the solution given the prior and observations). 
However, the chi-square results differed more than expected between Metop-A and Metop-B 
AVHRRs, affecting the QL attribution adversely in the case of Metop-B. This is yet to be 
understood.  

Increasing coverage using MODIS 

1. By far the most impactful issue for users for LSWT is to increase the density of coverage, 
which is limited by sensor-orbit coverage and by cloud cover. Therefore, in v5. 0 the team 
will add MODIS to the processed data streams. This will involve creating water detection and 
retrieval parameters analogous to those for the ATSRs and AVHRRs, testing and implementing 
the retrieval.  

2. MODIS offers additional capabilities such as higher visible resolution in some channels and 
additional thermal channels, particularly at 8. 7 um. With these capabilities, as well as adding 
coverage, MODIS may facilitate single-view retrievals with lower uncertainty.  

3. Lake Ice Cover is determined from MODIS, and it may also be possible to maximise consistency 
with the LIC product of the project by using level 2 intermediate outputs of the LIC processor 
as auxiliary inputs for LSWT (to avoid attempting to retrieve LSWT where the LIC processor 
identifies ice-in-pixel).  

Implications for MODIS LSWT v5.0 (Lakes_cci product version 2)  

LSWT v5. 0 will process MODIS, which greatly increases the coverage for users. This requires algorithm 
development with respect to parameters for water detection, verifying and if necessary tuning the 
optimal estimator for MODIS. The potential to use the intermediate LIC products needs to be 
explored.  
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LSWT v5. 0 will use ERA-5 for the background numerical weather prediction data (except the lake 
surface water temperature which will be the climatology from LSWT v4. 0) and will continue to be 
based on day-time images.  

A work-around for the Metop-B issue with chi-square is implemented in v4. 1, but a more fundamental 
resolution will be sought. 

 Future improvements for LSWT  

For version LSWT v5.0 – MODIS (Lakes_cci product version 2): 

1. The issue of error covariance estimation for optimal estimation is a long-standing problem, 
to which a possible solution (Merchant et al., 2020) has recently been proposed. These 
techniques will be applied within SST CCI and the matrices will be applicable for LSWT v5.0 
(except for MODIS, where previous techniques for estimating these will be used).  

2. The approximations in the uncertainty decomposition will be removed and a more exact 
solution implemented.  

3. MODIS will be added to the processed data stream, on the same algorithmic basis as Metop 
AVHRRs,  potentially with additional improvements using MODIS lake ice products.  

4. LSWT v5.0 will use ERA-5 for background numerical weather prediction information (except 
the lake surface water temperature which will be the climatology from LSWT v4. 0). However, 
the optimisation of associated error covariance information will will be pending for v5.0, 
although adequate approximations will be available.  

Beyond LSWT v5.0: 

1. The LSWT record would greatly benefit from inclusion of night-time data, which are possible 
for the large lakes in the “ARC-lake” project, but for which no solution exists for small lakes 
within our target population. This is a challenging issue, that may rely on building up detailed 
knowledge and databases lake-by-lake. The R&D resources within the Lakes_cci are 
insufficient for this scale of development.  

2. The US successor to MODIS and AVHRR is the VIIRS series, which will be excellent for LSWT 
coverage and quality. However, we have no practicable (affordable) means of accessing the 
data stream presently. We have approached NOAA/NASA about whether CCI processing can 
be run at source on their data, but a framework for this is yet to be found. We will continue 
to pursue this.  

 LSWT References 

MacCallum, S. N. and Merchant, C. J. (2012) Surface water temperature observations of large lakes 
by optimal estimation. Canadian Journal of Remote Sensing, 38 (1). pp. 25-45. ISSN 1712-7971 
doi: https://doi. org/10. 5589/m12-010 

Merchant, C. J. and Embury, O. (2014) Simulation and inversion of satellite thermal measurements. 
In: Zibordi, G., Donlon, C. J. and Parr, A. C. (eds. ) Optical radiometry for ocean climate 
measurements. Experimental methods in the physical sciences, 47 (47). Academic Press, pp. 
489-526. ISBN 9780124170117 doi: https://doi. org/10. 1016/B978-0-12-417011-7. 00015-5 

Merchant, C., Saux-Picart, S. and Waller, J. (2020) Parameters for optimal estimation by exploiting 
matched in-situ references. Remote Sensing of Environment 237, 111590.  

5. Lake Ice Cover (LIC) algorithms 

 Candidate algorithms for LIC 

The LIC retrieval algorithm selected for Lakes_cci CDRP v2 production relies on a threshold-based 
approach that consists of two parts; one for cloud detection (cloud-covered or cloud-free pixels) and 
the other for ice detection (ice-covered or open water pixels). The set of criteria and threshold values 

https://doi.org/10.1016/B978-0-12-417011-7.00015-5
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implemented for Lakes_cci have been devised to retrieve these classes (ice cover, open water and 
cloud cover) based on the MODIS Terra/Aqua Atmospherically Corrected Surface Reflectance 5-Min 
L2 Swath (MOD09/MYD09), Collection 6, product (Vermotte et al., 2015). An earlier version of the 
retrieval algorithm ingested MODIS Level 1B Calibrated Radiances (TOA reflectance; MOD02/MYD02 
product) instead, as is currently done for the generation the MODIS (Terra only) lake ice extent 250-
m product for Northern Europe by the Copernicus Global Land Service.  

In the threshold-based approach using either MOD09/MYD09 or MOD02/MYD02, a modified version of 
the Simple Cloud Detection Algorithm (SCDA) proposed by Metsämäki et al. (2011) is used to detect 
cloud-covered and cloud-free pixels. The SCDA uses a combination of visible, mid-infrared and 
thermal bands – MODIS bands 4, 6 (replaced by band 7 for MODIS Aqua due to band 6 detector 
problems), 20, 31 and 32. The second part of the algorithm, also threshold-based, detects ice cover 
and open water for pixels flagged as cloud-free. This part of the algorithm uses MODIS bands 2, 3 and 
4. A detailed description of the algorithm and bands used in the retrieval process is provided in the 
Algorithm Theoretical Basis Document (ATBD).  

The algorithm that uses MOD09/MYD09 (surface reflectance) as input has been found to outperform 
the one that utilizes MOD02/MYD02 (TOA reflectance) and, hence, is the one adopted for Lakes_cci 
v1. Validation results of the threshold-based approach using MOD09/MYD09 and MOD02/MYD02 as 
input are presented next.  

 Validation results for LIC 

The LIC retrieval algorithm has been developed and validated through a detailed examination of 
surface reflectance (and brightness temperature) over ice, open water and cloud cover under various 
conditions (e. g. thin ice, turbid water, thin clouds, high solar zenith angles) during both the break-
up (BU) and freeze-up (FU) periods from a selection of 17 large lakes across the Northern Hemisphere 
(North America and Eurasia) (Figure 4).  

 

 

Figure 4: Geographical distribution of 17 lakes used for Lakes_cci LIC v1 algorithm 
development and validation 

An accuracy assessment has been performed for LIC products derived from the algorithm selected for 
Lakes_cci (referred to as Lakes_cci LIC) using MOD09/MYD09 surface reflectance and MOD02/MYD02 
(TOA reflectance), both based on MODIS Collection 6 data. The confusion matrices presented below 
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(Table 1 and Table 2) were produced using 165, 697 test pixels from AOIs collected through visual 
interpretation of 108 images (MODIS Aqua and Terra at 17 lakes) acquired during both the BU (68 
images) and FU (40 images) in ice seasons 2002-2003, 2009-2010, and 2016-2017.  

Table 1 shows the overall accuracy (OA) of the two products (break-up and freeze-up periods 
combined). The algorithm selected for Lakes_cci that uses MOD09/MYD09 provides the highest overall 
accuracy (95. 54%), and also for individual classes (91. 71% for ice cover, 98. 85% for water, and 95. 
63% for cloud cover) compared to retrievals based on MOD02/MYD02.  

Table 2 shows the accuracies reached using MOD09/MYD09 (surface reflectance) and MOD02/MYD02 
(TOA reflectance) for the BU and FU periods taken individually. There is no notable difference in the 
accuracy of Lakes_cci LIC (MOD09/MYD09) between the BU (OA: 95. 80%) and FU (OA: 95. 12%) 
periods, and the classification accuracies are consistent across classes. The LIC product generated 
with MOD02/MYD02 as input performs comparably well during the BU period, but poorly during the 
FU period. The lower performance of the threshold-based algorithm using TOA reflectance has been 
found to be particularly revealing for high-latitude lakes when solar zenith angles are large (ca. ≥ 70 
degrees).  

 

Table 1: Confusion matrices with retrieval accuracies for Lakes_cci LIC (MOD09/MYD09) and 
MOD02/MYD02 LIC products (break-up and freeze-up periods combined) 

  Retrieval Algorithm 

Lakes_cci LIC  Ice Water Cloud 

 

Accuracy 

U
se

r-

d
e
fi

n
e
d
 Ice 46968 2737 1510 91. 71% 

Water 506 57435 165 98. 85% 

Cloud 2272 192 53912 95. 63% 

  Overall Accuracy: 95. 54% 

MOD02/MYD02 LIC  Ice Water Cloud 

 

Accuracy 

U
se

r-

d
e
fi

n
e
d
 Ice 35275 13944 2130 68. 70% 

Water 42 57862 35 99. 87% 

Cloud 2397 11387 42625 75. 56% 

  Overall Accuracy: 81. 93% 

 
 

Table 2: Confusion matrices with retrieval accuracies for Lakes_cci LIC (MOD09/MYD09) and 
MOD02/MYD02 LIC products (break-up and freeze-up periods individually) 

 Break-Up Freeze-Up 

Retrieval Algorithm Retrieval Algorithm 

Lakes_cci LIC Ice Water Cloud  Accuracy Ice Water Cloud  Accuracy 

U
se

r-

d
e
fi

n
e
d
 Ice 29128 2535 133 91. 61% 17840 202 1377 91. 87% 

Water 16 39520 47 99. 84% 490 17915 118 96. 72% 

Cloud 1418 162 29750 94. 96% 854 30 24162 96. 47% 

Overall Accuracy: 95. 80% Overall Accuracy: 95. 12% 

MOD02/MYD02 LIC Ice Water Cloud  Accuracy Ice Water Cloud  Accuracy 

U
se

r-

d
e
fi

n
e
d
 Ice 29084 2306 408 91. 46% 6191 11638 1722 31. 67% 

Water 42 39481 18 99. 85% 0 18381 17 99. 91% 

Cloud 1272 618 29480 93. 98% 1125 10769 13145 52. 50% 

Overall Accuracy: 95. 46% Overall Accuracy: 59. 88% 
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 Identified issues for LIC 

While validation results of the Lakes_cci LIC retrieval algorithm obtained to date are promising (errors 
to be less than 10% based on 17 lake sites), a few issues warrant further investigation.  

1. Cloud cover: Cloud detection is improved with the SCDA algorithm implemented for Lakes_cci 
compared to NASA’s MOD35/MYD35 product. However, a broader assessment of algorithm 
performance for the detection of thin clouds in both space (more lakes) and time (more 
timestamps) is needed.  

2. Solar zenith angle: Using MODIS surface reflectance (MOD09/MYD09) as input rather than TOA 
reflectance (MOD02/MYD02) results in more accurate retrievals for high-latitude lakes where 
solar zenith angles are large for extended periods of time during the ice season. Validation needs 
to be performed over a larger number of lakes and ice seasons than what has been accomplished 
to date.  

3. Water detection: Water detection is not implemented in the current version of Lakes_cci LIC 
retrieval algorithm. As a result, a dry lakebed could be mistakenly classified as ice covered in 
summer due to high reflectance of such surface compared to open water. This issue is expected 
to be minor “globally”, but one that still needs to be addressed to ensure high retrieval 
performance for all regions of the globe.  

4. Uncertainty: Pixel-level uncertainty is currently provided from overall classification errors 
calculated for each of the three classes (ice cover, open water and cloud cover) reported in Table 
1. All individual sources of uncertainty have yet to be fully characterized and quantified.  

 Future improvements for LIC 

Of the issues identified in Section 5. 3, water detection as well as more complete characterization 
and quantification of uncertainty will be addressed first in the period leading up to CRDP V2. Issues 
related to the detection of thin clouds and the impact of large solar zenith angles on LIC retrieval 
performance will also be considered for the next version of the algorithm, once feedback has been 
received from data users of CRDP V1.  

One major effort planned in the period leading to CRDP V2 is an evaluation of machine learning (ML) 
classifiers for LIC retrieval from MODIS TOA reflectance (level 1) data. Of the ML classifiers, five are 
currently being tested on MODIS MOD02/MYD02 for the selection of lakes shown in Figure 4: 
multinomial logistic regression, support vector machine, random forest, gradient boosting trees, and 
convolutional neural networks. While the threshold-based approach adopted to generate CRDP V1 
showed better overall LIC retrieval performance from MODIS surface reflectance (level 2) rather than 
TOA reflectance (level 1) data as input, ML classifiers may perform equally well using TOA 
reflectance. Indeed, early results indicate that classification accuracies as high as 98-99% may be 
achievable (Wu et al. 2021). 

 LIC References 

Metsämäki, S., Sandner, R., Nagler, T., Solberg, R., Wangensteen, B., Luojus, K., et al. (2011) Cloud 
detection algorithm SCDA. GlobSnow Technical Note 2. European Space Agency.  

Vermote, E. F., Roger, J. C., & Ray, J. P. (2015) MODIS surface reflectance user’s guide collection 6. 
Maryland: MODIS Land Surface Reflectance Science Computing Facility.  

Wu, Y., Duguay, C. R., & Xu, L. (2021) Mapping lake ice cover from MODIS using machine learning 
approaches. Rem Sens Env 253: 112206. 
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6. Lake Water Leaving Reflectance (LWLR) algorithms 

 Candidate algorithms for LWLR 

Algorithms in the LWLR processing chain Calimnos  fall into three categories:  

● Pre-processing including pixel identification as water, land, cloud or ice  
● Atmospheric correction yielding LWLR  
● Derived water-column concentration estimates, notably of chlorophyll-a and turbidity  

 
For the pre-processing category the processor relies on the Idepix multi-sensor processor in SNAP. 
The algorithm combines information from static sources (such as water extent) and dynamic pixel 
identification based on a neural network trained for each of the optical sensors. Depending on the 
capabilities of the sensor, the processing chain will rely on combinations of these processes. The 
algorithm is not part of validation of the Lakes_cci LWLR but its performance is taken into 
consideration with regard to consistency in water/land masking between the Lakes_cci thematic 
ECVs.  

Validation of algorithms for atmospheric correction requires near-coincident in situ observations of 
water-leaving reflectance. Due to scarce in situ data form lakes, the window of acceptable 
coincidence may be up to several days from satellite observation. Longer time windows allow more 
data points to be included, which is suitable to determine the best-performing algorithm but less 
suitable to determine product uncertainties which may be exaggerated. The majority of radiometric 
in situ data for lakes deposited in LIMNADES, the largest and only community-owned repository for 
lake bio-optical measurements, correspond to the MERIS observation period. Therefore, the 
procedure for selecting and evaluation of candidate algorithms is as follows:  

● Round-robin evaluation of MERIS atmospheric correction algorithms  
● Application of the most suitable MERIS algorithm(s) to MERIS and OLCI  
● Evaluation of algorithms for MODIS based on minimizing inter-sensor bias during overlap with 

MERIS and OLCI, respectively  
● A strategy for including SeaWiFS observations will be defined based on the results of MODIS (and 

VIIRS).  
 

Finally, algorithms for the derived water-column properties, notably chlorophyll-a and turbidity 
(either directly or by conversion of total suspended matter concentration, usually following Nechad 
et al. 2016), are evaluated in a sensor-dependent manner similar to the procedure given for 
atmospheric correction algorithms. These algorithms are first evaluated against the available in situ 
data archives to assess their application range. The algorithms are then tuned for optimal 
performance as a function of their membership to a set of optical water types, allowing them to be 
mapped to satellite imagery using a weighted averaging ‘blending’ method. Details on the optical 
water type methodology are provided in the Lakes_cci ATBD.  

Several of the algorithms that may be considered for atmospheric correction are coupled atmosphere-
water models yielding water-column properties including chlorophyll-a and suspended matter 
concentrations. These algorithms have not all been thoroughly evaluated in peer-reviewed literature 
and are included primarily for reference. Where they outperform better-understood alternatives they 
will be given further consideration.  

The candidate algorithms are listed per sensor in the following tables. As a rule of thumb, only 
algorithms with a transparent and published methodology are considered, and algorithms with a 
theoretical basis suggesting specificity and sensitivity to the target substance are preferred. Where 
algorithms have been previously validated in a specific region, their validated range is given. The 
MERIS/OLCI algorithms (Table 3 and Table 4) are described in comparative detail in Neil et al. (2019). 
For the MODIS/VIIRS set of candidate algorithms (Table 5 for chlorophyll-a, Table 6 and Table 7 for 
suspended matter and turbidity) this comparison is carried out for the first time in the Lakes_cci, 
targeting CRDP v2.0. Details on the waveband combinations that are shown in these tables suggest 
there may be substantial overlap, in which case highly similar algorithms are ultimately collapsed 
into algorithm types prior to calibration.  
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Table 3 Candidate algorithms tested for MERIS (and OLCI by proxy) yielding chlorophyll-a 
concentration 

Type Model Reference 

(Semi-)empirical  
NIR-red BR 

MERIS 2-Band 708/665 Gilerson et al. 2010 
Gurlin et al. 2011 
Gons et al. 2005 

MERIS 2-Band 753/665 Gilerson et al. 2010 
Gitelson et al. 2011 
Moses et al. 2009.  

MERIS 3-Band  Gitelson et al. 2008 
Gitelson et al. 2011 
Gurlin et al. 2011 
Moses et al. 2009  

MERIS NDCI  Mishra et al. 2012 

Empirical OC MERIS OC2E 
MERIS OC3E 
MERIS OC4E  

O’Reilly et al. 2000  

Neural Network NN_Chl 
NN_IOP 
FUB 
CoastColour 
C2RLakes(EUT/BOR) 

Ioannou et al. 2013 

 

Analytical MERIS QAA [Turbid] Mishra et al. 2013 

MERIS GSM Maritorena et al. 2002 

MERIS Matrix Inversion Boss and Roesler 2006 

Peak Height Method MPH Matthews et al. 2012 

Table 4 Candidate algorithms tested for MERIS (and OLCI by proxy) yielding total suspended 
matter.  

Type Algorithm name Reference 

Empirical Binding red 
Zhang 708 
Vantrepotte 665 
POWERS 560 

Binding et al. 2005 
Zhang et al. 2010 
Vantrepotte et al. 2011 
Eleveld et al. 2008 

D’Sa 665/560 
Dekker 490, 560 
Dekker 560, 665 

D’Sa et al. 2007 
Dekker et al. 2002 

Loisel 3-Band Loisel et al. 2014 
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Type Algorithm name Reference 

(Semi-) Analytical Binding A 
Nechad 665 
Nechad 681 
Nechad 708 
Nechad 753 

Binding et al. 2010 
Nechad et al. 2010 

Table 5 Summary of candidate Chla algorithms for MODIS/VIIRS 

Code Name/form Type Bands* Calibration or 
validated range 

Reference 

A OC3M blue-green band 
ratio 

min[Rrs(443), 
Rrs(488)], 
Rrs(547) 

0. 2 ~ 90 mg m-3 O’Reilly and 
Maritorena 2000 

B OC2M blue-green band 
ratio 

Rrs(488), Rrs(547) 0. 2 ~ 90 mg m-3 O’Reilly and 
Maritorena 2000 

C OC2M-HI (500 
m) 

blue-green band 
ratio 

Rrs(469), Rrs(555) 0. 2 ~ 90 mg m-3 O’Reilly and 
Maritorena 2000 

D FLH peak height Rrs(665), 
Rrs(677), Rrs(746) 

1 ~ 10 mg m-3 Letelier 1996 

E linear NIR-red band 
ratio 

Rrs(748), 
[Rrs(667) or 
Rrs(678)] 

4 ~ 240 mg m-3 Gitelson 1992; 
Dall’Olmo et al. 
2005; Gitelson et 
al. 2007, 2008; 
Gurlin et al. 2011 

F linear blue-green band 
ratio 

Rrs(551), Rrs(443) 8 ~ 17 mg m-3 Ha et al. 2013 

G linear spectral index Rrc(645), 
Rrc(859) 

6. 6 ~ 113. 7 mg m-3 Shi et al. 2017 

H APPEL model empirical R(645), R(859), 
R(469) 

2. 5 ~ 91. 0 mg m-3 El-Alem et al. 2012 

I GSM semi-analytical (not 
reproduced) 

0 ~ 100 mg m-3 Maritorena et al. 
2002 

J QAA_v6 semi-analytical (not 
reproduced) 

0. 02 ~70. 21 mg m-3 Lee et al. 2002 

K QAA_Tur semi-analytical (not 
reproduced) 

59 ~1376 mg m-3 Mishra et al. 2013, 
2014 

L MODIS SA semi-analytical (not 
reproduced) 

0 ~ 2 mg m-3 Carder et al. 2004 

*Reflectance bands are as used in the original definition, taking the following forms: 
Rrs is above-surface remote-sensing reflectance 
Rrc is the atmospherically Rayleigh-corrected reflectance.  

Table 6 Summary of candidate Turbidity algorithms for MODIS/VIIRS 

Code Name/form Type Bands* Calibration or 
validated range 

Reference 

A polynomial single red band Rrs(645) TSM <30 mg L-1 Petus et al. 2010 

https://paperpile.com/c/UkYWw3/fpLQ
https://paperpile.com/c/UkYWw3/fpLQ
https://paperpile.com/c/UkYWw3/fpLQ
https://paperpile.com/c/UkYWw3/fpLQ
https://paperpile.com/c/UkYWw3/fpLQ
https://paperpile.com/c/UkYWw3/fpLQ
https://paperpile.com/c/UkYWw3/JtSq
https://paperpile.com/c/UkYWw3/i5An+PSyj+jcUV+U5pA+jmP7
https://paperpile.com/c/UkYWw3/i5An+PSyj+jcUV+U5pA+jmP7
https://paperpile.com/c/UkYWw3/i5An+PSyj+jcUV+U5pA+jmP7
https://paperpile.com/c/UkYWw3/i5An+PSyj+jcUV+U5pA+jmP7
https://paperpile.com/c/UkYWw3/i5An+PSyj+jcUV+U5pA+jmP7
https://paperpile.com/c/UkYWw3/mQty
https://paperpile.com/c/UkYWw3/e8C5
https://paperpile.com/c/UkYWw3/stln
https://paperpile.com/c/UkYWw3/dJOH
https://paperpile.com/c/UkYWw3/dJOH
https://paperpile.com/c/UkYWw3/jOHl
https://paperpile.com/c/UkYWw3/hv84+V3sY
https://paperpile.com/c/UkYWw3/hv84+V3sY
https://paperpile.com/c/UkYWw3/cHj8
https://paperpile.com/c/UkYWw3/8tbm
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B linear single red band Rrs(645) Turb 0 ~ 15 NTU  Moreno-Madrinan et 
al. 2010 

C exponential single red band Rrs(645) Turb 1. 8 ~ 160 FTU Constantin et al. 
2017 

D power law single red band Rrs(645) Turb 0. 9 ~ 8 NTU Chen et al. 2007 

E polynomial single NIR band nLw(869) Turb 1~300 NTU Wang et al. 2012 

F power law NIR-red ratio Rrs(859)/Rrs(645) Turb 50 ~ 1000 NTU Robert et al. 2016 

G exponential NIR-red ratio R(859)/R(645) Turb 77. 4 ~2193 NTU 
TSM 77 ~ 2182 mg L-1 

Doxaran et al. 2009 

H semi-empirical red or NIR ρw(645), ρw(859)  
 

Turb 1. 8 ~ 988 FNU Dogliotti et al. 2015 

*Reflectance bands are as used in the original definition, taking the following forms: 
Rrs is above-surface remote-sensing reflectance 
nLw is the normalized water-leaving radiance.  
R is the ‘surface reflectance’ of the MODIS land product.  
ρw

 is the water reflectance, which is defined as πLw (λ) / E0
d
+ (λ), where Lw

 is the water-leaving radiance and 
E0

d
+ is the above-water downwelling irradiance.  

Table 7 Summary of candidate TSM algorithms for MODIS/VIIRS 

Code Name/form Type  Bands* Calibration or 
validated range 

Reference 

I linear single red band R(645) 0 ~ 55 mg L-1 Miller and McKee 
2004; Sipelgas et al. 
2006 

J  polynomial single red band Rrs(645) 0 ~ 30 mg L-1 Petus et al. 2010 

K exponential single red band Rrs(645) 0 ~ 300 mg L-1 Zhao et al. 2011; 
Shi et al. 2015 

L polynomial single red band nLw(645) 0 ~ 16 mg L-1 Ondrusek et al. 
2012 

M exponential NIR-red ratio R(859)/R(645) 77 ~ 2182 mg L-1 Doxaran et al. 2009 

N power law NIR-red ratio Rrs(859)/Rrs(645) 18 ~ 927 mg L-1 Robert et al. 2016 

O polynomial NIR-red ratio  log[Rrs(859)]/log
[Rrs(645)] 

5. 8 ~ 577. 2 mg L-1 Chen et al. 2015 

P linear NIR-red ratio log[Rrs(859)]/log
[Rrs(645)] 

1 ~ 64 mg L-1 Wang et al. 2010a 

Q exponential red and NIR Rt(645)-Rt(859) 0 ~ 12 mg L-1 Hu et al. 2004 

R linear red and NIR Rrs(645)-Rrs(859) 0. 3 ~ 20 mg L-1 Tarrant et al. 2010 

S linear two NIR bands ρw(859)-
ρw(1240) 

74 ~ 881 mg L-1 Wang et al. 2010b 

T exponential three bands Rrs(488), 
Rrs(555), Rrs(645) 

1~ 300 mg L-1 Zhang et al. 2010 

U semi-
analytical 

red nLw (748) 0. 18 ~ 28. 3 mg L-1 Binding et al. 2010 

https://paperpile.com/c/UkYWw3/2BXm
https://paperpile.com/c/UkYWw3/2BXm
https://paperpile.com/c/UkYWw3/o4NH
https://paperpile.com/c/UkYWw3/o4NH
https://paperpile.com/c/UkYWw3/INXE
https://paperpile.com/c/UkYWw3/IIX6
https://paperpile.com/c/UkYWw3/Jox5
https://paperpile.com/c/UkYWw3/NuCV
https://paperpile.com/c/UkYWw3/nPHU
https://paperpile.com/c/UkYWw3/hkrM+uiF8
https://paperpile.com/c/UkYWw3/hkrM+uiF8
https://paperpile.com/c/UkYWw3/hkrM+uiF8
https://paperpile.com/c/UkYWw3/8tbm
https://paperpile.com/c/UkYWw3/Wa81+3hQ9
https://paperpile.com/c/UkYWw3/Wa81+3hQ9
https://paperpile.com/c/UkYWw3/Ren4
https://paperpile.com/c/UkYWw3/Ren4
https://paperpile.com/c/UkYWw3/NuCV
https://paperpile.com/c/UkYWw3/Jox5
https://paperpile.com/c/UkYWw3/MYBL
https://paperpile.com/c/UkYWw3/2SwE
https://paperpile.com/c/UkYWw3/rY2L
https://paperpile.com/c/UkYWw3/Yb9b
https://paperpile.com/c/UkYWw3/w4Bv
https://paperpile.com/c/UkYWw3/trvx
https://paperpile.com/c/UkYWw3/kGIV
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V generic single-
band 

red or NIR ρw(645) or 
ρw(859) 

1 ~100 mg L-1 Nechad et al. 2010; 
Polito et al. 2016 

*Reflectance bands are as used in the original definition, taking the following forms: 
R is the ‘surface reflectance’ of the MODIS land product.  
Rrs is above-surface remote-sensing reflectance 
Rt is the total radiance observed by MODIS (Ft) divided by the annual mean extraterrestrial solar irradiance F0.  
nLw is the normalized water-leaving radiance.  
ρw

 is the water reflectance, which is defined as πLw (λ) / E0
d
+ (λ), where Lw

 is the water-leaving radiance and 
E0

d
+ is the above-water downwelling irradiance.  

 Validation results for LWLR 

Prior to the Lakes_cci, extensive validation exercises were carried out of on satellite-derived LWLR 
against in situ remote-sensing reflectance (predominantly from above-water measurements) as well 
as on the retrieval of chlorophyll-a from atmospherically corrected LWLR. However, the number of 
satellite vs in situ matchups is limited and these analyses have mostly focussed on products derived 
from MERIS.  

For LWLR, six algorithms for MERIS were initially compared: MEGS8.1 (MERIS default), FUB, 
CoastColour, Case2Regional, SCAPE-M and POLYMER. From these results (Figure 5 to Figure 7 give 
examples of MEGS and the best performing algorithms), POLYMER was selected based on its superior 
linearity and correlation with in situ data despite a significant negative bias, which appears to be 
associated with overestimation of the atmospheric radiance component rather than the water model 
which is not yet well understood. Linearity in the response nevertheless suggests that algorithms for 
the retrieval of chlorophyll-a, total suspended matter or turbidity can be tuned to reproduce in situ 
observations. This procedure is described in more detail in the E3UB document.  

 

Figure 5 LWLR retrieval per MERIS waveband using the default MEGS algorithm. Matchups are 
for a ±7-day matchup window and 3x3 pixel extraction window and include results of 

23 lakes.  

https://paperpile.com/c/UkYWw3/qbOz+E2DL
https://paperpile.com/c/UkYWw3/qbOz+E2DL
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Figure 6 As previous but for the POLYMER algorithm.  

 

Figure 7 As previous but for the Lakes C2R algorithm.  

Despite higher uncertainty in the validation of LWLR due to scarce in situ reference data, chlorophyll-
a and suspended matter and/or turbidity algorithms may be evaluated and subsequently tuned based 
on a larger number of matchups with MERIS data in the LIMNADES data set for these measurands. 
Figure 8 shows results of the round-robin comparison of algorithms for chlorophyll-a, ultimately 
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resulting in the selection of OC2, a near infra-red (NIR) over red band algorithm based on Gilerson et 
al. (2010), the semi-analytical NIR-red ratio algorithm of Gons et al. (2005) and a modified Quasi-
Analytical Algorithm (QAA) following Mishra et al. (2013). A separate algorithm tuning exercise was 
also carried out using exclusively in situ (reflectance and concentration) data, as reported by Neil et 
al. (2019).  

 

 

Figure 8 Round-robin comparison of chlorophyll-a retrieval algorithms, including NIR-red band 
ratio algorithms, ocean colour blue-green ratio algorithms, neural networks, analytical (multi-

band) inversion algorithms and the maximum peak height algorithm.  

 

Algorithm comparisons for TSM and Turbidity have not yet been completed for the full set of 
candidate algorithms. An initial selection was made during GloboLakes based on the performance of 
TSM retrieval algorithms by Zhang et al. (2010), Binding et al. (2010) and Vantrepotte et al. (2011), 
which target different concentration ranges and optical water types. These algorithms were 
subsequently converted to Turbidity using the coefficients contained in the work by Nechad et al. 
(2010).  

 Identified issues for LWLR 

For the retrieval of LWLR based on MERIS and OLCI using POLYMER there is a suspected systematic 
negative bias. The same bias observed in inland waters is not observed in coastal waters. 
Investigations are ongoing in collaboration with HYGEOS, the developers of POLYMER.  

For chlorophyll-a retrieval from MODIS/VIIRS we note the following initial algorithm-specific issues: 

● Algorithm D: the output of FLH requires an empirical calibration to convert to Chla.  
● Algorithm G: this algorithm is developed in a turbid productive cyanobacteria-dominated 

lake. The MODIS-Aqua products used in this study are atmospherically Rayleigh-corrected. 
Further validation is needed.  

● Algorithm H: the MODIS data used in this algorithm were corrected using the SMAC model 
(Simplified Method for Atmospheric Correction) which may not be suitable for a wide range 
of lakes or in near-shore waters.  
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● Algorithm J and K: the output of the two QAA-based models is phytoplankton absorption (aph), 
the empirical relationship between aph and chlorophyll-a is subject to further research or 
tuning against in situ observations.  

For Turbidity/TSM algorithms for MODIS/VIIRS:  

● The wavebands at 645 nm and 859 nm are MODIS ‘land’ bands, which need to be produced 
alongside the standard ‘ocean’ bands for some of the algorithms to be implemented.  

● For some extremely turbid waters, some specific atmospheric correction methods were 
employed: 

○ Model E used the NIR-SWIR atmospheric correction algorithm developed by Wang and 
Shi (2007).  

○ Algorithm K uses the atmospheric correction method based on dense vegetation 
targets developed by Guanter et al. (2007).  

○ Algorithm U uses the iterative NIR correction of Stumpf et al. (2003).  

○ Algorithm V used an atmospheric correction method by MUMM (Ruddick et al. 2000).  

In all cases, existing validation results should be extended to the most current versions of atmospheric 
correction processors, observing calibration and validation data splits where the volume of satellite 
and in situ match-up data allows, noting where this is not the case. Details on this revised procedure 
are provided in the E3UB.  

 Future improvements for LWLR validation 

Fully independent algorithm calibration and validation is hampered by a lack of in situ data. To 
address the issue of scarce in situ data, particularly outside the MERIS/MODIS period, we continue to 
engage with a variety of research groups and projects internationally. The LIMNADES initiative is key 
to the harmonization and curation of these data sets.   

The OLCI instrument is configured with 12 more wavebands than SeaWIFS had. Many of these bands 
are intended to better capture variations in water colour or to separate the effects of water and 
atmosphere on the recorded radiance. We should, therefore, not expect the diagnostic retrieval of 
LWLR and derived water-column properties from SeaWIFS, MODIS and VIIRS to match that of MERIS 
and OLCI. Our research in Lakes_cci is focussed on identifying and ultimately predicting the conditions 
under which retrieval from older sensors is of climate quality. This investigation will rely on geo-
statistical approaches, climatologies and elements of optical modelling or water type classification. 
Unsuitable observation conditions may relate to e. g. atmospheric conditions, cloud cover and 
distance from land, but also specific lake conditions such as high wind-resuspension or exhibiting 
algal blooms. Simply removing such observation would likely introduce undesired bias into the data 
set - lakes that frequently fail to be reliably would then need to be removed. However, this would 
not skew the remaining observations towards conditions that can be consistently observed over long 
periods, which is equally undesirable. We will address this issue with climate modeller groups once 
sufficient evidence on long-term observation uncertainty has been collected.  

Development of a validated algorithm solution for Coloured Dissolved Organic Matter (CDOM) is 
desirable, to derive proxies of dissolved carbon in lakes. CDOM algorithms calibration and validation 
have thus far not taken place at the global scale.  

Validation and product consistency assessments have shown that up until CRDPv1.1, land adjacency 
effects are severe in small lakes. An improved masking procure is introduced with CRDPv2.0. The 
adjacency effect appears more severe in reduced resolution (RR) MERIS observations compared to the 
OLCI full resolution. It is not yet clear whether this is a sensor observation effect or the result of 
coarser resolution, or both. These effects cannot be quantified using currently available in situ 
observation archives and would require spectroradiometric observation transects from coast to open 
water, covering multiple optical water types and atmospheric conditions. 

https://paperpile.com/c/UkYWw3/myfW
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7. Conclusions 

In summary, the main issues observed in the state-of-the-art methodologies used to produce CRDP 
V2.0, are as follows.  

For Lake Water Level (LWL), the algorithm has been developed at LEGOS since several years and the 
theoretical basis is well understood. It has been largely validated and applied over a large number of 
studies. The limitations are however not negligible and need further improvements over the next two 
years. The most notable expected improvement is a dedicated DEM uploaded to current ESA altimetric 
missions, to improve the radar tracking over small lakes particularly in regions with surrounding relief, 
like mountain areas. New reprocessing of past missions, with the current retracking algorithms will 
also be performed in order to provide longer and more accurate time series for small lakes. And 
finally, we are implementing new methods for SAR processing on sentinel-3A and sentinel-3B satellite 
known as full SAR processing, which will allow sub meter resolutions along the track of the satellite.  

The lake water extent (LWE) variable is generated using Optical and SAR imagery. Optical 
methodologies exploit the low reflectance characteristic of water bodies in the SWIR spectral domain, 
and also in the NIR domain applying either classification approaches or thresholding ones. The optical 
approaches are very sensitive to cloud cover (even at local scale) but also to environmental 
conditions. SAR methodologies exploit the low backscatter presented by lake waters applying 
classification techniques and spatial contrast operators. Water surface variability (wind, ice, 
vegetation, shallow water) drives the SAR product accuracy. LWE is jointly used with LWL to derive 
hypsometric curves that can also be considered as a source of indirect LWE validation. The joint 
exploitation of both Optical and SAR products remains a promising issue that will be considered, but 
visual validation remains a critical component.  

The lake ice cover (LIC) product is generated from a threshold-based algorithm using MODIS surface 
reflectance data (MOD09/MYD09). Validation results indicate that classification errors are expected 
to be within ca. 1 to 8 % depending on class (ice cover, open water, cloud cover) for the LIC variable 
contained in CRDP V1. A few issues have been identified with the LIC product that merit further work 
leading to the release of CRDP V2, including assessment of the impact of thin clouds and large solar 
zenith angles on retrieval performance, water detection as to avoid false positives (ice detection 
when lakebeds are dry), as well as full characterization and quantification of uncertainty beyond the 
classification errors currently reported. Ongoing and future activities will also examine the potential 
of machine learning classifiers applied to TOA reflectance data from MODIS, VIIRS and Sentinel-3 for 
Lakes_cci LIC V2 algorithm.  

For Lake Surface Water Temperature (LSWT) v5. 0 (Lake CCI v2), the following can be foreseen. 
The issue of error covariance estimation for optimal estimation is a long-standing problem, to which 
a possible solution (Merchant et al., 2019) has recently been proposed. These techniques will be 
applied within SST CCI and the matrices will be applicable for LSWT v5. 0. MODIS will be added to 
the processed data stream, either on the same algorithmic basis as Metop AVHRRs, or with additional 
improvements using MODIS capabilities if research yields these in time (particularly, exploitation of 
the 8. 7 um channel). LSWT v5. 0 will have switched from ERA-interim to ERA-5 for background 
numerical weather prediction information.  

The Lake Water Leaving Reflectance (LWLR) algorithm chain is being extended with a set of 
algorithms for MODIS-Aqua, including a round-robin comparison to select candidate algorithms, and 
tuning and selection of algorithms per Optical Water Type. The major challenge towards producing a 
truly long-term CDR is the adoption of legacy sensors which lack wavebands which are essential in 
providing the current level of accuracy. The procedures described in the E3UB to provide per-pixel 
uncertainty estimates will be pivotal in selecting geographic areas where inter-sensor responses can 
be reliably compared. Issues with separation of atmospheric and water-leaving radiance continue to 
introduce significant product uncertainty, although a large part of the uncertainty appears to be 
systematic and therefore of relatively smaller influence on substance concentration retrieval with re-
tuned algorithms.  

Overall, and to no surprise, the use of a wide range of observation principles to address the Lakes 
ECVs has led to a degree of parallel evolution in classification methods for land, water, cloud and ice 
detection that underpin most of our approaches. Whether each approach classifies the same number 
of water pixels is not of utmost importance because the different sensor combinations used do not 
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observe the lake systems at the same times, either. The confidence in the retrieved quantities 
matters far more. Overall consistency in the detection of liquid water properties (LSWT, LWLR) versus 
the extent of ice cover remains important, and is investigated based on the merged L3S product, 
resulting in specific quality control checks for product consistency which can be implemented 
following the generation of CRDPv2.0.   
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