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ϭ. Overview 

This document contains product validation results for the first version of the Lakeͺcci dataset͘ An update will 
be issued with the next version͘ The Lakesͺcci project has three stages of product validation: 

 

x Validation of individual thematic variables based on direct comparison between remote sensing products 
and in situ data or other remoting sensing datasets 

x Consistency between these variables through five use cases 

x Feedback from users of the data set 

 

The purpose of this document is to summarize the results of the different thematic products ;LWL, LWE, LSWT, 
LIC and LWLRͿ according to the first activities described in the Product Validation Plan ;RDͲ ϮͿ͘ 
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Ϯ. Lake Water Level (LWL) parameter 

Ϯ.ϭ. Data description 

Lake Water Level is the measure of the absolute height of the reflecting water surface beneath 
the satellite with respect to a vertical datum ;geoidͿ and expressed in metres͘ The time series 
has been computed from multiple altimetry satellites since late ϭϵϵϮ to ϮϬϭϴ inclusive͘ The time 
periods used for each satelliteͬinstrument are provided in Table ϭ but may vary from one lake to 
the other, depending on the orbits of the satellites with respect to the location of the lake All 
missions has been used when the data were available and valid, however during tandem overlapping phase 
;TOPEXͬPoseidonͬJasonϭ, JasonϭͬjasonϮ, SentinelϯAͬSentinelϯBͿ we always test what is the most precise 
solution before choosing the data used in the time series͘ Therefore, from one lake to another one, the month 
of the year used for a given mission may change͘ 

 

Table ϭ. Time periods for the satellite/instrument used to generate the lake product 

Satellite Instrument Time Period 
TOPEXͬPoseidon ;TͬPͿ PoseidonͲϭ ϬϴͬϭϵϵϮ ʹ ϬϭͬϮϬϬϮ 
JasonͲϭ PoseidonͲϮ ϭϮͬϮϬϬϭ ʹ ϬϳͬϮϬϭϯ 
JasonͲϮ PoseidonͲϯ ϬϲͬϮϬϬϴ ʹ ϭϬͬϮϬϭϲ  
JasonͲϯ PoseidonͲϯB ϬϭͬϮϬϭϲ ʹ present 
Envisat Radar Altimeter ;RAͲϮͿ Mission: ϬϯͬϮϬϬϮ ʹ ϭϬͬϮϬϭϬ 
CryosatͲϮ SAR interferometric Radar Altimeter ;SiralͿ ϬϰͬϮϬϭϬͲϮϬϭϱ 
SARAL AltiKa ϬϮͬϮϬϭϯ ʹ ϬϳͬϮϬϭϲ 
SentinelͲϯa SRAL ϬϮͬϮϬϭϲ ʹ present 
 

A detailed description of the product generation is provided in the Algorithm Theoretical Basis Document 
;ATBDͿ with further information on the product given in the Product User Guide ;PUGͿ 

 

Ϯ.Ϯ. Comparison methods 

Ϯ.Ϯ.ϭ. Comparison with in situ data 

External in situ data are useful to assess the quality of the LWL products͘ The comparison with these products, 
using different datums and different dates, is not straight forward͘ However, it provides information on the 
product precision and accuracy͘  The list of datasets used is provided in Table Ϯ 

 

Table Ϯ. In situ databases for LWL validation 

Dataset name Description  

Hydrolare The International Data Centre on Hydrology of Lakes And 
Reservoirs provides data on mean monthly water level of nearly 
ϭϮϬϬ water bodies͘ The Centre operates under the auspices of 
WMO and a detailed protocol developed by the International 
Steering Committee of the Centre and agreed by WMO͘  
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Dataset name Description  

Hidricos Argentina The database base of Hidricos Argentina provides inͲsitu data on national 
rivers and lakes͘ 

USGS The database of US Geological Survey provides in situ data  

US Army  The Army Corps of Engineer provides inͲsitu data on Great Lakes͘ All levels 
are referenced to the International Great Lakes Datum of ϭϵϴϱ ;IGLD ϴϱ 

Water Office Canada This database contains in situ historical hydrometric data in Canada͘ 

  

 

Ϯ.Ϯ.Ϯ. Dedicated field work  

The second comparison method is the base on ϭϱ years of the dedicated field work in the framework of 
satellite altimetry calͬval programmes over lake Issykkul͘  

Ϯ.ϯ. Description of work 

About the situ comparison method, interpolation of LWL product to the dates of in situ measurements are first 
performed, then the mean bias between in situ and satellite timeͲseries is calculated͘ A bias is always detected 
since satellite time series and in situ measurements are never given using the same geodetic reference frame͘ 
Some results of these comparison are given in Cretaux et al͘ ;ϮϬϭϲͿ and Ričko et al͘ ;ϮϬϭϮͿ͘ 

Drift can subsequently be adjusted if it is observed͘ RootͲmeanͲsquare differences of unbiased time series are 
calculated, for the complete timeseries and for the Jason ϯ and Sentinel ϯA missions͘ 

Concerning the dedicated field work, it is based on ϭϱ years experiments over the lake Issykkul in Centreal Asia͘  
This large lake ;ϲϬϬϬ kmϮͿ was selected in ϮϬϬϰ to serve as a dedicated calibration ͬ validation site for satellite 
altimetry over lakes͘ It has the advantage of overpasses by all past, present and future altimetry missions͘ The 
instrumental concept for the field work is widely described in several publications ;Cretaux et al͘ ϮϬϬϵ, ϮϬϭϭ, 
ϮϬϭϯ, ϮϬϭϴ, Bonnefond et al͘ ϮϬϭϴͿ͘ In brief, the field work is organised yearly or biͲyearly after consulting the 
ephemerides of the satellites͘ GPS levelling of the lake surface is performed along the satellite tracks using a 
GPS system͘ In situ fixed instrumentation allows to assess the stability of the LWL product, and also to validate 
the atmospheric and geodetic corrections͘ The main purpose is to perform full error budget analysis including 
the range measurements using different retracking algorithms ;so called iceͲϭ, IceͲϮ, oceanͿ and also the 
different corrections ;ionosphere, troposphere, geoidͿ͘ In ϮϬϮϬ in the framework of calibration ͬ validation of 
SentinelͲϯAͬB missions, a similar experiment will start in Lake Baikal in Russia͘ 

 

Ϯ.ϰ. Result analysis 

Ϯ.ϰ.ϭ. Comparison with Hydrolare  

Thanks to the collaboration with the International Data Centre on Hydrology of Lakes and Reservoirs, 
Hydrolare, the information on ten lakes was provided in a monthly time step͘ Two indicators were estimated: 
Bias and RMS ;Table ϯͿ͘  These values were estimated for each lake for the full time series of nearly ϯϬ years 
including data from all missions͘ Since ϮϬϭϲ, the indicators were separately evaluated for Jason ϯ and Sentinel 
ϯA missions͘  In some cases, the bias is high ;up to Ϯ͘ϯmͿ and suggest that, even if the precision is good, the 
accuracy of the LWL products should be considered carefully by users͘  Appendix A contains the figures 
corresponding to each lake͘ 
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Table ϯ. Hydrolare  LWL comparison 

Lake Name Multi satellite Jason ϯ 
;sinceϮϬϭϲͿ 

Sentinel ϯA 
;since ϮϬϭϲͿ 

Time period Bias ;cmͿ RMS;mͿ Bias ;cmͿ RMS;mͿ Bias ;cmͿ RMS ;mͿ 
Baikal ϭϵϵϮͬϬϵ Ͳ ϮϬϭϱͬϭϮ Ϭ,ϵϳϱ Ϭ,Ϭϵϯ Ͳ Ͳ Ͳ Ͳ 
Bratskoye ϭϵϵϮͬϬϵ Ͳ ϮϬϭϱͬϭϮ ϳϰ,ϯϬϮ Ϭ,Ϯϳϱ Ͳ Ͳ Ͳ Ͳ 
Caspian ϭϵϵϮͬϬϵ Ͳ ϮϬϭϲͬϭϮ ϯϬ͘ϴϰϱ 

 

Ϭ͘ϬϲϮ ϯϲ͘ϬϮϬ Ϭ͘ϬϱϮ ϯϰ͘ϳϬϬ Ϭ͘ϬϱϬ 
Issykkul ϭϵϵϮͬϬϵ Ͳ ϮϬϭϳͬϭϮ ͲϮϯϮ͘ϵϴϰ Ϭ͘Ϭϰϱ 

 

ͲϮϯϭ͘Ϭϵϴ Ϭ͘Ϭϭϳ ͲϮϯϭ͘ϮϱϮ Ϭ͘Ϭϭϳ 
Khanka ϮϬϬϬͬϬϭ Ͳ ϮϬϭϴͬϭϮ ϭϬϭ͘ϵϴϵ Ϭ͘ϭϵ Ͳ Ͳ Ͳ Ͳ 
Kuybyshevskoye ϭϵϵϮͬϬϵ Ͳ ϮϬϭϴͬϭϮ Ϯϲ͘ϱϱϬ Ϭ͘ϮϮϴ Ϯϵ͘ϴϬϮ Ϭ͘ϬϴϮ Ϯϯ͘ϭϯϮ Ϭ͘ϮϬϳ 
Ladoga ϭϵϵϮͬϬϵ Ͳ ϮϬϭϴͬϭϮ Ͳϯ͘ϳϮϳ Ϭ͘Ϭϱϯ Ͳϲ͘Ϯϭϳ Ϭ͘ϬϮϲ Ͳϲ͘ϯϴϳ Ϭ͘ϬϮϱ 
Onega ϭϵϵϮͬϭϬ Ͳ ϮϬϭϴͬϭϮ ϯϵ͘ϳϭϭϭ Ϭ͘Ϭϱϵ ϯϰ͘ϱϯϲ Ϭ͘Ϭϯϴ ϯϰ͘ϴϯϳ Ϭ͘ϬϰϮ 
Rybinskoye ϭϵϵϮͬϬϵ Ͳ ϮϬϭϰͬϭϮ ϭϬ͘ϭϮϮ Ϭ͘ϭϳϴ Ͳ Ͳ Ͳ Ͳ 
Superior ϭϵϵϮͬϬϵ Ͳ ϮϬϭϳͬϭϮ Ͳϱϵ͘Ϭϵϯ Ϭ͘ϬϰϮ ͲϲϮ͘ϯϲϵ Ϭ͘Ϭϭϭ ͲϲϮ͘ϰϵϱ Ϭ͘Ϭϭϯ 
 

The rms value for both missions Jason ϯ and Sentinel ϯB is very similar͘ This value is lower for the last two 
missions than for the overall period, indicating a better estimation of the LWL for the current missions͘ 
Concerning the bias, it͛s a point of system reference for the measurement͘ We are therefore more interested 
in the variability ;Appendix AͿ and the correlation indicated by the Pearson coefficient͘ 

Ϯ.ϰ.Ϯ. Comparison to Hidricos Argentina 

The information concerning the variation on the Water Lever for lake Argentino and lake General Carrera were 
obtained online from the Base de datos Hidrologica integrada ;BDHIͿ: bdhi͘hidricosargentina͘gob͘ar͘ For those 
lakes two indicators were evaluated ;Table ϰͿ: the RMS of the variations and Pearson coefficient, indicating the 
correlation between time series͘  

 

Table ϰ. Hidricos Argentina LWL Comparison 

Lake Name Time period RMS;mͿ Pearson 
Argentino ϭϵϵϮͬϭϬ Ͳ ϮϬϭϵͬϭϮ Ϭ͘ϭϱϵ Ϭ͘ϵϲϵ 
General Carrera ϮϬϬϴͬϬϵ Ͳ ϮϬϭϰͬϭϬ Ϭ͘ϯϴϳ Ϭ͘ϱϴϮ 
 

Since for General Carrea the comparison period ends before ϮϬϭϲ, analysis of performance in current missions 
is not possible͘ Concerning Argentino lake, the Pearson coefficient is Ϭ͘ϵϵϱ and Ϭ͘ϵϵϭ for Jason ϯ and Sentinel 
ϯA missions respectively showing a very strong correlation between the time series͘ This is also indicated by 
the low value of the RMS for missions: Ϭ͘Ϭϲϯm and Ϭ͘Ϭϳϵm for Jason ϯ and Sentinel ϯA 

 

Figure ϭ and Figure Ϯ show the comparison of the LWL variation from CCI lakes and Hidricos Argentina for lakes 
Argentino and General Carrera respectively͘ For Argentino lake, there is a very good correlation between time 
series, also indicated by a Pearson coefficient near to ϭ͘ However, for General Carrera lake, this correlation is 
less strong͘ The accuracy of the LWL estimation depends on multiple factors: size and shape of the lake, 
location of the satellite track over the lake, mean depth of the lake͘ The General Carrea shows a high 
variability͘  
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Figure ϭ. Hidricos Argentina  comparison for the lake Argentino (red: Lakes_cci, blue: Hidricos Argentina) 

 

 

 
Figure Ϯ. Hidricos Argentina comparison for the lake General Carrera ((red: Lakes_cci, blue: Hidricos 

Argentina)) 
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Ϯ.ϰ.ϯ. Comparison to USGS 

The information concerning the variation on the Water Lever for lakes Michigan and Des Bois were obtained 
online from the US Geological Survey database ;USGSͿ͘ For those lakes, as for the previous comparisons the 
RMS of the variations and Pearson coefficient were evaluated ;Table ϱͿ͘ Figure ϯ and Figure ϰ show the 
comparison of the LWL variation from CCI lakes and UGS͘ 

 

Table ϱ. USGS  LWL Comparison 

Lake Name Time period RMS;mͿ Pearson 
Des Bois ϭϵϵϮͬϬϵ Ͳ ϮϬϭϵͬϬϮ Ϭ͘Ϯϭϳ Ϭ͘ϲϲϴ 
Michigan ϭϵϵϳͬϬϵ Ͳ ϮϬϭϵͬϭϬ Ϭ͘Ϭϴϰ Ϭ͘ϵϲϱ 
 

 

 
Figure ϯ. USGS comparison for the lake Des Bois 
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Figure ϰ. USGS comparison for the lake Michigan 

 

It should be noticed that although in situ data are generally considered as the truth, which is valid most of the 
time, they may also present severe limitations͘ Some periods of time are not covered at all with in situ data͘ 
Some human errors in the data collection are also happening sometimes as we see it with the lake Onega͘ In 
other case like for the lake Michigan or the Caspian Sea, it exists several in situ instrumentations that provide 
different values of LWL͘ Sometimes this can be easily explained by local effect at high frequency ;like the 
Seiche effectͿ sometimes it is less understandable͘ For example, we see that with two sources for the lake 
Michigan, the US army corps ;Figure ϱͿ, and the USGS, the LWL present drifts and systematic disagreements͘ 
We can see with the USGS data between ϭϵϵϴ and ϮϬϬϰ when compared to the data of US army͘ In the first 
case the comparison with the altimetry shows big disagreements while in the second case the correlation and 
the RMS are much better͘ 
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Figure ϱ. US Army  comparison for the lake Michigan (red: Lakes_cci, blue: Hidricos Argentina) 

 

 

Ϯ.ϰ.ϰ. Comparison to Canadian Water office 

The Water Office of Canada contains information on the water levels and flood for multiple Canadian lakes and 
rivers at several time resolutions͘ Monthly historical data  for ϭϵ lakes included in first version of the CCI lakes 
dataset were obtained onͲline: https:ͬͬwateroffice͘ec͘gc͘caͬmainmenuͬhistoricalͺdataͺindexͺe͘html͘  

The three indicators used with the previous in situ datasets: Bias, RMSE and Pearson Coefficient were 
evaluated͘  Figure ϲ  and Figure ϳ show respectively the Pearson coefficient and RMS value for the ϭϵ lakes 
compared͘  Most of them have a high Pearson coefficient showing a good time series correlation͘ Appendix B 
contains the figures of timeseries, variation and unbiased absolute difference for each lake͘ For the lakes with 
low value of Pearson coefficient, there a variety of reasons for this: 

x In some cases, as for the lakes Aylmer or Caribou, there is small amount of in situ data 
x In other case, as for the lakes Great Slave or Williston, the altimetric level value couldn͛t be estimated 
x Some outliers, as for the Ontario lake, will affect the correlation between timeseries 

In these cases, the low Person coefficient does not actually represent a poor correlation between time series͘ 
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Figure ϲ. Pearson coefficient CCI Lakes -  Water Office Canada. 

 

 
Figure ϳ. RMS Value. CCI Lakes – Water Office of Canada 

 

Ϯ.ϰ.ϱ. Field work experiments 

Figure ϴ shows an example of LWL altimetry measurements with Sentinel ϯ along two tracks ;ϲϲϲ and ϳϬϳͿ 
against inͲsitu measurements over Issykkul lake͘ There is an excellent correlation between both series ;ϵϵйͿ 
and a low value of RMS ;Figure ϵͿ  
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Figure ϴ. Sentinel ϯ vs In-situ measurements for Issykkul Lake 

 
Figure ϵ. Correlation between Sentinel ϯ vs In-situ measurements for Issykkul Lake 

 

Ϯ.ϱ. Conclusions and recommendations 

We have validated the Lake Water Level, one of the lakesͺͺcci products by comparing the timeseries to 
multiple external datasets of in situ measurements͘  Globally, there is a very good correlation with external 
datasets from different organisations with data in different regions of the world͘  
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Validation of the Lake water level highlights that, given that LWL being a multiͲmission product, the quality of 
the results may differ over time͘ In this context a reprocessing of past missions can be very beneficial and is 
recommended in future generation of datasets 

The different comparisons will help us to determine where improvements in the data processing are still needed: better 
identification of outliers, reͲanalysis of past missions like Topex ͬ Poseidon, ERSϮ or Envisat, and better calculation of some 
interͲsatellite biases͘ 

 

We would like to thank Prof͘ Valery Vuglinskiy ;State Hydrological Institute, Ϯϯ, Ϯnd Line, Vassilievsky Island, 
ϭϵϵϬϱϯ, St Petersburg, RussiaͿ for having provided us with inͲsitu data from Hydrolare lakes͘ 
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ϯ. Lake Water Extent (LWE) parameter 

ϯ.ϭ.  Data description 

ϯ.ϭ.ϭ. Optical Data 

Landsat ϱ and ϴ images and SentinelϮ time series have been exploited to derived LWE over a set of test site͛s 
lakes͘ 

It has to be noticed that the rules for accessing SentinelϮ imagery have changed during the project͘ At the 
beginning most of the imagery was accessible directly onͲline͘ At the present time only the recent images are 
accessible whereas the historical ones, i͘e͘ the ϰ last years are offͲline and must be requested͘ When exploiting 
the ESA Sc Hub, this procedure is very time consuming, for example to access and download Ϯϯ products over 
the Argentino lakes, it took more than ϱ days͘ 

 Landsat ϱ TM TOA Reflectance: 

Landsat ϱ TM calibrated topͲofͲatmosphere ;TOAͿ reflectance were exploited͘ Calibration coefficients are 
extracted from the image metadata͘ See Chander et al͘ ;ϮϬϬϵͿ for details on the TOA computation͘;Earth 
Engine Data CatalogͿ͘ 

 

Table ϲ: Landsat ϱ wavelengths and resolution  

 

 Landsat ϴ TOA Reflectance 

Landsat ϴ calibrated topͲofͲatmosphere ;TOAͿ reflectance͘ Calibration coefficients are extracted from the 
image metadata͘ See Chander et al͘ ;ϮϬϬϵͿ for details on the TOA computation͘ ;Earth Engine Data CatalogͿ͘ 
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Table ϳ: Landsat ϴ wavelength and resolution 

 

 SentinelͲϮ LϭCͬLϮA  

ϯ͘ϭ͘ϭ͘ϯ͘ϭ͘ Sentinel Ϯ Radiometric Resolutions  

Table ϴ: Landsat ϴ wavelength and resolution 

 

More details can be obtained at ESA: Radiometric͘ 

ϯ͘ϭ͘ϭ͘ϯ͘Ϯ͘ LevelͲϭC 

The Level Ϯ Sentinel Ϯ images is not systematically produced all over the world͘ By the way it is Level ϭC data 
that have been proceed͘  LevelͲϭC product provides orthorectified TopͲOfͲAtmosphere ;TOAͿ reflectance with 
subͲpixel multispectral registration͘ Cloud and landͬwater masks are included in the product͘ 

More details can be obtained at ESA: LevelͲϭC Processing  for details͘ 
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ϯ͘ϭ͘ϭ͘ϯ͘ϯ͘ LevelͲϮA 

LevelͲϮA product provides orthorectified BottomͲOfͲAtmosphere ;BOAͿ reflectance with subͲpixel 
multispectral registration͘ A Scene Classification map ;cloud͘ cloud shadows͘ vegetation͘ soilsͬdeserts͘ water͘ 
snow͘ etc͘Ϳ is included in the product͘ 

More details can be obtained at ESA: LevelͲϮA product for details 

ϯ.ϭ.Ϯ. SAR data 

The SAR data used to calculate the LWE are SentinelͲϭ images acquired in the LevelͲϭ Interferometric Wide 
Swath ;IWSͿ mode͘ NORCE has employed these data in Ground Range Detected ;GRDͿ format while TREͲ
Altamira has employed Single Look Complex ;SLCͿ͘ GRD images contain the detected amplitude and multiͲ
looked to reduce the impact of speckle͘ SLC images preserve phase information and are processed at the 
natural pixel spacing͘ IW mode is a dualͲpol acquisition mode͘ In this case, images are acquired in both VH and 
VV polarization͘ Except for some particular cases, the SRTM DEM has been used for geocoding purposes͘ 

Table ϵ: SentinelͲϭ employed data spatial resolution 

Mode Resolution 
rg x az 

Pixel spacing 
rg x az Number of looks ENL 

GRD IW ϮϬxϮϮ m ϭϬxϭϬ m ϱxϭ ϰ͘ϰ 

SLC IW Ϯ͘ϳxϮϮ m to 
ϯ͘ϱxϮϮ m Ϯ͘ϯxϭϰ͘ϭ m ϭxϭ ϭ 

 

A database of Envisat ASAR WSM data is available which has been also used for some lakes͘ ASAR WSM data 
has in general coarser spatial resolution, and only one polarization so the quality is in general poorer than for 
Sϭ data͘ 

ϯ.ϭ.ϯ. Exogeneous database exploited as inputs 

 Global Surface Water database  

The European CommissionΖs Joint Research Centre developed this new water dataset in the framework of the 
Copernicus Programme͘ This maps the location and temporal distribution of water surfaces at the global scale 
over the past ϯϮ years and provides statistics on the extent and change of those water surfaces͘ The dataset 
produced from Landsat imagery ;courtesy USGS and NASAͿ will support applications including water resource 
management, climate modelling, biodiversity conservation and food security͘;EU Open Data PortalͿ͘ 

 Lakes contours database  

The analysis is done at a given lake scale͘ To that matter a precise contour of the lake shore is requested, 
allowing to decrease processing time but more important to limit artefacts related to the lake͛s environment͘ 

Whereas exploitation of Medium or low resolution satellite imagery for LWST or LWSR, is based on the analysis 
of ͞pure͟ water bodies, considering that parameters retrieval is done based on the lake AOIs plus a kilometric 
buffer, for the lake water extent, the investigation is focused on the much precise as possible shore line͘ This is 
not a simple limit; for lots of areas, related to water level increase, the water surface͛s expansion is observed 
on shoreline, but also on bordering wetlands͘  

So, for MR and LR satellite imagery exploitation, a relative rough definition of the Area of interest is sufficient, 
and the buffer application would correct some potential mistake͘ Then for exploitation of HR satellite imagery, 
such as SentinelϮ, is requiring a precise definition of the AOIs,  this can be done exploiting the CCI lakes AOIs 
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database, or the Hydrolakes database derived from the SRTM mission  and containing  ϭ,ϰ millions of lakes 
larger than ϭϬ ha, ;https:ͬͬwww͘hydrosheds͘orgͬpagesͬhydrolakesͿ but more often in the WPϲ, the AOIs were 
at least validated based on Sentinel Ϯ imagery acquired at different hydrological period, and when requested  
modified͘ 

 

 

 

 

 

Orange: CCI lake  AOI 

 

 

 

 

Blue: Hydrolake  AOI 

 

 

Sentinel Ϯ image acquired on the 
ϮϬϭϵͲϬϱͲϭϰ 

Presenting water inundating the 
North Western and South Western 
branch 

 

 

 

Red: AOIs defined and exploited in 
order to include the two ͛͞arms͟ 
that correspond to wetlands more 
of less inundated due to water 
level increase͘ 

Figure ϭϬ͘ Comparison of AOIs contours: case of Bosten lake ;PR ChinaͿ͘ 
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Figure ϭϭ͘ Comparison of AOIs contours: case of Khanka Lake ;PR ChinaͲRussiaͿ with in orange CCI Lakes AOIs, 
in blue, Hydrolake and in red exploited AOI for SentinelϮ exploitation͘  

 

When comparing, with a SentinelϮ, ϮϬϭϵͲϬϴͲϬϯ, it is well noticeable that the AOIs proposed by both Hydrolakes 
and CCI lakes database are too restrictive, as excluding the wetlands in the North and South East parts of the 
region͘ 

ϯ.Ϯ. Comparison of methods  

ϯ.Ϯ.ϭ.  Comparison of methods for optical sensors (VIS_NIR_SWIR) 

The aim of this part is to compare lakes area and lakes vector extracted from sentinelͲϮ and Landsat images 
with different classifiers͘ Initially two none supervised approach: OTSU and KͲMeans and two supervised ones͘ 
SVM and Random forest have been applied on the data set over the lakes͛ test͘ Finally, for this comparison of 
the results from the optical processing approaches only OTSU SVM and Random forest are discussed͘ 

 Description of work 

A selection of lakes with various characteristic, i͘e͘ spectral behaviours of shallow waters, environment more or 
less arid, relief, presence of ice andͬor snow etc͘͘ ;Table ϭϬ and Table ϭϭͿ   have been done͘ The results 
obtained over these lakes based on different processing approaches have been compared͘  

More precisely, this analysis was done in three steps͘ In a first one, a relative long time series of images was 
selected for a first set of lakes͘ In a second time, a specific inter comparison was done on a short dense time 
series over Chad lake covering a field period survey͘ At least a third time, for consolidation of the approach, as 
well as investigated a better parametrization of the process, such as the Random Forest ;RFͿ approaches, an 
additional set of lakes, with a relative low amount of images, ϲ to ϴ, was selected in order to present different 
levels͛ state of theses lakes͘ 

 

Table ϭϬ: Major characteristics of the Chad lake case study and the second set of the analysed lakes 

 
Altevatnet 

Norway 

Colhue 

Argentina 

Namtso 

China 

Alakol 

Kazakhstan 

Sassykkol 

Kazakhstan 

Chilwa 

Malawi 

Al Hamar 

Irak 

Shadow 
water  XXX    X XXX 

ice XXX  XXX XXX XXX   
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Altevatnet 

Norway 

Colhue 

Argentina 

Namtso 

China 

Alakol 

Kazakhstan 

Sassykkol 

Kazakhstan 

Chilwa 

Malawi 

Al Hamar 

Irak 

snow XXX  XXX XXX XXX   

Topographic 
position XXX       

Local 
environment XXX XXX XXX XX XX XXX XX 

sunglint   XXX     

Floating 
vegetation      XXX XXX 

Lake dynamic X XXX X X X XXX XXX 

 

Table ϭϭ: Major characteristics of the Chad lake case study and the second set of the analysed lakes 

 Chad 
Argentino 

Argentina 

Bosten 

China 

Khanka 

China Russia 

Illmen 

Russia 

Sary kamysh 

Turkménistan - 
Ouzbékistan 

Shadow water X  X X X  

ice  XXX XX XXX XX  

snow  XXX  XXX   

Topographic 
position  XXX     

Local 
environment XX   X  X 

sunglint       

Floating 
vegetation XX  X XX X  

Lake dynamic X  XX  XX X 

 

ϯ.Ϯ.Ϯ. Validation of LWE derived from HR optical sensors based on VHR sensors 

Validation of water extent is pure and great challenge by itself͘ Few methods can be investigated:  

x Comparison of LWE with databases͘ There are lot of limitations, genes of the database, such as the 
resolution of the input data, the dateͬperiod, a LWE can change greatly from date to date, a year to 
another͘  

x Field comparison by surveying the water bodies limits walking along the shore with a GPS tracking, or 
using a boat or kayak to follow the shore͘ It is not always possible to walk around lake, all there are 
the question of the accessibility of the lake͘ In case of shallow water, what is the exact distance 
between the boat and the shore, a tens of meters ;or moreͿ that represents two to fiveͬten Sentinel 
pixel͘  

x Extract LWE from satellite of high and very high resolution͘ 

The last approach is according to us the most promising͘ Therefore, it is not so convenient to be implemented, 
it requested pair of HR and VHR images acquired within a very short time͘ The data have to cover if possible, 
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the targeted lake as a whole, englobing the surrounding areas͘ Most of the time, and it is particularly the case 
with CCI lakes that are large lakes͘ So on in most of case only a part of the lake is covered by the two sensors 
and so what is the representativity of the covered area͘ And, of course, when VHR data have to be ordered it 
can be a costly approach͘  For this reason, an agreement with the CNES, French Space Agency was initiated in 
order to order a low coast VHR SPOT ϲͲϳ or Pleaides imagery and share these data with the WPϲ team͘ 
Therefore, the analysis of the catalogues was not so successful and this approach was abandoned͘ Hopefully in 
parallel, CNES was able to order VHR Pleiades images over large reservoirs in France, the Der and Orient lakes, 
and this during a dynamic period of infilling͘ 

 Location of the test areas 

The Der and Orient lakes, located in the East of Paris, within the Champagne area region, are part of the Seine 
River flood management systems͘  

The Der lake is the largest artificial reservoir in France, with a surface around ϰϴkmϮ, for a maximal depth of 
ϭϴm, the Orient water surface is ϮϮ kmϮ for a maximal depth of ϮϮ m͘ The functioning of the reservoir is the 
following:  

 Water is taken from the rivers, i͘e͘ Marne River for Der lake, la Seine River for Orient lake, from November ͬ 
December to June, thus filling the reservoir͘ From July to October, water is released to support the flow of 
rivers͘ As a result, water surfaces change considerably during the year, for the Der lake going from around ϰϬ 
square kilometers during the high season, to less than ten square kilometers during the very low water period͘ 

 

Figure ϭϮ͘ Location of the Der lake and Orient Lake͘ 

 

 Exploited data 

The lakes are located within an Overlapping part of Sentinel Ϯ tracks, allowing up to ϭϰ acquisitions by month͘ 
So, it was an ideal case to order VHR Pleaides imagery, knowing that the acquisition will by the way have at 
maximal one day of delay between the VHR and HR data͘  

Finally, two pairs of Pleiades HR data, ϳϬ cm of spatial resolution, a panchromatic channel and ϰ visible ones 
from blue to near Infrared channels, were acquired on the ϯϬ of December, with a delay of one day with 
SentinelϮ and ϲ of January ϮϬϮϬ, same date as a SentinelϮ acquisition͘ 
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Figure ϭϯ͘ The Der Lake; as viewed by Pleiades on the ϯϬ of December ϮϬϭϵ, and on the ϭ of January ϮϬϮϬ 

 

From the Pleiades and SentinelϮ data, LWE were extracted for each date and each reservoir based on a SVM 
approach͘ 

 

 Results 

When comparing the LWE derived with Pleaides and Sentinel Ϯ data acquired within Ϯϰ hours, the difference in 
term of surface are very low, i͘e͘ one Ϯϵ͘Ϭϳ kmϮ for Sentinel Ϯ, and ϯϬ͘ϱϴ kmϮ for Pleiades͘ ϵϱй of Pleiades 
Water is recognized by Sentinel Ϯ͘ There is a very low level of commission, Ϭ͘Ϭϱ kmϮ͘ 

 

 

 

 

Figure ϭϰ͘ Omission and commission over lake de Der when exploiting VHR and HR images acquired with a Ϯϰh 
of delay 
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When the acquisition of the VHR and HR images was the same day, ϵϱ,ϱй of Pleiades Water is recognized by 
Sentinel Ϯ͘ Of course, there is an effect of resolution i͘e͘ ϭϬ m versus Ϭ͘ϳϬm͘ The shoreline is off course much 
finer on the VHR derived LWE͘ Therefore, the omission is relatively low, and the commission very low͘  

This case of study allows also to evaluate, in the context of infilling reservoir, the part of the Ϯϰh of delay 
between the two acquisitions͘  

When data are acquired the same day, the space occupied along the shore of the omission is very narrow, in 
fact the shoreline corresponds to a staircase, of swatooth͛s effects, alternating omission and commission pixel͘ 
An effect that is related in fact to the difference of spatial resolution͘  

Where, the LWE represent two stages of infilling, we observe a large omission belt around the lake shore͘  This 
belt in fact corresponds to the increase of the surface of water within one day͘ So, of course, what is seen as 
water on the Pleiades image, cannot be described as water on the SentinelϮ image acquired a day before͘ 

 

 

Figure ϭϱ͘ Comparison of LWE accuracy derived with one day of delay between the SentinelϮ and Pleaides 
acquisitions and the same day ;rightͿ͘ 
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Figure ϭϲ͘ Omission and commission over lake de Der when exploiting VHR and HR images acquired quasi 
simultaneously͘ 

 

 

 

ϯ.ϯ. CCI test sites result analysis 

ϯ.ϯ.ϭ. Results analysis for optical sensors-based approaches 

As indicated, a first analysis was conducted lake by lake͘ An analysis of each important differenceͬgap from an 
approach to another one was done and commented͘ 

 Altevatnet Lake  

Altevanet Lake is a narrow long lake, i͘e͘ ϮΎϯϴ kmϮ, within an incisive valley is located rather north of Norway: 
ϲϴΣN͘ This Northern location induces the presence of snowͬice on the lake shores as well as relatively low solar 
position͘ The analysis of the observed gaps can be related to these characteristics͘ 
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Figure ϭϳ͘ LWE derived from optical imagery based on different approaches over Altevatnet lake͘ 

 

Observations based on the graphic and vector extractions analyse are the following: 

x On the SϮ image of the ϮϯͬϭϬͬϮϬϭϳ͘ OTSU͛s overestimation caused by snow͘ 
x On the images of the ϯϬͬϬϳͬϮϬϭϲ͘ ϮϮͬϭϬͬϮϬϭϲ͘ ϯϬͬϬϲͬϮϬϭϳ͘ ϬϱͬϬϵͬϮϬϭϳ Θ ϮϯͬϭϬͬϮϬϭϳ RF͛s generates 

an underestimation caused by low reflectance ;lower than training imageͿ and wisp of cloud͘ 
x In some case, SVM classifies shadows into water͛s class͘ Same problem can also be observed when 

applying RF͘ 

 

  

OTSU: commission snowͬwater SVM: shadows classified as water 

RF͛s generates an underestimation caused by low reflectance ;lower than training imageͿ and wisp of cloud 

Figure ϭϴ͘ Omission and commission observed over Altevatnet lake 
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In addition, over the Altevatnet site, Otsu and Otsu Canny approaches were tested͘ It is appearing that the 
OTSU Canny is more restrictive on water, therefore it is also OTSU Canny that is more strongly influenced by 
shadows, snow, clouds͘ 

 

  

OTSU applied over a SentinelϮ image acquired the 
ϭϳͲϬϲͲϮϬϭϴ over Altevatnet lake 

CannyͲOTSU applied over a SentinelϮ image 
acquired the ϭϳͲϬϲͲϮϬϭϴ over Altevatnet lake 

  

OTSU applied over a SentinelϮ image acquired the 
ϮϳͲϬϳͲϮϬϭϴ over Altevatnet lake 

CannyͲOTSU applied over a SentinelϮ image 
acquired the ϮϳͲϬϳͲϮϬϭϴ over Altevatnet lake 

Figure ϭϵ͘ Comparison of Otsu and CannyͲOtsu results͘   

 

 Colhue Lake  

Colhue Lake͘ It is located in a tectonic depression reshaped depression by wind and fluvial activities on the 
Western margin of the Patagonian plains and it is protected from Western rains by a North South a ridge of 
ϲϬϬm͘  It is a shallow lake that knows fluctuations in terms of precipitations and rivers discharges resulting on 
LWE variations at least from ϭϵϵϴ to ϮϬϭϱ͘ The analysis of the Sentinel Ϯ time series indicates that for the bear 
period, i͘e͘ ϮϬϭϱͲϮϬϭϳ, the lake known a period of total dryness and of rapid infilling͘ 
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Figure ϮϬ͘ LWE derived from optical imagery based on different approaches over Colhue Lake͘ 

 

Over Colhue Lake, the difference processing͛s approaches provided very similar results  

Observations based on the graphic and vector extractions are the following: 

x Main differences between methods are caused by the misidentification of the waterͬnonͲwater limits͘ 
SVM and RF classify muddy part of the lakeͬtrickles of water͘  

x SVM classify also some vegetation as water surface͘ Not detected by RF͘ 
 

 

Commission between vegetation and water, when applying SVM on SentinelϮ image 
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Vegetation not detected as water, when applying RF Tile on SentinelϮ image 

Figure Ϯϭ͘ Analysis and comparison between SVM and RF Tile approaches over vegetated areas bordering the 
Colhue Lake͘ 

 

In addition, over this test site, Otsu and Otsu Canny approaches were tested͘ The obtained results are for this 
case very similar͘  

  

Figure ϮϮ͘ OTSU ;leftͿ and CannyͲOTSU ;rigthͿ applied on a SentinelϮ image acquired the ϮϳͬϬϮͬϮϬϭϵ 

 

 Namtso Lake  

Namtso Lake is a large water bodies of ϭϵϬϬ kmϮ located on the Tibetan Plateau͘ This lake knows a relative 
increase of water height and water extent ;нϲϬϬkmϮͿ from ϭϵϵϰ to ϮϬϬϬ and would have been relatively stable 
since then͘ It is located at a very high elevation, ie ϰϳϮϬ m, by the way the lake is covered by ice a long part of 
the year, from November to April, and the atmospheric effect are important͘ 
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Figure Ϯϯ͘ LWE derived from optical imagery based on different approaches over Namsto Lake͘ 

 

  

Figure Ϯϰ͘ OTSU processing: under estimation du to sunglint and over estimation du to snow͘ 

 

Observations based on the graphic and vector extractions analyse: 

x  On the images of the ϭϬͬϬϱͬϮϬϭϲ and of the ϮϰͬϬϳͬϮϬϭϴ OTSU͛s underestimation caused by sunlight͘  
x  On the SϮ image of the ϮϭͬϭϭͬϮϬϭϴ, there are OTSU͛s overestimation caused by snow͘ 
x SVM and RF have pretty much the same good results͘ Differences between methods are lower than 

ϱй͘ 

 Sassykol Lake  

Sassykol Lake is located at an altitude of ϯϱϬ m in the southeast of the eastern province of Kazakhstan in the 
BalkhashͲAlakol lowland between mountain systems of Zhetysu Alatau in the south͘ Tarbagatai in the north, 
and Barlyk in the east͘ It is the part of a complex hydro system formed by three successive lakes: Sassykol on 
the upstream part, the Kosharkol and in downstream the Alakol Lake͘ Sassykol lake communicates with the 
Alakol Lake through an extensive wetland surrounding the intermediate lake named the Kosharko Lake 
Sassykol is a shallow freshͲwater lake which shores are gently sloping and densely covered with reeds͘ From 
November to the end of MarchͲApril, the lakes are covered by ice͘  
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Figure Ϯϱ͘ LWE derived from optical imagery based on different approaches over Sassykol lake͘ 

 

ϭ͘ Random Forest approaches ;RFͿ involve an underestimation that could be caused by low reflectance 
;lower than training imageͿ and wisp of clouds͘ 

Ϯ͘ OTSU͛s approach generates an overestimation: it classifies vegetation and wisp of the cloud͘ 
ϯ͘ SVM: it shows a good classification͘ The boundaries of the water bodies are well marked, the 

vegetation is well distinguished͘ 
 
 

   

RF: underestimation related to 
sunglint 

Otsu: over estimation; integrating 
as water, part of vegetation 

SVM: good classification between 
water, vegetation  

Figure Ϯϲ͘ Artefacts observed over Sassykol lake exploiting different processing approaches͘ 

 

 Alakol Lake  

Alakol Lake is an endorheic salted lake relatively deep, ϰϱm, and large, more than near ϯϬϬϬ kmϮ͘ The shores 
of Alakol Lake are rugged and an unstable coastal zone, with also large islands͘ As already indicated, from 
November to end of MarchͲApril, the lake can be covered by ice͘  
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Figure Ϯϳ͘ LWE derived from optical imagery based on different approaches over Alakol lake͘ 

 

Observations based on the graphic and vector extractions analysis are the following: 

x RFͲunderestimation caused by a wisp of cloud for the images from ϮϴͬϬϴͬϮϬϭϴ, ϮϮͬϭϬͬϮϬϭϴ, 
ϬϲͬϭϭͬϮϬϭϴ Θ ϮϰͬϬϳͬϮϬϭϴ, indicated with ;ϭͿ on the Figure Ϯϴ͘ 

x OTSU͛s approach presents an overestimation caused by snow, on the SentinelϮ image acquired on 
ϮϲͬϭϭͬϮϬϭϴ, indicated with ;ϮͿ on the Figure Ϯϴ͘ 
 

  

Figure Ϯϴ͘ Artefacts observed over Alakol Lake when applying, left; RF: underestimation related to clouds right, 
OTSU; commission with snow͘ 

 Chilwa Lake  

Lake Chilwa is the secondͲlargest lake in Malawi after Lake Malawi͘ It is in eastern Zomba District, near the 
border with Mozambique͘ Lake Chilwa is a shallow, i͘e͘ ϯm, enclosed saline lake located along the East African 
Rift Valley in southern Malawi near its border with Mozambique͘ 

Approximately ϲϬ km long and ϰϬ km wide͘ The lake is surrounded by extensive wetlands͘ There is a large 
island in the middle of the lake called Chisi Island͘ The lake has no outlet and the level of water is greatly 
affected by seasonal rains and summer evaporation͘ In recent years, Lake Chilwa has been shrinking͘ 
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Figure Ϯϵ͘  LWE derived from optical imagery based on different approaches over Chilwa Lake 

 

Observations based on the graphic and vector extractions analysis are the following: 

x OTSU: underestimates the water surface indicate by ;ϭͿ on Figure ϯϬ͘ 
x RF: underestimates͘ don͛t classify water with vegetation 
x SVM: overestimates LWE as classifying burned areas as water surfaces 

 

  

OTSU: underestimation of LWE RF: underestimates, omission of 
flooded vegetation 

SVM: commission burn 
areasͬwater 

Figure ϯϬ͘ Artefacts observed over Chilwa Lake when applying OTSU, RF Tile and SWM on SentinelϮ imagery͘ 

 

 Al Hamar Wetland 

Al Hammar wetlands are a large wetland complex in South Eastern Iraq that are part of the Mesopotamian 
Marshes in the TigrisʹEuphrates river system͘ Historically, the Hammar Marshes extended up to ϰ,ϱϬϬ kmϮ 
during seasonal floods͘ They were destroyed during the ϭϵϵϬs by largeͲscale drainage, dam and dike 
construction projects͘ Since ϮϬϬϯ, they are recovering following reflooding and destruction of dams͘ The water 
spatial distribution is still very controlled by inherited structures͘  
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Figure ϯϭ͘ LWE derived from optical imagery based on different approaches over Al Hamar wetlands͘ 

 

The LWE dynamic derived from satellite image, thanks to OTSU or SVM approaches are similar͘ Therefore, the 
values derived from SVM algorithm are higher than the OTSU ones͘ This is related to the fact that OTSU is more 
restrictive, taking into account free open water surface, rather than SVM which includes also a part of flooded 
vegetation͘ 

 

 

Figure ϯϮ͘ LWE extraction based on a SVM approach, initial image and resulting LWE: part of the flooded 
vegetation is integrated within the LWE͘ 

 Chad case study 

The Chad case of study is particular in regard to the others tested lakes cases͘ It was an opportunity to:  

x Test ϱ different algorithms for LWE extraction based on optical imagery 
x Compare results acquired from SentinelϮ and landsatϴ data acquired the same day, but of course 

having different spatial resolution, ie ϭϬ and ϯϬm respectively͘ 
x  Compare LWE derived both from Optical and SAR imagery  
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x Compare the EO derived map with the with field tracks recorded from a boat͘  

 

Chad lake is a historically large, shallow, endorheic lake in Africa, which has varied in size over the centuries͘ 
According to the Global Resource Information Database of the United Nations Environment Programme, it 
shrank by as much as ϵϱй from about ϭϵϲϯ to ϭϵϵϴ͘  

 This field survey was carried out in the Archipelago of the Chad lake, the Bol Reria area a disconnected part of 
interdune water bodies͘  

 

  

Figure ϯϯ. Chad lake evolution over ϰϬyears (ϭϵϲϯ-ϮϬϬϭ) and location of the Bol area within the Archipelago 
region of Chad Lake 

 

In the Archipelago area, the islands and peninsulas are summits of remaining sand dunes͛ network flooded by 
lake Chad water͘ Dune sonnet area: this is the part of the island where there is a small group of huts and a few 
millet fields when the island is inhabited͘ The vegetation corresponds to trees and shrubs͘ On the shores of the 
islands, fringe of macrophytes can be observed͘ One characteristic of this part of Chad lake is the presence of 
Reeds islands that are anchored in shallow waters͘ Part of them separate from the main islands and form 
circular floating islands of vegetation named, kirtas͘ These are formed by Papyrus and Phragmites͘ Their sizes 
vary from few meters to several hundred meters͘ At the time of reversal of dominants winds, during June and 
October generally in the rainy season when the winds shifts are frequent, these islands move back and forth, 
modifying the aspect of the reeds islands and closing the channels of the Archipelago ;Leonard, ϭϵϳϰ; Ittis and 
Lemoalle, ϭϵϴϯͿ͘ 
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Land tongues with sparse 
vegetation 

Floating and anchored vegetation Bare sandy tongues 

Figure ϯϰ͘ Landscapes of the Archipelago area͘ 

 

Five different methods were tested, OTSU, CanyͲOTSU, Kmean, SVM and RF͘ Obtained LWE are presented in 
the Figure ϯϱ͘  

  

  

  

Figure ϯϱ͘ LWLs extracted exploiting different approaches from the SentinelϮ image acquired on the Ϯϵ of April 
ϮϬϭϵ͘ 
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In this complex environment, the analysis and comparison of the derived LWE from SentinelϮ imagery are the 
following: 

x Canny OTSU and Kmeans, a none negligible underestimate the LWE 
x SWM a small under estimation 
x OTSU, the most realistic over this landscape 
x RF a small overestimation as integrating part of the wetͬfloating vegetation  

All methods retrieve about ϳϬ й of the potential observed water, all real open water surface͘ The differences 
are noticeable on very shallow water and on the immediate environment or inside floating islands͘ 

 

 

Figure ϯϲ͘ Occurrence map of observed water based on SentinelϮ imagery͘ 

 

The same five approaches were also followed to retrieve LWE from the Landsat imagery͘ In this complex 
environment, the analysis and comparison of the derived LWE from Landsat imagery are the following: 

x Kmeans, a none negligible underestimate the LWE 
x CannyͲOTSU presents a small under estimation 
x SVM and OTSU, are very similar in terms of obtained results and present the most realistic over this 

landscape 
x RF a small overestimation as integrating part of the wetͬfloating vegetation  

Based on Landsat ϴ imagery, i͘e͘ with a pixel integrating more surface, all methods present in common more 
than ϴϬ й of the potential observed water, all real open water surface͘ The slight differences are noticeable on 
very shallow water and on the immediate environment or inside floating islands͘  
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Figure ϯϳ͘  Occurrence map of observed water based on Landsat ϴ imagery͘ 
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Figure ϯϴ͘ Map of occurrence of observed water based on Landsatϴ imagery͘ 

 

The comparison of LWE extraction from SentinelϮ and Landsat ϴ is interesting, the extraction based on Landsat 
ϴ is more coherentͬcontinuous, with less difference between the results derived from the various methods͘  

 

Table ϭϮ͘ Comparison of the SentinelϮ and Landsat ϴ bands͘ 

 Sentinel Ϯ Landsat ϴ 

NIR Ϭ,ϳϳϵͲϬ,ϴϴϱ     Bϴ ϭϬm Ϭ͘ϴϱͲϬ͘ϴϴ um 

NIR Ϭ,ϴϱϯͲϬ,ϴϳϱ     BϴϮ ϮϬm Ϭ͘ϴϱͲϬ͘ϴϴ 

SWIRϭ ϭ,ϱϲϴ ʹ ϭ,ϲϱϵ ϭ͘ϱϳͲϭ͘ϲϱ 

SWIR Ϯ Ϯ,ϭϭϰͲ Ϯ,Ϯϴϵ Ϯ͘ϭϭͲϮ͘Ϯϵ 

 

If in the SWIRϭ and SWIR , the bands are located similarly and have same width, on the NIR there are 
noticeable difference between SentinelϮ, band Bϴ ϭϬm, and landsatϴ, band ϱ whereas the narrow band BϴA of 
SentinelϮ is similar to the NIR band, band ϰ, of Landsat ϴ, with respectively a ϮϬ and ϯϬ meters of spatial 
resolution͘  Whereas, on the LWE derived from SentinelϮ, the limits waterͬnon water are more accurate, but 
some overestimation is observed with vegetation areas classified͘ On the LWE obtained from a RF approach 
over a Landsat ϴ image, it can be observed an underestimation of water on the shore of the lake due to the 
lower resolution͘ 
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LWE derived from LandsatͲϴ extraction on the 
shoreline ;background SentinelϮͿ 

RF SentinelͲϮ extraction with SentinelͲϮ image 
;backgroundͿ 

Figure ϯϵ͘ Comparison of Sentinel Ϯ and Landsat ϴ LWE: influence of the spatial resolution͘ 

 

In addition, a multitemporal analysis was done over a period of one month, exploiting five Sentinel Ϯ images͘ 
These data were acquired at the following dates͘  

x ϬϵͬϬϰͬϮϬϭϵ 
x ϭϰͬϬϰͬϮϬϭϵ 
x ϮϰͬϬϰͬϮϬϭϵ 
x ϮϵͬϬϰͬϮϬϭϵ  
x ϬϰͬϬϱͬϮϬϭϵ 

For each image, a water surface based on an SVM approach was derived͘ From these a mean surface was 
calculated and then each surface compared to this mean surface͘ 

 

Table ϭϯ͘  

Date LWE Difference / Mean 

ϬϵͬϬϰͬϮϬϭϵ ϯϳϴ͘ϳϴϳϱ kmϸ Ϭ,ϳй 

ϭϰͬϬϰͬϮϬϭϵ ϯϳϭ͘ϱϲϲϳ kmϸ ϭ,ϰй 

ϮϰͬϬϰͬϮϬϭϵ ϯϳϮ͘ϭϰϮϰ kmϸ Ͳϭ,Ϭϯй 

ϮϵͬϬϰͬϮϬϭϵ ϯϳϵ͘Ϯϱϭϱ kmϸ Ϭ,ϴϱй 

ϬϰͬϬϱͬϮϬϭϵ ϯϴϭ͘ϲϬϬϵ kmϸ ϭ,ϰϴй 

 

Very stable water bodies, with less than Ϯй of difference between the observations within a month͘ In 
addition, the LWE apparent dynamic is more related to the movement of floating vegetation ;under wind 
directionͬspeed dependenceͿ rather than LWL changes͘ Some also apparent changes are related to some 
artefact linked with small clouds on one date͘  
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ϮϬϭϵͬϬϰͬϬϵ ϮϬϭϵͬϬϰͬϭϰ 

  

ϮϬϭϵͬϬϰͬϮϵ ϮϬϭϵͬϬϱͬϬϰ 

Figure ϰϬ͘ Displacement over one month of the Kirtas͘ 
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Figure ϰϭ͘ Displacement of vegetated islands from date to date͘ Green colour: No water in first image, water in 
last image͘ Lily colour: Water in first image, no water in last image͘ 

ϯ͘ϯ͘ϭ͘ϴ͘ϭ͘ Validation with boat track͘  

A field trip has been organized by LEGOS on parallel of the CCI lake work͘ Boat tracks on Landsat , using a GPS, 
receiver allowed to carefully map the water and the vegetation͘  It is allowed locally to validate the water 
limits, another part the boat is in the middle of bays͘ An interesting thing  is also that the tracks cross within 
vegetated island, confirming well the ͞water͟ aspect of these island͘ ͘ All changes in the nature of the terrain 
crossed by the boat were noted allowing to precisely map the lake countour along the boat͛s route͘ 
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Figure ϰϮ͘ Tracks of boat survey, ϭϬ of April ϮϬϭϵ within the Chad lake Archipelago ;Courtesy of LegosͿ͘ 

 

 

Figure ϰϯ͘ Tracks of boat survey, ϭϭ of April ϮϬϭϵ within the Chad lake Archipelago ;Courtesy of LegosͿ͘ 
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;aͿ ;bͿ 

FLJXUH 44 (a) Processing using normalized MNDWI index with threshold of -Ϭ.ϭ (b) using OTSU method. 
Both processing of the landsat ϴ images allow to  correctly map the transition between 

land and water in this complex archipelago system. 

 

 

 

Reference:  

Leonard J͘, ϭϵϳϰ: Aperçu de la végétation de la partie Est du lac Tchad͘ ORSTOM 

 Iltis André and Jacques Lemoalle, ϭϵϴϯ: the aquatic vegetation of lake Chad, in lake Chad, Ecology and 
productivity of a shallow tropical ecosystem͘ JP Carmouze, Durand JR and C Leveque edts͘ Junk Publishers͘ 

 Argentino lake 

Lago Argentino, also name El Calafate, is a lake in the Patagonian province of Santa Cruz, Argentina͘ It is the 
biggest freshwater lake in Argentina, with a surface area of ϭ,ϰϭϱ kmϮ͘ It has an average depth of ϭϱϬ m, and a 
maximum depth of ϱϬϬ m͘ The lake lies within the Los Glaciares National Park in a landscape with numerous 
glaciers and is fed by the glacial meltwater of several rivers, the water from Lake Viedma brought by the La 
Leona River, and many mountain streams 

The argentine lake case is interesting, due to the potential impact of environment on the retrieval of LWE͘ Two 
major elements have to be taken into account, the topographic position of the lake surrounding by mountains, 
and the presence of glaciers feeding the lakes and of snow covering the borders͘ By the way it is challenging 
case for testing the different methods of LWE based on optical imagery͘  

 

   

OTSU RF SVM 

Figure ϰϱ͘ Artefacts observed over Argentino Lake when applying OTSU, RF Tile and SWM on SentinelϮ imagery 
acquired the ϬϮͲϬϲͲϮϬϭϵ͘ 
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In this second set of tests for each processed image, SVM and RF was trained based on Pekel water mask 
occurrence͘  

It is appearing that: 

x OTSU and SVM are sensitive to shadows on water surfaces͘ 
x RF is less sensible to shadows effect and by the way presents a more realistic shoreline͘ 

 

   

OTSU RF SVM 

Figure ϰϲ. Artefacts observed over Argentino Lake when applying OTSU, RF Tile and SWM on SentinelϮ 
imagery acquired the ϬϮ-Ϭϲ-ϮϬϭϵ. 

 

When analyzing the temporal evolution of the LWE, a relative coherence of the LWE evolution over the time 
obtained by the different process͘ Therefore, the OTSU tends to overestimate the water extent, whereas the 
SVM, underestimates it͘ This explains the differences between the methods at ϬϮͬϬϲͬϮϬϭϳ͘ Large shadows are 
present at the limit between the lake and the land͘ RF Tile is more consistent than SVM which don͛t classify 
shadows on water and OTSU which classify shadows on land͘ 

 

 

 

Figure ϰϳ͘ LWE derived from optical imagery based on different approaches over Argentino Lake 
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 Bosten lake 

The Bosten lake, also known as Bagrash lake, is a large freshwater lake on the North Eastern rim of the Tarim 
Basin, about ϮϬ km East of Yanqi, Xinjiang, in the Bayingholin Mongol Autonomous Prefecture, an extremely 
arid region in the North West of China͘  Covering an area of about ϭϬϬϬ kmϮ, it is the largest lake in Xinjiang͘ 
The mean water depth is ϴ,Ϯm with a maximum depth of ϭϳm͘ The lake is frozen during the winter ;up to 
MarchͿ͘ In the Western part: there is a huge wetlands complex that is totally dry in beginning spring͘ In 
addition, the environment of the lake varies a lot around the year why lot of vegetation in summer ;as well on 
the nearly agricultural fields that could induce some potential confusion with the wetlands vegetation͘ In fall, 
the vegetation is relatively dry͘    

In term of data accessibility and quality, it has to be noticed that a part of the analysis is spoiled by the fact that 
a relative important amount, i͘e͘ ϳ dates, of Landsat ϳ images covering an interesting hydrological period 
where not exploitable due to some instrument artefact͘ 

  

 
Figure ϰϴ͘ LWE derived from optical imagery based on different approaches over Bosten lake͘ 

 

   

OTSU ʹ ϬϵͬϬϰͬϮϬϭϲ RF Ͳ ϬϵͬϬϰͬϮϬϭϲ SVM Ͳ ϬϵͬϬϰͬϮϬϭϲ 
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OTSU ʹ ϬϵͬϬϰͬϮϬϭϲ RF Ͳ ϬϵͬϬϰͬϮϬϭϲ SVM Ͳ ϬϵͬϬϰͬϮϬϭϲ 

  

   

OTSU ʹ ϬϵͬϬϱͬϮϬϭϲ RF Ͳ ϬϵͬϬϱͬϮϬϭϲ SVM Ͳ ϬϵͬϬϱͬϮϬϭϲ 

 

 

 

 

 

 

OTSU ʹ ϬϵͬϬϱͬϮϬϭϲ RF Ͳ ϬϵͬϬϱͬϮϬϭϲ SVM Ͳ ϬϵͬϬϱͬϮϬϭϲ 

 Figure ϰϵ͘ Comparison of LWE limits obtained from OTSU, Random Forest ;RFͿ et SWM over Bosten wetlands͘ 

  

Observations based on the graphic and vector extractions analysis are the following: 

x OTSU: underestimates some shallow water 
x RF: The most realistic over this landscape͘ 
x SVM: overestimates water surface, especially in dry wetland 
x The RF approach is the best technical solution to derive accurate LWEs over the Bosten Lake͘  

As illustrated above with water masks derived from the images SentinelͲϮ acquired the ϬϵͬϬϰͬϮϬϭϲ and the 
ϬϵͬϬϱͬϮϬϭϲ, OTSU is overestimating and SVM is underestimating on this data͘  

 Khanka 

Lake Khanka is located on the border of the People͛s Republic of China ;ChinaͿ and the Russian Federation 
;RussiaͿ͘ It is the largest lake in Northeast Asia, as well as a transboundary waterbody between China and 
Russia͘ The lake is called Lake Xingkai in China and Khanka Lake in Russia͘ The water plane of the lake varies 
between ϰ,ϬϬϬͲϰ,ϰϬϬkmϮ͘ The average lake depth is ϰ͘ϱm and maximum lake depth is ϭϬ͘ϲm͘  
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There are Ϯϯ inflowing rivers to the lake, ϴ draining from China and ϭϱ draining from Russia͘ The Song͛acha 
River is the only outflow river from the lake and is subsequently connected with the WusuliͬUssuri River and 
the HeilongͬAmur River system͘ The drainage basin of Lake XingkaiͬKhanka is a habitat for important animal 
and plant species of both countries, particularly the wetlands surrounding the lake͘ The Russian Federation 
designated the lake as a Ramsar Convention wetland site, on the basis of its importance for migratory bird 
species͘ 

 

 
Figure ϱϬ͘ LWE derived from optical imagery based on different approaches over Khanka Lake͘ 

 

The comparison of the LWE obtained based on OTSU, SV and RF indicates:  

x OTSU, Overestimation observed in dry wetlands and in crops that could extend far beyond the AOI 
boundaries͘ 

x SVM, Underestimation in small water bodies͘ 
x  RF is Closest from the ground truth͘ 

 

 

    

SentinelͲϮ image  
ϭϬͬϬϱͬϮϬϭϴ In orange OTSU LWE In blue SVM LWE In green RF LWE 

Figure ϱϭ͘ LWE obtained with OTSU, SV and RF͘ 
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Presented at local scale in the above figure, these trends are observed on the whole SϮ image͘ Conclusion over 
Khanka case of study is that RF approach allows to derive accurate LWEs͘  

 

 Ilmen lake 

The Ilmen lake is a large lake in the Novgorod Oblast of Russia͘ The average surface area is ϵϴϮ KmϮ, therefore 
it may vary between ϳϯϯ kmϮ and ϮϬϵϬ square kmϮ depending on water level͘ The lake is fed by ϱϮ inflowing 
rivers, the four main ones being the Msta, the Pola, the Lovat, and the Shelon͘ It is drained through a single 
outlet, the Volkhov, into Lake Ladoga͘ 

 

 
Figure ϱϮ͘ LWE derived from optical imagery based on different approaches over Illmen Lake͘ 

 

Part of the processing was done exploiting OTSU approach from GEE͘ Therefore, not all the images selected 
from USGS sites, are accessible from GEE, by hence, the optical time series is not so large͘  

 

 Sary kamysh Lake 

The Sarykamysh or SaryͲKamysh, also known as Sarygamysh is situated in Central Asia approximately midway 
between the Caspian Sea and the Aral Sea͘ The lake sits in an oval depression of tectonic origin, which was 
later affected by aeolian erosion during successive glaciations from Ϯ million years ago, to ϭϬ ϬϬϬBC͘ The 
Northern quarter of the lake belongs to the country of Uzbekistan, while the rest belongs to Turkmenistan͘ The 
Sarykamish lake was formed in ϭϵϳϭ as a result of flooding of a set of small lakes located within the depression͘ 
Now Sarykamish lake is a large drainage water body which has been used as a discharge collector of salty 
irrigation water from the fields͘  Since ϭϵϵϮ the lake has been progressively increased in size a, reaching 
maximal levels in the beginning of ϮϬϬϬ, an increasing still on going with some recession phases͘ The mean 
water depth is ϴ m with a maximum depth of ϰm; its surface is about ϰϬϬϬkmϮ͘   
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Figure ϱϯ͘: LWEs derived from optical imagery based on different approaches over Sary Khamish Lake͘ 

 

The idea was to have a selection of images covering the different phases of lake inflow͘ The selected data 
started from the beginning of the ϵϬ͛ up the recent years͘ Unfortunately, a relative long period, in the 
beginning of the ϮϬϬϬ͛ was not covered due to the instrumental problem on Landsat ϳ͘ 

ϯ.ϯ.Ϯ. Results analysis for SAR sensors-based approaches 

As commented in Section ϯ͘ϭ͘Ϯ, series of SentinelͲϭ images have been exploited to derive their Lake Water 
Mask and their corresponding Lake Water Extent͘ The LWE measurements will be used along with the Lake 
Water Level in order to generate the corresponding hypsometric curves͘ 

As described in the ATBD document, NORCE and TREͲAltamira have employed different approaches ;even 
though sharing some common stepsͿ and have used GRD and SLC images respectively͘ A main limitation with 
Sϭ data is that this constrains the timeͲseries to the period after October ϮϬϭϰ͘ Sϭ data are geocoded using the 
SRTM DEM and a most precise one when available ;as for Lake AltevatnetͿ͘ 

The Lake Water Masks generated by NORCE and TREͲAltamira over the same imagesΖ dates ;or presenting a 
low temporal differenceͿ are used in order to compare both methodologies͛ relative performances͘ In order to 
maximize the contribution of the SAR LWE to the hypsometric curve calculation, NORCE and TREͲAltamira 
employed different Sϭ datasets ;including different orbitsͿ but also considering some common dates for 
comparison purposes͘ In the same way, images presenting a time difference of ϭϮ days have also been 
considered͘ This can be questionable sometimes when the LWE changes rapidly, but in order to obtain 
sufficient amount of comparisons we have used this criterion͘ This analysis has been carried out over the 
following lakes: Chad ;section ϯ͘ϯ͘Ϯ͘ϭͿ, Illmen ;section ϯ͘ϯ͘Ϯ͘ϮͿ, Bosten ;section ϯ͘ϯ͘Ϯ͘ϯͿ, Argentino ;section 
ϯ͘ϯ͘Ϯ͘ϰͿ and Khanka ;section ϯ͘ϯ͘Ϯ͘ϱͿ͘  

The comparison statistics are derived from the contingency matrix͘ For its calculation an analysis polygon 
covering the lake is selected and one of the two results is taken as the reference͘ Then the following 
parameters are calculated in й: 

x True positive ;TPͿ: both results detecting water͘ 
x False negative ;FNͿ: reference result detecting water and the other land͘ 
x False Positive ;FPͿ: reference result detecting land and the other water͘ 
x True negative ;TNͿ: both results detecting land͘ 
x Accuracy rate ;ARͿ: TP н TN͘ 

It is worth saying that the naming of the statistical parameters ;TP, FN, FP and TNͿ is also somewhat arbitrary 
since it is not always clear which of the datasets that is closest to the ground truth͘ For the sake of comparison, 
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we always set the first dataset as truth͘ In order to illustrate the comparison, the contingency matrix as well as 
the temporal LWE series are shown͘  

In section ϯ͘ϯ͘Ϯ͘ϲ a summary with the tabular contingency matrices results for all the lakes that are interͲ
comparable between the two SAR algorithms are provided͘ 

It is also important to mention that an Envisat ASAR WSM database is available͘ For some of the lakes we have 
found interesting data from the period ϮϬϬϮͲϮϬϭϮ which are useful for some of the lakes that have had 
significant changes in the LWE in the period after ϮϬϬϬ͘ ASAR WSM data has in general coarser spatial 
resolution, and only one polarization so the quality is in general poorer than for Sϭ data͘ 

 

 Chad 

 

 

 

 

 LWE ;kmϮͿ 

Date NORCE TREͲALTAMIRA 

ϭϭͬϬϰͬϮϬϭϵ ϯϱϰ͘ϭϮϳ ϯϮϰ͘ϯϲϰ 

ϭϮͬϬϰͬϮϬϭϵ ϯϯϵ͘ϭϭϰ Ϯϵϵ͘ϵϳϮ 
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 LWE ;kmϮͿ 

Date NORCE TREͲALTAMIRA 

ϮϯͬϬϰͬϮϬϭϵ ϯϱϰ͘ϰϳϭ ϯϬϴ͘ϯϬϵ 

ϮϰͬϬϰͬϮϬϭϵ ϯϰϲ͘ϯϯϵ ϯϯϱ͘Ϭϲϴ 

 Illmen 

NORCE͛s and TREͲALTA͛s lake water mask and their corresponding contingency matrices for a couple of 
coincident dates ;ϮϬϭϵϭϬϮϰ and ϮϬϮϬϬϭϭϲͿ which present a significant extent variation among them, are 
depicted in Figure ϱϰ͘ The overall agreement for those images are ϵϳ͘ϳϯй and ϵϲ͘ϭϵй respectively͘ Most of 
the differences between the two SAR approaches is related to the integration of inundated wetlands͘  

For Lake Illmen, the contingency matrix values for all NORCE͛s and TREͲALTA͛s results corresponding to images 
presenting a temporal difference lower or equal to ϭϮ days are can be found in Table ϭϰ͘  

A representation of the temporal evolution of all NORCE͛s and TREͲALTA͛s LWE is depicted in Figure ϱϱ͘ The 
same representation but just focusing on the ϭϮ days difference images is depicted in Figure ϱϲ͘  

 

;aͿ ;bͿ 

;cͿ ;dͿ 

Figure ϱϰ͘ ;aͿ NORCE and TREͲALTA ϮϬϭϵϭϬϮϰ lake water masks ;blueͿ over a selected analysis polygon ;redͿ 
and ;cͿ its corresponding contingency matrix͘ ;bͿ NORCE and TREͲALTA ϮϬϮϬϬϭϭϲ lake water masks ;blueͿ over 

a selected analysis polygon ;redͿ and ;dͿ its corresponding contingency matrix͘ 
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Figure ϱϱ͘ NORCE and TREͲALTA LWE time series for Lake Illmen͘ 

 
Figure ϱϲ͘ NORCE and TREͲALTA ϭϮ days maximum difference LWE time series for Lake Illmen͘ 

 

 Bosten  

 

NORCE͛s and TREͲALTA͛s lake water mask and their corresponding contingency matrices for a couple of 
coincident dates ;ϮϬϭϳϬϳϮϵ, ϮϬϭϵϬϰϭϰ are depicted in Figure ϱϳ͘ The overall agreements for those images are 
ϵϴ͘ϴϵй and ϵϴ͘ϳϱй respectively͘ 

For lake Bosten, the contingency matrix values for all NORCE͛s and TREͲALTA͛s results corresponding to images 
presenting a temporal difference lower or equal to ϭϮ days are represented in Table ϭϲ͘ 

A representation of the temporal evolution of all NORCE͛s and TREͲALTA͛s LWE is depicted in Figure ϱϴ͘ The 
same representation but just focusing on the ϭϮ days difference images is depicted in Figure ϱϵ͘ 
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;aͿ 
 

;bͿ 

;cͿ ;dͿ 

Figure ϱϳ͘ ;aͿ NORCE and TREͲALTA ϮϬϭϳϬϳϮϵ lake water masks ;blueͿ over a selected analysis polygon ;redͿ 
and ;cͿ its corresponding contingency matrix͘ ;bͿ NORCE and TREͲALTA ϮϬϭϵϬϰϭϰ lake water masks ;blueͿ over 

a selected analysis polygon ;redͿ and ;dͿ its corresponding contingency matrix͘ 

 

 
Figure ϱϴ͘ NORCE and TREͲALTA LWE time series for lake Bosten͘ 
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Figure ϱϵ͘ NORCE and TREͲALTA ϭϮ days maximum difference LWE time series for lake Bosten͘ 

 

 

 Argentino 

NORCE͛s and TREͲALTA͛s lake water mask and their corresponding contingency matrices for a ϳ days difference 
couple ;ϮϬϭϳϭϮϮϭͲϮϬϭϳϭϮϭϰͿ and a ϱ days difference one ;ϮϬϭϵϭϭϬϱͲϮϬϭϵϭϭϭϬͿ are depicted in Figure ϲϬ͘ The 
overall agreement for those images are ϵϰ͘ϭϲй and ϵϱ͘ϯϴй respectively͘ 

For lake Argentino, the contingency matrix values for all NORCE͛s and TREͲALTA͛s results corresponding to 
images presenting a temporal differences lower or equal to ϭϮ days are represented in Table ϭϴ͘ 

A representation of the temporal evolution of all NORCE͛s and TREͲALTA͛s LWE is depicted in Figure ϲϭ͘ The 
same representation but just focusing on the ϭϮ days difference images is depicted in Figure ϲϮ͘ 

 

;aͿ ;bͿ 
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;cͿ ;dͿ 

Figure ϲϬ͘ ;aͿ NORCE and TREͲALTA ;ϮϬϭϳϭϮϮϭͲϮϬϭϳϭϮϭϰͿ lake water masks ;blueͿ over a selected analysis 
polygon ;redͿ and ;cͿ its corresponding contingency matrix͘ ;bͿ NORCE and TREͲALTA ;ϮϬϭϵϭϭϬϱͲϮϬϭϵϭϭϭϬͿ 
lake water masks ;blueͿ over a selected analysis polygon ;redͿ and ;dͿ its corresponding contingency matrix͘ 

 

 
Figure ϲϭ͘ NORCE and TREͲALTA LWE time series for lake Argentino͘ 

 
Figure ϲϮ͘ NORCE and TREͲALTA ϭϮ days maximum difference LWE time series for lake Argentino͘ 
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 Khanka 

NORCE͛s and TREͲALTA͛s lake water mask and their corresponding contingency matrices for a couple of 
coincident dates ;ϮϬϭϴϬϱϭϱ, ϮϬϭϵϬϱϭϬ are depicted in Figure ϲϯ͘ The overall agreements for those images are 
ϵϴ͘ϴϯй and ϵϳ͘ϲϮй respectively͘ 

For lake Khanka, the contingency matrix values for all NORCE͛s and TREͲALTA͛s results corresponding to images 
presenting a temporal difference lower or equal to ϭϮ days are represented in Table ϮϬ͘ 

A representation of the temporal evolution of all NORCE͛s and TREͲALTA͛s LWE is depicted in Figure ϲϰ͘ The 
same representation but just focusing on the ϭϮ days difference images is depicted in Figure ϲϱ͘ 

  

;aͿ ;bͿ 

;cͿ ;dͿ 

Figure ϲϯ͘ ;aͿ NORCE and TREͲALTA ϮϬϭϴϬϱϭϱ lake water masks ;blueͿ over a selected analysis polygon ;redͿ 
and ;cͿ its corresponding contingency matrix͘ ;bͿ NORCE and TREͲALTA ϮϬϭϵϬϱϭϬ lake water masks ;blueͿ over 

a selected analysis polygon ;redͿ and ;dͿ its corresponding contingency matrix͘ 
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Figure ϲϰ͘ NORCE and TREͲALTA LWE time series for lake Khanka͘ 

 
Figure ϲϱ͘ NORCE and TREͲALTA ϭϮ days maximum difference LWE time series for lake Khanka͘ 

 

 Overall comparisons between the two SAR algorithms 

In this section we provide tabular contingency matrices for all the lakes that are interͲcomparable between the 
two SAR algorithms͘ Due to different selections of dates for the two SAR classifiers ;NORCE and TREͲALTAͿ 
different dates will be interͲcompared͘ The main criterion for interͲcomparison is that the two images 
;NORCE͛s and TREͲALTA͛sͿ are close in time͘ For that, a maximum time difference to ϭϮ days is set͘  

The following tables have been generated: 

x Lake Illmen: contingency matrix in Table ϭϰ and corresponding Area difference mean values in Table 
ϭϱ͘ 

x Lake Bosten: contingency matrix in Table ϭϲ and corresponding Area difference mean values in Table 
ϭϳ͘ 

x Lake Argentino: contingency matrix in Table ϭϴ and corresponding Area difference mean values in 
Table ϭϵ͘ 
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x Lake Khanka: contingency matrix in Table ϮϬ and corresponding Area difference mean values in Table 
Ϯϭ͘ 

x Mean Values of all previous: Table ϮϮ 

Tables͛ acronyms stand for: TP ;True Positive in йͿ, FP ;False Positive in йͿ, FN ;False Negative in йͿ, TN ;True 
Negative in йͿ, AR ;Accuracy Rate in йͿ, Td ;time difference in daysͿ, Ad ;Area LWE difference in йͿ and Ard 
;Area LWE difference in square kilometersͿ͘ 

After the comparison results, it can be stated the performance for the two SAR results is in general very similar, 
although differences are observed due to different datesͬlakes and slight differences in methodology͘ 

Table ϭϰ͘ NORCE and TREͲALTA contingency matrix values summary for Lake Illmen 

 Date ϭ Date Ϯ TP FP FN TN AR Td Ad Ard 

Illmen ϮϬϭϳϬϲϭϮ   ϮϬϭϳϬϲϬϱ   ϲϳ͘ϯϴ   ϯ͘Ϭϯ   Ϭ͘ϭϭ   Ϯϵ͘ϰϳ  ϵϲ͘ϴϱ ϳ ϰ͘ϭϱ Ϯ͘Ϯϳ 

Illmen ϮϬϭϳϬϵϭϲ   ϮϬϭϳϬϵϬϵ   ϱϵ͘ϴϯ   ϯ͘ϯϳ   Ϭ͘Ϯϱ   ϯϲ͘ϱϮ   ϵϲ͘ϯϲ   ϳ ϰ͘ϵϮ Ϯϱ͘ϵϳ 

Illmen ϮϬϭϳϬϵϮϴ   ϮϬϭϳϭϬϬϯ   ϱϴ͘ϲϭ   ϭ͘ϴϮ   Ϭ͘ϲϯ   ϯϴ͘ϵϮ   ϵϳ͘ϱϰ   ϱ ϭ͘ϵϱ ϯ͘Ϯϱ 

Illmen ϮϬϭϳϭϭϭϱ   ϮϬϭϳϭϭϬϴ   ϲϯ͘ϰϴ   ϯ͘ϱϴ   Ϭ͘Ϭϰ   ϯϮ͘ϴϴ   ϵϲ͘ϯϲ   ϳ ϱ͘Ϯϴ Ϯϴ͘Ϭϭ 

Illmen ϮϬϭϴϬϱϬϮ   ϮϬϭϴϬϱϬϳ   ϲϵ͘ϱϱ   Ϯ͘ϭϬ   Ϭ͘ϯϭ   Ϯϴ͘Ϭϯ   ϵϳ͘ϱϴ   ϱ Ϯ͘ϰϵ ϯϯ͘ϭϲ 

Illmen ϮϬϭϴϬϲϬϳ   ϮϬϭϴϬϲϭϮ   ϲϰ͘ϭϭ   ϱ͘ϱϴ   Ϭ͘ϬϬ   ϯϬ͘Ϯϵ   ϵϰ͘ϰϬ   ϱ ϳ͘ϵϵ ϱϵ͘ϲ 

Illmen ϮϬϭϴϬϲϭϵ   ϮϬϭϴϬϲϭϮ   ϲϰ͘Ϭϯ   ϰ͘Ϭϴ   Ϭ͘Ϭϴ   ϯϭ͘ϳϵ   ϵϱ͘ϴϮ   ϳ ϱ͘ϴϳ ϯϮ͘ϯϭ 

Illmen ϮϬϭϴϬϳϭϯ   ϮϬϭϴϬϳϭϴ   ϱϱ͘ϳϯ   ϯ͘ϳϳ   Ϭ͘ϭϲ   ϰϬ͘ϯϯ   ϵϲ͘Ϭϲ   ϱ ϲ͘Ϭϲ ϰϱ͘ϲϴ 

Illmen ϮϬϭϴϬϳϮϱ   ϮϬϭϴϬϳϭϴ   ϱϱ͘ϲϵ   ϭ͘ϴϮ   Ϭ͘ϭϵ   ϰϮ͘Ϯϳ   ϵϳ͘ϵϳ   ϳ Ϯ͘ϴϯ ϭϭ͘ϯϮ 

Illmen ϮϬϭϵϬϰϮϳ   ϮϬϭϵϬϱϬϮ   ϲϰ͘Ϭϲ   Ϯ͘ϴϮ   Ϭ͘ϭϯ   ϯϮ͘ϵϳ   ϵϳ͘Ϭϯ   ϳ ϰ͘Ϭϯ ϭϲ͘ϴϲ 

Illmen ϮϬϭϵϬϱϬϵ   ϮϬϭϵϬϱϬϮ   ϲϯ͘ϭϲ   ϭ͘ϱϱ   ϭ͘Ϭϯ   ϯϰ͘Ϯϱ   ϵϳ͘ϰϭ   ϳ Ϭ͘ϴϬ ϮϬ͘ϵϭ 

Illmen ϮϬϭϵϬϲϬϮ   ϮϬϭϵϬϲϬϳ   ϱϲ͘ϭϯ   ϰ͘ϰϵ   Ϭ͘Ϭϭ   ϯϵ͘ϯϱ   ϵϱ͘ϰϵ   ϱ ϳ͘ϯϵ ϲϭ͘ϵϭ 

Illmen ϮϬϭϵϬϲϮϲ   ϮϬϭϵϬϳϬϭ   ϱϯ͘ϱϵ   ϭ͘Ϭϭ   Ϭ͘ϯϵ   ϰϰ͘ϵϵ   ϵϴ͘ϱϴ   ϱ ϭ͘ϭϰ ϯ͘ϯϴ 

Illmen ϮϬϭϵϬϴϬϭ   ϮϬϭϵϬϴϬϲ   ϱϯ͘ϭϲ   ϰ͘ϳϴ   Ϭ͘ϬϬ   ϰϮ͘Ϭϰ   ϵϱ͘Ϯϭ   ϱ ϴ͘Ϯϱ ϲϵ͘ϴϱ 

Illmen ϮϬϭϵϬϴϭϯ   ϮϬϭϵϬϴϬϲ   ϱϯ͘ϭϲ   ϯ͘ϱϳ   Ϭ͘ϬϬ   ϰϯ͘Ϯϰ   ϵϲ͘ϰϭ   ϳ ϲ͘Ϯϵ ϰϴ͘ϴϰ 

Illmen ϮϬϭϵϬϵϭϴ   ϮϬϭϵϬϵϭϭ   ϱϰ͘ϬϮ   ϭ͘ϮϮ   Ϭ͘ϯϲ   ϰϰ͘ϯϳ   ϵϴ͘ϰϬ   ϳ ϭ͘ϱϱ Ϭ͘ϴϮ 

Illmen ϮϬϭϵϬϵϯϬ   ϮϬϭϵϭϬϬϱ   ϱϰ͘ϱϴ   Ϯ͘ϭϱ   Ϭ͘ϰϭ   ϰϮ͘ϴϯ   ϵϳ͘ϰϮ   ϳ ϯ͘Ϭϲ ϭϰ͘ϱϮ 

Illmen ϮϬϭϵϭϬϮϰ ϮϬϭϵϭϬϮϰ ϱϴ͘ϭϲ Ϯ͘ϭϮ Ϭ͘ϭϰ ϯϵ͘ϱϲ ϵϳ͘ϳϯ Ϭ  ϯ͘Ϯϳ ϭϳ͘ϵϮ 

Illmen ϮϬϭϵϭϮϭϭ ϮϬϭϵϭϮϭϭ ϲϭ͘ϳϳ Ϯ͘ϵϬ ϭ͘Ϭϵ ϯϰ͘Ϯϭ ϵϱ͘ϵϵ Ϭ Ϯ͘ϴϬ Ϯϰ͘ϲ 

Illmen ϮϬϮϬϬϭϭϲ ϮϬϮϬϬϭϭϲ ϲϵ͘Ϭϰ ϯ͘ϳϲ Ϭ͘Ϭϰ Ϯϳ͘ϭϱ ϵϲ͘ϭϵ Ϭ ϱ͘ϭϬ ϵ͘ϲϳ 

 

Table ϭϱ͘ NORCE and TREͲALTA mean and stdv LWE difference for Lake Illmen 

 Mean;ArͿ Stdv;ArͿ Mean;ArdͿ Stdv;ArdͿ 

Illmen ϵϲ,ϳϰ ϭ,Ϭϵ Ϯϲ,ϱϰ ϮϬ,ϵϳ 
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Table ϭϲ͘ NORCE and TREͲALTA contingency matrix values summary for Lake Bosten 

 Date ϭ Date Ϯ TP FP FN TN AR Td Ad Ard 

Bosten ϮϬϭϳϬϳϮϵ ϮϬϭϳϬϳϮϵ ϵϰ͘ϲϯ Ϭ͘ϳϰ Ϭ͘ϯϲ ϰ͘Ϯϱ ϵϴ͘ϴϵ Ϭ Ϭ͘ϰϬ ϱϲ͘ϳϬ 

Bosten ϮϬϭϴϬϱϭϯ ϮϬϭϴϬϱϭϯ ϵϱ͘ϭϮ Ϭ͘ϴϱ Ϭ͘ϯϮ ϯ͘ϲϵ ϵϴ͘ϴϭ Ϭ Ϭ͘ϱϱ ϱϵ͘ϲϴ 

Bosten ϮϬϭϴϬϴϭϳ ϮϬϭϴϬϴϭϳ ϵϱ͘Ϯϱ Ϭ͘ϳϯ Ϭ͘ϯϵ ϯ͘ϲϭ ϵϴ͘ϴϳ Ϭ Ϭ͘ϯϱ ϱϴ͘Ϭϲ 

Bosten ϮϬϭϵϬϰϭϰ ϮϬϭϵϬϰϭϰ ϵϱ͘ϱϰ   Ϭ͘ϰϲ   Ϭ͘ϳϳ   ϯ͘Ϯϭ   ϵϴ͘ϳϱ  Ϭ Ϭ͘ϯϮ ϵϴ͘ϮϮ 

Bosten ϮϬϭϵϬϱϮϬ  ϮϬϭϵϬϱϮϬ ϵϱ͘ϴϯ   ϭ͘Ϭϴ  Ϭ͘Ϯϲ  Ϯ͘ϴϭ  ϵϴ͘ϲϰ  Ϭ Ϭ͘ϴϰ ϲϱ͘ϯϬ 

Bosten ϮϬϭϵϬϴϮϰ ϮϬϭϵϬϴϮϰ ϵϱ͘ϵϱ   Ϭ͘ϵϰ   Ϭ͘ϮϬ   Ϯ͘ϵϬ   ϵϴ͘ϴϱ  Ϭ Ϭ͘ϳϲ ϲϱ͘ϳϴ 

 

Table ϭϳ͘ NORCE and TREͲALTA mean and stdv LWE difference for Lake Illmen 

 Mean;ArͿ Stdv;ArͿ Mean;ArdͿ Stdv;ArdͿ 

Bosten ϵϴ͘ϴϬ Ϭ͘Ϭϵ ϲϳ͘Ϯϵ ϭϱ͘ϲϭ 

 

Table ϭϴ͘ NORCE and TREͲALTA contingency matrix values summary for Lake Argentino 

 Date ϭ Date Ϯ TP FP FN TN AR Td Ad Ard 

Argentino ϮϬϭϳϬϴϭϭ   ϮϬϭϳϬϴϭϲ   ϳϲ͘ϰϵ   ϰ͘Ϯϰ   ϭ͘ϭϭ   ϭϴ͘ϭϰ   ϵϰ͘ϲϯ   ϱ ϯ͘ϴϲ ϯϭ͘ϳ 

Argentino ϮϬϭϳϬϵϮϴ   ϮϬϭϳϬϵϮϭ   ϳϲ͘ϲϮ   ϰ͘ϰϳ   Ϭ͘ϳϰ   ϭϴ͘ϭϱ   ϵϰ͘ϳϴ   ϳ ϰ͘ϲϬ ϰϱ͘ϳϴ 

Argentino ϮϬϭϳϭϬϮϮ   ϮϬϭϳϭϬϭϱ   ϳϲ͘ϵϵ   ϯ͘ϱϵ   Ϯ͘ϯϭ   ϭϳ͘Ϭϵ   ϵϰ͘Ϭϵ   ϳ ϭ͘ϱϴ ϳ͘ϵϰ 

Argentino ϮϬϭϳϭϮϮϭ   ϮϬϭϳϭϮϭϰ   ϳϳ͘ϲϴ   ϱ͘ϱϳ   Ϭ͘Ϯϲ   ϭϲ͘ϰϳ   ϵϰ͘ϭϲ   ϳ ϲ͘ϯϳ ϳϭ͘ϴϱ 

Argentino ϮϬϭϴϭϬϬϱ   ϮϬϭϴϭϬϭϬ   ϳϲ͘ϱϲ   ϰ͘ϲϱ   Ϭ͘ϴϯ   ϭϳ͘ϵϰ   ϵϰ͘ϱϭ   ϱ ϰ͘ϳϬ ϰϰ͘ϵϰ 

Argentino ϮϬϭϵϬϵϬϲ   ϮϬϭϵϬϵϭϭ   ϳϲ͘Ϯϵ   ϯ͘ϱϵ   ϭ͘ϭϲ   ϭϴ͘ϵϯ   ϵϱ͘Ϯϯ   ϱ ϯ͘Ϭϯ Ϯϭ͘ϯϮ 

Argentino ϮϬϭϵϭϬϮϰ   ϮϬϭϵϭϬϭϳ   ϳϲ͘ϳϲ   ϱ͘ϴϲ   Ϭ͘ϯϮ   ϭϳ͘Ϭϰ   ϵϯ͘ϴϭ   ϳ ϲ͘ϳϭ ϳϵ͘ϰϮ 

Argentino ϮϬϭϵϭϭϬϱ   ϮϬϭϵϭϭϭϬ   ϳϲ͘ϴϬ   ϰ͘Ϯϴ   Ϭ͘ϯϮ   ϭϴ͘ϱϳ   ϵϱ͘ϯϴ   ϱ ϰ͘ϴϴ ϱϭ͘Ϭϴ 

Argentino ϮϬϭϵϭϮϭϭ   ϮϬϭϵϭϮϭϲ   ϳϳ͘ϳϴ   ϯ͘ϵϰ   Ϭ͘ϰϲ   ϭϳ͘ϴϬ   ϵϱ͘ϱϴ   ϱ ϰ͘Ϯϱ ϰϯ͘Ϭϵ 

 

Table ϭϵ͘ NORCE and TREͲALTA mean and stdv LWE difference for Lake Argentino 

 Mean;ArͿ Stdv;ArͿ Mean;ArdͿ Stdv;ArdͿ 

Argentino ϵϰ͘ϲϴ Ϭ͘ϲϭ ϰϰ͘ϭϮ ϮϮ͘ϱϬ 

 

Table ϮϬ͘ NORCE and TREͲALTA contingency matrix values summary for Lake Khanka 

 Date ϭ Date Ϯ TP FP FN TN AR Td Ad Ard 

Khanka ϮϬϭϳϬϲϬϭ ϮϬϭϳϬϲϬϭ ϴϬ͘ϱϴ ϭ͘ϴϯ Ϭ͘ϬϮ ϭϳ͘ϱϲ ϵϴ͘ϭϰ Ϭ͘ϬϬ Ϯ͘ϭϵ ϲ͘Ϭϭ 

Khanka ϮϬϭϴϬϱϭϱ ϮϬϭϴϬϱϭϱ ϴϬ͘ϲϮ   ϭ͘Ϭϱ   Ϭ͘ϭϬ   ϭϴ͘Ϯϭ   ϵϴ͘ϴϯ   Ϭ͘ϬϬ   ϭ͘ϭϱ ϳϬ͘ϱϯ 

Khanka ϮϬϭϵϬϱϭϬ ϮϬϭϵϬϱϭϬ ϴϬ͘ϴϱ Ϯ͘ϯϲ Ϭ͘ϬϬ ϭϲ͘ϳϲ ϵϳ͘ϲϮ Ϭ͘ϬϬ Ϯ͘ϴϯ ϴϯ͘ϱ 

Khanka ϮϬϭϵϬϱϮϮ ϮϬϭϵϬϱϮϮ ϴϬ͘ϱϵ Ϯ͘ϱϲ Ϭ͘ϬϬ ϭϲ͘ϴϰ ϵϳ͘ϰϯ Ϭ͘ϬϬ ϯ͘Ϭϳ ϳ͘ϳϮ 

Khanka ϮϬϭϵϬϳϮϭ ϮϬϭϵϬϳϮϭ ϴϬ͘Ϯϭ ϭ͘ϭϱ Ϭ͘Ϭϭ ϭϴ͘ϲϭ ϵϴ͘ϴϯ Ϭ͘ϬϬ ϭ͘ϰϬ ϮϬ͘Ϯϯ 
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 Date ϭ Date Ϯ TP FP FN TN AR Td Ad Ard 

Khanka ϮϬϭϵϬϵϭϵ ϮϬϭϵϬϵϭϵ ϴϭ͘Ϯϰ ϭ͘ϰϴ Ϭ͘Ϭϰ ϭϳ͘ϮϮ ϵϴ͘ϰϲ Ϭ͘ϬϬ ϭ͘ϳϯ ϲϴ͘ϰϴ 

Khanka ϮϬϭϵϭϬϭϯ ϮϬϭϵϭϬϭϯ ϴϬ͘ϴϴ Ϯ͘ϯϮ Ϭ͘ϬϬ ϭϲ͘ϳϴ ϵϳ͘ϲϲ Ϭ͘ϬϬ Ϯ͘ϳϴ ϲ͘Ϭϭ 

 

Table Ϯϭ͘ NORCE and TREͲALTA mean and stdv LWE difference for Lake Khanka 

 Mean;ArͿ Stdv;ArͿ Mean;ArdͿ Stdv;ArdͿ 

Khanka ϵϴ͘ϭϯ Ϭ͘ϱϴ ϰϮ͘ϳϰ ϯϱ͘ϭϱ 

 

Table ϮϮ͘ Mean Value for all previous contingency matrix AR, Td and Ad values 

 AR Ard Td Ad 

Average ϵϲ͘ϴϳ  ϯϳ͘ϵϱ ϰ͘ϴ ϯ͘ϳϱ 

 

ϯ.ϯ.ϯ. Comparison of optical and SAR sensors-based approaches 

Similarly to what has been done in the previous section with the two SAR based methodologies, a comparison 
between the SAR and the optical LWE approaches is now done͘ On the SAR side SentinelͲϭ and EnvisatͲSAR 
have been employed while on the optical side SentinelϮ and Landsat series have been used͘ 

Temporal LWE series are generated and compared and for some of the lakes the contingency matrix is 
calculated whenever having images with a temporal difference equal or lower than ϭϮ days͘ 

 Altevatnet 

Comparison between SAR and optical LWEs have been carried out over more than ϭϬ pairs of acquisitions, 
thanks to the high latitudes, the revisit is very high͘ 

 
Figure ϲϲ͘ Comparison SAR and optical LWEs derived over Altevatnet 

 

The value of the derived LWEs from optical and SAR are very coherent between them, with a correlation of 
Ϭ͘ϵϳ 
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 SϮ LWE product 

Sϭ, LWE 
product SϮ, water SϮ͘land 

Sϭ, water ϴϮ͘ϵϲ й ;TPͿ Ϯ͘ϯϱй ;FPͿ 

Sϭ, land ϭ͘ϰϯ й ;FNͿ ϭϯ͘Ϯϰй ;TNͿ 
 

 

Figure ϲϳ͘  Analysis over ϭϮ pairs of Sentinelϭ and SentinelϮ of the commission and omission rates͘ 

Of course, over this Nordic landscape, the observed commission and omission are the expected ones and are 
related to: 

x Presence of cloud on optical imagery͘ 
x Sensitivity to windy conditions and ice presence in SAR͘ 

 

 
Figure ϲϴ͘ Analysis of the omission and commission between SAR and optical approaches exploiting Sentintelϭ 

and SentinelϮ͘ 

 Colhue 

The period with dual observation is relatively limited, the trends are similar but with apparently an 
overestimation of water surface by SAR͘ This could be related to the nearby environment, i͘e͘ desert and also 
sandy shore͘ 
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Figure ϲϵ͘ Comparison SAR and optical LWEs derived over Colhue Lake͘ 

 

 Al Hamar wetland 

There are important differences between SAR and optical observations over the complex area of Al Hamar 
wetlands͘ Whereas optical imagery allows us to monitor the increase of water surfaces, SAR LWEs presents a 
drop at the beginning of the series, and then stay at a lower level than optical͘ This is due to the facts:  

x Optical LWE integrates a part of flooded vegetation whereas SAR retrieves open water surface͘ 
x SAR is more sensitive to the environment, i͘e͘ sandy flat area, than optical sensors͘ 

 

 
Figure ϳϬ͘ Comparison SAR and optical LWEs derived over AlͲHammar͘ 

 

 Sassykol and Alakol 

This case of study is particularly interesting, as it is two neighbouring lakes being connected through a wetland 
complex͘  In addition, Sassykhol is a relatively shallow lake, with surrounding wetland, whereas Alakol is a deep 
lake with a more classical shape͘  

Over Alakol lake, the difference of LWE between SAR derived LWE and Optical ones, is about ϯй that is quite 
satisfactory͘ 
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Therefore, over Sasykholol, the difference is about ϭϰй, this is related to the fact large part of the increase of 
water surface is related to the flooding of wetland, which is not observed by SAR͘  

 

 
Figure ϳϭ͘  Comparison SAR and optical LWEs derived over Sassykol and Alakol lakes͘ 
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Figure ϳϮ͘  Comparison SAR and optical LWEs derived over Sassykol and Alakol lakes͘ 

 Chad 

There were near simultaneous acquisition of Sentnielϭ SAR image and SentinelϮ optical images on the Ϯϰth of 
April ϮϬϭϵ͘ This gives the opportunity to compare the capabilities and limitations of the two system͘  

Within the common AOI defined there were ϭϰ͘ϲϴ kmϸ detected as water in Sentinel ϭ and none water in 
Sentinel Ϯ͘ These areas correspond partially to very small and located clouds that have intercepted the optical 
signal͘ In this case SAR, and not the optical sensor, were closest to the truth͘ Therefore, most of the ͞SAR 
water alone͟ correspond to commission with bare soil on the NE part of the study area͘  

At the opposite, ϰϬ͘ϳϱ kmϸ detected as water on Sentinel Ϯ and no water on Sentinel ϭ͘ These areas 
correspond mostly to shoreline of the lake, plus some floating islands͘ 

 

 

Figure ϳϯ͘ Comparison of the LWE derived from SAR and optical imagery on the Ϯϰ of April ϮϬϭϵ: in Purple, 
detected as water on Sϭ and none water based on SϮ; in Green detected as water on SϮ and none water on Sϭ͘ 
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 Chilwa lake 

The difference between optical LWE and SAR classification is about ϮϬй͘ This is related to the fact that large 
parts of the increase in water surface is related to the flooding of wetland, which is not observed by SAR͘ In 
this specific complex context, the SAR extraction seems underestimated over wetlands͘ 

 

   

Figure ϳϰ͘ Comparison of SAR and optical LWEs; in yellow LWE derived from SAR with in background the 
SentinelϮ, False colour SentintelϮ acquired the ϮϰͬϬϰͬϮϬϭϴ; in blue the additional water surfaces derived from 

a SentinelͲϮ image with the SVM algorithm͘ 

 

 

 
Figure ϳϱ͘ Comparison SAR and optical LWEs derived over Chilwa lake͘ 

 

 

  Argentino 

NORCEͲSERTIT and TREͲALTAͲSERTIT lake water mask and their corresponding contingency matrices for a 
couple of couple of images presenting a time difference smaller than ϭϮ days ;ϮϬϭϳϭϬϮϮͲϮϬϭϳϭϬϭϱ and 
ϮϬϳϭϬϭϱͲϮϬϭϳϭϬϮϬ respectivelyͿ are depicted in Figure ϳϲ͘ The overall agreements for those images are 
ϵϲ͘ϲϲй and ϵϱ͘ϴϮй respectively͘ 
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For Lake Argentino, the contingency matrix values for all NORCE and SERTIT LWE and TREͲALTA and SERTIT 
corresponding to images with a temporal difference lower or equal to ϭϮ days are represented in Table Ϯϰ and 
Table Ϯϵ respectively͘ 

A representation of the temporal evolution of all NORCE, TREͲALTA and SERTIT LWE is depicted in Figure ϳϳ͘ 
The same representation but just focusing on the ϭϮ days difference images is depicted in Figure ϳϴ͘ 

Argentino is a lake surrounded by steeply mountains͘ The shape of the lake is defined by narrow valleys͘ Due 
to the altitude, the lake is often roughened by wind, and this is a challenge for the SAR retrieval of the LWE͘ 
When comparing LWEs derived from Sentinelϭ and SentinelϮ acquired close in time, the differences are:  

x Commission errors for SAR on lakeshore, particularly the Eastern parts of the lake, where the sandy, 
muddy shores are relative flat and soft surfaces that has a radar signature similar to water͘ 

x Some SAR omissionͲerrors that could be related to windy water surface, but also in the north branch 
of the lake, to some commission errors from the glacier terminus or lake ice͘ 

Depending on the applied processing, the difference in terms of detected water surface can be significant 
;more than ϱйͿ or relatively small ;less than ϭй Ͳ ϯ͘ϯйͿ͘  

;aͿ ;bͿ 

;cͿ ;dͿ 
Figure ϳϲ͘ ;aͿ NORCEͲSERTIT ;ϮϬϭϳϭϬϮϮͲϮϬϭϳϭϬϭϱͿ lake water masks ;blueͿ over a selected analysis polygon 

;redͿ and ;cͿ its corresponding contingency matrix͘ ;bͿ TREͲALTAͲSERTIT ;ϮϬϳϭϬϭϱͲϮϬϭϳϭϬϮϬͿ lake water masks 
;blueͿ over a selected analysis polygon ;redͿ and ;dͿ its corresponding contingency matrix͘ 
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Figure ϳϳ͘ NORCE SAR, TREͲALTA SAR and SERTIT LWE time series for lake Argentino͘ 

 
Figure ϳϴ͘ NORCE SAR, TREͲALTA SAR and SERTIT Optical LWE time series for lake Argentino͘ 

 Illmen 

In the Illmen lake case no temporally close images were processed among the three groups͘ In Figure ϳϵ, the 
three LWE series are depicted͘ From it, it is hard to evaluate SAR and Optical relative performances͘ 

 
Figure ϳϵ͘ NORCE SAR, TREͲALTA SAR and SERTIT Optical LWE time series for lake Illmen͘ 
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 Bosten 

NORCEͲSERTIT and TREͲALTAͲSERTIT lake water mask and their corresponding contingency matrices for a 
couple of couple of images with a time difference smaller than ϭϮ days ;ϮϬϭϳϬϳϮϵͲϮϬϭϳϬϳϮϴ for both casesͿ 
are depicted in Figure ϴϬ͘ The overall agreement for those images are ϵϴ͘ϬϮй and ϵϳ͘ϲϱй, respectively͘ 

The systematic bias between optical and SAR LWEͲestimates is ϰй to ϴй depending on the SAR approach͘ This 
is related to the fact that large part of the increase in water extent occurs in wetlands east of the main lake, 
and SAR has limited capabilities in resolving the water in such wetlands͘ The bias between the NORCE and the 
TRE ALTAMIRA approach for Bosten is related to the use of different masks͘ 

For Lake Bosten, the contingency matrix values for all NORCE and SERTIT LWE and TREͲALTA and SERTIT 
corresponding to images with a temporal difference lower or equal to ϭϮ days are represented in Table Ϯϯ and 
Table Ϯϴ respectively͘ 

The temporal evolution of all NORCE, TREͲALTA and SERTIT LWEͲestimates are depicted in Figure ϴϭ͘ The same 
representation but just focusing on the ϭϮ days difference images is depicted in Figure ϴϮ͘ 

 

;aͿ ;bͿ 

;cͿ ;dͿ 

Figure ϴϬ͘ ;aͿ NORCE and SERTIT ;ϮϬϭϳϬϳϮϵͲϮϬϭϳϬϳϮϴͿ lake water masks ;blueͿ over a selected analysis 
polygon ;redͿ and ;cͿ its corresponding contingency matrix͘ ;bͿ TREͲALTA and SERTIT 

;ϮϬϭϳϬϳϮϵͲϮϬϭϳϬϳϮϴͿ lake water masks ;blueͿ over a selected analysis polygon ;redͿ and ;dͿ 
its corresponding contingency matrix͘ 
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Figure ϴϭ͘ NORCE SAR, TREͲALTA SAR and SERTIT LWE time series for lake Bosten͘ 

 

 
Figure ϴϮ͘ NORCE SAR, TREͲALTA SAR and SERTIT Optical LWE time series for lake Bosten͘ 

 Lake Khanka 

NORCEͲSERTIT and TREͲALTAͲSERTIT lake water mask and their corresponding contingency matrices for a 
couple of couple of images with a time difference smaller than ϭϮ days ;ϮϬϭϴϬϱϭϱͲϮϬϭϴϬϱϭϬ, ϮϬϭϴϬϱϭϱͲ
ϮϬϭϴϬϱϭϬ respectivelyͿ are depicted in Figure ϴϯ͘ The overall agreement for those images are ϵϴ͘ϭϴй and 
ϵϴ͘ϯϰй, respectively͘ 

For Lake Khanka, the contingency matrix values for all NORCE and SERTIT LWE and TREͲALTA and SERTIT 
corresponding to images with a temporal difference lower or equal to ϭϮ days are represented in Table Ϯϱ and 
Table ϯϬTable Ϯϴ respectively͘ 

The temporal evolution of all NORCE, TREͲALTA and SERTIT LWEͲestimates are depicted in Figure ϴϰ͘ The same 
representation but just focusing on the ϭϮ days difference images is depicted in Figure ϴϱ͘ 

The difference between SAR and optical LWE is about ϱϬ kmϮ, which represents about ϭ͘ϭй of the water lake 
extent͘ It is interesting to compare pair by pair the evolution of commission and omission between the LWEs 
derived from Sentinelϭ and from SentinelϮ͘ Water detection errors in optical imagery is often related to poor 
cloud discrimination͘ In these examples, the omission and commission errors are very low͘ SAR omission, in red 
in the figure   corresponds to vegetated areas along the lake shore, areas than can be inundated͘   In the pair of 
the end of July ϮϬϭϵ, effects of the presence of a clouds is noticeable, inducing both omission as water is not 
recognized and commission over the land surface͘ This example highlights the sensitivity and limitations of 
exploiting optical imagery for the recognition of water surface due to the presence of clouds͘   
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;aͿ ;bͿ 

 ;cͿ  ;dͿ 
Figure ϴϯ͘ ;aͿ NORCE and SERTIT ;ϮϬϭϴϬϱϭϱͲϮϬϭϴϬϱϭϬͿ lake water masks ;blueͿ over a selected analysis 

polygon ;redͿ and ;cͿ its corresponding contingency matrix͘ ;bͿTREͲALTAͲ SERTIT ;ϮϬϭϴϬϱϭϱͲϮϬϭϴϬϱϭϬͿ lake 
water masks ;blueͿ over a selected analysis polygon ;redͿ and ;dͿ its corresponding contingency matrix͘ 

 

 
Figure ϴϰ͘ NORCE SAR, TREͲALTA SAR and SERTIT LWE time series for lake Khanka͘ 
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Figure ϴϱ͘ NORCE SAR, TREͲALTA SAR and SERTIT Optical LWE time series for lake Khanka͘ 

 Sarykamish Lake 

As already indicated, SaryKamish is located in a desert zone with very limited vegetation͘ The landscape 
consists mostly in sandy and muddy bare soil͘   

In the SAR LWE there is an important commission error between land and water of ϱ͘ϯ й͘  This is related to the 
natureͬtextureͬstructure of the soil surrounding the lake͘ The area viewed as water in the SAR image, 
corresponds to a bare crust having similar backscatter as nearby water body͘  

The omissions are relatively scarce and corresponds to rough water surface and inundated vegetation within a 
deltaͲzone͘ 

 

 
  

 Figure ϴϲ: Comparison of omission and commission between pairs of Sentinelϭ, and Sentinel Ϯ acquired 
respectively the ϮϬϭϵͲϬϯͲϬϳ, and ϮϬϭϵͲϬϯͲϭϭ over the Sary Kamish lake͘ 

 

 

  

 

 Summary of all interͲcomparisons between optical and SAR classification 

In this section we provide tabular contingency matrices for all the lakes that are interͲcomparable between the 
two SAR and the Optical algorithms͘ Due to different selections of dates for the three approaches different 
dates will be interͲcompared͘ The main criterion for interͲcomparison is that the pair of images to compare 
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;either coming from any of NORCE͛s,TREͲALTA͛s and SERTIT͛sͿ are close in time͘ For that, a maximum time 
difference to ϭϮ days is set͘  

The following tables have been generated: 

x Lake Bosten: NORCEͲSERTIT Table Ϯϯ and TREͲALTA ʹSERTIT Table Ϯϴ͘ 
x Lake Argentino: NORCEͲSERTIT Table Ϯϰ and TREͲALTA ʹSERTIT Table Ϯϵ͘ 
x Lake Khanka: NORCEͲSERTIT Table Ϯϱ and TREͲALTA ʹSERTIT Table ϯϬ͘ 
x Mean Values of all previous: NORCEͲSERTIT Table Ϯϳ and TREͲALTA Table ϯϭ͘ 

Tables͛ acronyms stand for: TP ;True Positive in йͿ, FP ;False Positive in йͿ, FN ;False Negative in йͿ, TN ;True 
Negative in йͿ, AR ;Accuracy Rate in йͿ, Td ;time difference in daysͿ, Ad ;Area LWE difference in йͿ and Ard 
;Area LWE difference in square kilometresͿ͘ 

 

 

Table Ϯϯ͘ NORCE and SERTIT contingency matrix values summary for Lake Bosten 

 Date ϭ Date Ϯ TP FP FN TN AR Td Ad Ard 

Bosten ϮϬϭϳϬϳϮϵ ϮϬϭϳϬϳϮϴ ϵϱ͘ϯϱ Ϭ͘ϬϮ ϭ͘ϵϰ Ϯ͘ϲϳ ϵϴ͘ϬϮ ϭ Ϯ͘Ϭϭ ϭϮϮ͘ϰϱ 

 

Table Ϯϰ͘ NORCE and SERTIT contingency matrix values summary for Lake Argentino 

 Date ϭ Date Ϯ TP FP FN TN AR Td Ad Ard 

Argentino ϮϬϭϳϬϱϯϭ ϮϬϭϳϬϲϬϮ ϳϴ͘ϯϱ Ϯ͘Ϯϭ ϭ͘ϮϬ ϭϴ͘ϮϮ ϵϲ͘ϱϴ ϯ ϭ͘Ϯϲ ϭϴ͘ϯϵ 

Argentino ϮϬϭϳϭϬϮϮ ϮϬϭϳϭϬϮϬ ϳϲ͘ϰϴ ϰ͘ϭϬ Ϯ͘ϮϮ ϭϳ͘ϭϳ ϵϯ͘ϲϲ Ϯ Ϯ͘ϯϰ ϯϰ͘ϬϮ 

Argentino ϮϬϭϵϭϬϮϰ ϮϬϭϵϭϬϭϱ ϳϳ͘ϭϮ ϱ͘ϱϭ Ϭ͘ϴϱ ϭϲ͘ϱϬ ϵϯ͘ϲϯ ϵ ϱ͘ϲϰ ϴϱ͘ϴϳ 

 

Table Ϯϱ͘ NORCE and SERTIT contingency matrix values summary for Lake Khanka 

 Date ϭ Date Ϯ TP FP FN TN AR Td Ad Ard 

Khanka ϮϬϭϴϬϱϭϱ ϮϬϭϴϬϱϭϬ ϴϬ͘ϵϮ Ϭ͘ϳϲ Ϭ͘ϴϴ ϭϳ͘ϰϮ ϵϴ͘ϯϰ ϱ Ϭ͘ϭϰ Ϯϯ͘ϲϴ 

 

Table Ϯϲ͘ NORCE and SERTIT contingency matrix values summary for Lake Sarykamish 

 Date ϭ Date Ϯ TP FP FN TN AR Td Ad Ard 

Sarykamish ϮϬϭϵϬϯϬϳ ϮϬϭϵϬϯϭϭ ϲϴ͘ϴϭ ϱ͘ϲϰ ϭ͘ϭϭ Ϯϰ͘ϰϭ ϵϯ͘Ϯϯ ϰ ϲ͘Ϭϳ Ϯϭϳ,ϳϴ 

 

Table Ϯϳ͘ Mean Value for all previous NORCE and SERTIT contingency matrix AR, Td and Ad values 

 AR Td Ad Ard 

Average ϵϰ͘ϲϵ ϰ,ϭ ϰ͘Ϭϭ ϴϯ,ϲϵ 

 

Table Ϯϴ͘ TREͲALTA and SERTIT contingency matrix values summary for Lake Bosten 

 Date ϭ Date Ϯ TP FP FN TN AR Td Ad Ard 

Bosten ϮϬϭϳϬϳϮϵ   ϮϬϭϳϬϳϮϴ   ϵϰ͘ϵϳ   Ϭ͘ϬϮ   Ϯ͘ϯϮ   Ϯ͘ϲϳ   ϵϳ͘ϲϱ   ϭ Ϯ͘ϰϮ ϲϱ͘ϳϰ 

Bosten ϮϬϭϴϬϵϭϬ   ϮϬϭϴϬϵϬϭ   ϵϱ͘ϲϰ   Ϭ͘Ϭϯ   ϭ͘ϴϵ   Ϯ͘ϰϮ   ϵϴ͘Ϭϳ   ϵ ϭ͘ϵϰ ϴϳ͘ϳϮ 
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Table Ϯϵ͘ TREͲALTA and SERTIT contingency matrix values summary for Lake Argentino 

 Date ϭ Date Ϯ TP FP FN TN AR Td Ad Ard 

Argentino ϮϬϭϳϭϬϭϱ ϮϬϭϳϭϬϮϬ ϳϲ͘ϵϯ Ϯ͘ϯϴ ϭ͘ϳϴ ϭϴ͘ϴϵ ϵϱ͘ϴϮ ϱ Ϭ͘ϳϲ ϰϭ͘ϵϲ 

Argentino ϮϬϭϳϭϭϮϬ ϮϬϭϳϭϭϮϵ ϳϳ͘ϰϭ Ϭ͘ϳϭ ϭ͘ϵϵ ϭϵ͘ϴϳ ϵϳ͘Ϯϵ ϵ ϭ͘ϲϯ Ϯ͘Ϯϰ 

Argentino ϮϬϭϵϭϬϭϳ ϮϬϭϵϭϬϭϱ ϳϱ͘ϴϲ ϭ͘ϮϮ Ϯ͘ϭϬ ϮϬ͘ϳϵ ϵϲ͘ϲϲ ϴ ϭ͘ϭϰ ϲ͘ϰϱ 

 

Table ϯϬ͘ TREͲALTA and SERTIT contingency matrix values summary for Lake Khanka 

 Date ϭ Date Ϯ TP FP FN TN AR Td Ad Ard 

Khanka ϮϬϭϳϬϲϬϭ    ϮϬϭϳϬϲϬϵ ϴϬ͘ϰϬ Ϭ͘Ϯϭ ϭ͘ϵϭ ϭϳ͘ϰϳ ϵϳ͘ϴϳ ϴ͘ϬϬ Ϯ͘ϭϬ ϵ,ϭϬ 

Khanka ϮϬϭϴϬϱϭϱ    ϮϬϭϴϬϱϭϬ ϴϬ͘ϯϲ Ϭ͘ϯϳ ϭ͘ϰϯ ϭϳ͘ϴϭ ϵϴ͘ϭϴ ϱ͘ϬϬ ϭ͘ϯϭ Ϯϯ͘ϲϴ 

Khanka ϮϬϭϵϬϵϭϵ   ϮϬϭϵϬϵϭϮ   ϴϬ͘ϵϭ Ϭ͘ϯϴ ϭ͘ϱϬ ϭϳ͘ϭϵ ϵϴ͘ϭϭ ϳ͘ϬϬ ϭ͘ϯϴ ϰ͘Ϭϭ 

 

Table ϯϭ͘ Mean Value for all previous TREͲALTA and SERTIT contingency matrix AR, Td and Ad values 

 AR Td Ad Ard 

Average ϵϰ͘ϴϮ ϱ͘ϱ ϱ͘ϰϭ ϯϬ,ϭϭ 

 

ϯ.ϯ.ϰ. Results analysis for hypsometric approach  

 

The objectives are to compare the results of lake area from different methods and type of images in term of 
building resulting hypsometry curve͘ This approach was tested over the second set of lakes, Khanka 
;ChinaͺRussiaͿ, Illmen ;RussiaͿ, Sary Kamysh lake ;Turkménistan ʹ OuzbékistanͿ, Bosten lake ;ChinaͿ, and 
Argentino, ;ArgentinaͿ͘  

 

 Hypsometric approach for the Argentino Lake 

Over Argentino Lake, three series were compared:one from optical imagery and two from SAR imagery͘ 
Following remarks can be dressed 

we see that SERTIT and NORCE solutions have the same mean value of lake water extent, since it is much lower 
for TREͲAltamira͘ The optical solution ;SERTITͿ presents non monotonic trend but this is likely due to two 
evident outliers as seen on the figure͘ The NORCE solution looks very disturbed with high dispersion of the 
hypsometry data͘ The TREͲAltamira looks quite coherent, with low RMS and monotonic trend but over a lower 
range of water level observations ;no data for high water level above ϭϴϬ m as for the Ϯ other solutionsͿ͘ 

 



D4.1: PURGXFW 9DOLGDWLRQ DQG IQWHUFRPSDULVRQ RHSRUW 

     

 

  78/138 

Figure ϴϳ . Hypsometric approach over Argentino lake 

 

The hypsometry coefficient can also be calculated using each of the solution with also the estimation of 
uncertainty, which here is characterized by the RMS of the difference between the theorical hypsometry and 
the data used to calculate it͘ 

 

  
Figure ϴϴ. Hypsometry coefficient for Argentino lake 

We see from this figure that the sensitivity of hypsometry to outliers ;like for the optical solution: SERTITͿ can 
be very high͘  

 

 Hypsometric approach for the Bosten Lake 

Over Bosten Lake, four series were compared, two from SAR imagery and the two from optical data͘  Following 
remarks can be dressed:  

ͻ The ϰ solutions look quite coherent 

ͻ It remains some outliers 
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Figure ϴϵ. Hypsometric approach over Bosten Lake 

 

 

It highlights the need to extract water extent of the lake over the largest range of water level variations͘ This 
minimizes the impact of dispersion of the solution on the calculation of the hypsometry coefficients, although 
it may increase the RMS͘ 

The uncertainty using the theorical hypsometry curve has been calculated only with LEGOS solution͘ The RMS 
of LEGOS Solution is of ϱй 
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Figure ϵϬ. Uncertainty approach based on hypsometric over Bosten Lake 

 

 Hypsometric approach for the Illmen lake 

Over Illmen Lake, three series were compared, two from SAR imagery and one from optical data͘  Following 
remarks can be dressed: 

ͻOptical imageries look ;SertitͿ overestimates the LWE when compared to the Ϯ radar solutions, but not 
enough images have been processed 

We observed from the two radar imagery datasets a small bias between both solutions: NORCE slightly 
overestimates the extent compared to TREͲAltamira͘ Both series looks however consistent, with monotonic 
trend and a good coverage of the water level changes over time 

  
Figure ϵϭ. Lake Illmen. Theorical hypsometry for the Ϯ radar solutions 
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Figure ϵϮ.  Hypsometric approach over Illmen Lake 

 

 

 

 Hypsometric approach for the Khanka Lake 

 

Over Khanka Lake, four series were compared, two from SAR imagery and the two from optical data͘  Following 
remarks can be dressed: 

ͻVery complicate case: Ϯ groups of solutions ;optical SertitͬSAR NORCE Θ optical LEGOSͬSAR AltamiraͿ with 
strong bias 

The LEGOS solution has a strong RMS, due to high dispersion, but has a monotonic trend which is more 
realistic͘ The NORCE solution cumulate monotonic trend and relatively low RMS, but over a much shorter 
range of observations͘ 

 

ͻThe Ϯ radar solutions don͛t have variation of LWE w͘r͘t variations of LWL ;no trendsͿ͘ 

They both doesn͛t have enough images processed͘ This is a typical case where hypsometry analysis does not 
really help building realistic relationship between LWE and LWL͘ 
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FLJXUH 93. Theorical hypsometry from NORCE and LEGOS solutions 

 

 

 

  FLJXUH 94͘ hypsometric approach over Khanka Lake 

 

 

The uncertainty using the theorical hypsometry curve has been calculated only with LEGOS solution͘ The RMS 
of LEGOS Solution is of ϭ,ϯй 
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Figure ϵϱ.  Uncertainty approach based on hypsometric over Khanka Lake 

 

 

 Hypsometric approach for the Sary ͲKamisk Lake  

Over SaryͲKamish Lake, four series were compared, two rom SAR imagery and wo from optical data͘  Following 
remarks can be dressed: 

x The tow optical solutions are very coherent together ;remains Ϯ outliers in the Sertit solutionͿ 
x Due to high LWL variation in time, LEGOS solution is uncompleted for small LWL 
x It remains some outliers in the SERTIT solution 

x the two solutions based on radar imagery are limited to a too low range of variations, since the water 
level change of this lake has strongly increased over the last ϮϬ years͘ Radar imageries has been 
obtained only over the last ϯͲϰ years when the lake was already at high level, as we may see from the 
X axis for these two solutions ;level around ϴ metersͿ͘ This explains that the shape of the hypsometry 
depends too much on the dispersion of the LWLͬLWE data and in such case hypsometry cannot be 
calculated using only these data͘ 

x The uncertainty of the hypsometry using the two optical imagery͛s solution is lower than ϭй of the 
total extent of the lake 

  



D4.1: PURGXFW 9DOLGDWLRQ DQG IQWHUFRPSDULVRQ RHSRUW 

     

 

  84/138 

FLJXUH 96 Theorical hypsometry from SERTIT and LEGOS solutions 

 

 

 

 

 

 

Figure ϵϳ.  Hypsometric approach over SaryKamish Lake 

The conclusion here is that for the Sarykamish lake, we may simply remove the two outliers ;seen on the Sertit 
solutionͿ and recalculate the hypsometry coefficient using the Legos, the TREͲAltamira and the Sertit solutions͘ 
It will allow to extend the domain of validity of the hypsometry from very low to very high lake water level͘ 

 

The uncertainty using the theorical hypsometry curve has been calculated only with LEGOS solution͘ The RMS of 
LEGOS Solution is of ϭ,ϯй 
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Figure ϵϴ.  Uncertainty approach based on hypsometric over SaryKamish Lake 

 

ϯ.ϰ. Conclusions and recommendations 

We analysed the behaviour of two supervised and one unsupervised approaches on five lakes with various 
characteristics that provided a relatively good overview of what can be observed when estimating LWE from 
highͲresolution optical imagery͘ 

Each method has its weaknesses and strengths͘ Of course, we had to deal with the expected classical traps 
which are related to external condition such as clouds cover and associated shadows, local environment, the 
presence of vegetation within the water bodies, floating or submerged ones͘ Many of the characteristics of 
water conditions are related to the colour of the water in shallow water͘  

One main problem is also the definition of LWE͘ Do we have to consider open free water or open free water 
plus ice cover? In addition, are we speaking about open water, in case of water bodies surrounding or 
imbricated with wetlands? The delimitation between these entities is not so obvious͘ Do we have to consider a 
floating island of vegetation as water or not? Depending of the followed approach and or the exploited indices 
nor training samples selection process, omission or commission would ͬcould happen͘  

The conclusion and recommendations at this stage, after two sets of benchmarking of methods, are the 
following: 

x For optical data exploitation, the best method is a random forest one with a testing procedure on the 
training set based on Pekel GWS database͘  

x For SAR processing, KMeans approaches are satisfactory, but in some challenging environments, such 
as deserts or lakes with very fragmented or vegetated shoreline, it can result in large errors͘ 
Estimating the LWE during ice cover is also a challenging task, although it can be possible during the 
cold winter period ;Vickers et al͘, ϮϬϭϵͿ͘  

For an operational application, i͘e͘  monitor LWE based on LWL, this require to generate de precise 
hypsometric curves, a work to be  done lake after lake͘ More works are needed in order to select the 
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appropriate images, to access these images as there are some restriction in term of data access exploiting 
either GEE , nor ESA SciHub͘ 
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ϰ. Lake Surface Water Temperature (LSWT) parameter 

The Lake Surface Water Temperature LSWT is defined as the temperature of the water at the surface 
of the water body ;surface skin temperatureͿ͘ The CCI LSWT dataset consists of a longͲterm climate 
data record ;CDRͿ͘ The validation and comparison of the LSWT is based on matchups between in situ 
and satellite measurements͘ In situ measurements are collated once per year from limnologists 
worldwide who are willing to share their inͲsitu data of lake surface temperature measurements on a 
personal, ad hoc basis supplementing the partial collections of some agencies͘ The annual collation is 
undertaken towards the end of the calendar year and involves a considerable effort every year to 
enlarge and qualityͲcontrol the inͲsitu database with measurements that are suitable for satellite 
validation͘ Most of the data is collated through personal communications͘   

ϰ.ϭ. Data description 

ϰ.ϭ.ϭ.  Satellite data 

LSWT time series have been computed from sensors on multiple satellites and lakeͲspecific 
consistency adjustments between sensors have been applied using the MetOpA AVHRR instrument 
as a reference ;see RDͲ ϭͿ͘ In the current version, LSWT vϰ͘ϭ, MetOpA AVHRR has the best 
combination of length of record and data density for this purpose͘  The same form of algorithms has 
been used to retrieve the LSWT from all sensors in order to obtain consistent time series for each of 
the CCI target lakes͘ The target list was defined within the first phase of the Lakesͺcci project can be 
found at RDͲ ϯ͘ 

The time periods used for each satelliteͬinstrument are provided in Table ϯϮ͘ Not all lakes include 
LSWT from all sensors in the series because of differing density and geometry of observation͘ The 
temperatures in the dataset are only available for cloud and iceͲfree observations during ;in this 
versionͿ day time, so gaps in time and space are common for all the lakes due to cloud cover and 
swath geometry of the instruments͘ 

Table ϯϮ - Time periods for the satellite/instrument used to generate the LSWTs 

Satellite Instrument Time Period 

ERSͲϮ ATSRϮ Junϭϵϵϱ ʹ JunϮϬϬϯ 

Envisat AASTR MayϮϬϬϮ ʹ AprϮϬϭϮ 

MetOpA AVHRR MarϮϬϬϳ ʹ AugϮϬϭϵ 

MetOpB AVHRR DecϮϬϭϮ ʹ AugϮϬϭϵ 

 

A detailed description of the product generation is provided in the Algorithm Theoretical Basis 
Document ;ATBD RDͲ ϭͿ with further information on the product given in the Product User Guide 
;PUG RDͲ ϯͿ͘ 

 

ϰ.ϭ.Ϯ. In situ data 

The in situ dataset currently used for validation has been constructed from the in situ temperature 
data collected through the ARCLake project, the GloboLakes project, the EU Surface Temperature for 
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All Corners of Earth ;EUSTACEͿ project and the Copernicus Climate Change Service ;CϯSͿ product͘  At 
present, this dataset consists of ϮϳϮ observation locations covering ϭϯϮ lakes͘ However, the number 
of lakes which are also present in the CCI lake list of the first phase are ϰϰ with a total of ϭϱϵ sites͘ 
Details of the in situ observation locations with their sources are given in Table ϯϯ which reports all 
locations for the target lakes where there are matches͘ The geographical distribution of the sites is 
reported in Figure ϵϵ which shows that most of the globe is covered with a big proportion of the sites 
located in North America and Europe͘ 

 

Table ϯϯ- List of the sources of the in situ data 

Satellite Instrument 

NDBC ʹ National Data Buoy Centre ;USAͿ Superior ;ϯͿ Huron ;ϮͿ Michigan ;ϮͿ Erie ;ϭͿ Ontario ;ϭͿ 

FOC ʹ Fisheries and Oceans Canada ;CanadaͿ Superior ;ϭͿ Huron ;ϰͿ Great Slave ;ϮͿ Erie ;ϮͿ Winnipeg ;ϯͿ 
Ontario ;ϰͿ Woods ;ϭͿ Saint Claire ;ϭͿ Nipissing ;ϭͿ Simcoe 
;ϭͿ 

Michigan Technological University ;USAͿ Superior ;ϮͿ Michigan ;ϭͿ 

University of Minnesota ;USAͿ Superior ;ϮͿ 

Northern University of Michigan ;USAͿ Superior ;ϯͿ  

Superior Watershed Partnership ;USAͿ Superior ;ϭͿ 

U͘S͘ Army Corps of Engineers ;USAͿ Superior ;ϭͿ 

Technical University of Kenya ;KenyaͿ Victoria ;ϭͿ 

GLERL ʹ Great Lakes Environmental Research Lab ;USAͿ Huron ;ϯͿ Michigan ;ϮͿ 

University of WisconsinͲMilwaukee ;USAͿ Michigan ;ϮͿ 

Northwestern Michigan College ;USAͿ  Michigan ;ϭͿ 

University of Michigan CIGLR ;USAͿ Michigan ;ϮͿ 

Limno Tech ;USAͿ Michigan ;ϯͿ Erie ;ϰͿ 

IllinoisͲIndiana Sea Grant and Purdue Civil Engineering 
;USAͿ 

Michigan ;ϮͿ 

Leibniz Institute for Freshwater Ecology and Inland 
Fisheries ;GermanyͿ 

Tanganyika ;ϭͿ 

Pierre Denis Plisnier Tanganyika ;ϰͿ 

Irkutsk State University ;RussiaͿ Baikal ;ϭͿ 

Regional Science Consortium ;USAͿ Erie ;ϭͿ 

UGLOS ʹ Upper Great Lakes Observing System ;USAͿ  Erie ;ϮͿ Douglas ;ϭͿ 

LEGOS ʹ Laboratoire d͛Etudes en Géophysique et 
Océanographie Spatiales ;FranceͿ 

Issykkul ;ϭͿ 

SLU ʹ Swedish University of Agricultural Science ;SwedenͿ Vanern ;ϲͿ Vattern ;ϮͿ Malaren ;ϵͿ Bolmen ;ϮͿ 

Uppsala University ;SwedenͿ Vanern ;ϭͿ Erken;ϭͿ 

Sao Paulo State University ;BrazilͿ Tucurui ;ϭͿ Itaipu ;ϭͿ Tres Marias ;ϭͿ 

Junsheng Li ;ChinaͿ Taihu ;ϭͿ 

KU Leven ;BelgiumͿ Kivu ;ϭͿ 

SYKE ʹ Finnish Environment Institute ;FinlandͿ Paijanne ;ϯͿ Oulujarvi ;ϭͿ Pyhajarvi;ϭͿ 

Vermont EPSCOR ʹ Established Program to Stimulate Champlain ;ϭͿ 
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Satellite Instrument 

Competitive Research ;USAͿ 

SUNY Plattsburgh Center for Earth and Environmental 
Science ;USAͿ 

Champlain ;ϭͿ 

Nipissing University ;CanadaͿ Nipissing ;ϮͿ 

National Park Service ;USAͿ Mead ;ϯͿ Mohave ;ϮͿ 

GLEON ʹ Global Lake Ecological ObserǀatorǇ Netǁork Tanganyika ;ϯͿ Balaton ;ϭͿ 

BLI ʹ Balaton Limnological Institute ;HungaryͿ Balaton ;ϲͿ 

KDKVI ʹ Central Transdanubian ;RegionalͿ Inspectorate for 
Environmental Protection, Nature Conservation and Water 
Management ;HungaryͿ 

Balaton ;ϯͿ 

UMR CARRTEL ʹ Centre Alpin de Recerche sur le Réseaux 
Trophique des Ecosystèmes Limniques ;FranceͿ 

Geneva ;ϭͿ 

UCͲDavis Tahoe Environmental Research Center ;USAͿ Tahoe ;ϭͿ 

Utrecht University ;NederlandsͿ Garda ;ϭͿ 

Italian National Research Council ;ItalyͿ Garda ;ϴͿ Trasimeno ;ϮͿ Maggiore ;ϮͿ Iseo ;ϮͿ 

NOAA National Ocean Service Water Level Observation 
Network ;USAͿ 

St John River ;ϯͿ 

Estonian University of Life Sciences ;EstoniaͿ Vorstjarv ;ϰͿ 

Israel Oceanographic and Limnological Research ;IsraelͿ Sea of Galilee ;ϮͿ 

National Institute for Environmental Studies ;JapanͿ Kasumigaura ;ϱͿ 

Universitá degli Studi di Perugia ;ItalyͿ Trasimeno ;ϭͿ 

Freie Universitat BerlinͬFondazione Edmund Mach 
;GermanyͬItalyͿ 

Iseo ;ϭͿ 

University of WisconsinͲMadison ;USAͿ Mendota ;ϭͿ 

NTL LTER ʹ North Temperate Lakes LongͲTerm Ecological 
Research ;USAͿ 

Mendota ;ϭͿ 

The Ohio State University ;USAͿ Douglas ;ϭͿ 

 

 
Figure ϵϵ – Geographical distribution of sites used for LSWT validation. 
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Table ϯϰ͘  Lakesͺcci lakes with in situ data͘ lists the ϰϰ lakes together with their maximum distance 
from land ΀Carrea et al͘ ϮϬϭϱ΁, which is an indication of each lakes͛ size that is meaningful for LSWT 
remote sensing͘ The distance to land for lake Iseo in Italy is shown in Figure ϭϬϬ͘ The best resolution 
of the instruments used for the retrieval of the LSWT is ϭ km͘ If the lake has a maximum distance to 
land of ϭ͘ϳ km such as lake Iseo, the LSWT retrieval is very likely to be available only for that part of 
the lake and only for a limited proportion of overpasses ;clear sky and observations relatively central 
within the swathͿ͘ In particular, a combination of factors has to occur: ϭͿ the satellite image locations 
line up so that some pixels are nominally fully water pixels, which requires the satellite view zenith 
angle ;which affects the onͲtheͲground resolutionͿ to be such that the halfͲpixel size is smaller than 
the distance to coast; ϮͿ these pixels are cloud free; ϯͿ image geolocation errors ;which can be of 
order ϭ pixel uncertaintyͿ are small enough that the nominally waterͲfilled pixels are truly waterͲ
filled meaning that the water detection tests are passed͘ 

Table ϯϰ.  Lakes_cci lakes with in situ data. 

Lake id Name Country N sites Max distance to land ;kmͿ 

Ϯ Superior CanadaͬUSA ϭϯ ϳϯ͘ϱ 

ϯ Victoria Tanzania ϭ ϴϰ͘ϭ 

ϱ Huron CanadaͬUSA ϵ ϳϯ͘ϯ 

ϲ Michigan USA ϭϱ ϲϯ͘ϴ  

ϳ Tanganyika Tanzania ϴ ϯϰ͘ϭ 

ϴ Baikal Russia ϭ ϯϯ͘ϳ 

ϭϭ Great Slave Canada Ϯ ϰϰ͘ϲ 

ϭϮ Erie Canada ϭϬ ϰϱ͘ϲ 

ϭϯ Winnipeg Canada ϯ ϰϬ͘ϭ 

ϭϱ Ontario Canada ϱ ϯϲ͘ϭ 

Ϯϱ Issykkul  Kyrgyzstan ϭ Ϯϲ͘ϵ 

Ϯϵ Vanern Sweden ϳ ϮϬ͘ϯ 

ϰϰ Woods Canada ϭ ϭϭ͘ϴ 

ϱϮ Tucurui Brazil ϭ ϲ͘ϰ 

ϲϱ Itaipu Paraguay ϭ ϯ͘ϴ 

ϲϲ Taihu China ϭ ϭϲ 

ϲϳ Kivu Zaire ϭ ϭϯ 

ϵϱ Vattern Sweden Ϯ ϵ͘ϵ 

ϭϰϲ Saint Claire  Canada ϭ ϭϯ 

ϭϱϳ Paijanne Finland ϯ ϯ͘ϴ 

ϭϲϯ Malaren Sweden ϵ Ϯ͘ϳ 

ϭϲϱ Champlain USA Ϯ ϱ͘ϴ 

ϭϴϴ Tres Marias Brazil ϭ Ϯ͘ϯ 

ϭϵϴ Nipissing Canada ϯ ϵ 

ϮϬϮ Oulujarvi Finland ϭ ϲ 

Ϯϯϲ Simcoe Canada ϭ ϴ͘ϰ 

Ϯϳϴ Mead USA ϯ ϯ͘ϴ 
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Lake id Name Country N sites Max distance to land ;kmͿ 

ϯϭϬ Balaton Hungary ϭϬ ϲ 

ϯϮϳ Geneva Switzerland ϭ ϲ͘Ϯ 

ϯϴϬ Tahoe  USA ϭ ϴ͘Ϯ 

ϱϬϱ Garda Italy ϵ ϱ͘Ϯ 

ϱϬϳ St John River USA ϭ Ϯ͘ϰ 

ϲϳϵ Vorstjarv Estonia ϰ ϲ͘Ϯ 

ϵϰϴ Maggiore  Italy Ϯ Ϯ͘ϰ 

ϭϬϮϴ Bolmen Sweden Ϯ Ϯ͘ϳ 

ϭϭϵϲ Sea of Galilee Israel Ϯ ϱ͘ϲ 

ϭϮϬϰ Kasumigaura Japan ϱ ϯ͘ϳ 

ϭϮϰϬ Pyhajarvi Finland ϭ ϯ͘ϵ 

ϭϱϮϵ Trasimeno Italy ϯ ϰ͘ϯ 

ϭϲϬϯ Mohave USA Ϯ Ϯ͘ϴ 

ϯϭϱϯ Iseo Italy ϯ ϭ͘ϳ 

ϰϱϬϯ Mendota USA Ϯ Ϯ͘ϱ 

ϲϳϴϱ Erken Sweden ϭ ϭ͘ϱ 

ϭϯϯϳϳ Douglas USA Ϯ ϭ͘ϱ 

 

A good portion of the lakes that have been used for the validation are small, for which, given the 
previous discussion, the LSWT retrieval is most challenging͘ 

Moreover, some of the locations of in situ measurements are situated close to the coast even for 
large lakes, which means that the nearest waterͲfilled pixels may not overlap the in situ 
measurement, thus increasing the uncertainty in the comparison from spatial representativity͘ 

As the in situ data are from a variety of sources, with different formats, considerable effort has been 
put in to consolidate each new source of data to a standard format for use in validation͘ A quality 
control procedure for checking the in situ data is also necessary, since they are not always plausible͘ 
This is partly automated and partly by manual inspection͘ The quality control procedure was initiated 
within the ARCLake project and updated within GloboLakes and CϯS͘ 

The in situ data have a range of characteristics:  

x the measurements have been taken at different depths up to ϭ m;  
x the temporal sampling of the measurements ranges from ϭϱ minutes to few times a year; 
x the temporal availability of the in situ measurements varies from few months up to covering 

all the satellite period; 
x for some locations the measurements are averages while for others they have been taken 

instantaneously at the reported time;  
x none of the in situ measurements which have been collected are provided with an 

uncertainty estimate͘  

While part of the data are available online, the majority has been collected through personal 
communications and in a proportion of cases we are not licensed to redistribute the data because of 

the provider͛s data policy͘ 
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Figure ϭϬϬ.  Distance to the nearest land for each pixel on water for lake Iseo in Italy at about ϯϬϬm 

resolution. 

ϰ.Ϯ. Comparison methods 

The validation of the Lake Surface Water Temperatures consists of the comparison with independent 
in situ data͘ The satelliteͲtoͲin situͲmatches are created at the original satellite coordinates, at LϮ͘ 
The Lakesͺcci products are not on satellite coordinates but are gridded in a regular grid at ϭͬϭϮϬΣ 
resolution and Ηsupercollated͟ ;combined across the available sensorsͿ making a gridded product 
technically referred to as ͞LϯS͘͟ The LSWT of the LϯS grid cell of the combined and regridded 
temperature are therefore directly validated to assess the products as seen by users͘ The validation 
of the LSWT is performed using conventional and robust statistics, the latter being less sensitive to 
outliers and more descriptive of the majority of data͘ 

ϰ.Ϯ.ϭ.  Generation of the LϮ matchups 

A perͲsensor matchup is created at LϮ and it contains satellite and in situ data as nearly as possible 
coͲincident and space and time͘ The match defines the reference temperature and time from the in 
situ location and the associated LSWTs, quality level and uncertainty from the LϮ LSWT product͘ The 
matchup is created for satellite observations based on the following criteria: 

x Spatially within ϯ km from the location of the in situ measurement and  
x Temporally within ϯ hours for the in situ measurements where the measurement time was 

available͘ For some of the lakes only daily mean temperature was recorded or the timeͲofͲ
day of the measurements was not reported, and in these cases the time criterion was to 
match the day of observation͘ 



D4.1: PURGXFW 9DOLGDWLRQ DQG IQWHUFRPSDULVRQ RHSRUW 

     

 

  93/138 

ϰ.Ϯ.Ϯ.  Validation of the LϯS CCI LSWT vϰ.ϭ 

The differences between the LϯS LSWT and in situ data are analysed using both standard and robust 
statistics͘ Robust statistics is less influenced by outliers in the distribution of differences, which can 
be also caused by poor in situ measurements͘ Quality control measures have been applied to in situ 
measurements but many different instruments have been used to take measurements and the 
operating methods of the instruments and the reporting vary strongly between sites͘ Time series of 
the absolute temperatures together with their difference are generated differentiating the quality 
levels͘ ͞Violin͟ plots where the distribution of the difference is shown are produced for each quality 
level͘ The robust statistics is also investigated per quality level for each year and for each lake͘ 

ϰ.Ϯ.ϯ. Validation of the LSWT uncertainty  

The validation of the LϯS LakesͺCCI LSWT vϰ͘ϭ is carried out comparing the satellite minus in situ 
temperature difference with the combination of the satellite uncertainty ;present in the productsͿ 
and an estimate of the in situ uncertainty ;which is relatively poorly knownͿ͘ In an ideal case, the 
standard deviation of the differences between the satellite LSWT and a reference LSWT would equal 
the combined measurement uncertainty plus the uncertainty attributable to representativity effects͘  

ϰ.Ϯ.ϰ. Number of CCI lakes with LSWT  

An assessment of the lakes with no retrieved LSWT is reported͘ Most of the lakes are too small in 
comparison with the satellite resolution and other can be included in the next version͘ 

ϰ.ϯ. Description of work 

The matchup is carried out per sensor over the ϭϱϵ locations on ϰϰ lakes͘ The total number of 
matches is ϭϭϰ,ϰϴϳ for any quality level and ϵϴ,ϭϭϵ excluding satellite LSWT of quality level equal to 
ϭ͘ The number of matches varies per year and since the AVHRR sensors have a larger swath than the 
ATSR sensors ;ATSRs swath is ϱϬϬ km and AVHRRs swath is ΕϮϵϬϬkmͿ, after ϮϬϬϳ the number of 
matches clearly increases as it is shown in Figure ϭϬϭ͘ Number of matches for the CCI lakes at Lϯ per year͘͘ 
We can notice another clear increase in ϮϬϭϯ when the AVHRR on MetOpA is used together with the 
AVHRR on MetOpB͘ In ϮϬϭϵ the number of matches is lower than the previous year because the 
LSWT time series end at the end of August ϮϬϭϵ͘ The number of matches depends also on the 
availability of the in situ since a different number of locations is available every year as shown in 
Figure ϭϬϭFigure ϭϬϮ͘ Number of sites with matches for the CCI lakes at Lϯ per year͘ The number of locations 
where in situ measurements have been taken has almost tripled since ϭϵϵϱ; however, a portion of 
the measurement temporal frequency is daily͘ 
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Figure ϭϬϭ. Number of matches for the CCI lakes at Lϯ per year. 

 
Figure ϭϬϮ. Number of sites with matches for the CCI lakes at Lϯ per year. 
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ϰ.ϰ. Result analysis 

ϰ.ϰ.ϭ.  Validation of LSWTs 

Robust statistics and the traditional statistics per quality level are reported in Table ϯϱ͘ List of the CCI 
lakes with in situ data͘ for the matches across all the locations where in situ measurements were 
available as reported in Table ϯϰ͘ 

Table ϯϱ. List of the CCI lakes with in situ data. 

QL N Median RSD Mean SD 
ϱ ϯϰϲϴϭ -Ϭ.ϬϲϬ Ϭ.ϱϬϰ ͲϬ͘Ϭϱϲ Ϭ͘ϵϯϮ 
ϰ Ϯϲϳϱϳ -Ϭ.ϭϲϬ Ϭ.ϲϴϮ ͲϬ͘ϭϴϯ ϭ͘ϭϯϱ 
ϯ Ϯϯϱϱϵ -Ϭ.ϮϰϬ Ϭ.ϵϯϰ ͲϬ͘ϯϯϲ ϭ͘ϯϱϲ 
Ϯ ϭϯϭϮϮ -Ϭ.ϱϳϬ ϭ.ϯϵϰ ͲϬ͘ϳϰϬ ϭ͘ϳϭϴ 
ϭ ϭϲϯϲϴ -Ϯ.ϳϯϬ ϰ.ϮϰϬ Ͳϯ͘ϴϳϵ ϰ͘ϵϭϯ 

 

In Table ϯϱ the number of matches per quality levels are listed together with the median and the 
robust standard deviation of the satellite minus in situ temperature difference and the traditional 
metrics, the mean and the standard deviation͘ The difference between the median and the mean is 
almost negligible for quality level ϱ and it increases as the quality levels get lower ;suggesting, as 
expected, a higher incidence of coldͲbiased observations for low quality levelsͿ͘ The agreement 
between satellite and in situ measurements varies according to the quality levels in a way that is 
expected͘ 

The best agreement is for quality levels ϰ and ϱ, which are the levels that reflect a higher degree of 
confidence in the validity of the satellite estimate͘ Our recommendation to users is to use the quality 
level ϰ and ϱ for lakeͲclimate applications in general, although lower quality level data may be 
relevant to users where they have specifically verified their fitness for a given lake for their 
application͘ Quality level ϯ data comparison with the in situ data shows an agreement that may be 
acceptable to some users; however, they have to be used with care͘ Quality level ϭ data should 
never be used and they are classified as ͞bad data͘͟ 

A contribution to the difference on average is the expected skin effect͘ Infrared radiometers are 
sensitive to radiation emitted between the airͲsurface interface and ϮϬmm below the interface while 
the in situ measurements considered here are taken at a distance up to ϭm from the airͲsurface 
interface͘ During the night, the surface of the water is generally cooler than the subsurface by ΕϬ͘Ϯ K 
΀Saunders, ϭϵϲϳ΁, ΀Embury et al, ϮϬϭϮ΁͘ However, during the day, if the wind speed is low enough, 
thermal stratification due to solar heating contributes a positive offset to the difference in 
temperature between the radiometric lake surface and the in situ measurement depth ;up to ϭ mͿ͘ 
The positive thermal stratification would be expected to be in the range ффϭ K for most observations 
and but occasionally of order a few kelvins͘ The degree of nearͲsurface stratification to be expected 
in different lakes depends on fetch, weather conditions ;radiative balance and wind speedͿ, the 
depth of inͲsitu measurement, and any local vertical mixing perturbations introduced by the 
presence of the inͲsitu measurement system͘ The aggregate effect of these factors is not currently 
well quantified͘  Overall, it is plausible that for day time LSWT observations the mean stratification 
effect is of order one or a few tenths, as has been determined over the oceans͘ In summary, a 
geophysical contribution to the satellite minus in situ temperature difference is the expected skin 
effect of ͲϬ͘Ϯ K, but other positive geophysical offsets are similar in magnitude and difficult to 
quantify precisely͘ In this context, a mean agreement of the physicsͲbased retrievals and validation 
within нͬͲϬ͘Ϯ K is a convincing result͘ In terms of scatter, as well as the retrieval uncertainty and 
variability in the vertical stratification effects, the scatter includes in situ uncertainty and horizontal 



D4.1: PURGXFW 9DOLGDWLRQ DQG IQWHUFRPSDULVRQ RHSRUW 

     

 

  96/138 

variability͘ Again, quantitative understanding of the scatter from these effects is not yet mature, and 
for this reason full uncertainty budget validation remains a research aspiration ;see also EϯUBͿ͘ 

The distributions of the satellite minus in situ temperature differences per quality level Ϯ,ϯ,ϰ,ϱ are 
reported in Figure ϭϬϯ as ͞violin͟ plots͘ The distributions become more stretched and less symmetric 
with longer tail towards negative differences as the quality levels decreases͘ 

 
Figure ϭϬϯ. Distributions of the satellite minus in situ temperature difference per quality level as “violin” 

plots where the widths indicate the density of data for a given difference. 

The median and the robust standard deviation per quality level per year for all the lakes is shown in 
Figure ϭϬϰ and Figure ϭϬϱ together with the number of matches͘ For high quality levels the median 
and the robust standard deviation are consistently low throughout the years when different 
instruments have been adopted and a different number of matches is available͘ They deteriorate as 
the quality goes lower especially for the ATSRs sensors which are relied on exclusively until ϮϬϬϳ͘ The 
number of matches for quality level ϱ is consistently the highest͘ 
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Figure ϭϬϰ. Satellite minus in situ temperature difference median per year (upper plot) and number of 
matches (lower plot) per quality level. 

 

Figure ϭϬϱ. Satellite minus in situ temperature difference robust standard deviation per year (upper plot) 
and number of matches (lower plot) per quality level. 

The median and robust standard deviation have been inspected also for each lake͘ Figure ϭϬϲ and 
Figure ϭϬϳ show the plots together with the correspondent number of matches͘ Higher numbers of 
matches are for lakes where data were available for longer periods but also where hourlyͬsubhourly 
measurements were available and for sites far from the coast͘ The median and robust standard 
deviation are consistently better for quality level ϱ throughout the lakes, while for quality level ϰ the 
instances of greater variation are related to lower numbers of matches͘ However, for some 
lakesͬqualityͲlevel combinations the in situ measurements are very few: for example, for lake Taihu 
;lake ID ϲϲͿ, only one match with LSWT of quality level ϰ is available͘ For lake Paijanne ;lake ID ϭϱϳͿ, 
the median difference and the robust standard deviation are unusually large͘ The in situ data for this 
lake come from two different originators for three sites as shown in Figure ϭϬϴ͘ Figure ϭϬϵ shows the 
satellite LSWTs, the in situ values and the climatology ;for referenceͿ for the three sites on lake 
Paijanne in ϮϬϭϱ͘ The majority of the measurements have been taken at the site ϭ which is very close 
to the coast where the satellite minus in situ difference show cooler satellite LSWT in the first part of 
the year and warmer in the second part͘ This behaviour is consistently throughout the years and is 
consistent with an effect of shallowͲwater energy balance on the in situ measurement that 
differences from the satellite location of the matches that are at a spatial distance up to ϯ km; for 
comparing to measurements close to the coast in shallow water, this is a significant distance͘ For the 
other two sites the in situ and satellite measurements have a good agreement but the in situ data 
have a lower temporal resolution͘ 
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Figure ϭϬϲ. Satellite minus in situ temperature difference median per lake (upper plot) and number of 
matches (lower plot) per quality level. 

 
Figure ϭϬϳ. Satellite minus in situ temperature difference robust standard deviation per lake (upper plot) 

and number of matches (lower plot) per quality level. 
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Figure ϭϬϴ. Locations of in situ measurements for lake Paijanne in Finland. Each dot represents a 
ϭ/ϭϮϬΣxϭ/ϭϮϬΣ cell. 
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Figure ϭϬϵ. Validation plots for the three sites on lake Paijanne ;FinlandͿ for year ϮϬϭϱ where the yellow plot is 
the climatology, the black line and the white dots are the in situ measurements, the coloured 

dots are the satellite LSWTs per quality level and the green line is the satellite minus in situ 
difference͘ 

As another example, consider lake Superior where many sites are available͘ The robust statistics of 
the difference for all the matches of quality level ϯ,ϰ,ϱ have been plotted per sites in Figure ϭϭϬ 
showing consistency for sites near each other, and a higher variability of the differences for sites 
close to the coast than those far into the lake, as expected͘ Figure ϭϭϭ and Figure ϭϭϮ show the LSWT 
and the in situ measurements in ϮϬϭϰ respectively for three sites on the lake Superior͘ In ϮϬϭϰ a 
sharp increase in temperature can be observed in the beginning of August consistently for the three 
sites and consistently for the satellite and in situ measurements͘ The timing of temperature increase 
is consistent at the three very different locations, one being closer to the coast and the other two 
more offshore͘ Figure ϭϭϮ ;right hand sideͿ shows the position of the in situ measurement sites on 
lake Superior͘ 

 
Figure ϭϭϬ. Satellite minus in situ temperature difference median and robust standard deviation for all the 

sites on lake Superior for quality level ϯ,ϰ,ϱ. 

 
Figure ϭϭϭ. Satellite observations (dots), in situ matches (white dots), in situ measurements (black line), 

satellite minus in situ T difference for quality levels ϰ,ϱ (green line) and climatology 
(golden line with climatological variability as the yellow band) for lake Superior in ϮϬϭϰ at 

site Ϭϭ (on the left) and site Ϭϯ (on the right). 
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Figure ϭϭϮ. Satellite observations (dots), in situ matches (white dots), in situ measurements (black line), 

satellite minus in situ T difference for quality levels ϰ,ϱ (green line) and climatology 
(golden line with climatological variability as the yellow band) for lake Superior in ϮϬϭϰ at 

site Ϭϰ (on the left) and location of the in situ measurement sites on lake Superior on a 
ϭ/ϭϮϬΣ grid (on the right). 

 

The time series of the satellite and the in situ temperature together with their difference have been 
inspected and they are reported here for two ͞difficult͟ validation cases as examples͘ The first is a 
small lake ;lake Erken in SwedenͿ͘ The second is lake Kasumigaura in Japan, a lake with lowͲ
temporalͲfrequency data͘  

The location where the in situ measurements have been collected on Lake Erken in Sweden is shown 
in Figure ϭϭϯ ;red dotͿ͘ Figure Fϭϲ and Figure Fϭϳ show the satellite observations and the in situ 
measurements in ϭϵϵϳ when only ATSRϮ was utilised and in ϮϬϭϰ when observations from AVHRRͲA 
and AVHRRͲB were used͘ For both the years the satellite observations follow remarkably well the in 
situ measurements, which were very high frequency measurements͘ The peak in the difference 
;green lineͿ in ϭϵϵϱ is very likely due to a slight temporal mismatch͘ Despite the peculiar behaviour 
of the temperatures through the year in both cases the satellite and in situ are mimicking each other 
remarkably well͘ Note that in this case the measurements site is close to the shore but matching 
within ϯ km does not have a strong influence in this case because the lake is small and more 
consistent in LSWT across its area͘ 

 
Figure ϭϭϯ. Location of in situ measurements for lake Erken in Sweden. Each dot represents a ϭ/ϭϮϬΣxϭ/ϭϮϬΣ 

cell. 
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Figure ϭϭϰ. Satellite observations (dots), in situ matches (white dots), in situ measurements (black line), 

satellite minus in situ T difference for quality levels ϰ,ϱ (green line) and climatology 
(golden line with climatological variability as the yellow band) for lake Erken in Sweden in 

ϭϵϵϱ (on the left) and ϮϬϭϰ (on the right). 

 

Figure ϭϭϱ, Figure ϭϭϲ, Figure ϭϭϳ and Figure ϭϭϴ present lake Kasumigaura in Japan at the five sites in 
year ϮϬϭϲ͘ The sites Ϭϭ and Ϭϯ are very close to the coast, so the matches are lower in number than 
for the other sites͘ However, a consistency between in situ and satellite LSWT can be observed for all 
the sites͘ 

 

 
Figure ϭϭϱ. Location of in situ measurements for lake Kasumigaura in Japan. Each dot represents a 

ϭ/ϭϮϬΣxϭ/ϭϮϬΣ cell. 
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Figure ϭϭϲ. Satellite observations (dots), in situ matches (white dots), in situ measurements (black line), 

satellite minus in situ T difference for quality levels ϰ,ϱ (green line) and climatology 
(golden line with climatological variability as the yellow band) for lake Kasumigaura in 

Japan in ϮϬϭϲ for site Ϭϭ (on the left), site ϬϮ (on the right). 

 
Figure ϭϭϳ. Satellite observations (dots), in situ matches (white dots), in situ measurements (black line), 

satellite minus in situ T difference for quality levels ϰ,ϱ (green line) and climatology 
(golden line with climatological variability as the yellow band) for lake Kasumigaura in 

Japan in ϮϬϭϲ for site Ϭϯ (on the left), site Ϭϰ (on the right). 

 



D4.1: PURGXFW 9DOLGDWLRQ DQG IQWHUFRPSDULVRQ RHSRUW 

     

 

  104/138 

Figure ϭϭϴ. Satellite observations (dots), in situ matches (white dots), in situ measurements (black line), 
satellite minus in situ T difference for quality levels ϰ,ϱ (green line) and climatology 

(golden line with climatological variability as the yellow band) for lake Kasumigaura in 
Japan in ϮϬϭϲ for site Ϭϱ. 

ϰ.ϰ.Ϯ. Validation of the uncertainty LSWT vϰ.ϭ 

The LSWT uncertainty estimate has been validated comparing the difference satellite minus in situ 
temperatures and the correspondent LSWT and in situ uncertainties͘ The following quantity is calculated for 
each match: 

Δ ൌ  
𝑇௅ௌௐ் െ 𝑇ூேௌூ்௎

ට𝜎௅ௌௐ்
ଶ ൅ 𝜎ூேௌூ்௎

ଶ ൅ 𝜎௥௘௣௥
ଶ

 

 

where T indicates temperature, for LSWT and in situ as indicated in the subscripts͘ 𝜎 means the 
standard deviation from measurement uncertainty ;for LSWT and in situͿ and from real differences 
because of pointͲtoͲpixel representativity effects͘ 

The in situ measurements uncertainty is not known for the data we have͘ We explore two 
assumptions: 𝜎INSITUсϬ͘Ϯ K, a value based from deployment of similar measurement technologies to 
the ocean, and 𝜎INSITUсϬ͘ϱ K which would be at the upper end of our expectations for in situ 
uncertainty͘ The representativity effect is presently unquantified and we set it to Ϭ K for the present; 
neglecting representativity has the tendency to make the LSWT uncertainty look underestimated͘  

Lakesͺcci products, 𝜎𝐿𝑆𝑊𝑇
2  is context sensitive and varies from match to match, which is why the 

validation approach involves the calculation of the above metric: the distribution of Δ should be a 
Gaussian distribution with mean equal to Ϭ and standard deviation equal to ϭ when all standard 
deviations are well estimated and the retrieval is unbiased relative to the in situ and any mean 
geophysical effect͘ Figure ϭϭϵ shows the histograms of the uncertainties per quality level where also 
the fitted Gaussian and the target Gaussian distributions are shown͘ In Figure ϭϭϵ an in situ 
uncertainty of Ϭ͘Ϯ K has been assumed͘ 
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Figure ϭϭϵ. LSWT uncertainty validation (in situ uncertainty с Ϭ.ϮK) per quality level (indicated in legend): 

histograms of D 

For quality level ϱ, the Gaussian fit has width Ϯ͘ϲϴ, which means that observed differences are more 
different than expected from the quoted uncertainties͘ This may be partly because the product 
uncertainties are underestimated, but could also arise to the degree that lake in situ data ;being 
more diverseͿ have larger uncertainty than the assumed value ;based on experience of ocean 
observationsͿ, and because representativity is neglected͘ Interpretation of this outcome is therefore 
currently ambiguous, and research is needed to better understand the in situ uncertainty and 
representativity effects͘ 

We used an in situ uncertainty of Ϭ͘ϱ K to explore the level of in situ uncertainty that would better fit 
the Gaussian͘ Figure ϭϮϬ shows the uncertainty validation for this value͘ The width of the Gaussian fit 
for quality level ϱ is closer to one, and thus Ϭ͘ϱ K may be closer to the combined effect of in situ and 
representativity uncertainty͘ However, more investigations of in situ uncertainty and 
representativity need to be carried out to understand this better͘ 
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Figure ϭϮϬ. LSWT uncertainty validation (in situ uncertainty с Ϭ.ϱK) per quality level (indicated in legend): 
histograms of D 

 

ϰ.ϰ.ϯ. Lakes with no LSWT 

For ϭϯ target lakes, no LSWT has been obtained, largely due to the fact that they are too small͘ The lakes are 
listed in Table ϯϲ together with the estimated maximum distance to land͘ The majority of the lakes is not 
feasible because of their small size, except for the lake ϭϬϵϵ in Greenland, which was not successful due to 
missing climatology, and lakes ϮϬϬϬϬϬϬϳϭ and ϮϬϬϬϬϬϳϮ where in the mask used during the processing they 
were labelled as sea rather than lakes͘ For the next version of the Lakesͺcci LSWT these lakes will be included͘ 

Table ϯϲ. Lakes with no LSWT 

CCI Lake id Name Country Max distance to land ;kmͿ Comments 

ϭ Caspian AzerbaijanͬRussiaͬTu
rkmenistanͬIran 

ϭϲϰ͘ϴ Processed as SST 

ϭϬϵϵ NN Glacial Lake Greenland ϭ͘ϴ Missing climatology 
Ϯϲϯϳ Saysan Kazakhstan Ϭ͘ϵ Too small 
ϳϴϴϵ Melvin Ireland ϭ͘ϯ  Too small 
ϭϴϬϴϵ Macnean United Kingdom Ϭ͘ϲ Too small 
ϭϲϰϲϱϭ Portmore United Kingdom Ϭ͘ϱ Too small 
ϮϬϴϴϰϬ Mantua Italy Ϭ͘ϱ Too small 
ϮϭϱϮϭϱ Morse USA Ϭ͘ϱ Too small 
Ϯϭϱϯϭϭ Geist USA Ϭ͘ϱ Too small 
Ϯϭϱϯϯϵ Eagle Creek USA Ϭ͘ϲ Too small 
ϭϬϬϬϬϬϬϬϰ Mourve United Kingdom Ϭ͘Ϯ Too small 
ϮϬϬϬϬϬϬϳϭ Patos Lagoon Brazil Ϯϱ͘Ϯ MisͲabelled as sea 
ϮϬϬϬϬϬϬϳϮ Maracaibo Venezuela ϰϲ͘ϱ MisͲabelled as sea 
ϯϬϬϭϯϰϲϰϰ Rihpojavri Norway Ϭ͘ϳ Too small 
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ϰ.ϱ. Conclusions and recommendations 

The validation of the LSWT shows very good mean agreement ;comfortably within нͬͲϬ͘Ϯ KͿ between 
satellite LSWT and independent in situ temperature measurements͘ 

The uncertainty validation principles are clear, but the results are not mature enough to make strong 
validation statements regarding the uncertainty information since in situ uncertainty and 
representativity uncertainty are poorly known for lakes: experience from the ocean suggests in 
situͬrepresentativity uncertainty of order Ϭ͘Ϯ K, but for lakes this may be an underestimate͘  An 
initial analysis suggests Ϭ͘ϱ K is closer to the case͘  

The LSWT and uncertainty validation show that the quality level accompanying the LSWT are a very 
important variable for the proper use of the data͘ Quality levels provide the confidence on the LSWT 
retrieval͘ We recommend to use quality levels ϰ and ϱ for lakeͲclimate applications͘ 

Manual inspection of all products for more than ϭϬϬϬ water bodies is impossible and in most cases 
requires local knowledge͘ The validation of the products is, and always will be, based on a small 
sample of wellͲstudied areas͘ Users of these products are therefore advised to inspect the results for 
their area of interest before generating derivative products and any feedback to Lakesͺcci would be 
most useful͘ 
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;Istituto per il Rilavemento Elettromagnetico dell͛Ambiente, National Research Council of Italy, ItalyͿ, 
April James ;Nipissing University, CanadaͿ, Johanna Korhonen ;SYKE, Helsinki, FinlandͿ, Ben Kraemer 
;Leibniz institute for freshwater ecology and inland fisheries, Berlin, GermanyͿ, Alo Laas ;Estonian 
University of Life Sciences, Tartu, EstoniaͿ, Eric Leibensperger ;Center for Earth and Environmental 
Science, SUNY Plattsburgh, USAͿ, Junsheng Li ;Institute of Remote Sensing and Digital Earth, Chinese 
Academy of Science, ChinaͿ, Alessandro Ludovisi ;Dipartimento di Biologia Cellulare e Ambientale, 
Universita degli Studi di Perugia, ItalyͿ, ShinͲichiro Matsuzaki ;National Institute for Environmental 
Studies, JapanͿ, Ghislaine Monet ;UMR CARRTEL, Thonon le Bains, FranceͿ, Tiina Nogesand Peeter 
Noges ;Estonian University of Life Sciences, Tartu, EstoniaͿ, Sajid Pareeth ;Freie Universitat 
BerlinͬFondazione Edmund Mach, GermanyͬItalyͿ, Sebastiano Piccolroaz ;Institute for Marine and 
Atmospheric Research, Department of Physics, Utrecht UniversityͿ, Don Pierson ;Uppsala University, 
SwedenͿ, PierreͲDenis Plisnier, Antti Raike ;SYKE, Helsinki, FinlandͿ, Alon Rimmer ;Yigal Allon 
Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, Migdal, IsraelͿ, 
Michela Rogora ;CNR Institute for Water Research ;CNR IRSAͿ, ItalyͿ, Geoffrey Schladow ;UCͲDavis Tahoe 
Environmental Research Center, USAͿ, Eugene Silow ;Irkutsk State University, RussiaͿ, Lewis Sitoki 
;Department of Earth Environmental Science and Technology, Technical University of Kenya, 
NairobiͿ, Evangelos Spyrakos ;Biological and Environmental Science, University of Stirling, Scotland, 
UKͿ, Wim Thiery ;Department of Earth and Environmental Sciences, KU Leuven, BelgiumͿ, Gesa 
Weyhenmeyer ;Department of Ecology and Genetics, Uppsala University, SwedenͿ͘ 
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ϱ. Lake Ice Cover (LIC) parameter 

Lake ice cover ;LICͿ refers to the extent ;or areaͿ of a lake covered by ice͘ In Lakesͺcci, LIC is a daily merged 
level ϯ ;LϯͿ product generated from MODIS TerraͬAqua Atmospherically Corrected Surface Reflectance ϱͲMin 
LϮ Swath ;MODϬϵͬMYDϬϵͿ, Collection ϲ, data ;see ATBD for detailsͿ͘ In the LIC product, each pixel is assigned 
one of four possible class labels: water ;valueсϭͿ, ice ;valueсϮͿ, cloud ;valueсϯͿ, and bad ;valueсϰ; case where 
a retrieval was not possible due to poor data qualityͿ͘ Only pixels labelled as water, ice or cloud are considered 
in product validation͘ It is important to note that validation is performed on Terra and Aqua derived LIC 
individually, before merging into the daily TerraͬAqua Lϯ product and before aggregating into the ca͘ ϭ km 
harmonized grid͘ 

Product validation can be performed following three approaches: ;ϭͿ comparison against groundͲbased 
nearshore observations; ;ϮͿ comparison with LIC products generated by other algorithmsͬgroups such as 
NASA͛s MODIS Snow Cover products from Terra and Aqua ;MODϭϬͬMYDϭϬͿ; and ;ϯͿ validation against groups 
of pixels ;Areas Of Interest or AOIͿ extracted for a selection of lakes from visual interpretation of original 
MODIS Terra and Aqua imagery used as input into the LIC retrieval algorithm ;i͘e͘ MODϬϵͬMYDϬϵͿ͘ Here, 
validation involved a mix of approaches ;ϮͿ and ;ϯͿ whereby the thematic accuracy ;water, ice and cloudͿ of 
both Lakesͺcci LIC and NASA MODIS Snow Cover products was evaluated, and results compared͘ Approach ;ϭͿ 
was not considered herein since groundͲbased nearshore observations were unavailable or nonͲexistent at the 
time of writing of this report; however, most importantly, such observations are of a more limited value than 
the two other approaches for lakeͲwide validation of the LIC product͘ 

ϱ.ϭ Data description 

ϱ.ϭ.ϭ. MODIS Terra/Aqua surface reflectance product (MODϬϵ/MYDϬϵ) 

MODIS TerraͬAqua Atmospherically Corrected Surface Reflectance ϱͲMin LϮ Swath, Collection ϲ ;Vermote et 
al͘, ϮϬϭϱͿ ʹ MODϬϵͬMYDϬϵ false color composites ;R: band Ϯ, G: band Ϯ, B: band ϭͿ with a ϮϱϬ m spatial 
resolution were used as reference images to manually collect AOIs with assigned labels ;lake ice, open water, 
and cloudͿ to assess the accuracy of both the Lakesͺcci LIC and NASA Snow Cover products͘ MODIS band ϭ is 
centered at ϲϰϱnm ;redͿ and band Ϯ at ϴϲϱ nm ;nearͲIRͿ͘ 

ϱ.ϭ.Ϯ. MODIS Snow Cover product 

MODIS TerraͬAqua Snow Cover ϱͲMin LϮ Swath ϱϬϬ m, Collection ϲ ;CϲͿ, daily products ;MODϭϬͬMYDϭϬͿ were 
also validated and compared with the Lakesͺcci LIC product͘ In MODϭϬͬMYDϭϬ, lake ice cover is identified 
using the same criteria as snow over land ;i͘e͘ Normalized Difference Snow Index ;NDSIͿ х Ϭ and data screensͿ 
and a ϱϬϬ m lake mask͘ The NDSI is derived from MODIS radiance data acquired by TerraͬAqua satellites ;i͘e͘ 
MODIS Level ϭB product ;MODϬϮͬMYDϬϮͿ topͲofͲtheͲatmosphere ;TOAͿ calibrated radianceͬreflectance dataͿ͘ 
Input data to the Snowmap algorithm used in the production of MODϭϬͬMYDϭϬ are shown in Table ϯϳ͘ 

 

Table ϯϳ. MODIS data inputs for the collection ϲ (Cϲ) snow algorithm (adapted from Riggs et al., ϮϬϭϲ) 

Input Data Product Description 

MODϬϮHKM Calibrated Radiances ;ϱϬϬ mͿ  

MODϬϮϭKM Calibrated Radiances ;ϭ kmͿ 

MODϬϯ Geolocation Fields ;ϭ kmͿ 

MODϯϱͺLϮ Cloud Mask and Spectral Test Results ;ϮϱϬ m and ϭ kmͿ 

Ύ Depends on platform, MOD indicates Terra, MYD indicates Aqua 
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The MODIS Snow Cover product experiences issues in differentiating between clouds and snowͬice, and both 
errors of commission and omission can be found in the product͘ Omission occurs when the MODIS cloud mask 
;MODϯϱͿ identifies an area of snowͬice as certain cloud, therefore excluding it from the MODIS snow product 
;Riggs et al͘, ϮϬϭϲͿ͘ Errors of commission can occur on the periphery of cloud cover or where clouds appear 
similar to snowͬice and are excluded from the cloud mask and instead identified as snowͬice ;Riggs et al͘, 
ϮϬϭϲͿ͘ Cloud cover can be removed from the product by extracting the classification value from the previous 
and proceeding pixel to determine the possible classification of a cloud covered pixel͘ High solar zenith angle 
can also prevent accurate classification of snowͬice cover, which is important when studying freezeͲup at 
northern high latitudes͘ Pixels are screened using a solar zenith angle mask of х ϳϬΣ and pixels with a solar 
zenith angle ш ϴϱΣ are classified as night͘ 

ϱ.Ϯ Comparison methods 

Validation of the Lakesͺcci LIC product and NASA MODIS Snow Cover product ;also used for comparisonͿ has 
been performed through computation of confusion matrices built on independent statistical validation͘ The 
reference data for validation were collected for water, ice and cloud as AOIs from the visual interpretation of 
the false colour composite surface reflectance images ;MODϬϵͬMYDϬϵͿ, as described in section ϱ͘ϭ͘ϭ, over 
three ice seasons ;freezeͲup and breakͲup periodsͿ interspersed across the ϮϬͲyear MODIS record by skilled ice 
analysts͘ 

ϱ.ϯ Description of work 

A total of ϭϳ lakes have been selected across the Northern Hemisphere to serve for the purpose of both 
development and validation of the Lakesͺcci LIC product ;Figure ϭϮϭͿ͘ Samples were collected for three ice 
seasons ;ϮϬϬϮͲϮϬϬϯ, ϮϬϬϵͲϮϬϭϬ, ϮϬϭϲͲϮϬϭϳͿ as to include MODIS data from Terra ;ϮϬϬϬͲpresentͿ and Aqua 
;ϮϬϬϮͲpresentͿ, and provide a good temporal spread over the full record to ensure algorithm stability͘ For each 
lake, one image from the freezeͲup period and one image from the breakͲup period were selected for both 
Terra and Aqua images if available͘ False color composites ;R: Band Ϯ, G: Band Ϯ, B: Band ϭͿ with a ϮϱϬ m 
spatial resolution were used as reference images to manually extract AOIs with labels ;ice, water, and cloudͿ͘ In 
total ϭϬϴ images ;ϰϬ from FU, ϲϴ from BUͿ were selected and ϱϱϮ,ϬϬϲ pixels were sampled from the selected 
AOIs͘ Of that sample, ϯϬй of the pixels ;n с ϭϲϱ,ϲϵϳͿ were randomly selected for the purpose of product 
;Lakesͺcci LIC and MODIS Snow CoverͿ validation and comparison ;the other ϳϬй of pixels were used for 
algorithm developmentͿ͘ 
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Figure ϭϮϭ. Geographical distribution of lakes used for Lakes_cci LIC algorithm development and validation 

ϱ.ϰ Result analysis 

Table ϯϴ shows the overall accuracy ;OAͿ of the Lakesͺcci LIC and NASA Snow Cover products ;breakͲup and 
freezeͲup periods combinedͿ͘ The algorithm developed for Lakesͺcci provides a higher overall accuracy 
;ϵϱ͘ϱϰйͿ, and also for individual classes ;ϵϭ͘ϳϭй for ice cover, ϵϴ͘ϴϱй for water, and ϵϱ͘ϲϯй for cloud coverͿ 
compared to the existing MODIS Snow Cover products ;MODϭϬͬMYDϭϬͿ͘  The OA of MODϭϬͬMYDϭϬ is ϴϳ͘Ϭϵй͘ 
The accuracy of ϳϰ͘ϱϱй for lake ice cover in MODIS Snow Cover is related to an underestimation of ice cover 
caused by the overestimation of cloud cover, which attains a total class accuracy of ϵϯ͘ϯϮй͘ In addition to ice, 
water, cloud, MODϭϬͬMYDϭϬ products contain other possible labels ;No Decision, Night, Missing, and OceanͿ͘ 

Table ϯϴ. Confusion matrices with retrieval accuracies for Lakes_cci LIC and MODIS Snow Cover products 
(break-up and freeze-up periods combined) 

  Retrieval Algorithm ;classificationͿ 
Lakes_cci LIC  Ice Water Cloud Other 

 

Accuracy 

U
se

rͲ
de

fin
ed

 Ice ϰϲϵϲϴ Ϯϳϯϳ ϭϱϭϬ NͬA ϵϭ͘ϳϭй 

Water ϱϬϲ ϱϳϰϯϱ ϭϲϱ NͬA ϵϴ͘ϴϱй 

Cloud ϮϮϳϮ ϭϵϮ ϱϯϵϭϮ NͬA ϵϱ͘ϲϯй 

   Overall Accuracy: ϵϱ͘ϱϰй 
MODIS Snow Cover  Ice Water Cloud Other Ύ 

 

Accuracy 

U
se

rͲ
de

fin
ed

 Ice ϯϴϯϮϴ ϯϵϭϭ ϳϭϵϴ ϭϵϳϴ ϳϰ͘ϱϱй 

Water ϱϱϴ ϱϯϭϳϴ ϭϳϵϬ Ϯϭϳϵ ϵϮ͘ϭϱй 

Cloud ϭϱϰϲ ϴϱϳ ϱϮϳϵϱ ϭϯϳϵ ϵϯ͘ϯϮй 

   Overall Accuracy: ϴϳ͘Ϭϵй 
Other: For MODIS Snow ;MODϭϬͬMYDϭϬͿ this class includes lake pixels that were identified 
as ͞No Decision, Night, Missing or Ocean͘͟ 
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Table ϯϵ provides the accuracies reached by the Lakesͺcci LIC and MODIS Snow Cover products for the breakͲ
up ;BUͿ and freezeͲup ;FUͿ periods taken individually͘ There is no notable difference in the accuracy of the 
Lakesͺcci LIC product between the BU ;OA: ϵϱ͘ϴϬйͿ and FU ;OA: ϵϱ͘ϭϮйͿ periods, and the classification 
accuracies are consistent across classes͘ Overall accuracies for the NASA͛s MODIS Snow Cover are lower by 
about ϳй during BU and ϭϬй during FU͘ Lower class accuracy is also achieved for the NASA product with 
regards to ice cover during both the BU ;ϳϳ͘ϲϰйͿ and FU ;ϲϵ͘ϰϵйͿ periods compared to Lakesͺcci LIC ;BU: 
ϵϭ͘ϲϭй, FU: ϵϭ͘ϴϳйͿ͘ Differences are in the order of ϭϰй and ϮϮй for BU and FU, respectively, with the 
Lakesͺcci LIC retrieval algorithm outperforming NASA͛s Snowmap algorithm͘ 

 

Table ϯϵ. Confusion matrices with retrieval accuracies for Lakes_cci LIC and MODIS Snow Cover products 
(break-up and freeze-up periods individually) 

 Break-Up Freeze-Up 

Retrieval Algorithm ;classificationͿ Retrieval Algorithm ;classificationͿ 

Lakes_cci LIC Ice Water Cloud Other Accuracy Ice Water Cloud Other Accuracy 

U
se

rͲ
de

fin
ed

 Ice ϮϵϭϮϴ Ϯϱϯϱ ϭϯϯ NͬA ϵϭ͘ϲϭй ϭϳϴϰϬ ϮϬϮ ϭϯϳϳ NͬA ϵϭ͘ϴϳй 

Water ϭϲ ϯϵϱϮϬ ϰϳ NͬA ϵϵ͘ϴϰй ϰϵϬ ϭϳϵϭϱ ϭϭϴ NͬA ϵϲ͘ϳϮй 

Cloud ϭϰϭϴ ϭϲϮ ϮϵϳϱϬ NͬA ϵϰ͘ϵϲй ϴϱϰ ϯϬ ϮϰϭϲϮ NͬA ϵϲ͘ϰϳй 

Overall Accuracy: ϵϱ͘ϴϬй Overall Accuracy: ϵϱ͘ϭϮй 

MODIS Snow 
Cover 

Ice Water Cloud Other Accuracy Ice Water Cloud Other Accuracy 

U
se

rͲ
de

fin
ed

 Ice ϮϰϳϲϬ ϯϱϮϴ ϮϬϭϲ ϭϱϴϱ ϳϳ͘ϲϰй ϭϯϱϲϴ ϯϴϯ ϱϭϴϮ ϯϵϯ ϲϵ͘ϰϵй 

Water ϭϴϮ ϯϳϭϯϮ ϰϭϰ ϭϲϬϱ ϵϰ͘ϰϬй ϯϳϲ ϭϲϬϰϲ ϭϯϳϲ ϱϳϰ ϴϳ͘ϯϰй 

Cloud ϭϬϬϵ ϲϵϭ ϮϴϴϵϬ ϴϵϳ ϵϭ͘ϳϱй ϱϯϳ ϭϲϲ ϮϯϵϬϱ ϰϴϮ ϵϱ͘Ϯϴй 

Overall Accuracy: ϴϴ͘ϯϵй Overall Accuracy: ϴϰ͘ϵϳй 

Other: For MODIS Snow Cover ;MODϭϬͬMYDϭϬͿ this class includes lake pixels that were identified as ͞No 
Decision, Night, Missing or Ocean͘͟ 
 
The Lakesͺcci LIC product also captures better the spatial distribution of cloud cover compared to the MODIS 
Snow Cover ;MYDϭϬͬMODϭϬͿ ;Figure ϭϮϮͿ͘ MODϭϬͬMYDϭϬ Snow Cover products overestimate cloud cover on 
all three dates for the lakes shown as examples͘ 
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a͘ ϲ March ϮϬϭϵ 
at UTC Ϭϵ:Ϯϱ 

b͘ Ϯϴ April ϮϬϭϵ 
at UTC Ϭϳ:ϱϱ 

c͘ ϭϭ February ϮϬϭϬ 
at UTC ϭϬ:ϰϬ 

   

   

   
Figure ϭϮϮ. MYDϬϵ/MODϬϵ (surface reflectance) colour composites (top), MYDϬϵ/MODϬϵ derived Lakes_cci 
LIC product (middle) and MYDϭϬ/MODϭϬ NASA Snow Cover product (bottom) over Lake Ladoga (a), Lake 
Onega (b), and Lake Vanern (c) 
  
Another source of error for the MODIS Snow Cover ;MODϭϬͬMYDϭϬͿ product is the geolocation of some lakes͘ 
MODϭϬͬMYDϭϬ employs the MODIS Geolocation LϭA product in order to mask land and water ;Riggs et al͘, 
ϮϬϭϲͿ͘ However, as shown in Figure ϭϮϯ, the MODIS Snowmap algorithm classifies the majority of Lake 
Nettilling ;CanadaͿ as ocean resulting in no classification for the ice cover on the lake͘ However, the more 
accurate lake area mask used for the generation of the Lakesͺcci LIC product provides correct classification of 
the ice conditions on that day͘     
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Figure ϭϮϯ. MODIS surface reflectance RGB colour composite (left), MODIS-derived Lakes_cci LIC (middle), 
and MODIS Snow Cover product (right) for Lake Nettilling (Canada) during the BU period on ϵ July ϮϬϭϳ (UTC 
ϭϲ:ϮϬ). The red colour corresponds to “ocean” in this MODIS Snow Cover product 

ϱ.ϱ Conclusions and recommendations 

For Lakesͺcci, LIC CDRP Vϭ͘Ϭ is generated from a thresholdͲbased retrieval algorithm using MODIS TerraͬAqua 
Atmospherically Corrected Surface Reflectance ϱͲMin LϮ Swath ;MODϬϵͬMYDϬϵͿ, Collection ϲ, as primary data 
input͘ Lakesͺcci LIC is a gridded product where cells are assigned one of four possible labels: water, ice, or bad 
;case where a retrieval was not possible due to poor data qualityͿ͘ 

Validation of the Lakesͺcci LIC product was performed via computation of confusion matrices built on 
independent statistical validation͘ Reference data for validation of class labels ;water, ice, cloudͿ were 
collected from ϭϳ lakes in Europe and North America over three ice seasons ;ϮϬϬϮͲϮϬϬϯ, ϮϬϬϵͲϮϬϭϬ, ϮϬϭϲͲ
ϮϬϭϳͿ through visual interpretation of the false color composite surface reflectance images ;MODϬϵͬMYDϬϵͿ 
by skilled ice analysts͘ The reference data also served to validate lake iceͬwaterͬcloud retrievals contained in 
NASA͛s MODIS TerraͬAqua Snow Cover products ;MODϭϬͬMYDϭϬͿ, which were then compared to those from 
Lakesͺcci LIC͘  

Results show that the retrieval algorithm implemented for Lakesͺcci LIC production outperforms NASA͛s 
Snowmap algorithm, attaining an overall accuracy ;FU and BU periods combinedͿ of ϵϱ͘ϱϰй compared to 
ϴϳ͘Ϭϵй͘ Retrieval accuracies are also found to be more consistent between classes and also ice periods for the 
Lakesͺcci algorithm ;BU: ϭϰй and FU: ϮϮй higher accuracy than NASA͛s Snowmap algorithmͿ, in addition to 
better capturing the spatial distribution of cloud cover compared to the MODIS Snow Cover ;MYDϭϬͬMODϭϬͿ͘ 
Individual class accuracies are all above ϵϬй ;errors less than ϭϬйͿ for LIC CDRP Vϭ͘Ϭ ;ice: ϵϭ͘ϳϭй, water: 
ϵϴ͘ϴϱй, cloud: ϵϱ͘ϲϯйͿ which meet uncertainty requirements of ϭϬй set by GCOS for LIC ECV ;see EϯUB 
document for details on determination of errors and uncertainty in LIC productͿ͘ 

Further assessment of the Lakesͺcci LIC product and its comparison with other products is planned in the 
future͘ This includes comparison with: ϭͿ nearshore in situ iceͬopen water observations if such observations 
are available for any of the ϭϮϬ lakes forming ice cover in LIC CDRP Vϭ͘Ϭ release ;TBDͿ; ϮͿ  NOAA͛s Interactive 
Multisensor Snow and Ice Mapping System ;IMSͿ daily ϭ km global product ;available since December ϮϬϭϰͿ; ϯͿ 
daily ice charts of the Great Lakes produce by the North American Ice Service; and ϰͿ weekly ice fraction 
product from the Canadian Ice Service͘ Ice cover observations from these various sources will also be valuable 
for assessing the quality of LIC CDRP VϮ͘Ϭ prior to its release͘ 
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ϲ. Lake Water-Leaving Reflectance (LWLR) parameter 

Lake WaterͲLeaving Reflectance ;LWLRͿ, also referred to as water colour, is the measurement of the quantity 
of sunlight reaching the remote detector after interaction with the water column͘ The validation and 
comparison of the LWLR products, including LWLR, chlorophyllͲa ;ChlͲaͿ and total suspended matter ;either as 
TSM or expressed as TurbidityͿ, is based on matchups between in situ and satellite measurements͘ 

Lake WaterͲLeaving Reflectance ;LWLRͿ is the result of atmospheric correction of topͲofͲatmosphere radiance 
over water pixels͘ This correction is the result of model optimization and subject to the possibility of 
ambiguous solutions͘ The main effects that introduce uncertainty are mixing of reflectance from water and 
nearby land in the atmosphere, bottom effects, inͲwater bio optical model ambiguities and limited sensor band 
configurations to bound the mentioned numerical optimisation͘ A lack of in situ reference data and a bias 
favouring turbid, productive and large lakes in the data sets that do exist, further hampers uncertainty 
characterisation over a range of water types and lake geophysical and geospatial characteristics͘  

The problem of lacking in situ data is somewhat overcome when the endͲtoͲend validation of biogeochemical 
products derived from LWLR is concerned͘ Here, a spatioͲtemporal sampling bias still exists with most of the 
available in situ data having been collected since the launch of MERIS͘ Systematic error in the LWLR retrieval 
can be compensated in algorithm calibration͘  

ϲ.ϭ. Data description 

ϲ.ϭ.ϭ. In situ data 

The validation dataset used in this study comprised ϭϳ individual datasets from lakes and inland water bodies 
across the globe requested from the LIMNADES repository͘ This combined data set consisted of ϭϵϴϮ individual 
observations of remote sensing reflectance ;Rrs, srͲϭͿ, ϮϴϳϮϲ for ChlͲa ;mgͬmϯͿ and ϲϵϱϱ of total suspended 
matter ;TSM, mgͬmϯͿ͘  TSM measurements were more numerous than Turbidity observations͘ In the satellite 
products the two are interchangeable through a single conversion factor so results will be comparable͘ 

ϲ.ϭ.Ϯ. Satellite data 

Due to scarcity of recent in situ data for the OLCI observation period, the validation study described in this 
section is still based on MERIS͘ The ϯrd reprocessing of MERIS full resolution LϭB data was used for CDRP Vϭ͘Ϭ͘ 
These were processed to LWLR by applying radiometric calibration ;SNAP toolbox, see ATBD for detailsͿ and 
Polymer ;vϰ͘ϲ; Steinmetz et al͘ ;ϮϬϭϭͿͿ͘ We note that the version of Polymer used in the CDRP vϭ͘Ϭ is the latest 
;vϰ͘ϭϮͿ but this does not cause differences in the handling of MERIS data͘ The LϭB data were masked using a 
combination of LϭB and Idepix flags ;see ATBD for detailsͿ͘ The masks applied were Cosmetic, duplicated, glint 
risk, suspect, landͬocean, bright, coastline, and invalid from the LϭB product and invalid, cloud, cloud 
ambiguous, cloud sure, cloud buffer, cloud shadow, snow ice, bright, white, coastline, land and glint risk from 
Idepix͘  

ϲ.Ϯ. Comparison methods 

Product validation of the LWLR and derived products ;ChlͲa and TSMͿ is based on comparison against in situ 
observations͘ Results presented here are for in situ validation carried out against satellite observations with 
the MERIS sensor, for which the most in situ data are available by far͘ 

The satellite matchups were extracted from ϯпϯ pixel windows with a temporal window of ϯ days͘ The mean 
value was calculated from the macroͲpixel for the MERIS path which most closely matched the time of the 
observations͘ If the same MERIS pass was found to be a valid matchͲup for multiple in situ observations from 
the same location, then the nearest in situ value in time was selected for the matchͲup͘ 



D4.1: PURGXFW 9DOLGDWLRQ DQG IQWHUFRPSDULVRQ RHSRUW 

     

 

  116/138 

Depending on which product was being validated, statistical measures of performance included the coefficient 
of determination ;RϮͿ, RootͲMeanͲSquare difference ;RMSͿ, Normalized RMS difference ;NRMSͿ, Mean 
Absolute Percentage difference ;MAPͿ and bias͘  

ϲ.ϯ. Description of work 

ϲ.ϯ.ϭ. Lake Water-Leaving Reflectance 

For waterͲleaving reflectance, comparisons between the in situ and satellite measurements were performed 
for each band͘ In this report, the atmosphericͲcorrected MERIS waterͲleaving reflectance were converted to 
remote sensing reflectance ;Rrs с  Rwͬπ ΀srͲϭ΁Ϳ to facilitate the comparison between the in situ and satellite 
measurements͘ 

ϲ.ϯ.Ϯ. Chlorophyll-a and TSM 

After extensive product validation in the GloboLakes project, the water constituent retrieval algorithms listed 
in Table ϰϬ were identified as showing individual best performance against sets of Optical Water Types ;Neil et 
al͘ ϮϬϭϵͿ͘ For ChlͲa, the algorithms included for validation are GonsϬϱ ;Gons et al͘ ϮϬϬϱͿ, the NASA OCϮ 
algorithm ;OΖReilly et al͘ ϭϵϵϴͿ, RϳϬϴͬRϲϲϱ ;Gilerson et al͘ ϮϬϭϬͿ, and QAA ;Mishra et al͘ ϮϬϭϯa; Mishra et al͘ 
ϮϬϭϯbͿ͘ For TSM, the algorithms include those of Zhang et al͘ ;ϮϬϭϰͿ, Vantrepotte et al͘ ;ϮϬϭϭͿ, and Binding et 
al͘ ;ϮϬϭϬͿ͘  

These algorithms are mapped to pixels depending on their similarity to a set of Optical Water Types ;OWTͿ, 
determined from in situ reflectance data in the GloboLakes project ;Spyrakos et al͘ ϮϬϭϴͿ͘ The assignment of 
algorithms to each OWT is shown in Table ϰϬ, which also provides the calibrated algorithm coefficients͘ It is 
noted that while the methodology of algorithm tuning is as described in Neil et al͘ ;ϮϬϭϵͿ, tuned coefficients 
may differ since the former are derived from in situ reflectance data against LIMNADES while Calimnos uses 
coefficients optimized for satelliteͲderived PolymerͲcorrected waterͲleaving reflectance ;RwͿ͘ 

Table ϰϬ Chlorophyll-a/TSM algorithms per optical water type and tuned parameters 

Product Algorithm Optical 
Water Type 
number 

Parameters Tuned 

Chl-a OCϮ 
oceancolor͘gsfc͘nasa͘govͬcmsͬatbdͬchlorͺa 

ϯ, ϵ, ϭϬ, ϭϯ aϬ, aϭ, aϮ, aϯ, 
aϰ 

Ϭ͘ϭϳϯϭ, Ͳϯ͘ϵϲϯϬ, Ͳ
Ϭ͘ϱϲϮϬ, ϰ͘ϱϬϬϴ, Ͳ
ϯ͘ϬϬϮϬ 

ϳϬϴͬϲϲϱ empirical band ratio based on 
Gilerson et al͘ ;ϮϬϭϬͿ  

Ϯ, ϴ, ϭϭ, ϭϮ a, b, c ϳϵ͘ϲϮ, Ϭ͘ϳϯϵϯ, Ͳ
ϱϰ͘ϵϵ 

SemiͲanalytical NIRͲRed band algorithm for 
MERIS based on Gons et al͘ ;ϮϬϬϱͿ͘ 

ϭ, ϰ, ϱ, ϲ aphΎ Ϭ͘ϬϮϱ 

Adapted QAA algorithm according to Mishra 
et al͘ ;ϮϬϭϯͿ 

ϳ SCDOM Ϭ͘Ϭϭϯϱ 

TSM Based on Zhang et al͘ ;ϮϬϭϰͿ ϭ, ϳ, ϭϬ a, b ϮϱϮϰ, ϭ͘ϭϭϯ 

Based on Vantrepotte et al͘ ;ϮϬϭϭͿ Ϯ, ϰ, ϲ, ϴ, 
ϭϮ 

a, b, c ϮϬϲ͘ϰ, ϮϬϰϲϬ, 
Ϭ͘ϳϵϮϭ 

Based on Binding et al͘ ;ϮϬϭϬͿ ϯ, ϱ, ϵ, ϭϭ, 
ϭϯ 

bΎSPM Ϭ͘ϲϲϰ 
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The satellite retrieved water constituent products provided in the CDRP are based on a weighted blending 
procedure, recombining the individual algorithm results with the weighting determined by their OWT 
membership scores͘ The selected algorithms are mapped to individual satellite measurement ;per pixelͿ from 
the OWTs with the topͲϯ classification scores͘ The algorithm results corresponding to those three OWTs are 
averaged using the membership score as weighting factor, after normalizing the scores between Ϭ and ϭ where 
ϭ is the highest score and Ϭ is the score of the ϰth ranking OWT͘ The derived ChlͲa or TSM satellite products 
following this procedure were compared with the in situ matchups for validation for this analysis͘  

In this report, the validation of the selected algorithms is performed based on the in situ TSM observations͘ 
Turbidity is obtained using a conversion factor of ϭ͘ϭϳ NTUͬg mͲϯ as formulated by ;Nechad et al͘ ϮϬϭϲ; Nechad 
et al͘ ϮϬϭϬͿ͘ 

ϲ.ϰ. Validation results 

ϲ.ϰ.ϭ. Validation of LWLR 

Previous roundͲrobin comparisons of atmospheric correction algorithms for MERIS carried out in GloboLakes 
showed that Polymer yielded the statistically most robust retrieval of reflectances, although a systematic 
negative bias was observed͘ This lead to Polymer being adopted as the stateͲofͲtheͲart atmospheric correction 
processor for Lakesͺcci to provide LWLR͘ Figure ϭϮϰ shows Rrs matchup results for MERIS in ϭϭ lakes at ϭϭ 
wavebands from ϰϭϮ nm to ϳϳϵ nm, for which in situ data were available in LIMNADES͘ In general, significant 
linear relationships were found between the MERIS and in situ Rrs, with the highest RϮ of Ϭ͘ϲϳ returned in the 
ϱϲϬ nm band and outliers in the blue bands associated with the hypereutrophic HARTBEESPOORTͲReservoir 
leading to the relatively worst performance͘ Systematic underestimation of MERIS Rrs is still observed͘ From 
inspecting the individual components of the atmospheric correction procedure, the underestimation is 
understood to be the result of overestimating the atmospheric path radiance with increasingly turbid waters, 
rather than a failure of the inͲwater bioͲoptical model or glint retrieval͘  

 
Figure ϭϮϰ Comparison between in situ and MERIS Rrs in each band 

To show the level of spectral consistency in the validation data set, Figure ϭϮϱ presents averaged spectra of all 
Rrs matchups for each individual lake͘ There is general agreement between the in situ and satellite derived 
reflectance spectra, with the exception of the CuerdaͲdelͲPozo Reservoir͘ 
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Figure ϭϮϱ Spectral comparison of in situ and MERIS Rrs 

ϲ.ϰ.Ϯ. Validation of chlorophyll-a products 

Scatter plots of ChlͲa validation results for each preͲtuned algorithm are shown in Figure ϭϮϲ, using the whole 
data set regardless of optical water type classification͘ For the OCϮ algorithm, although it returned the highest 
Normalized Root Mean Squared Error ;NRMSͿ of ϭϳϮй, the differences are evenly distributed around unity 
resulting in a slope of linear regression line close to ϭ͘ Saturation of the algorithm appears, as may be 
expected, at concentrations х ϭϬ mg mͲϯ͘ Algorithms RϳϬϴͺRϲϲϱ, GonsϬϱ, and QAA show a general 
overestimation at low ChlͲa values, and an underestimation at high ChlͲa values͘ The highest RϮ of Ϭ͘ϰϮ and 
lowest NormalizedͲRootͲMeanͲSquaredͲError ;NRMSͿ of ϯϴй are returned by the QAA among the four 
algorithms͘ 
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Figure ϭϮϲ Comparison between in situ and MERIS-derived chlorophyll-a using the (a) OCϮ, (b) 
RϳϬϴ_Rϲϲϱ, (c) GonsϬϱ, and (d) QAA algorithms. 

 

The agreement between in situ and satellite retrieved ChlͲa improves dramatically when the 
input algorithms are blended according to the perͲpixel Optical Water Type membership ;Figure 
ϭϮϳͿ͘ The regression line is close to unity, with an RϮ of Ϭ͘ϲϵ and NRMS of ϳϴй, both measured in 
log space͘ 
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Figure ϭϮϳ Comparison between in situ and top-ϯ blended chlorophyll-a derived from MERIS. 

 

ϲ.ϰ.ϯ Validation of Total Suspended Matter products 

The performance of individual TSM algorithms is shown in Figure ϭϮϴ, comparing in situ TSM measurements to 
those retrieved from MERIS matchup data͘ A general underestimation at the high TSM section was observed 
for all of the three algorithms͘ The slope of the regression line ;expressed in linear scalingͿ for the Zhang 
algorithm approached unity with an intercept of ͲϬ͘Ϯϵϲ g mͲϯ suggesting systematic underestimation͘ The 
Vantrepotte algorithm showed the lowest NRMS ;ϱϴйͿ among the three algorithms, although the lowest RϮ 
;Ϭ͘ϮϵͿ was also returned by this algorithm indicating it lacks broad sensitivity͘ The Binding algorithm showed 
the highest RϮ of Ϭ͘ϲϱ and with the largest NRMS of ϲϱй͘ The Binding algorithm shows no decrease in 
sensitivity with increasing concentrations, despite the increasing bias͘ These results suggest that a reͲtuning of 
the Zhang and Binding algorithms from the original analysis carried out in the GloboLakes project would likely 
improve overall performance͘  

 
Figure ϭϮϴ Comparison between in situ and retrieved TSM using the (a) Zhang, (b) Vantrepotte, and (c) 

Binding algorithms. 
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Agreement between the in situ and satellite retrieved TSM slightly improved with algorithm blending by OWT 
membership ;Figure ϭϮϵͿ͘ Negative bias at the high TSM values is significant and confirms that reͲturning of 
the algorithms, particularly the Binding algorithm, will likely improve the results͘ At present, the RϮ is Ϭ͘ϲϭ with 
NRMS с ϱϰй͘  

 
Figure ϭϮϵ Comparison between in situ and top-ϯ blended TSM 

 

ϲ.ϱ. Conclusions and recommendations 

The Lakesͺcci has inherited a large body of work to dynamically map algorithms to optical water types from 
the GloboLakes project͘ However, much of this work has not yet been fully published while the availability of in 
situ data has somewhat improved since͘ Thus it comes as no surprise that further algorithm optimisation is 
essential͘  

A systematic negative bias was observed in the Rrs, due to the challenges that are faced with accurately 
performing atmospheric correction in optically complex inland waters͘ This underestimation in Rrs is 
propagated to the derived ChlͲa and TSM, but corrected again by endͲtoͲend algorithm tuning͘ This is a 
necessary extra step because in situ matchup data of ChlͲa and TSM are far more numerous than those 
including Rrs͘ 

Validation of the ChlͲa algorithms shows that the weightedͲblending procedure dramatically improved the 
retrieval performance compared to that of the individual algorithms͘ For TSM, the agreement between the in 
situ and satellite retrieved TSM slightly improved after the blending stage compared to the individual 
algorithms, which show room for individual improvement using currently available data sets͘  

The validation presented in this report is only based on the MERIS matchups, because of the scarce in situ data 
availability for other sensors͘ Further community effort and plenty of patience are likely required to fill these 
data gaps͘ Analyses completed in the Copernicus Land Monitoring Service, which uses the same configuration 
of Calimnos, have shown that there is consistency between perͲlake time series of ChlͲa and Turbidity 
observed with MERIS ;ϮϬϬϮͲϮϬϭϮͿ and OLCI ;ϮϬϭϲͲpresentͿ, which strongly suggests that the same algorithms 
may be applied to both sensors until further in situ reference data become available͘ However, the additional 
bands available on OLCI may well be able to improve on aspects of the retrieval of both LWLR and the derived 
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biogeochemical products͘ An independent validation of algorithms for MODIS is expected to accompany CDRP 
vϮ, necessitated by differences in band configuration of MODIS compared to MERIS and OLCI͘  

Finally, it should be noted that, thus far, algorithm calibration, validation and uncertainty characterisation have 
made use of all available data for each analysis͘ In future, data sets of sufficient density will need to be split 
into calibration and validation data sets, with the latter contributing to the characterisation of product 
uncertainty͘  
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Appendix A. Hydrolare Comparison 
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Appendix B. Water Office Canada Comparison 
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