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1. Overview 

This document contains product validation results accompanying the second release (v1.1) of the the Lakes_cci 

dataset. The major change is the improvment of the LIC Algorithm (see RD- 1) The Lakes_cci project has three 

stages of product validation: 

 

• Validation of individual thematic variables based on direct comparison between remote sensing products 

and in situ data or other remoting sensing datasets 

• Consistency between these variables through five use cases 

• Feedback from users of the data set 

 

The purpose of this document is to summarize the results of the different thematic products (LWL, LWE, LSWT, 

LIC and LWLR) according to the activities described in the Product Validation Plan (RD- 2).  
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2. Lake Water Level (LWL) parameter 

2.1. Data description 

Lake Water Level is the measure of the absolute height of the reflecting water surface beneath 
the satellite with respect to a vertical datum (geoid) and expressed in metres. The time series 
has been computed from multiple altimetry satellites since late 1992 to 2018 inclusive. The time 
periods used for each satellite/instrument are provided in Table 1 but may vary from one lake to 
the other, depending on the orbits of the satellites with respect to the location of the lake All 

missions has been used when the data were available and valid, however during tandem overlapping phase 
(TOPEX/Poseidon/Jason1, Jason1/jason2, Sentinel3A/Sentinel3B) we always test what is the most precise 
solution before choosing the data used in the time series. Therefore, from one lake to another one, the month 
of the year used for a given mission may change. 

 

Table 1. Time periods for the satellite/instrument used to generate the lake product 

Satellite Instrument Time Period 

TOPEX/Poseidon (T/P) Poseidon-1 08/1992 – 01/2002 

Jason-1 Poseidon-2 12/2001 – 07/2013 

Jason-2 Poseidon-3 06/2008 – 10/2016  

Jason-3 Poseidon-3B 01/2016 – present 

Envisat Radar Altimeter (RA-2) Mission: 03/2002 – 10/2010 

Cryosat-2 SAR interferometric Radar Altimeter (Siral) 04/2010-2015 

SARAL AltiKa 02/2013 – 07/2016 

Sentinel-3a SRAL 02/2016 – present 

Sentinel-3b SRAL 01/2019 - present 

 

A detailed description of the product generation is provided in the Algorithm Theoretical Basis Document 
(ATBD) with further information on the product given in the Product User Guide (PUG) 

 

2.2. Comparison methods 

2.2.1. Comparison with in situ data 

External in situ data are useful to assess the quality of the LWL products. The comparison with these products, 
using different datums and different dates, is not straight forward. However, it provides information on the 
product precision and accuracy.  The list of datasets used is provided in Table 2 

 

Table 2. In situ databases for LWL validation 

Dataset name Description  

Hydrolare The International Data Centre on Hydrology of Lakes And 
Reservoirs provides data on mean monthly water level of nearly 
1200 water bodies. The Centre operates under the auspices of 
WMO and a detailed protocol developed by the International 
Steering Committee of the Centre and agreed by WMO.  

hydrolare.net


D4.1: Product Validation and Intercomparison Report 

     

 

  9/152 

Dataset name Description  

Hidricos Argentina The database base of Hidricos Argentina provides in-situ data on national 
rivers and lakes. 

USGS The database of US Geological Survey provides in situ data  

US Army  The Army Corps of Engineer provides in-situ data on Great Lakes. All levels 
are referenced to the International Great Lakes Datum of 1985 (IGLD 85 

Water Office Canada This database contains in situ historical hydrometric data in Canada. 

  

 

2.2.2. Dedicated field work  

The second comparison method is the base on 15 years of the dedicated field work in the framework of 
satellite altimetry cal/val programmes over lake Issykkul.  

2.3. Description of work 

About the situ comparison method, interpolation of LWL product to the dates of in situ measurements are first 
performed, then the mean bias between in situ and satellite time-series is calculated. A bias is always detected 
since satellite time series and in situ measurements are never given using the same geodetic reference frame. 
Some results of these comparison are given in Cretaux et al. (2016) and Ričko et al. (2012). 

Drift can subsequently be adjusted if it is observed. Root-mean-square differences of unbiased time series are 
calculated, for the complete timeseries and for the Jason 3 and Sentinel 3A missions. 

Concerning the dedicated field work, it is based on 15 years experiments over the lake Issykkul in Centreal Asia.  
This large lake (6000 km2) was selected in 2004 to serve as a dedicated calibration / validation site for satellite 
altimetry over lakes. It has the advantage of overpasses by all past, present and future altimetry missions. The 
instrumental concept for the field work is widely described in several publications (Cretaux et al. 2009, 2011, 
2013, 2018, Bonnefond et al. 2018). In brief, the field work is organised yearly or bi-yearly after consulting the 
ephemerides of the satellites. GPS levelling of the lake surface is performed along the satellite tracks using a 
GPS system. In situ fixed instrumentation allows to assess the stability of the LWL product, and also to validate 
the atmospheric and geodetic corrections. The main purpose is to perform full error budget analysis including 
the range measurements using different retracking algorithms (so called ice-1, Ice-2, ocean) and also the 
different corrections (ionosphere, troposphere, geoid). In 2020 in the framework of calibration / validation of 
Sentinel-3A/B missions, a similar experiment will start in Lake Baikal in Russia. 

 

2.4. Result analysis 

2.4.1. Comparison with Hydrolare  

Thanks to the collaboration with the International Data Centre on Hydrology of Lakes and Reservoirs, 
Hydrolare, the information on ten lakes was provided in a monthly time step. Two indicators were estimated: 
Bias and RMS (Table 3).  These values were estimated for each lake for the full time series of nearly 30 years 
including data from all missions. Since 2016, the indicators were separately evaluated for Jason 3 and Sentinel 
3A missions.  In some cases, the bias is high (up to 2.3m) and suggest that, even if the precision is good, the 
accuracy of the LWL products should be considered carefully by users.  Appendix A contains the figures 
corresponding to each lake. 

bdhi.hidricosargentina.gob.ar
https://www.usgs.gov/
https://www.lre.usace.army.mil/Missions/Great-Lakes-Information/Great-Lakes-Water-Levels/Water-Level-Data/
https://wateroffice.ec.gc.ca/
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Table 3. Hydrolare  LWL comparison 

Lake Name Multi satellite Jason 3 
(since2016) 

Sentinel 3A 
(since 2016) 

Time period Bias (cm) RMS(m) Bias (cm) RMS(m) Bias (cm) RMS (m) 

Baikal 1992/09 - 2015/12 0,975 0,093 - - - - 

Bratskoye 1992/09 - 2015/12 74,302 0,275 - - - - 

Caspian 1992/09 - 2016/12 30.845 
 

0.062 36.020 0.052 34.700 0.050 

Issykkul 1992/09 - 2017/12 -232.984 0.045 
 

-231.098 0.017 -231.252 0.017 

Khanka 2000/01 - 2018/12 101.989 0.19 - - - - 

Kuybyshevskoye 1992/09 - 2018/12 26.550 0.228 29.802 0.082 23.132 0.207 

Ladoga 1992/09 - 2018/12 -3.727 0.053 -6.217 0.026 -6.387 0.025 

Onega 1992/10 - 2018/12 39.7111 0.059 34.536 0.038 34.837 0.042 

Rybinskoye 1992/09 - 2014/12 10.122 0.178 - - - - 

Superior 1992/09 - 2017/12 -59.093 0.042 -62.369 0.011 -62.495 0.013 

 

The rms value for both missions Jason 3 and Sentinel 3B is very similar. This value is lower for the last two 
missions than for the overall period, indicating a better estimation of the LWL for the current missions. 
Concerning the bias, it’s a point of system reference for the measurement. We are therefore more interested 
in the variability (Appendix A) and the correlation indicated by the Pearson coefficient. 

2.4.2. Comparison to Hidricos Argentina 

The information concerning the variation on the Water Lever for lake Argentino and lake General Carrera were 
obtained online from the Base de datos Hidrologica integrada (BDHI): bdhi.hidricosargentina.gob.ar. For those 
lakes two indicators were evaluated (Table 4): the RMS of the variations and Pearson coefficient, indicating the 
correlation between time series.  

 

Table 4. Hidricos Argentina LWL Comparison 

Lake Name Time period RMS(m) Pearson 

Argentino 1992/10 - 2019/12 0.159 0.969 

General Carrera 2008/09 - 2014/10 0.387 0.582 

 

Since for General Carrea the comparison period ends before 2016, analysis of performance in current missions 
is not possible. Concerning Argentino lake, the Pearson coefficient is 0.995 and 0.991 for Jason 3 and Sentinel 
3A missions respectively showing a very strong correlation between the time series. This is also indicated by 
the low value of the RMS for missions: 0.063m and 0.079m for Jason 3 and Sentinel 3A 

 

Figure 1 and Figure 2 show the comparison of the LWL variation from CCI lakes and Hidricos Argentina for lakes 
Argentino and General Carrera respectively. For Argentino lake, there is a very good correlation between time 
series, also indicated by a Pearson coefficient near to 1. However, for General Carrera lake, this correlation is 
less strong. The accuracy of the LWL estimation depends on multiple factors: size and shape of the lake, 
location of the satellite track over the lake, mean depth of the lake. The General Carrea shows a high 
variability.  

 

https://groupcls.sharepoint.com/sites/SVVA/Shared%20Documents/C3S-LAKES/05_TECHNICAL/DELIVERABLES/bdhi.hidricosargentina.gob.ar
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Figure 1. Hidricos Argentina  comparison for the lake Argentino (red: Lakes_cci, blue: Hidricos Argentina) 

 

 

 

Figure 2. Hidricos Argentina comparison for the lake General Carrera ((red: Lakes_cci, blue: Hidricos 
Argentina)) 
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2.4.3. Comparison to USGS 

The information concerning the variation on the Water Lever for lakes Michigan and Des Bois were obtained 
online from the US Geological Survey database (USGS). For those lakes, as for the previous comparisons the 
RMS of the variations and Pearson coefficient were evaluated (Table 5). Figure 3 and Figure 4 show the 
comparison of the LWL variation from CCI lakes and UGS. 

 

Table 5. USGS  LWL Comparison 

Lake Name Time period RMS(m) Pearson 

Des Bois 1992/09 - 2019/02 0.217 0.668 

Michigan 1997/09 - 2019/10 0.084 0.965 

 

 

 

Figure 3. USGS comparison for the lake Des Bois 
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Figure 4. USGS comparison for the lake Michigan 

 

It should be noticed that although in situ data are generally considered as the truth, which is valid most of the 
time, they may also present severe limitations. Some periods of time are not covered at all with in situ data. 
Some human errors in the data collection are also happening sometimes as we see it with the lake Onega. In 
other case like for the lake Michigan or the Caspian Sea, it exists several in situ instrumentations that provide 
different values of LWL. Sometimes this can be easily explained by local effect at high frequency (like the 
Seiche effect) sometimes it is less understandable. For example, we see that with two sources for the lake 
Michigan, the US army corps (Figure 5), and the USGS, the LWL present drifts and systematic disagreements. 
We can see with the USGS data between 1998 and 2004 when compared to the data of US army. In the first 
case the comparison with the altimetry shows big disagreements while in the second case the correlation and 
the RMS are much better. 

 

 



D4.1: Product Validation and Intercomparison Report 

     

 

  14/152 

 

 

Figure 5. US Army  comparison for the lake Michigan (red: Lakes_cci, blue: Hidricos Argentina) 

 

 

2.4.4. Comparison to Canadian Water office 

The Water Office of Canada contains information on the water levels and flood for multiple Canadian lakes and 
rivers at several time resolutions. Monthly historical data  for 19 lakes included in first version of the CCI lakes 
dataset were obtained on-line: https://wateroffice.ec.gc.ca/mainmenu/historical_data_index_e.html.  

The three indicators used with the previous in situ datasets: Bias, RMSE and Pearson Coefficient were 
evaluated.  Figure 6  and Figure 7 show respectively the Pearson coefficient and RMS value for the 19 lakes 
compared.  Most of them have a high Pearson coefficient showing a good time series correlation. Appendix B 
contains the figures of timeseries, variation and unbiased absolute difference for each lake. For the lakes with 
low value of Pearson coefficient, there a variety of reasons for this: 

• In some cases, as for the lakes Aylmer or Caribou, there is small amount of in situ data 

• In other case, as for the lakes Great Slave or Williston, the altimetric level value couldn’t be estimated 

• Some outliers, as for the Ontario lake, will affect the correlation between timeseries 

In these cases, the low Person coefficient does not actually represent a poor correlation between time series. 

https://wateroffice.ec.gc.ca/mainmenu/historical_data_index_e.html
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Figure 6. Pearson coefficient CCI Lakes -  Water Office Canada. 

 

 

Figure 7. RMS Value. CCI Lakes – Water Office of Canada 

 

2.4.5. Field work experiments 

Figure 8 shows an example of LWL altimetry measurements with Sentinel 3 along two tracks (666 and 707) 
against in-situ measurements over Issykkul lake. There is an excellent correlation between both series (99%) 
and a low value of RMS (Figure 9)  
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Figure 8. Sentinel 3 vs In-situ measurements for Issykkul Lake 

 

Figure 9. Correlation between Sentinel 3 vs In-situ measurements for Issykkul Lake 

 

2.5. Conclusions and recommendations 

We have validated the Lake Water Level, one of the lakes__cci products by comparing the timeseries to 
multiple external datasets of in situ measurements.  Globally, there is a very good correlation with external 
datasets from different organisations with data in different regions of the world.  
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Validation of the Lake water level highlights that, given that LWL being a multi-mission product, the quality of 
the results may differ over time. In this context a reprocessing of past missions can be very beneficial and is 
recommended in future generation of datasets 

The different comparisons will help us to determine where improvements in the data processing are still needed: better 
identification of outliers, re-analysis of past missions like Topex / Poseidon, ERS2 or Envisat, and better calculation of some 
inter-satellite biases. 

 

We would like to thank Prof. Valery Vuglinskiy (State Hydrological Institute, 23, 2nd Line, Vassilievsky Island, 
199053, St Petersburg, Russia) for having provided us with in-situ data from Hydrolare lakes. 
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3. Lake Water Extent (LWE) parameter 

3.1.  Data description 

3.1.1. Optical Data 

Landsat 5 and 8 images and Sentinel2 time series have been exploited to derived LWE over a set of test site’s 
lakes. 

It has to be noticed that the rules for accessing Sentinel2 imagery have changed during the project. At the 
beginning most of the imagery was accessible directly on-line. At the present time only the recent images are 
accessible whereas the historical ones, i.e. the 4 last years are off-line and must be requested. When exploiting 
the ESA Sc Hub, this procedure is very time consuming, for example to access and download 23 products over 
the Argentino lakes, it took more than 5 days. 

 Landsat 5 TM TOA Reflectance: 

Landsat 5 TM calibrated top-of-atmosphere (TOA) reflectance were exploited. Calibration coefficients are 
extracted from the image metadata. See Chander et al. (2009) for details on the TOA computation.(Earth 
Engine Data Catalog). 

 

Table 6: Landsat 5 wavelengths and resolution  

 

 Landsat 8 TOA Reflectance 

Landsat 8 calibrated top-of-atmosphere (TOA) reflectance. Calibration coefficients are extracted from the 
image metadata. See Chander et al. (2009) for details on the TOA computation. (Earth Engine Data Catalog). 

 

http://www.sciencedirect.com/science/article/pii/S0034425709000169
http://www.sciencedirect.com/science/article/pii/S0034425709000169
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Table 7: Landsat 8 wavelength and resolution 

 

 Sentinel-2 L1C/L2A  

3.1.1.3.1. Sentinel 2 Radiometric Resolutions  

Table 8: Landsat 8 wavelength and resolution 

 

More details can be obtained at ESA: Radiometric. 

3.1.1.3.2. Level-1C 

The Level 2 Sentinel 2 images is not systematically produced all over the world. By the way it is Level 1C data 
that have been proceed.  Level-1C product provides orthorectified Top-Of-Atmosphere (TOA) reflectance with 
sub-pixel multispectral registration. Cloud and land/water masks are included in the product. 

More details can be obtained at ESA: Level-1C Processing  for details. 

https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/resolutions/radiometric
https://earth.esa.int/web/sentinel/technical-guides/sentinel-2-msi/level-1c-processing
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3.1.1.3.3. Level-2A 

Level-2A product provides orthorectified Bottom-Of-Atmosphere (BOA) reflectance with sub-pixel 
multispectral registration. A Scene Classification map (cloud. cloud shadows. vegetation. soils/deserts. water. 
snow. etc.) is included in the product. 

More details can be obtained at ESA: Level-2A product for details 

3.1.2. SAR data 

The SAR data used to calculate the LWE are Sentinel-1 images acquired in the Level-1 Interferometric Wide 
Swath (IWS) mode. NORCE has employed these data in Ground Range Detected (GRD) format while TRE-
Altamira has employed Single Look Complex (SLC). GRD images contain the detected amplitude and multi-
looked to reduce the impact of speckle. SLC images preserve phase information and are processed at the 
natural pixel spacing. IW mode is a dual-pol acquisition mode. In this case, images are acquired in both VH and 
VV polarization. Except for some particular cases, the SRTM DEM has been used for geocoding purposes. 

Table 9: Sentinel-1 employed data spatial resolution 

Mode 
Resolution 

rg x az 
Pixel spacing 

rg x az 
Number of looks ENL 

GRD IW 20x22 m 10x10 m 5x1 4.4 

SLC IW 
2.7x22 m to 

3.5x22 m 
2.3x14.1 m 1x1 1 

 

A database of Envisat ASAR WSM data is available which has been also used for some lakes. ASAR WSM data 
has in general coarser spatial resolution, and only one polarization so the quality is in general poorer than for 
S1 data. 

3.1.3. Exogeneous database exploited as inputs 

 Global Surface Water database  

The European Commission's Joint Research Centre developed this new water dataset in the framework of the 
Copernicus Programme. This maps the location and temporal distribution of water surfaces at the global scale 
over the past 32 years and provides statistics on the extent and change of those water surfaces. The dataset 
produced from Landsat imagery (courtesy USGS and NASA) will support applications including water resource 
management, climate modelling, biodiversity conservation and food security.(EU Open Data Portal). 

 Lakes contours database  

The analysis is done at a given lake scale. To that matter a precise contour of the lake shore is requested, 
allowing to decrease processing time but more important to limit artefacts related to the lake’s environment. 

Whereas exploitation of Medium or low resolution satellite imagery for LWST or LWSR, is based on the analysis 
of “pure” water bodies, considering that parameters retrieval is done based on the lake AOIs plus a kilometric 
buffer, for the lake water extent, the investigation is focused on the much precise as possible shore line. This is 
not a simple limit; for lots of areas, related to water level increase, the water surface’s expansion is observed 
on shoreline, but also on bordering wetlands.  

So, for MR and LR satellite imagery exploitation, a relative rough definition of the Area of interest is sufficient, 
and the buffer application would correct some potential mistake. Then for exploitation of HR satellite imagery, 
such as Sentinel2, is requiring a precise definition of the AOIs,  this can be done exploiting the CCI lakes AOIs 

https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/processing-levels/level-2
https://data.europa.eu/euodp/en/data/dataset/jrc-gswe-global-surface-water-explorer-v1
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database, or the Hydrolakes database derived from the SRTM mission  and containing  1,4 millions of lakes 
larger than 10 ha, (https://www.hydrosheds.org/pages/hydrolakes) but more often in the WP6, the AOIs were 
at least validated based on Sentinel 2 imagery acquired at different hydrological period, and when requested  
modified. 

 

 

 

 

 

Orange: CCI lake  AOI 

 

 

 

 

Blue: Hydrolake  AOI 

 

 

Sentinel 2 image acquired on the 
2019-05-14 

Presenting water inundating the 
North Western and South Western 
branch 

 

 

 

Red: AOIs defined and exploited in 
order to include the two “’arms” 
that correspond to wetlands more 
of less inundated due to water 
level increase. 

Figure 10. Comparison of AOIs contours: case of Bosten lake (PR China). 

 

https://www.hydrosheds.org/pages/hydrolakes
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Figure 11. Comparison of AOIs contours: case of Khanka Lake (PR China-Russia) with in orange CCI Lakes AOIs, 
in blue, Hydrolake and in red exploited AOI for Sentinel2 exploitation.  

 

When comparing, with a Sentinel2, 2019-08-03, it is well noticeable that the AOIs proposed by both Hydrolakes 
and CCI lakes database are too restrictive, as excluding the wetlands in the North and South East parts of the 
region. 

3.2. Comparison of methods  

3.2.1.  Comparison of methods for optical sensors (VIS_NIR_SWIR) 

The aim of this part is to compare lakes area and lakes vector extracted from sentinel-2 and Landsat images 
with different classifiers. Initially two none supervised approach: OTSU and K-Means and two supervised ones. 
SVM and Random forest have been applied on the data set over the lakes’ test. Finally, for this comparison of 
the results from the optical processing approaches only OTSU SVM and Random forest are discussed. 

 Description of work 

A selection of lakes with various characteristic, i.e. spectral behaviours of shallow waters, environment more or 
less arid, relief, presence of ice and/or snow etc.. (Table 10 and Table 11)   have been done. The results 
obtained over these lakes based on different processing approaches have been compared.  

More precisely, this analysis was done in three steps. In a first one, a relative long time series of images was 
selected for a first set of lakes. In a second time, a specific inter comparison was done on a short dense time 
series over Chad lake covering a field period survey. At least a third time, for consolidation of the approach, as 
well as investigated a better parametrization of the process, such as the Random Forest (RF) approaches, an 
additional set of lakes, with a relative low amount of images, 6 to 8, was selected in order to present different 
levels’ state of theses lakes. 

 

Table 10: Major characteristics of the Chad lake case study and the second set of the analysed lakes 

 
Altevatnet 

Norway 

Colhue 

Argentina 

Namtso 

China 

Alakol 

Kazakhstan 

Sassykkol 

Kazakhstan 

Chilwa 

Malawi 

Al Hamar 

Irak 

Shadow 
water 

 XXX    X XXX 

ice XXX  XXX XXX XXX   
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Altevatnet 

Norway 

Colhue 

Argentina 

Namtso 

China 

Alakol 

Kazakhstan 

Sassykkol 

Kazakhstan 

Chilwa 

Malawi 

Al Hamar 

Irak 

snow XXX  XXX XXX XXX   

Topographic 
position 

XXX       

Local 
environment 

XXX XXX XXX XX XX XXX XX 

sunglint   XXX     

Floating 
vegetation 

     XXX XXX 

Lake dynamic X XXX X X X XXX XXX 

 

Table 11: Major characteristics of the Chad lake case study and the second set of the analysed lakes 

 Chad 
Argentino 

Argentina 

Bosten 

China 

Khanka 

China Russia 

Illmen 

Russia 

Sary kamysh 

Turkménistan - 
Ouzbékistan 

Shadow water X  X X X  

ice  XXX XX XXX XX  

snow  XXX  XXX   

Topographic 
position 

 XXX     

Local 
environment 

XX   X  X 

sunglint       

Floating 
vegetation 

XX  X XX X  

Lake dynamic X  XX  XX X 

 

3.2.2. Validation of LWE derived from HR optical sensors based on VHR sensors 

Validation of water extent is pure and great challenge by itself. Few methods can be investigated:  

• Comparison of LWE with databases. There are lot of limitations, genes of the database, such as the 
resolution of the input data, the date/period, a LWE can change greatly from date to date, a year to 
another.  

• Field comparison by surveying the water bodies limits walking along the shore with a GPS tracking, or 
using a boat or kayak to follow the shore. It is not always possible to walk around lake, all there are 
the question of the accessibility of the lake. In case of shallow water, what is the exact distance 
between the boat and the shore, a tens of meters (or more) that represents two to five/ten Sentinel 
pixel.  

• Extract LWE from satellite of high and very high resolution. 

The last approach is according to us the most promising. Therefore, it is not so convenient to be implemented, 
it requested pair of HR and VHR images acquired within a very short time. The data have to cover if possible, 
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the targeted lake as a whole, englobing the surrounding areas. Most of the time, and it is particularly the case 
with CCI lakes that are large lakes. So on in most of case only a part of the lake is covered by the two sensors 
and so what is the representativity of the covered area. And, of course, when VHR data have to be ordered it 
can be a costly approach.  For this reason, an agreement with the CNES, French Space Agency was initiated in 
order to order a low coast VHR SPOT 6-7 or Pleaides imagery and share these data with the WP6 team. 
Therefore, the analysis of the catalogues was not so successful and this approach was abandoned. Hopefully in 
parallel, CNES was able to order VHR Pleiades images over large reservoirs in France, the Der and Orient lakes, 
and this during a dynamic period of infilling. 

 Location of the test areas 

The Der and Orient lakes, located in the East of Paris, within the Champagne area region, are part of the Seine 
River flood management systems.  

The Der lake is the largest artificial reservoir in France, with a surface around 48km2, for a maximal depth of 
18m, the Orient water surface is 22 km2 for a maximal depth of 22 m. The functioning of the reservoir is the 
following:  

 Water is taken from the rivers, i.e. Marne River for Der lake, la Seine River for Orient lake, from November / 
December to June, thus filling the reservoir. From July to October, water is released to support the flow of 
rivers. As a result, water surfaces change considerably during the year, for the Der lake going from around 40 
square kilometers during the high season, to less than ten square kilometers during the very low water period. 

 

Figure 12. Location of the Der lake and Orient Lake. 

 

 Exploited data 

The lakes are located within an Overlapping part of Sentinel 2 tracks, allowing up to 14 acquisitions by month. 
So, it was an ideal case to order VHR Pleaides imagery, knowing that the acquisition will by the way have at 
maximal one day of delay between the VHR and HR data.  

Finally, two pairs of Pleiades HR data, 70 cm of spatial resolution, a panchromatic channel and 4 visible ones 
from blue to near Infrared channels, were acquired on the 30 of December, with a delay of one day with 
Sentinel2 and 6 of January 2020, same date as a Sentinel2 acquisition. 
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Figure 13. The Der Lake; as viewed by Pleiades on the 30 of December 2019, and on the 1 of January 2020 

 

From the Pleiades and Sentinel2 data, LWE were extracted for each date and each reservoir based on a SVM 
approach. 

 

 Results 

When comparing the LWE derived with Pleaides and Sentinel 2 data acquired within 24 hours, the difference in 
term of surface are very low, i.e. one 29.07 km2 for Sentinel 2, and 30.58 km2 for Pleiades. 95% of Pleiades 
Water is recognized by Sentinel 2. There is a very low level of commission, 0.05 km2. 

 

 

 

 

Figure 14. Omission and commission over lake de Der when exploiting VHR and HR images acquired with a 24h 
of delay 
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When the acquisition of the VHR and HR images was the same day, 95,5% of Pleiades Water is recognized by 
Sentinel 2. Of course, there is an effect of resolution i.e. 10 m versus 0.70m. The shoreline is off course much 
finer on the VHR derived LWE. Therefore, the omission is relatively low, and the commission very low.  

This case of study allows also to evaluate, in the context of infilling reservoir, the part of the 24h of delay 
between the two acquisitions.  

When data are acquired the same day, the space occupied along the shore of the omission is very narrow, in 
fact the shoreline corresponds to a staircase, of swatooth’s effects, alternating omission and commission pixel. 
An effect that is related in fact to the difference of spatial resolution.  

Where, the LWE represent two stages of infilling, we observe a large omission belt around the lake shore.  This 
belt in fact corresponds to the increase of the surface of water within one day. So, of course, what is seen as 
water on the Pleiades image, cannot be described as water on the Sentinel2 image acquired a day before. 

 

 

Figure 15. Comparison of LWE accuracy derived with one day of delay between the Sentinel2 and Pleaides 
acquisitions and the same day (right). 
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Figure 16. Omission and commission over lake de Der when exploiting VHR and HR images acquired quasi 
simultaneously. 

 

 

 

3.3. CCI test sites result analysis 

3.3.1. Results analysis for optical sensors-based approaches 

As indicated, a first analysis was conducted lake by lake. An analysis of each important difference/gap from an 
approach to another one was done and commented. 

 Altevatnet Lake  

Altevanet Lake is a narrow long lake, i.e. 2*38 km2, within an incisive valley is located rather north of Norway: 
68°N. This Northern location induces the presence of snow/ice on the lake shores as well as relatively low solar 
position. The analysis of the observed gaps can be related to these characteristics. 
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Figure 17. LWE derived from optical imagery based on different approaches over Altevatnet lake. 

 

Observations based on the graphic and vector extractions analyse are the following: 

• On the S2 image of the 23/10/2017. OTSU’s overestimation caused by snow. 

• On the images of the 30/07/2016. 22/10/2016. 30/06/2017. 05/09/2017 & 23/10/2017 RF’s generates 
an underestimation caused by low reflectance (lower than training image) and wisp of cloud. 

• In some case, SVM classifies shadows into water’s class. Same problem can also be observed when 
applying RF. 

 

  

OTSU: commission snow/water SVM: shadows classified as water 

RF’s generates an underestimation caused by low reflectance (lower than training image) and wisp of cloud 

Figure 18. Omission and commission observed over Altevatnet lake 
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In addition, over the Altevatnet site, Otsu and Otsu Canny approaches were tested. It is appearing that the 
OTSU Canny is more restrictive on water, therefore it is also OTSU Canny that is more strongly influenced by 
shadows, snow, clouds. 

 

  

OTSU applied over a Sentinel2 image acquired the 
17-06-2018 over Altevatnet lake 

Canny-OTSU applied over a Sentinel2 image 
acquired the 17-06-2018 over Altevatnet lake 

  

OTSU applied over a Sentinel2 image acquired the 
27-07-2018 over Altevatnet lake 

Canny-OTSU applied over a Sentinel2 image 
acquired the 27-07-2018 over Altevatnet lake 

Figure 19. Comparison of Otsu and Canny-Otsu results.   

 

 Colhue Lake  

Colhue Lake. It is located in a tectonic depression reshaped depression by wind and fluvial activities on the 
Western margin of the Patagonian plains and it is protected from Western rains by a North South a ridge of 
600m.  It is a shallow lake that knows fluctuations in terms of precipitations and rivers discharges resulting on 
LWE variations at least from 1998 to 2015. The analysis of the Sentinel 2 time series indicates that for the bear 
period, i.e. 2015-2017, the lake known a period of total dryness and of rapid infilling. 
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Figure 20. LWE derived from optical imagery based on different approaches over Colhue Lake. 

 

Over Colhue Lake, the difference processing’s approaches provided very similar results  

Observations based on the graphic and vector extractions are the following: 

• Main differences between methods are caused by the misidentification of the water/non-water limits. 
SVM and RF classify muddy part of the lake/trickles of water.  

• SVM classify also some vegetation as water surface. Not detected by RF. 
 

 

Commission between vegetation and water, when applying SVM on Sentinel2 image 
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Vegetation not detected as water, when applying RF Tile on Sentinel2 image 

Figure 21. Analysis and comparison between SVM and RF Tile approaches over vegetated areas bordering the 
Colhue Lake. 

 

In addition, over this test site, Otsu and Otsu Canny approaches were tested. The obtained results are for this 
case very similar.  

  

Figure 22. OTSU (left) and Canny-OTSU (rigth) applied on a Sentinel2 image acquired the 27/02/2019 

 

 Namtso Lake  

Namtso Lake is a large water bodies of 1900 km2 located on the Tibetan Plateau. This lake knows a relative 
increase of water height and water extent (+600km2) from 1994 to 2000 and would have been relatively stable 
since then. It is located at a very high elevation, ie 4720 m, by the way the lake is covered by ice a long part of 
the year, from November to April, and the atmospheric effect are important. 
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Figure 23. LWE derived from optical imagery based on different approaches over Namsto Lake. 

 

  

Figure 24. OTSU processing: under estimation du to sunglint and over estimation du to snow. 

 

Observations based on the graphic and vector extractions analyse: 

•  On the images of the 10/05/2016 and of the 24/07/2018 OTSU’s underestimation caused by sunlight.  

•  On the S2 image of the 21/11/2018, there are OTSU’s overestimation caused by snow. 

• SVM and RF have pretty much the same good results. Differences between methods are lower than 
5%. 

 Sassykol Lake  

Sassykol Lake is located at an altitude of 350 m in the southeast of the eastern province of Kazakhstan in the 
Balkhash-Alakol lowland between mountain systems of Zhetysu Alatau in the south. Tarbagatai in the north, 
and Barlyk in the east. It is the part of a complex hydro system formed by three successive lakes: Sassykol on 
the upstream part, the Kosharkol and in downstream the Alakol Lake. Sassykol lake communicates with the 
Alakol Lake through an extensive wetland surrounding the intermediate lake named the Kosharko Lake 
Sassykol is a shallow fresh-water lake which shores are gently sloping and densely covered with reeds. From 
November to the end of March-April, the lakes are covered by ice.  
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Figure 25. LWE derived from optical imagery based on different approaches over Sassykol lake. 

 

1. Random Forest approaches (RF) involve an underestimation that could be caused by low reflectance 
(lower than training image) and wisp of clouds. 

2. OTSU’s approach generates an overestimation: it classifies vegetation and wisp of the cloud. 
3. SVM: it shows a good classification. The boundaries of the water bodies are well marked, the 

vegetation is well distinguished. 
 
 

   

RF: underestimation related to 
sunglint 

Otsu: over estimation; integrating 
as water, part of vegetation 

SVM: good classification between 
water, vegetation  

Figure 26. Artefacts observed over Sassykol lake exploiting different processing approaches. 

 

 Alakol Lake  

Alakol Lake is an endorheic salted lake relatively deep, 45m, and large, more than near 3000 km2. The shores 
of Alakol Lake are rugged and an unstable coastal zone, with also large islands. As already indicated, from 
November to end of March-April, the lake can be covered by ice.  
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Figure 27. LWE derived from optical imagery based on different approaches over Alakol lake. 

 

Observations based on the graphic and vector extractions analysis are the following: 

• RF-underestimation caused by a wisp of cloud for the images from 28/08/2018, 22/10/2018, 
06/11/2018 & 24/07/2018, indicated with (1) on the Figure 28. 

• OTSU’s approach presents an overestimation caused by snow, on the Sentinel2 image acquired on 
26/11/2018, indicated with (2) on the Figure 28. 
 

  

Figure 28. Artefacts observed over Alakol Lake when applying, left; RF: underestimation related to clouds right, 
OTSU; commission with snow. 

 Chilwa Lake  

Lake Chilwa is the second-largest lake in Malawi after Lake Malawi. It is in eastern Zomba District, near the 
border with Mozambique. Lake Chilwa is a shallow, i.e. 3m, enclosed saline lake located along the East African 
Rift Valley in southern Malawi near its border with Mozambique. 

Approximately 60 km long and 40 km wide. The lake is surrounded by extensive wetlands. There is a large 
island in the middle of the lake called Chisi Island. The lake has no outlet and the level of water is greatly 
affected by seasonal rains and summer evaporation. In recent years, Lake Chilwa has been shrinking. 
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Figure 29.  LWE derived from optical imagery based on different approaches over Chilwa Lake 

 

Observations based on the graphic and vector extractions analysis are the following: 

• OTSU: underestimates the water surface indicate by (1) on Figure 30. 

• RF: underestimates. don’t classify water with vegetation 

• SVM: overestimates LWE as classifying burned areas as water surfaces 

 

   

OTSU: underestimation of LWE RF: underestimates, omission of 
flooded vegetation 

SVM: commission burn 
areas/water 

Figure 30. Artefacts observed over Chilwa Lake when applying OTSU, RF Tile and SWM on Sentinel2 imagery. 

 

 Al Hamar Wetland 

Al Hammar wetlands are a large wetland complex in South Eastern Iraq that are part of the Mesopotamian 
Marshes in the Tigris–Euphrates river system. Historically, the Hammar Marshes extended up to 4,500 km2 
during seasonal floods. They were destroyed during the 1990s by large-scale drainage, dam and dike 
construction projects. Since 2003, they are recovering following reflooding and destruction of dams. The water 
spatial distribution is still very controlled by inherited structures.  

 

 

 

 

https://en.wikipedia.org/wiki/Wetland
https://en.wikipedia.org/wiki/Iraq
https://en.wikipedia.org/wiki/Mesopotamian_Marshes
https://en.wikipedia.org/wiki/Mesopotamian_Marshes
https://en.wikipedia.org/wiki/Tigris%E2%80%93Euphrates_river_system
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Figure 31. LWE derived from optical imagery based on different approaches over Al Hamar wetlands. 

 

The LWE dynamic derived from satellite image, thanks to OTSU or SVM approaches are similar. Therefore, the 
values derived from SVM algorithm are higher than the OTSU ones. This is related to the fact that OTSU is more 
restrictive, taking into account free open water surface, rather than SVM which includes also a part of flooded 
vegetation. 

 

 

Figure 32. LWE extraction based on a SVM approach, initial image and resulting LWE: part of the flooded 
vegetation is integrated within the LWE. 

 Chad case study 

The Chad case of study is particular in regard to the others tested lakes cases. It was an opportunity to:  

• Test 5 different algorithms for LWE extraction based on optical imagery 

• Compare results acquired from Sentinel2 and landsat8 data acquired the same day, but of course 
having different spatial resolution, ie 10 and 30m respectively. 

•  Compare LWE derived both from Optical and SAR imagery  
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• Compare the EO derived map with the with field tracks recorded from a boat.  

 

Chad lake is a historically large, shallow, endorheic lake in Africa, which has varied in size over the centuries. 
According to the Global Resource Information Database of the United Nations Environment Programme, it 
shrank by as much as 95% from about 1963 to 1998.  

 This field survey was carried out in the Archipelago of the Chad lake, the Bol Reria area a disconnected part of 
interdune water bodies.  

 

  

Figure 33. Chad lake evolution over 40years (1963-2001) and location of the Bol area within the Archipelago 
region of Chad Lake 

 

In the Archipelago area, the islands and peninsulas are summits of remaining sand dunes’ network flooded by 
lake Chad water. Dune sonnet area: this is the part of the island where there is a small group of huts and a few 
millet fields when the island is inhabited. The vegetation corresponds to trees and shrubs. On the shores of the 
islands, fringe of macrophytes can be observed. One characteristic of this part of Chad lake is the presence of 
Reeds islands that are anchored in shallow waters. Part of them separate from the main islands and form 
circular floating islands of vegetation named, kirtas. These are formed by Papyrus and Phragmites. Their sizes 
vary from few meters to several hundred meters. At the time of reversal of dominants winds, during June and 
October generally in the rainy season when the winds shifts are frequent, these islands move back and forth, 
modifying the aspect of the reeds islands and closing the channels of the Archipelago (Leonard, 1974; Ittis and 
Lemoalle, 1983). 
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Land tongues with sparse 
vegetation 

Floating and anchored vegetation Bare sandy tongues 

Figure 34. Landscapes of the Archipelago area. 

 

Five different methods were tested, OTSU, Cany-OTSU, Kmean, SVM and RF. Obtained LWE are presented in 
the Figure 35.  

  

  

  

Figure 35. LWLs extracted exploiting different approaches from the Sentinel2 image acquired on the 29 of April 
2019. 
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In this complex environment, the analysis and comparison of the derived LWE from Sentinel2 imagery are the 
following: 

• Canny OTSU and Kmeans, a none negligible underestimate the LWE 

• SWM a small under estimation 

• OTSU, the most realistic over this landscape 

• RF a small overestimation as integrating part of the wet/floating vegetation  

All methods retrieve about 70 % of the potential observed water, all real open water surface. The differences 
are noticeable on very shallow water and on the immediate environment or inside floating islands. 

 

 

Figure 36. Occurrence map of observed water based on Sentinel2 imagery. 

 

The same five approaches were also followed to retrieve LWE from the Landsat imagery. In this complex 
environment, the analysis and comparison of the derived LWE from Landsat imagery are the following: 

• Kmeans, a none negligible underestimate the LWE 

• Canny-OTSU presents a small under estimation 

• SVM and OTSU, are very similar in terms of obtained results and present the most realistic over this 
landscape 

• RF a small overestimation as integrating part of the wet/floating vegetation  

Based on Landsat 8 imagery, i.e. with a pixel integrating more surface, all methods present in common more 
than 80 % of the potential observed water, all real open water surface. The slight differences are noticeable on 
very shallow water and on the immediate environment or inside floating islands.  
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Figure 37.  Occurrence map of observed water based on Landsat 8 imagery. 
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Figure 38. Map of occurrence of observed water based on Landsat8 imagery. 

 

The comparison of LWE extraction from Sentinel2 and Landsat 8 is interesting, the extraction based on Landsat 
8 is more coherent/continuous, with less difference between the results derived from the various methods.  

 

Table 12. Comparison of the Sentinel2 and Landsat 8 bands. 

 Sentinel 2 Landsat 8 

NIR 0,779-0,885     B8 10m 0.85-0.88 um 

NIR 0,853-0,875     B82 20m 0.85-0.88 

SWIR1 1,568 – 1,659 1.57-1.65 

SWIR 2 2,114- 2,289 2.11-2.29 

 

If in the SWIR1 and SWIR , the bands are located similarly and have same width, on the NIR there are 
noticeable difference between Sentinel2, band B8 10m, and landsat8, band 5 whereas the narrow band B8A of 
Sentinel2 is similar to the NIR band, band 4, of Landsat 8, with respectively a 20 and 30 meters of spatial 
resolution.  Whereas, on the LWE derived from Sentinel2, the limits water/non water are more accurate, but 
some overestimation is observed with vegetation areas classified. On the LWE obtained from a RF approach 
over a Landsat 8 image, it can be observed an underestimation of water on the shore of the lake due to the 
lower resolution. 
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LWE derived from Landsat-8 extraction on the 
shoreline (background Sentinel2) 

RF Sentinel-2 extraction with Sentinel-2 image 
(background) 

Figure 39. Comparison of Sentinel 2 and Landsat 8 LWE: influence of the spatial resolution. 

 

In addition, a multitemporal analysis was done over a period of one month, exploiting five Sentinel 2 images. 
These data were acquired at the following dates.  

• 09/04/2019 

• 14/04/2019 

• 24/04/2019 

• 29/04/2019  

• 04/05/2019 

For each image, a water surface based on an SVM approach was derived. From these a mean surface was 
calculated and then each surface compared to this mean surface. 

 

Table 13.  

Date LWE Difference / Mean 

09/04/2019 378.7875 km² 0,7% 

14/04/2019 371.5667 km² 1,4% 

24/04/2019 372.1424 km² -1,03% 

29/04/2019 379.2515 km² 0,85% 

04/05/2019 381.6009 km² 1,48% 

 

Very stable water bodies, with less than 2% of difference between the observations within a month. In 
addition, the LWE apparent dynamic is more related to the movement of floating vegetation (under wind 
direction/speed dependence) rather than LWL changes. Some also apparent changes are related to some 
artefact linked with small clouds on one date.  
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2019/04/09 2019/04/14 

  

2019/04/29 2019/05/04 

Figure 40. Displacement over one month of the Kirtas. 
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Figure 41. Displacement of vegetated islands from date to date. Green colour: No water in first image, water in 
last image. Lily colour: Water in first image, no water in last image. 

3.3.1.8.1. Validation with boat track.  

A field trip has been organized by LEGOS on parallel of the CCI lake work. Boat tracks on Landsat , using a GPS, 
receiver allowed to carefully map the water and the vegetation.  It is allowed locally to validate the water 
limits, another part the boat is in the middle of bays. An interesting thing  is also that the tracks cross within 
vegetated island, confirming well the “water” aspect of these island. . All changes in the nature of the terrain 
crossed by the boat were noted allowing to precisely map the lake countour along the boat’s route. 
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Figure 42. Tracks of boat survey, 10 of April 2019 within the Chad lake Archipelago (Courtesy of Legos). 

 

 

Figure 43. Tracks of boat survey, 11 of April 2019 within the Chad lake Archipelago (Courtesy of Legos). 
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(a) (b) 

Figure 44 (a) Processing using normalized MNDWI index with threshold of -0.1 (b) using OTSU method. 
Both processing of the landsat 8 images allow to  correctly map the transition between 

land and water in this complex archipelago system. 

 

 

 

Reference:  

Leonard J., 1974: Aperçu de la végétation de la partie Est du lac Tchad. ORSTOM 

 Iltis André and Jacques Lemoalle, 1983: the aquatic vegetation of lake Chad, in lake Chad, Ecology and 
productivity of a shallow tropical ecosystem. JP Carmouze, Durand JR and C Leveque edts. Junk Publishers. 

 Argentino lake 

Lago Argentino, also name El Calafate, is a lake in the Patagonian province of Santa Cruz, Argentina. It is the 
biggest freshwater lake in Argentina, with a surface area of 1,415 km2. It has an average depth of 150 m, and a 
maximum depth of 500 m. The lake lies within the Los Glaciares National Park in a landscape with numerous 
glaciers and is fed by the glacial meltwater of several rivers, the water from Lake Viedma brought by the La 
Leona River, and many mountain streams 

The argentine lake case is interesting, due to the potential impact of environment on the retrieval of LWE. Two 
major elements have to be taken into account, the topographic position of the lake surrounding by mountains, 
and the presence of glaciers feeding the lakes and of snow covering the borders. By the way it is challenging 
case for testing the different methods of LWE based on optical imagery.  

 

   

OTSU RF SVM 

Figure 45. Artefacts observed over Argentino Lake when applying OTSU, RF Tile and SWM on Sentinel2 imagery 
acquired the 02-06-2019. 
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In this second set of tests for each processed image, SVM and RF was trained based on Pekel water mask 
occurrence.  

It is appearing that: 

• OTSU and SVM are sensitive to shadows on water surfaces. 

• RF is less sensible to shadows effect and by the way presents a more realistic shoreline. 

 

   

OTSU RF SVM 

Figure 46. Artefacts observed over Argentino Lake when applying OTSU, RF Tile and SWM on Sentinel2 
imagery acquired the 02-06-2019. 

 

When analyzing the temporal evolution of the LWE, a relative coherence of the LWE evolution over the time 
obtained by the different process. Therefore, the OTSU tends to overestimate the water extent, whereas the 
SVM, underestimates it. This explains the differences between the methods at 02/06/2017. Large shadows are 
present at the limit between the lake and the land. RF Tile is more consistent than SVM which don’t classify 
shadows on water and OTSU which classify shadows on land. 

 

 

 

Figure 47. LWE derived from optical imagery based on different approaches over Argentino Lake 
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 Bosten lake 

The Bosten lake, also known as Bagrash lake, is a large freshwater lake on the North Eastern rim of the Tarim 
Basin, about 20 km East of Yanqi, Xinjiang, in the Bayingholin Mongol Autonomous Prefecture, an extremely 
arid region in the North West of China.  Covering an area of about 1000 km2, it is the largest lake in Xinjiang. 
The mean water depth is 8,2m with a maximum depth of 17m. The lake is frozen during the winter (up to 
March). In the Western part: there is a huge wetlands complex that is totally dry in beginning spring. In 
addition, the environment of the lake varies a lot around the year why lot of vegetation in summer (as well on 
the nearly agricultural fields that could induce some potential confusion with the wetlands vegetation. In fall, 
the vegetation is relatively dry.    

In term of data accessibility and quality, it has to be noticed that a part of the analysis is spoiled by the fact that 
a relative important amount, i.e. 7 dates, of Landsat 7 images covering an interesting hydrological period 
where not exploitable due to some instrument artefact. 

  

 

Figure 48. LWE derived from optical imagery based on different approaches over Bosten lake. 

 

   

OTSU – 09/04/2016 RF - 09/04/2016 SVM - 09/04/2016 
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OTSU – 09/04/2016 RF - 09/04/2016 SVM - 09/04/2016 

  

   

OTSU – 09/05/2016 RF - 09/05/2016 SVM - 09/05/2016 

 

 

 

 

 

 

OTSU – 09/05/2016 RF - 09/05/2016 SVM - 09/05/2016 

 Figure 49. Comparison of LWE limits obtained from OTSU, Random Forest (RF) et SWM over Bosten wetlands. 

  

Observations based on the graphic and vector extractions analysis are the following: 

• OTSU: underestimates some shallow water 

• RF: The most realistic over this landscape. 

• SVM: overestimates water surface, especially in dry wetland 

• The RF approach is the best technical solution to derive accurate LWEs over the Bosten Lake.  

As illustrated above with water masks derived from the images Sentinel-2 acquired the 09/04/2016 and the 
09/05/2016, OTSU is overestimating and SVM is underestimating on this data.  

 Khanka 

Lake Khanka is located on the border of the People’s Republic of China (China) and the Russian Federation 
(Russia). It is the largest lake in Northeast Asia, as well as a transboundary waterbody between China and 
Russia. The lake is called Lake Xingkai in China and Khanka Lake in Russia. The water plane of the lake varies 
between 4,000-4,400km2. The average lake depth is 4.5m and maximum lake depth is 10.6m.  
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There are 23 inflowing rivers to the lake, 8 draining from China and 15 draining from Russia. The Song’acha 
River is the only outflow river from the lake and is subsequently connected with the Wusuli/Ussuri River and 
the Heilong/Amur River system. The drainage basin of Lake Xingkai/Khanka is a habitat for important animal 
and plant species of both countries, particularly the wetlands surrounding the lake. The Russian Federation 
designated the lake as a Ramsar Convention wetland site, on the basis of its importance for migratory bird 
species. 

 

 

Figure 50. LWE derived from optical imagery based on different approaches over Khanka Lake. 

 

The comparison of the LWE obtained based on OTSU, SV and RF indicates:  

• OTSU, Overestimation observed in dry wetlands and in crops that could extend far beyond the AOI 
boundaries. 

• SVM, Underestimation in small water bodies. 

•  RF is Closest from the ground truth. 

 

 

    

Sentinel-2 image  
10/05/2018 

In orange OTSU LWE In blue SVM LWE In green RF LWE 

Figure 51. LWE obtained with OTSU, SV and RF. 
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Presented at local scale in the above figure, these trends are observed on the whole S2 image. Conclusion over 
Khanka case of study is that RF approach allows to derive accurate LWEs.  

 

 Ilmen lake 

The Ilmen lake is a large lake in the Novgorod Oblast of Russia. The average surface area is 982 Km2, therefore 
it may vary between 733 km2 and 2090 square km2 depending on water level. The lake is fed by 52 inflowing 
rivers, the four main ones being the Msta, the Pola, the Lovat, and the Shelon. It is drained through a single 
outlet, the Volkhov, into Lake Ladoga. 

 

 

Figure 52. LWE derived from optical imagery based on different approaches over Illmen Lake. 

 

Part of the processing was done exploiting OTSU approach from GEE. Therefore, not all the images selected 
from USGS sites, are accessible from GEE, by hence, the optical time series is not so large.  

 

 Sary kamysh Lake 

The Sarykamysh or Sary-Kamysh, also known as Sarygamysh is situated in Central Asia approximately midway 
between the Caspian Sea and the Aral Sea. The lake sits in an oval depression of tectonic origin, which was 
later affected by aeolian erosion during successive glaciations from 2 million years ago, to 10 000BC. The 
Northern quarter of the lake belongs to the country of Uzbekistan, while the rest belongs to Turkmenistan. The 
Sarykamish lake was formed in 1971 as a result of flooding of a set of small lakes located within the depression. 
Now Sarykamish lake is a large drainage water body which has been used as a discharge collector of salty 
irrigation water from the fields.  Since 1992 the lake has been progressively increased in size a, reaching 
maximal levels in the beginning of 2000, an increasing still on going with some recession phases. The mean 
water depth is 8 m with a maximum depth of 4m; its surface is about 4000km2.   
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Figure 53.: LWEs derived from optical imagery based on different approaches over Sary Khamish Lake. 

 

The idea was to have a selection of images covering the different phases of lake inflow. The selected data 
started from the beginning of the 90’ up the recent years. Unfortunately, a relative long period, in the 
beginning of the 2000’ was not covered due to the instrumental problem on Landsat 7. 

3.3.2. Results analysis for SAR sensors-based approaches 

As commented in Section 3.1.2, series of Sentinel-1 images have been exploited to derive their Lake Water 
Mask and their corresponding Lake Water Extent. The LWE measurements will be used along with the Lake 
Water Level in order to generate the corresponding hypsometric curves. 

As described in the ATBD document, NORCE and TRE-Altamira have employed different approaches (even 
though sharing some common steps) and have used GRD and SLC images respectively. A main limitation with 
S1 data is that this constrains the time-series to the period after October 2014. S1 data are geocoded using the 
SRTM DEM and a most precise one when available (as for Lake Altevatnet). 

The Lake Water Masks generated by NORCE and TRE-Altamira over the same images' dates (or presenting a 
low temporal difference) are used in order to compare both methodologies’ relative performances. In order to 
maximize the contribution of the SAR LWE to the hypsometric curve calculation, NORCE and TRE-Altamira 
employed different S1 datasets (including different orbits) but also considering some common dates for 
comparison purposes. In the same way, images presenting a time difference of 12 days have also been 
considered. This can be questionable sometimes when the LWE changes rapidly, but in order to obtain 
sufficient amount of comparisons we have used this criterion. This analysis has been carried out over the 
following lakes: Chad (section 3.3.2.1), Illmen (section 3.3.2.2), Bosten (section 3.3.2.3), Argentino (section 
3.3.2.4) and Khanka (section 3.3.2.5).  

The comparison statistics are derived from the contingency matrix. For its calculation an analysis polygon 
covering the lake is selected and one of the two results is taken as the reference. Then the following 
parameters are calculated in %: 

• True positive (TP): both results detecting water. 

• False negative (FN): reference result detecting water and the other land. 

• False Positive (FP): reference result detecting land and the other water. 

• True negative (TN): both results detecting land. 

• Accuracy rate (AR): TP + TN. 

It is worth saying that the naming of the statistical parameters (TP, FN, FP and TN) is also somewhat arbitrary 
since it is not always clear which of the datasets that is closest to the ground truth. For the sake of comparison, 
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we always set the first dataset as truth. In order to illustrate the comparison, the contingency matrix as well as 
the temporal LWE series are shown.  

In section 3.3.2.6 a summary with the tabular contingency matrices results for all the lakes that are inter-
comparable between the two SAR algorithms are provided. 

It is also important to mention that an Envisat ASAR WSM database is available. For some of the lakes we have 
found interesting data from the period 2002-2012 which are useful for some of the lakes that have had 
significant changes in the LWE in the period after 2000. ASAR WSM data has in general coarser spatial 
resolution, and only one polarization so the quality is in general poorer than for S1 data. 

 

 Chad 

 

 

 

 

 LWE (km2) 

Date NORCE TRE-ALTAMIRA 

11/04/2019 354.127 324.364 

12/04/2019 339.114 299.972 
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 LWE (km2) 

Date NORCE TRE-ALTAMIRA 

23/04/2019 354.471 308.309 

24/04/2019 346.339 335.068 

 Illmen 

NORCE’s and TRE-ALTA’s lake water mask and their corresponding contingency matrices for a couple of 
coincident dates (20191024 and 20200116) which present a significant extent variation among them, are 
depicted in Figure 54. The overall agreement for those images are 97.73% and 96.19% respectively. Most of 
the differences between the two SAR approaches is related to the integration of inundated wetlands.  

For Lake Illmen, the contingency matrix values for all NORCE’s and TRE-ALTA’s results corresponding to images 
presenting a temporal difference lower or equal to 12 days are can be found in Table 14.  

A representation of the temporal evolution of all NORCE’s and TRE-ALTA’s LWE is depicted in Figure 55. The 
same representation but just focusing on the 12 days difference images is depicted in Figure 56.  

 

(a) (b) 

(c) (d) 

Figure 54. (a) NORCE and TRE-ALTA 20191024 lake water masks (blue) over a selected analysis polygon (red) 
and (c) its corresponding contingency matrix. (b) NORCE and TRE-ALTA 20200116 lake water masks (blue) over 

a selected analysis polygon (red) and (d) its corresponding contingency matrix. 
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Figure 55. NORCE and TRE-ALTA LWE time series for Lake Illmen. 

 

Figure 56. NORCE and TRE-ALTA 12 days maximum difference LWE time series for Lake Illmen. 

 

 Bosten  

 

NORCE’s and TRE-ALTA’s lake water mask and their corresponding contingency matrices for a couple of 
coincident dates (20170729, 20190414 are depicted in Figure 57. The overall agreements for those images are 
98.89% and 98.75% respectively. 

For lake Bosten, the contingency matrix values for all NORCE’s and TRE-ALTA’s results corresponding to images 
presenting a temporal difference lower or equal to 12 days are represented in Table 16. 

A representation of the temporal evolution of all NORCE’s and TRE-ALTA’s LWE is depicted in Figure 58. The 
same representation but just focusing on the 12 days difference images is depicted in Figure 59. 
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(a) 
 

(b) 

(c) (d) 

Figure 57. (a) NORCE and TRE-ALTA 20170729 lake water masks (blue) over a selected analysis polygon (red) 
and (c) its corresponding contingency matrix. (b) NORCE and TRE-ALTA 20190414 lake water masks (blue) over 

a selected analysis polygon (red) and (d) its corresponding contingency matrix. 

 

 

Figure 58. NORCE and TRE-ALTA LWE time series for lake Bosten. 
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Figure 59. NORCE and TRE-ALTA 12 days maximum difference LWE time series for lake Bosten. 

 

 

 Argentino 

NORCE’s and TRE-ALTA’s lake water mask and their corresponding contingency matrices for a 7 days difference 
couple (20171221-20171214) and a 5 days difference one (20191105-20191110) are depicted in Figure 60. The 
overall agreement for those images are 94.16% and 95.38% respectively. 

For lake Argentino, the contingency matrix values for all NORCE’s and TRE-ALTA’s results corresponding to 
images presenting a temporal differences lower or equal to 12 days are represented in Table 18. 

A representation of the temporal evolution of all NORCE’s and TRE-ALTA’s LWE is depicted in Figure 61. The 
same representation but just focusing on the 12 days difference images is depicted in Figure 62. 

 

(a) (b) 
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(c) (d) 

Figure 60. (a) NORCE and TRE-ALTA (20171221-20171214) lake water masks (blue) over a selected analysis 
polygon (red) and (c) its corresponding contingency matrix. (b) NORCE and TRE-ALTA (20191105-20191110) 
lake water masks (blue) over a selected analysis polygon (red) and (d) its corresponding contingency matrix. 

 

 

Figure 61. NORCE and TRE-ALTA LWE time series for lake Argentino. 

 

Figure 62. NORCE and TRE-ALTA 12 days maximum difference LWE time series for lake Argentino. 
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 Khanka 

NORCE’s and TRE-ALTA’s lake water mask and their corresponding contingency matrices for a couple of 
coincident dates (20180515, 20190510 are depicted in Figure 63. The overall agreements for those images are 
98.83% and 97.62% respectively. 

For lake Khanka, the contingency matrix values for all NORCE’s and TRE-ALTA’s results corresponding to images 
presenting a temporal difference lower or equal to 12 days are represented in Table 20. 

A representation of the temporal evolution of all NORCE’s and TRE-ALTA’s LWE is depicted in Figure 64. The 
same representation but just focusing on the 12 days difference images is depicted in Figure 65. 

  

(a) (b) 

(c) (d) 

Figure 63. (a) NORCE and TRE-ALTA 20180515 lake water masks (blue) over a selected analysis polygon (red) 
and (c) its corresponding contingency matrix. (b) NORCE and TRE-ALTA 20190510 lake water masks (blue) over 

a selected analysis polygon (red) and (d) its corresponding contingency matrix. 
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Figure 64. NORCE and TRE-ALTA LWE time series for lake Khanka. 

 

Figure 65. NORCE and TRE-ALTA 12 days maximum difference LWE time series for lake Khanka. 

 

 Overall comparisons between the two SAR algorithms 

In this section we provide tabular contingency matrices for all the lakes that are inter-comparable between the 
two SAR algorithms. Due to different selections of dates for the two SAR classifiers (NORCE and TRE-ALTA) 
different dates will be inter-compared. The main criterion for inter-comparison is that the two images 
(NORCE’s and TRE-ALTA’s) are close in time. For that, a maximum time difference to 12 days is set.  

The following tables have been generated: 

• Lake Illmen: contingency matrix in Table 14 and corresponding Area difference mean values in Table 
15. 

• Lake Bosten: contingency matrix in Table 16 and corresponding Area difference mean values in Table 
17. 

• Lake Argentino: contingency matrix in Table 18 and corresponding Area difference mean values in 
Table 19. 
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• Lake Khanka: contingency matrix in Table 20 and corresponding Area difference mean values in Table 
21. 

• Mean Values of all previous: Table 22 

Tables’ acronyms stand for: TP (True Positive in %), FP (False Positive in %), FN (False Negative in %), TN (True 
Negative in %), AR (Accuracy Rate in %), Td (time difference in days), Ad (Area LWE difference in %) and Ard 
(Area LWE difference in square kilometers). 

After the comparison results, it can be stated the performance for the two SAR results is in general very similar, 
although differences are observed due to different dates/lakes and slight differences in methodology. 

Table 14. NORCE and TRE-ALTA contingency matrix values summary for Lake Illmen 

 Date 1 Date 2 TP FP FN TN AR Td Ad Ard 

Illmen 20170612   20170605   67.38   3.03   0.11   29.47  96.85 7 4.15 2.27 

Illmen 20170916   20170909   59.83   3.37   0.25   36.52   96.36   7 4.92 25.97 

Illmen 20170928   20171003   58.61   1.82   0.63   38.92   97.54   5 1.95 3.25 

Illmen 20171115   20171108   63.48   3.58   0.04   32.88   96.36   7 5.28 28.01 

Illmen 20180502   20180507   69.55   2.10   0.31   28.03   97.58   5 2.49 33.16 

Illmen 20180607   20180612   64.11   5.58   0.00   30.29   94.40   5 7.99 59.6 

Illmen 20180619   20180612   64.03   4.08   0.08   31.79   95.82   7 5.87 32.31 

Illmen 20180713   20180718   55.73   3.77   0.16   40.33   96.06   5 6.06 45.68 

Illmen 20180725   20180718   55.69   1.82   0.19   42.27   97.97   7 2.83 11.32 

Illmen 20190427   20190502   64.06   2.82   0.13   32.97   97.03   7 4.03 16.86 

Illmen 20190509   20190502   63.16   1.55   1.03   34.25   97.41   7 0.80 20.91 

Illmen 20190602   20190607   56.13   4.49   0.01   39.35   95.49   5 7.39 61.91 

Illmen 20190626   20190701   53.59   1.01   0.39   44.99   98.58   5 1.14 3.38 

Illmen 20190801   20190806   53.16   4.78   0.00   42.04   95.21   5 8.25 69.85 

Illmen 20190813   20190806   53.16   3.57   0.00   43.24   96.41   7 6.29 48.84 

Illmen 20190918   20190911   54.02   1.22   0.36   44.37   98.40   7 1.55 0.82 

Illmen 20190930   20191005   54.58   2.15   0.41   42.83   97.42   7 3.06 14.52 

Illmen 20191024 20191024 58.16 2.12 0.14 39.56 97.73 0  3.27 17.92 

Illmen 20191211 20191211 61.77 2.90 1.09 34.21 95.99 0 2.80 24.6 

Illmen 20200116 20200116 69.04 3.76 0.04 27.15 96.19 0 5.10 9.67 

 

Table 15. NORCE and TRE-ALTA mean and stdv LWE difference for Lake Illmen 

 Mean(Ar) Stdv(Ar) Mean(Ard) Stdv(Ard) 

Illmen 96,74 1,09 26,54 20,97 
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Table 16. NORCE and TRE-ALTA contingency matrix values summary for Lake Bosten 

 Date 1 Date 2 TP FP FN TN AR Td Ad Ard 

Bosten 20170729 20170729 94.63 0.74 0.36 4.25 98.89 0 0.40 56.70 

Bosten 20180513 20180513 95.12 0.85 0.32 3.69 98.81 0 0.55 59.68 

Bosten 20180817 20180817 95.25 0.73 0.39 3.61 98.87 0 0.35 58.06 

Bosten 20190414 20190414 95.54   0.46   0.77   3.21   98.75  0 0.32 98.22 

Bosten 20190520  20190520 95.83   1.08  0.26  2.81  98.64  0 0.84 65.30 

Bosten 20190824 20190824 95.95   0.94   0.20   2.90   98.85  0 0.76 65.78 

 

Table 17. NORCE and TRE-ALTA mean and stdv LWE difference for Lake Illmen 

 Mean(Ar) Stdv(Ar) Mean(Ard) Stdv(Ard) 

Bosten 98.80 0.09 67.29 15.61 

 

Table 18. NORCE and TRE-ALTA contingency matrix values summary for Lake Argentino 

 Date 1 Date 2 TP FP FN TN AR Td Ad Ard 

Argentino 20170811   20170816   76.49   4.24   1.11   18.14   94.63   5 3.86 31.7 

Argentino 20170928   20170921   76.62   4.47   0.74   18.15   94.78   7 4.60 45.78 

Argentino 20171022   20171015   76.99   3.59   2.31   17.09   94.09   7 1.58 7.94 

Argentino 20171221   20171214   77.68   5.57   0.26   16.47   94.16   7 6.37 71.85 

Argentino 20181005   20181010   76.56   4.65   0.83   17.94   94.51   5 4.70 44.94 

Argentino 20190906   20190911   76.29   3.59   1.16   18.93   95.23   5 3.03 21.32 

Argentino 20191024   20191017   76.76   5.86   0.32   17.04   93.81   7 6.71 79.42 

Argentino 20191105   20191110   76.80   4.28   0.32   18.57   95.38   5 4.88 51.08 

Argentino 20191211   20191216   77.78   3.94   0.46   17.80   95.58   5 4.25 43.09 

 

Table 19. NORCE and TRE-ALTA mean and stdv LWE difference for Lake Argentino 

 Mean(Ar) Stdv(Ar) Mean(Ard) Stdv(Ard) 

Argentino 94.68 0.61 44.12 22.50 

 

Table 20. NORCE and TRE-ALTA contingency matrix values summary for Lake Khanka 

 Date 1 Date 2 TP FP FN TN AR Td Ad Ard 

Khanka 20170601 20170601 80.58 1.83 0.02 17.56 98.14 0.00 2.19 6.01 

Khanka 20180515 20180515 80.62   1.05   0.10   18.21   98.83   0.00   1.15 70.53 

Khanka 20190510 20190510 80.85 2.36 0.00 16.76 97.62 0.00 2.83 83.5 

Khanka 20190522 20190522 80.59 2.56 0.00 16.84 97.43 0.00 3.07 7.72 

Khanka 20190721 20190721 80.21 1.15 0.01 18.61 98.83 0.00 1.40 20.23 
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 Date 1 Date 2 TP FP FN TN AR Td Ad Ard 

Khanka 20190919 20190919 81.24 1.48 0.04 17.22 98.46 0.00 1.73 68.48 

Khanka 20191013 20191013 80.88 2.32 0.00 16.78 97.66 0.00 2.78 6.01 

 

Table 21. NORCE and TRE-ALTA mean and stdv LWE difference for Lake Khanka 

 Mean(Ar) Stdv(Ar) Mean(Ard) Stdv(Ard) 

Khanka 98.13 0.58 42.74 35.15 

 

Table 22. Mean Value for all previous contingency matrix AR, Td and Ad values 

 AR Ard Td Ad 

Average 96.87  37.95 4.8 3.75 

 

3.3.3. Comparison of optical and SAR sensors-based approaches 

Similarly to what has been done in the previous section with the two SAR based methodologies, a comparison 
between the SAR and the optical LWE approaches is now done. On the SAR side Sentinel-1 and Envisat-SAR 
have been employed while on the optical side Sentinel2 and Landsat series have been used. 

Temporal LWE series are generated and compared and for some of the lakes the contingency matrix is 
calculated whenever having images with a temporal difference equal or lower than 12 days. 

 Altevatnet 

Comparison between SAR and optical LWEs have been carried out over more than 10 pairs of acquisitions, 
thanks to the high latitudes, the revisit is very high. 

 

Figure 66. Comparison SAR and optical LWEs derived over Altevatnet 

 

The value of the derived LWEs from optical and SAR are very coherent between them, with a correlation of 
0.97 
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S2 LWE product 

S1, LWE 
product 

S2, water S2.land 

S1, water 82.96 % (TP) 2.35% (FP) 

S1, land 1.43 % (FN) 13.24% (TN) 
 

 

Figure 67.  Analysis over 12 pairs of Sentinel1 and Sentinel2 of the commission and omission rates. 

Of course, over this Nordic landscape, the observed commission and omission are the expected ones and are 
related to: 

• Presence of cloud on optical imagery. 

• Sensitivity to windy conditions and ice presence in SAR. 

 

 

Figure 68. Analysis of the omission and commission between SAR and optical approaches exploiting Sentintel1 
and Sentinel2. 

 Colhue 

The period with dual observation is relatively limited, the trends are similar but with apparently an 
overestimation of water surface by SAR. This could be related to the nearby environment, i.e. desert and also 
sandy shore. 
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Figure 69. Comparison SAR and optical LWEs derived over Colhue Lake. 

 

 Al Hamar wetland 

There are important differences between SAR and optical observations over the complex area of Al Hamar 
wetlands. Whereas optical imagery allows us to monitor the increase of water surfaces, SAR LWEs presents a 
drop at the beginning of the series, and then stay at a lower level than optical. This is due to the facts:  

• Optical LWE integrates a part of flooded vegetation whereas SAR retrieves open water surface. 

• SAR is more sensitive to the environment, i.e. sandy flat area, than optical sensors. 
 

 

Figure 70. Comparison SAR and optical LWEs derived over Al-Hammar. 

 

 Sassykol and Alakol 

This case of study is particularly interesting, as it is two neighbouring lakes being connected through a wetland 
complex.  In addition, Sassykhol is a relatively shallow lake, with surrounding wetland, whereas Alakol is a deep 
lake with a more classical shape.  

Over Alakol lake, the difference of LWE between SAR derived LWE and Optical ones, is about 3% that is quite 
satisfactory. 
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Therefore, over Sasykholol, the difference is about 14%, this is related to the fact large part of the increase of 
water surface is related to the flooding of wetland, which is not observed by SAR.  

 

 

Figure 71.  Comparison SAR and optical LWEs derived over Sassykol and Alakol lakes. 
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Figure 72.  Comparison SAR and optical LWEs derived over Sassykol and Alakol lakes. 

 Chad 

There were near simultaneous acquisition of Sentniel1 SAR image and Sentinel2 optical images on the 24th of 
April 2019. This gives the opportunity to compare the capabilities and limitations of the two system.  

Within the common AOI defined there were 14.68 km² detected as water in Sentinel 1 and none water in 
Sentinel 2. These areas correspond partially to very small and located clouds that have intercepted the optical 
signal. In this case SAR, and not the optical sensor, were closest to the truth. Therefore, most of the “SAR 
water alone” correspond to commission with bare soil on the NE part of the study area.  

At the opposite, 40.75 km² detected as water on Sentinel 2 and no water on Sentinel 1. These areas 
correspond mostly to shoreline of the lake, plus some floating islands. 

 

 

Figure 73. Comparison of the LWE derived from SAR and optical imagery on the 24 of April 2019: in Purple, 
detected as water on S1 and none water based on S2; in Green detected as water on S2 and none water on S1. 
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 Chilwa lake 

The difference between optical LWE and SAR classification is about 20%. This is related to the fact that large 
parts of the increase in water surface is related to the flooding of wetland, which is not observed by SAR. In 
this specific complex context, the SAR extraction seems underestimated over wetlands. 

 

   

Figure 74. Comparison of SAR and optical LWEs; in yellow LWE derived from SAR with in background the 
Sentinel2, False colour Sentintel2 acquired the 24/04/2018; in blue the additional water surfaces derived from 

a Sentinel-2 image with the SVM algorithm. 

 

 

 

Figure 75. Comparison SAR and optical LWEs derived over Chilwa lake. 

 

 

  Argentino 

NORCE-SERTIT and TRE-ALTA-SERTIT lake water mask and their corresponding contingency matrices for a 
couple of couple of images presenting a time difference smaller than 12 days (20171022-20171015 and 
2071015-20171020 respectively) are depicted in Figure 76. The overall agreements for those images are 
96.66% and 95.82% respectively. 
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For Lake Argentino, the contingency matrix values for all NORCE and SERTIT LWE and TRE-ALTA and SERTIT 
corresponding to images with a temporal difference lower or equal to 12 days are represented in Table 24 and 
Table 29 respectively. 

A representation of the temporal evolution of all NORCE, TRE-ALTA and SERTIT LWE is depicted in Figure 77. 
The same representation but just focusing on the 12 days difference images is depicted in Figure 78. 

Argentino is a lake surrounded by steeply mountains. The shape of the lake is defined by narrow valleys. Due 
to the altitude, the lake is often roughened by wind, and this is a challenge for the SAR retrieval of the LWE. 
When comparing LWEs derived from Sentinel1 and Sentinel2 acquired close in time, the differences are:  

• Commission errors for SAR on lakeshore, particularly the Eastern parts of the lake, where the sandy, 
muddy shores are relative flat and soft surfaces that has a radar signature similar to water. 

• Some SAR omission-errors that could be related to windy water surface, but also in the north branch 
of the lake, to some commission errors from the glacier terminus or lake ice. 

Depending on the applied processing, the difference in terms of detected water surface can be significant 
(more than 5%) or relatively small (less than 1% - 3.3%).  

(a) (b) 

(c) (d) 

Figure 76. (a) NORCE-SERTIT (20171022-20171015) lake water masks (blue) over a selected analysis polygon 
(red) and (c) its corresponding contingency matrix. (b) TRE-ALTA-SERTIT (2071015-20171020) lake water masks 

(blue) over a selected analysis polygon (red) and (d) its corresponding contingency matrix. 
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Figure 77. NORCE SAR, TRE-ALTA SAR and SERTIT LWE time series for lake Argentino. 

 

Figure 78. NORCE SAR, TRE-ALTA SAR and SERTIT Optical LWE time series for lake Argentino. 

 Illmen 

In the Illmen lake case no temporally close images were processed among the three groups. In Figure 79, the 
three LWE series are depicted. From it, it is hard to evaluate SAR and Optical relative performances. 

 

Figure 79. NORCE SAR, TRE-ALTA SAR and SERTIT Optical LWE time series for lake Illmen. 
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 Bosten 

NORCE-SERTIT and TRE-ALTA-SERTIT lake water mask and their corresponding contingency matrices for a 
couple of couple of images with a time difference smaller than 12 days (20170729-20170728 for both cases) 
are depicted in Figure 80. The overall agreement for those images are 98.02% and 97.65%, respectively. 

The systematic bias between optical and SAR LWE-estimates is 4% to 8% depending on the SAR approach. This 
is related to the fact that large part of the increase in water extent occurs in wetlands east of the main lake, 
and SAR has limited capabilities in resolving the water in such wetlands. The bias between the NORCE and the 
TRE ALTAMIRA approach for Bosten is related to the use of different masks. 

For Lake Bosten, the contingency matrix values for all NORCE and SERTIT LWE and TRE-ALTA and SERTIT 
corresponding to images with a temporal difference lower or equal to 12 days are represented in Table 23 and 
Table 28 respectively. 

The temporal evolution of all NORCE, TRE-ALTA and SERTIT LWE-estimates are depicted in Figure 81. The same 
representation but just focusing on the 12 days difference images is depicted in Figure 82. 

 

(a) (b) 

(c) (d) 

Figure 80. (a) NORCE and SERTIT (20170729-20170728) lake water masks (blue) over a selected analysis 
polygon (red) and (c) its corresponding contingency matrix. (b) TRE-ALTA and SERTIT 

(20170729-20170728) lake water masks (blue) over a selected analysis polygon (red) and (d) 
its corresponding contingency matrix. 
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Figure 81. NORCE SAR, TRE-ALTA SAR and SERTIT LWE time series for lake Bosten. 

 

 

Figure 82. NORCE SAR, TRE-ALTA SAR and SERTIT Optical LWE time series for lake Bosten. 

 Lake Khanka 

NORCE-SERTIT and TRE-ALTA-SERTIT lake water mask and their corresponding contingency matrices for a 
couple of couple of images with a time difference smaller than 12 days (20180515-20180510, 20180515-
20180510 respectively) are depicted in Figure 83. The overall agreement for those images are 98.18% and 
98.34%, respectively. 

For Lake Khanka, the contingency matrix values for all NORCE and SERTIT LWE and TRE-ALTA and SERTIT 
corresponding to images with a temporal difference lower or equal to 12 days are represented in Table 25 and 
Table 30Table 28 respectively. 

The temporal evolution of all NORCE, TRE-ALTA and SERTIT LWE-estimates are depicted in Figure 84. The same 
representation but just focusing on the 12 days difference images is depicted in Figure 85. 

The difference between SAR and optical LWE is about 50 km2, which represents about 1.1% of the water lake 
extent. It is interesting to compare pair by pair the evolution of commission and omission between the LWEs 
derived from Sentinel1 and from Sentinel2. Water detection errors in optical imagery is often related to poor 
cloud discrimination. In these examples, the omission and commission errors are very low. SAR omission, in red 
in the figure   corresponds to vegetated areas along the lake shore, areas than can be inundated.   In the pair of 
the end of July 2019, effects of the presence of a clouds is noticeable, inducing both omission as water is not 
recognized and commission over the land surface. This example highlights the sensitivity and limitations of 
exploiting optical imagery for the recognition of water surface due to the presence of clouds.   
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(a) (b) 

 (c)  (d) 

Figure 83. (a) NORCE and SERTIT (20180515-20180510) lake water masks (blue) over a selected analysis 
polygon (red) and (c) its corresponding contingency matrix. (b)TRE-ALTA- SERTIT (20180515-20180510) lake 

water masks (blue) over a selected analysis polygon (red) and (d) its corresponding contingency matrix. 

 

 

Figure 84. NORCE SAR, TRE-ALTA SAR and SERTIT LWE time series for lake Khanka. 
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Figure 85. NORCE SAR, TRE-ALTA SAR and SERTIT Optical LWE time series for lake Khanka. 

 Sarykamish Lake 

As already indicated, SaryKamish is located in a desert zone with very limited vegetation. The landscape 
consists mostly in sandy and muddy bare soil.   

In the SAR LWE there is an important commission error between land and water of 5.3 %.  This is related to the 
nature/texture/structure of the soil surrounding the lake. The area viewed as water in the SAR image, 
corresponds to a bare crust having similar backscatter as nearby water body.  

The omissions are relatively scarce and corresponds to rough water surface and inundated vegetation within a 
delta-zone. 

 

 
  

 Figure 86: Comparison of omission and commission between pairs of Sentinel1, and Sentinel 2 acquired 
respectively the 2019-03-07, and 2019-03-11 over the Sary Kamish lake. 

 

 

  

 

 Summary of all inter-comparisons between optical and SAR classification 

In this section we provide tabular contingency matrices for all the lakes that are inter-comparable between the 
two SAR and the Optical algorithms. Due to different selections of dates for the three approaches different 
dates will be inter-compared. The main criterion for inter-comparison is that the pair of images to compare 
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(either coming from any of NORCE’s,TRE-ALTA’s and SERTIT’s) are close in time. For that, a maximum time 
difference to 12 days is set.  

The following tables have been generated: 

• Lake Bosten: NORCE-SERTIT Table 23 and TRE-ALTA –SERTIT Table 28. 

• Lake Argentino: NORCE-SERTIT Table 24 and TRE-ALTA –SERTIT Table 29. 

• Lake Khanka: NORCE-SERTIT Table 25 and TRE-ALTA –SERTIT Table 30. 

• Mean Values of all previous: NORCE-SERTIT Table 27 and TRE-ALTA Table 31. 

Tables’ acronyms stand for: TP (True Positive in %), FP (False Positive in %), FN (False Negative in %), TN (True 
Negative in %), AR (Accuracy Rate in %), Td (time difference in days), Ad (Area LWE difference in %) and Ard 
(Area LWE difference in square kilometres). 

 

 

Table 23. NORCE and SERTIT contingency matrix values summary for Lake Bosten 

 Date 1 Date 2 TP FP FN TN AR Td Ad Ard 

Bosten 20170729 20170728 95.35 0.02 1.94 2.67 98.02 1 2.01 122.45 

 

Table 24. NORCE and SERTIT contingency matrix values summary for Lake Argentino 

 Date 1 Date 2 TP FP FN TN AR Td Ad Ard 

Argentino 20170531 20170602 78.35 2.21 1.20 18.22 96.58 3 1.26 18.39 

Argentino 20171022 20171020 76.48 4.10 2.22 17.17 93.66 2 2.34 34.02 

Argentino 20191024 20191015 77.12 5.51 0.85 16.50 93.63 9 5.64 85.87 

 

Table 25. NORCE and SERTIT contingency matrix values summary for Lake Khanka 

 Date 1 Date 2 TP FP FN TN AR Td Ad Ard 

Khanka 20180515 20180510 80.92 0.76 0.88 17.42 98.34 5 0.14 23.68 

 

Table 26. NORCE and SERTIT contingency matrix values summary for Lake Sarykamish 

 Date 1 Date 2 TP FP FN TN AR Td Ad Ard 

Sarykamish 20190307 20190311 68.81 5.64 1.11 24.41 93.23 4 6.07 217,78 

 

Table 27. Mean Value for all previous NORCE and SERTIT contingency matrix AR, Td and Ad values 

 AR Td Ad Ard 

Average 94.69 4,1 4.01 83,69 

 

Table 28. TRE-ALTA and SERTIT contingency matrix values summary for Lake Bosten 

 Date 1 Date 2 TP FP FN TN AR Td Ad Ard 

Bosten 20170729   20170728   94.97   0.02   2.32   2.67   97.65   1 2.42 65.74 

Bosten 20180910   20180901   95.64   0.03   1.89   2.42   98.07   9 1.94 87.72 
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Table 29. TRE-ALTA and SERTIT contingency matrix values summary for Lake Argentino 

 Date 1 Date 2 TP FP FN TN AR Td Ad Ard 

Argentino 20171015 20171020 76.93 2.38 1.78 18.89 95.82 5 0.76 41.96 

Argentino 20171120 20171129 77.41 0.71 1.99 19.87 97.29 9 1.63 2.24 

Argentino 20191017 20191015 75.86 1.22 2.10 20.79 96.66 8 1.14 6.45 

 

Table 30. TRE-ALTA and SERTIT contingency matrix values summary for Lake Khanka 

 Date 1 Date 2 TP FP FN TN AR Td Ad Ard 

Khanka 20170601     20170609 80.40 0.21 1.91 17.47 97.87 8.00 2.10 9,10 

Khanka 20180515     20180510 80.36 0.37 1.43 17.81 98.18 5.00 1.31 23.68 

Khanka 20190919   20190912   80.91 0.38 1.50 17.19 98.11 7.00 1.38 4.01 

 

Table 31. Mean Value for all previous TRE-ALTA and SERTIT contingency matrix AR, Td and Ad values 

 AR Td Ad Ard 

Average 94.82 5.5 5.41 30,11 

 

3.3.4. Results analysis for hypsometric approach  

 

The objectives are to compare the results of lake area from different methods and type of images in term of 
building resulting hypsometry curve. This approach was tested over the second set of lakes, Khanka 
(China_Russia), Illmen (Russia), Sary Kamysh lake (Turkménistan – Ouzbékistan), Bosten lake (China), and 
Argentino, (Argentina).  

 

 Hypsometric approach for the Argentino Lake 

Over Argentino Lake, three series were compared:one from optical imagery and two from SAR imagery. 
Following remarks can be dressed 

we see that SERTIT and NORCE solutions have the same mean value of lake water extent, since it is much lower 
for TRE-Altamira. The optical solution (SERTIT) presents non monotonic trend but this is likely due to two 
evident outliers as seen on the figure. The NORCE solution looks very disturbed with high dispersion of the 
hypsometry data. The TRE-Altamira looks quite coherent, with low RMS and monotonic trend but over a lower 
range of water level observations (no data for high water level above 180 m as for the 2 other solutions). 
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Figure 87 . Hypsometric approach over Argentino lake 

 

The hypsometry coefficient can also be calculated using each of the solution with also the estimation of 
uncertainty, which here is characterized by the RMS of the difference between the theorical hypsometry and 
the data used to calculate it. 

 

  

Figure 88. Hypsometry coefficient for Argentino lake 

We see from this figure that the sensitivity of hypsometry to outliers (like for the optical solution: SERTIT) can 
be very high.  

 

 Hypsometric approach for the Bosten Lake 

Over Bosten Lake, four series were compared, two from SAR imagery and the two from optical data.  Following 
remarks can be dressed:  

• The 4 solutions look quite coherent 

• It remains some outliers 
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Figure 89. Hypsometric approach over Bosten Lake 

 

 

It highlights the need to extract water extent of the lake over the largest range of water level variations. This 
minimizes the impact of dispersion of the solution on the calculation of the hypsometry coefficients, although 
it may increase the RMS. 

The uncertainty using the theorical hypsometry curve has been calculated only with LEGOS solution. The RMS 
of LEGOS Solution is of 5% 
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Figure 90. Uncertainty approach based on hypsometric over Bosten Lake 

 

 Hypsometric approach for the Illmen lake 

Over Illmen Lake, three series were compared, two from SAR imagery and one from optical data.  Following 
remarks can be dressed: 

•Optical imageries look (Sertit) overestimates the LWE when compared to the 2 radar solutions, but not 
enough images have been processed 

We observed from the two radar imagery datasets a small bias between both solutions: NORCE slightly 
overestimates the extent compared to TRE-Altamira. Both series looks however consistent, with monotonic 
trend and a good coverage of the water level changes over time 

  

Figure 91. Lake Illmen. Theorical hypsometry for the 2 radar solutions 
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Figure 92.  Hypsometric approach over Illmen Lake 

 

 

 

 Hypsometric approach for the Khanka Lake 

 

Over Khanka Lake, four series were compared, two from SAR imagery and the two from optical data.  Following 
remarks can be dressed: 

•Very complicate case: 2 groups of solutions (optical Sertit/SAR NORCE & optical LEGOS/SAR Altamira) with 
strong bias 

The LEGOS solution has a strong RMS, due to high dispersion, but has a monotonic trend which is more 
realistic. The NORCE solution cumulate monotonic trend and relatively low RMS, but over a much shorter 
range of observations. 

 

•The 2 radar solutions don’t have variation of LWE w.r.t variations of LWL (no trends). 

They both doesn’t have enough images processed. This is a typical case where hypsometry analysis does not 
really help building realistic relationship between LWE and LWL. 
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Figure 93. Theorical hypsometry from NORCE and LEGOS solutions 

 

 

 

  Figure 94. hypsometric approach over Khanka Lake 

 

 

The uncertainty using the theorical hypsometry curve has been calculated only with LEGOS solution. The RMS 
of LEGOS Solution is of 1,3% 
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Figure 95.  Uncertainty approach based on hypsometric over Khanka Lake 

 

 

 Hypsometric approach for the Sary -Kamisk Lake  

Over Sary-Kamish Lake, four series were compared, two rom SAR imagery and wo from optical data.  Following 
remarks can be dressed: 

• The tow optical solutions are very coherent together (remains 2 outliers in the Sertit solution) 

• Due to high LWL variation in time, LEGOS solution is uncompleted for small LWL 

• It remains some outliers in the SERTIT solution 

• the two solutions based on radar imagery are limited to a too low range of variations, since the water 
level change of this lake has strongly increased over the last 20 years. Radar imageries has been 
obtained only over the last 3-4 years when the lake was already at high level, as we may see from the 
X axis for these two solutions (level around 8 meters). This explains that the shape of the hypsometry 
depends too much on the dispersion of the LWL/LWE data and in such case hypsometry cannot be 
calculated using only these data. 

• The uncertainty of the hypsometry using the two optical imagery’s solution is lower than 1% of the 
total extent of the lake 
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Figure 96 Theorical hypsometry from SERTIT and LEGOS solutions 

 

 

 

 

 

 

Figure 97.  Hypsometric approach over SaryKamish Lake 

The conclusion here is that for the Sarykamish lake, we may simply remove the two outliers (seen on the Sertit 
solution) and recalculate the hypsometry coefficient using the Legos, the TRE-Altamira and the Sertit solutions. 
It will allow to extend the domain of validity of the hypsometry from very low to very high lake water level. 

 

The uncertainty using the theorical hypsometry curve has been calculated only with LEGOS solution. The RMS of 
LEGOS Solution is of 1,3% 
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Figure 98.  Uncertainty approach based on hypsometric over SaryKamish Lake 

 

3.4. Conclusions and recommendations 

We analysed the behaviour of two supervised and one unsupervised approaches on five lakes with various 
characteristics that provided a relatively good overview of what can be observed when estimating LWE from 
high-resolution optical imagery. 

Each method has its weaknesses and strengths. Of course, we had to deal with the expected classical traps 
which are related to external condition such as clouds cover and associated shadows, local environment, the 
presence of vegetation within the water bodies, floating or submerged ones. Many of the characteristics of 
water conditions are related to the colour of the water in shallow water.  

One main problem is also the definition of LWE. Do we have to consider open free water or open free water 
plus ice cover? In addition, are we speaking about open water, in case of water bodies surrounding or 
imbricated with wetlands? The delimitation between these entities is not so obvious. Do we have to consider a 
floating island of vegetation as water or not? Depending of the followed approach and or the exploited indices 
nor training samples selection process, omission or commission would /could happen.  

The conclusion and recommendations at this stage, after two sets of benchmarking of methods, are the 
following: 

• For optical data exploitation, the best method is a random forest one with a testing procedure on the 
training set based on Pekel GWS database.  

• For SAR processing, KMeans approaches are satisfactory, but in some challenging environments, such 
as deserts or lakes with very fragmented or vegetated shoreline, it can result in large errors. 
Estimating the LWE during ice cover is also a challenging task, although it can be possible during the 
cold winter period (Vickers et al., 2019).  

For an operational application, i.e.  monitor LWE based on LWL, this require to generate de precise 
hypsometric curves, a work to be  done lake after lake. More works are needed in order to select the 
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appropriate images, to access these images as there are some restriction in term of data access exploiting 
either GEE , nor ESA SciHub. 
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4. Lake Surface Water Temperature (LSWT) parameter 

The Lake Surface Water Temperature LSWT is defined as the temperature of the water at the surface 
of the water body (surface skin temperature). The CCI LSWT dataset consists of a long-term climate 
data record (CDR). The validation and comparison of the LSWT is based on matchups between in situ 
and satellite measurements. In situ measurements are collated once per year from limnologists 
worldwide who are willing to share their in-situ data of lake surface temperature measurements on a 
personal, ad hoc basis supplementing the partial collections of some agencies. The annual collation is 
undertaken towards the end of the calendar year and involves a considerable effort every year to 
enlarge and quality-control the in-situ database with measurements that are suitable for satellite 
validation. Most of the data is collated through personal communications.   

4.1. Data description 

4.1.1.  Satellite data 

LSWT time series have been computed from sensors on multiple satellites and lake-specific 
consistency adjustments between sensors have been applied using the MetOpA AVHRR instrument 
as a reference (see RD- 1). In the current version, LSWT v4.1, MetOpA AVHRR has the best 
combination of length of record and data density for this purpose.  The same form of algorithms has 
been used to retrieve the LSWT from all sensors in order to obtain consistent time series for each of 
the CCI target lakes. The target list was defined within the first phase of the Lakes_cci project can be 
found at RD- 3. 

The time periods used for each satellite/instrument are provided in Table 32. Not all lakes include 
LSWT from all sensors in the series because of differing density and geometry of observation. The 
temperatures in the dataset are only available for cloud and ice-free observations during (in this 
version) day time, so gaps in time and space are common for all the lakes due to cloud cover and 
swath geometry of the instruments. 

Table 32 - Time periods for the satellite/instrument used to generate the LSWTs 

Satellite Instrument Time Period 

ERS-2 ATSR2 Jun1995 – Jun2003 

Envisat AASTR May2002 – Apr2012 

MetOpA AVHRR Mar2007 – Aug2019 

MetOpB AVHRR Dec2012 – Aug2019 

 

A detailed description of the product generation is provided in the Algorithm Theoretical Basis 
Document (ATBD RD- 1) with further information on the product given in the Product User Guide 
(PUG RD- 3). 

 

4.1.2. In situ data 

The in situ dataset currently used for validation has been constructed from the in situ temperature 
data collected through the ARCLake project, the GloboLakes project, the EU Surface Temperature for 
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All Corners of Earth (EUSTACE) project and the Copernicus Climate Change Service (C3S) product.  At 
present, this dataset consists of 272 observation locations covering 132 lakes. However, the number 
of lakes which are also present in the CCI lake list of the first phase are 44 with a total of 159 sites. 
Details of the in situ observation locations with their sources are given in Table 33 which reports all 
locations for the target lakes where there are matches. The geographical distribution of the sites is 
reported in Figure 99 which shows that most of the globe is covered with a big proportion of the sites 
located in North America and Europe. 

 

Table 33- List of the sources of the in situ data 

Satellite Instrument 

NDBC – National Data Buoy Centre (USA) Superior (3) Huron (2) Michigan (2) Erie (1) Ontario (1) 

FOC – Fisheries and Oceans Canada (Canada) Superior (1) Huron (4) Great Slave (2) Erie (2) Winnipeg (3) 
Ontario (4) Woods (1) Saint Claire (1) Nipissing (1) Simcoe 
(1) 

Michigan Technological University (USA) Superior (2) Michigan (1) 

University of Minnesota (USA) Superior (2) 

Northern University of Michigan (USA) Superior (3)  

Superior Watershed Partnership (USA) Superior (1) 

U.S. Army Corps of Engineers (USA) Superior (1) 

Technical University of Kenya (Kenya) Victoria (1) 

GLERL – Great Lakes Environmental Research Lab (USA) Huron (3) Michigan (2) 

University of Wisconsin-Milwaukee (USA) Michigan (2) 

Northwestern Michigan College (USA)  Michigan (1) 

University of Michigan CIGLR (USA) Michigan (2) 

Limno Tech (USA) Michigan (3) Erie (4) 

Illinois-Indiana Sea Grant and Purdue Civil Engineering 
(USA) 

Michigan (2) 

Leibniz Institute for Freshwater Ecology and Inland 
Fisheries (Germany) 

Tanganyika (1) 

Pierre Denis Plisnier Tanganyika (4) 

Irkutsk State University (Russia) Baikal (1) 

Regional Science Consortium (USA) Erie (1) 

UGLOS – Upper Great Lakes Observing System (USA)  Erie (2) Douglas (1) 

LEGOS – Laboratoire d’Etudes en Géophysique et 
Océanographie Spatiales (France) 

Issykkul (1) 

SLU – Swedish University of Agricultural Science (Sweden) Vanern (6) Vattern (2) Malaren (9) Bolmen (2) 

Uppsala University (Sweden) Vanern (1) Erken(1) 

Sao Paulo State University (Brazil) Tucurui (1) Itaipu (1) Tres Marias (1) 

Junsheng Li (China) Taihu (1) 

KU Leven (Belgium) Kivu (1) 

SYKE – Finnish Environment Institute (Finland) Paijanne (3) Oulujarvi (1) Pyhajarvi(1) 

Vermont EPSCOR – Established Program to Stimulate Champlain (1) 
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Satellite Instrument 

Competitive Research (USA) 

SUNY Plattsburgh Center for Earth and Environmental 
Science (USA) 

Champlain (1) 

Nipissing University (Canada) Nipissing (2) 

National Park Service (USA) Mead (3) Mohave (2) 

GLEON – Global Lake Ecological Observatory Network Tanganyika (3) Balaton (1) 

BLI – Balaton Limnological Institute (Hungary) Balaton (6) 

KDKVI – Central Transdanubian (Regional) Inspectorate for 
Environmental Protection, Nature Conservation and Water 
Management (Hungary) 

Balaton (3) 

UMR CARRTEL – Centre Alpin de Recerche sur le Réseaux 
Trophique des Ecosystèmes Limniques (France) 

Geneva (1) 

UC-Davis Tahoe Environmental Research Center (USA) Tahoe (1) 

Utrecht University (Nederlands) Garda (1) 

Italian National Research Council (Italy) Garda (8) Trasimeno (2) Maggiore (2) Iseo (2) 

NOAA National Ocean Service Water Level Observation 
Network (USA) 

St John River (3) 

Estonian University of Life Sciences (Estonia) Vorstjarv (4) 

Israel Oceanographic and Limnological Research (Israel) Sea of Galilee (2) 

National Institute for Environmental Studies (Japan) Kasumigaura (5) 

Universitá degli Studi di Perugia (Italy) Trasimeno (1) 

Freie Universitat Berlin/Fondazione Edmund Mach 
(Germany/Italy) 

Iseo (1) 

University of Wisconsin-Madison (USA) Mendota (1) 

NTL LTER – North Temperate Lakes Long-Term Ecological 
Research (USA) 

Mendota (1) 

The Ohio State University (USA) Douglas (1) 

 

 

Figure 99 – Geographical distribution of sites used for LSWT validation. 
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Table 34.  Lakes_cci lakes with in situ data. lists the 44 lakes together with their maximum distance 
from land [Carrea et al. 2015], which is an indication of each lakes’ size that is meaningful for LSWT 
remote sensing. The distance to land for lake Iseo in Italy is shown in Figure 100. The best resolution 
of the instruments used for the retrieval of the LSWT is 1 km. If the lake has a maximum distance to 
land of 1.7 km such as lake Iseo, the LSWT retrieval is very likely to be available only for that part of 
the lake and only for a limited proportion of overpasses (clear sky and observations relatively central 
within the swath). In particular, a combination of factors has to occur: 1) the satellite image locations 
line up so that some pixels are nominally fully water pixels, which requires the satellite view zenith 
angle (which affects the on-the-ground resolution) to be such that the half-pixel size is smaller than 
the distance to coast; 2) these pixels are cloud free; 3) image geolocation errors (which can be of 
order 1 pixel uncertainty) are small enough that the nominally water-filled pixels are truly water-
filled meaning that the water detection tests are passed. 

Table 34.  Lakes_cci lakes with in situ data. 

Lake id Name Country N sites Max distance to land (km) 

2 Superior Canada/USA 13 73.5 

3 Victoria Tanzania 1 84.1 

5 Huron Canada/USA 9 73.3 

6 Michigan USA 15 63.8  

7 Tanganyika Tanzania 8 34.1 

8 Baikal Russia 1 33.7 

11 Great Slave Canada 2 44.6 

12 Erie Canada 10 45.6 

13 Winnipeg Canada 3 40.1 

15 Ontario Canada 5 36.1 

25 Issykkul  Kyrgyzstan 1 26.9 

29 Vanern Sweden 7 20.3 

44 Woods Canada 1 11.8 

52 Tucurui Brazil 1 6.4 

65 Itaipu Paraguay 1 3.8 

66 Taihu China 1 16 

67 Kivu Zaire 1 13 

95 Vattern Sweden 2 9.9 

146 Saint Claire  Canada 1 13 

157 Paijanne Finland 3 3.8 

163 Malaren Sweden 9 2.7 

165 Champlain USA 2 5.8 

188 Tres Marias Brazil 1 2.3 

198 Nipissing Canada 3 9 

202 Oulujarvi Finland 1 6 

236 Simcoe Canada 1 8.4 

278 Mead USA 3 3.8 
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Lake id Name Country N sites Max distance to land (km) 

310 Balaton Hungary 10 6 

327 Geneva Switzerland 1 6.2 

380 Tahoe  USA 1 8.2 

505 Garda Italy 9 5.2 

507 St John River USA 1 2.4 

679 Vorstjarv Estonia 4 6.2 

948 Maggiore  Italy 2 2.4 

1028 Bolmen Sweden 2 2.7 

1196 Sea of Galilee Israel 2 5.6 

1204 Kasumigaura Japan 5 3.7 

1240 Pyhajarvi Finland 1 3.9 

1529 Trasimeno Italy 3 4.3 

1603 Mohave USA 2 2.8 

3153 Iseo Italy 3 1.7 

4503 Mendota USA 2 2.5 

6785 Erken Sweden 1 1.5 

13377 Douglas USA 2 1.5 

 

A good portion of the lakes that have been used for the validation are small, for which, given the 
previous discussion, the LSWT retrieval is most challenging. 

Moreover, some of the locations of in situ measurements are situated close to the coast even for 
large lakes, which means that the nearest water-filled pixels may not overlap the in situ 
measurement, thus increasing the uncertainty in the comparison from spatial representativity. 

As the in situ data are from a variety of sources, with different formats, considerable effort has been 
put in to consolidate each new source of data to a standard format for use in validation. A quality 
control procedure for checking the in situ data is also necessary, since they are not always plausible. 
This is partly automated and partly by manual inspection. The quality control procedure was initiated 
within the ARCLake project and updated within GloboLakes and C3S. 

The in situ data have a range of characteristics:  

• the measurements have been taken at different depths up to 1 m;  

• the temporal sampling of the measurements ranges from 15 minutes to few times a year; 

• the temporal availability of the in situ measurements varies from few months up to covering 
all the satellite period; 

• for some locations the measurements are averages while for others they have been taken 
instantaneously at the reported time;  

• none of the in situ measurements which have been collected are provided with an 
uncertainty estimate.  

While part of the data are available online, the majority has been collected through personal 
communications and in a proportion of cases we are not licensed to redistribute the data because of 

the provider’s data policy. 



D4.1: Product Validation and Intercomparison Report 

     

 

  91/152 

 

Figure 100.  Distance to the nearest land for each pixel on water for lake Iseo in Italy at about 300m 
resolution. 

4.2. Comparison methods 

The validation of the Lake Surface Water Temperatures consists of the comparison with independent 
in situ data. The satellite-to-in situ-matches are created at the original satellite coordinates, at L2. 
The Lakes_cci products are not on satellite coordinates but are gridded in a regular grid at 1/120° 
resolution and "supercollated” (combined across the available sensors) making a gridded product 
technically referred to as “L3S”. The LSWT of the L3S grid cell of the combined and regridded 
temperature are therefore directly validated to assess the products as seen by users. The validation 
of the LSWT is performed using conventional and robust statistics, the latter being less sensitive to 
outliers and more descriptive of the majority of data. 

4.2.1.  Generation of the L2 matchups 

A per-sensor matchup is created at L2 and it contains satellite and in situ data as nearly as possible 
co-incident and space and time. The match defines the reference temperature and time from the in 
situ location and the associated LSWTs, quality level and uncertainty from the L2 LSWT product. The 
matchup is created for satellite observations based on the following criteria: 

• Spatially within 3 km from the location of the in situ measurement and  

• Temporally within 3 hours for the in situ measurements where the measurement time was 
available. For some of the lakes only daily mean temperature was recorded or the time-of-
day of the measurements was not reported, and in these cases the time criterion was to 
match the day of observation. 
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4.2.2.  Validation of the L3S CCI LSWT v4.1 

The differences between the L3S LSWT and in situ data are analysed using both standard and robust 
statistics. Robust statistics is less influenced by outliers in the distribution of differences, which can 
be also caused by poor in situ measurements. Quality control measures have been applied to in situ 
measurements but many different instruments have been used to take measurements and the 
operating methods of the instruments and the reporting vary strongly between sites. Time series of 
the absolute temperatures together with their difference are generated differentiating the quality 
levels. “Violin” plots where the distribution of the difference is shown are produced for each quality 
level. The robust statistics is also investigated per quality level for each year and for each lake. 

4.2.3. Validation of the LSWT uncertainty  

The validation of the L3S Lakes_CCI LSWT v4.1 is carried out comparing the satellite minus in situ 
temperature difference with the combination of the satellite uncertainty (present in the products) 
and an estimate of the in situ uncertainty (which is relatively poorly known). In an ideal case, the 
standard deviation of the differences between the satellite LSWT and a reference LSWT would equal 
the combined measurement uncertainty plus the uncertainty attributable to representativity effects.  

4.2.4. Number of CCI lakes with LSWT  

An assessment of the lakes with no retrieved LSWT is reported. Most of the lakes are too small in 
comparison with the satellite resolution and other can be included in the next version. 

4.3. Description of work 

The matchup is carried out per sensor over the 159 locations on 44 lakes. The total number of 
matches is 114,487 for any quality level and 98,119 excluding satellite LSWT of quality level equal to 
1. The number of matches varies per year and since the AVHRR sensors have a larger swath than the 
ATSR sensors (ATSRs swath is 500 km and AVHRRs swath is ~2900km), after 2007 the number of 
matches clearly increases as it is shown in Figure 101. Number of matches for the CCI lakes at L3 per year.. 
We can notice another clear increase in 2013 when the AVHRR on MetOpA is used together with the 
AVHRR on MetOpB. In 2019 the number of matches is lower than the previous year because the 
LSWT time series end at the end of August 2019. The number of matches depends also on the 
availability of the in situ since a different number of locations is available every year as shown in 
Figure 101Figure 102. Number of sites with matches for the CCI lakes at L3 per year. The number of locations 
where in situ measurements have been taken has almost tripled since 1995; however, a portion of 
the measurement temporal frequency is daily. 
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Figure 101. Number of matches for the CCI lakes at L3 per year. 

 

Figure 102. Number of sites with matches for the CCI lakes at L3 per year. 
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4.4. Result analysis 

4.4.1.  Validation of LSWTs 

Robust statistics and the traditional statistics per quality level are reported in Table 35. List of the CCI 

lakes with in situ data. for the matches across all the locations where in situ measurements were 
available as reported in Table 34. 

Table 35. List of the CCI lakes with in situ data. 

QL N Median RSD Mean SD 

5 34681 -0.060 0.504 -0.056 0.932 

4 26757 -0.160 0.682 -0.183 1.135 

3 23559 -0.240 0.934 -0.336 1.356 

2 13122 -0.570 1.394 -0.740 1.718 

1 16368 -2.730 4.240 -3.879 4.913 

 

In Table 35 the number of matches per quality levels are listed together with the median and the 
robust standard deviation of the satellite minus in situ temperature difference and the traditional 
metrics, the mean and the standard deviation. The difference between the median and the mean is 
almost negligible for quality level 5 and it increases as the quality levels get lower (suggesting, as 
expected, a higher incidence of cold-biased observations for low quality levels). The agreement 
between satellite and in situ measurements varies according to the quality levels in a way that is 
expected. 

The best agreement is for quality levels 4 and 5, which are the levels that reflect a higher degree of 
confidence in the validity of the satellite estimate. Our recommendation to users is to use the quality 
level 4 and 5 for lake-climate applications in general, although lower quality level data may be 
relevant to users where they have specifically verified their fitness for a given lake for their 
application. Quality level 3 data comparison with the in situ data shows an agreement that may be 
acceptable to some users; however, they have to be used with care. Quality level 1 data should 
never be used and they are classified as “bad data”. 

A contribution to the difference on average is the expected skin effect. Infrared radiometers are 
sensitive to radiation emitted between the air-surface interface and 20mm below the interface while 
the in situ measurements considered here are taken at a distance up to 1m from the air-surface 
interface. During the night, the surface of the water is generally cooler than the subsurface by ~0.2 K 
[Saunders, 1967], [Embury et al, 2012]. However, during the day, if the wind speed is low enough, 
thermal stratification due to solar heating contributes a positive offset to the difference in 
temperature between the radiometric lake surface and the in situ measurement depth (up to 1 m). 
The positive thermal stratification would be expected to be in the range <<1 K for most observations 
and but occasionally of order a few kelvins. The degree of near-surface stratification to be expected 
in different lakes depends on fetch, weather conditions (radiative balance and wind speed), the 
depth of in-situ measurement, and any local vertical mixing perturbations introduced by the 
presence of the in-situ measurement system. The aggregate effect of these factors is not currently 
well quantified.  Overall, it is plausible that for day time LSWT observations the mean stratification 
effect is of order one or a few tenths, as has been determined over the oceans. In summary, a 
geophysical contribution to the satellite minus in situ temperature difference is the expected skin 
effect of -0.2 K, but other positive geophysical offsets are similar in magnitude and difficult to 
quantify precisely. In this context, a mean agreement of the physics-based retrievals and validation 
within +/-0.2 K is a convincing result. In terms of scatter, as well as the retrieval uncertainty and 
variability in the vertical stratification effects, the scatter includes in situ uncertainty and horizontal 
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variability. Again, quantitative understanding of the scatter from these effects is not yet mature, and 
for this reason full uncertainty budget validation remains a research aspiration (see also E3UB). 

The distributions of the satellite minus in situ temperature differences per quality level 2,3,4,5 are 
reported in Figure 103 as “violin” plots. The distributions become more stretched and less symmetric 
with longer tail towards negative differences as the quality levels decreases. 

 

Figure 103. Distributions of the satellite minus in situ temperature difference per quality level as “violin” 
plots where the widths indicate the density of data for a given difference. 

The median and the robust standard deviation per quality level per year for all the lakes is shown in 
Figure 104 and Figure 105 together with the number of matches. For high quality levels the median 
and the robust standard deviation are consistently low throughout the years when different 
instruments have been adopted and a different number of matches is available. They deteriorate as 
the quality goes lower especially for the ATSRs sensors which are relied on exclusively until 2007. The 
number of matches for quality level 5 is consistently the highest. 
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Figure 104. Satellite minus in situ temperature difference median per year (upper plot) and number of 
matches (lower plot) per quality level. 

 

Figure 105. Satellite minus in situ temperature difference robust standard deviation per year (upper plot) 
and number of matches (lower plot) per quality level. 

The median and robust standard deviation have been inspected also for each lake. Figure 106 and 
Figure 107 show the plots together with the correspondent number of matches. Higher numbers of 
matches are for lakes where data were available for longer periods but also where hourly/subhourly 
measurements were available and for sites far from the coast. The median and robust standard 
deviation are consistently better for quality level 5 throughout the lakes, while for quality level 4 the 
instances of greater variation are related to lower numbers of matches. However, for some 
lakes/quality-level combinations the in situ measurements are very few: for example, for lake Taihu 
(lake ID 66), only one match with LSWT of quality level 4 is available. For lake Paijanne (lake ID 157), 
the median difference and the robust standard deviation are unusually large. The in situ data for this 
lake come from two different originators for three sites as shown in Figure 108. Figure 109 shows the 
satellite LSWTs, the in situ values and the climatology (for reference) for the three sites on lake 
Paijanne in 2015. The majority of the measurements have been taken at the site 1 which is very close 
to the coast where the satellite minus in situ difference show cooler satellite LSWT in the first part of 
the year and warmer in the second part. This behaviour is consistently throughout the years and is 
consistent with an effect of shallow-water energy balance on the in situ measurement that 
differences from the satellite location of the matches that are at a spatial distance up to 3 km; for 
comparing to measurements close to the coast in shallow water, this is a significant distance. For the 
other two sites the in situ and satellite measurements have a good agreement but the in situ data 
have a lower temporal resolution. 
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Figure 106. Satellite minus in situ temperature difference median per lake (upper plot) and number of 
matches (lower plot) per quality level. 

 

Figure 107. Satellite minus in situ temperature difference robust standard deviation per lake (upper plot) 
and number of matches (lower plot) per quality level. 
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Figure 108. Locations of in situ measurements for lake Paijanne in Finland. Each dot represents a 
1/120°x1/120° cell. 
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Figure 109. Validation plots for the three sites on lake Paijanne (Finland) for year 2015 where the yellow plot is 
the climatology, the black line and the white dots are the in situ measurements, the coloured 

dots are the satellite LSWTs per quality level and the green line is the satellite minus in situ 
difference. 

As another example, consider lake Superior where many sites are available. The robust statistics of 
the difference for all the matches of quality level 3,4,5 have been plotted per sites in Figure 110 
showing consistency for sites near each other, and a higher variability of the differences for sites 
close to the coast than those far into the lake, as expected. Figure 111 and Figure 112 show the LSWT 
and the in situ measurements in 2014 respectively for three sites on the lake Superior. In 2014 a 
sharp increase in temperature can be observed in the beginning of August consistently for the three 
sites and consistently for the satellite and in situ measurements. The timing of temperature increase 
is consistent at the three very different locations, one being closer to the coast and the other two 
more offshore. Figure 112 (right hand side) shows the position of the in situ measurement sites on 
lake Superior. 

 

Figure 110. Satellite minus in situ temperature difference median and robust standard deviation for all the 
sites on lake Superior for quality level 3,4,5. 

 

Figure 111. Satellite observations (dots), in situ matches (white dots), in situ measurements (black line), 
satellite minus in situ T difference for quality levels 4,5 (green line) and climatology 

(golden line with climatological variability as the yellow band) for lake Superior in 2014 at 
site 01 (on the left) and site 03 (on the right). 
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Figure 112. Satellite observations (dots), in situ matches (white dots), in situ measurements (black line), 
satellite minus in situ T difference for quality levels 4,5 (green line) and climatology 

(golden line with climatological variability as the yellow band) for lake Superior in 2014 at 
site 04 (on the left) and location of the in situ measurement sites on lake Superior on a 

1/120° grid (on the right). 

 

The time series of the satellite and the in situ temperature together with their difference have been 
inspected and they are reported here for two “difficult” validation cases as examples. The first is a 
small lake (lake Erken in Sweden). The second is lake Kasumigaura in Japan, a lake with low-
temporal-frequency data.  

The location where the in situ measurements have been collected on Lake Erken in Sweden is shown 
in Figure 113 (red dot). Figure F16 and Figure F17 show the satellite observations and the in situ 
measurements in 1997 when only ATSR2 was utilised and in 2014 when observations from AVHRR-A 
and AVHRR-B were used. For both the years the satellite observations follow remarkably well the in 
situ measurements, which were very high frequency measurements. The peak in the difference 
(green line) in 1995 is very likely due to a slight temporal mismatch. Despite the peculiar behaviour 
of the temperatures through the year in both cases the satellite and in situ are mimicking each other 
remarkably well. Note that in this case the measurements site is close to the shore but matching 
within 3 km does not have a strong influence in this case because the lake is small and more 
consistent in LSWT across its area. 

 

Figure 113. Location of in situ measurements for lake Erken in Sweden. Each dot represents a 1/120°x1/120° 
cell. 
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Figure 114. Satellite observations (dots), in situ matches (white dots), in situ measurements (black line), 
satellite minus in situ T difference for quality levels 4,5 (green line) and climatology 

(golden line with climatological variability as the yellow band) for lake Erken in Sweden in 
1995 (on the left) and 2014 (on the right). 

 

Figure 115, Figure 116, Figure 117 and Figure 118 present lake Kasumigaura in Japan at the five sites in 
year 2016. The sites 01 and 03 are very close to the coast, so the matches are lower in number than 
for the other sites. However, a consistency between in situ and satellite LSWT can be observed for all 
the sites. 

 

 

Figure 115. Location of in situ measurements for lake Kasumigaura in Japan. Each dot represents a 
1/120°x1/120° cell. 
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Figure 116. Satellite observations (dots), in situ matches (white dots), in situ measurements (black line), 
satellite minus in situ T difference for quality levels 4,5 (green line) and climatology 

(golden line with climatological variability as the yellow band) for lake Kasumigaura in 
Japan in 2016 for site 01 (on the left), site 02 (on the right). 

 

Figure 117. Satellite observations (dots), in situ matches (white dots), in situ measurements (black line), 
satellite minus in situ T difference for quality levels 4,5 (green line) and climatology 

(golden line with climatological variability as the yellow band) for lake Kasumigaura in 
Japan in 2016 for site 03 (on the left), site 04 (on the right). 
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Figure 118. Satellite observations (dots), in situ matches (white dots), in situ measurements (black line), 
satellite minus in situ T difference for quality levels 4,5 (green line) and climatology 

(golden line with climatological variability as the yellow band) for lake Kasumigaura in 
Japan in 2016 for site 05. 

4.4.2. Validation of the uncertainty LSWT v4.1 

The LSWT uncertainty estimate has been validated comparing the difference satellite minus in situ 
temperatures and the correspondent LSWT and in situ uncertainties. The following quantity is calculated for 
each match: 

Δ =  
𝑇𝐿𝑆𝑊𝑇 − 𝑇𝐼𝑁𝑆𝐼𝑇𝑈

√𝜎𝐿𝑆𝑊𝑇
2 + 𝜎𝐼𝑁𝑆𝐼𝑇𝑈

2 + 𝜎𝑟𝑒𝑝𝑟
2

 

 

where T indicates temperature, for LSWT and in situ as indicated in the subscripts. 𝜎 means the 
standard deviation from measurement uncertainty (for LSWT and in situ) and from real differences 
because of point-to-pixel representativity effects. 

The in situ measurements uncertainty is not known for the data we have. We explore two 
assumptions: 𝜎INSITU=0.2 K, a value based from deployment of similar measurement technologies to 
the ocean, and 𝜎INSITU=0.5 K which would be at the upper end of our expectations for in situ 
uncertainty. The representativity effect is presently unquantified and we set it to 0 K for the present; 
neglecting representativity has the tendency to make the LSWT uncertainty look underestimated.  

Lakes_cci products, 𝜎𝐿𝑆𝑊𝑇
2  is context sensitive and varies from match to match, which is why the 

validation approach involves the calculation of the above metric: the distribution of Δ should be a 
Gaussian distribution with mean equal to 0 and standard deviation equal to 1 when all standard 
deviations are well estimated and the retrieval is unbiased relative to the in situ and any mean 
geophysical effect. Figure 119 shows the histograms of the uncertainties per quality level where also 
the fitted Gaussian and the target Gaussian distributions are shown. In Figure 119 an in situ 
uncertainty of 0.2 K has been assumed. 
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Figure 119. LSWT uncertainty validation (in situ uncertainty = 0.2K) per quality level (indicated in legend): 
histograms of D 

For quality level 5, the Gaussian fit has width 2.68, which means that observed differences are more 
different than expected from the quoted uncertainties. This may be partly because the product 
uncertainties are underestimated, but could also arise to the degree that lake in situ data (being 
more diverse) have larger uncertainty than the assumed value (based on experience of ocean 
observations), and because representativity is neglected. Interpretation of this outcome is therefore 
currently ambiguous, and research is needed to better understand the in situ uncertainty and 
representativity effects. 

We used an in situ uncertainty of 0.5 K to explore the level of in situ uncertainty that would better fit 
the Gaussian. Figure 120 shows the uncertainty validation for this value. The width of the Gaussian fit 
for quality level 5 is closer to one, and thus 0.5 K may be closer to the combined effect of in situ and 
representativity uncertainty. However, more investigations of in situ uncertainty and 
representativity need to be carried out to understand this better. 
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Figure 120. LSWT uncertainty validation (in situ uncertainty = 0.5K) per quality level (indicated in legend): 
histograms of D 

 

4.4.3. Lakes with no LSWT 

For 13 target lakes, no LSWT has been obtained, largely due to the fact that they are too small. The lakes are 
listed in Table 36 together with the estimated maximum distance to land. The majority of the lakes is not 
feasible because of their small size, except for the lake 1099 in Greenland, which was not successful due to 
missing climatology, and lakes 200000071 and 20000072 where in the mask used during the processing they 
were labelled as sea rather than lakes. For the next version of the Lakes_cci LSWT these lakes will be included. 

Table 36. Lakes with no LSWT 

CCI Lake id Name Country Max distance to land (km) Comments 

1 Caspian Azerbaijan/Russia/Tu
rkmenistan/Iran 

164.8 Processed as SST 

1099 NN Glacial Lake Greenland 1.8 Missing climatology 
2637 Saysan Kazakhstan 0.9 Too small 
7889 Melvin Ireland 1.3  Too small 
18089 Macnean United Kingdom 0.6 Too small 
164651 Portmore United Kingdom 0.5 Too small 
208840 Mantua Italy 0.5 Too small 
215215 Morse USA 0.5 Too small 
215311 Geist USA 0.5 Too small 
215339 Eagle Creek USA 0.6 Too small 
100000004 Mourve United Kingdom 0.2 Too small 
200000071 Patos Lagoon Brazil 25.2 Mis-abelled as sea 
200000072 Maracaibo Venezuela 46.5 Mis-abelled as sea 
300134644 Rihpojavri Norway 0.7 Too small 
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4.5. Conclusions and recommendations 

The validation of the LSWT shows very good mean agreement (comfortably within +/-0.2 K) between 
satellite LSWT and independent in situ temperature measurements. 

The uncertainty validation principles are clear, but the results are not mature enough to make strong 
validation statements regarding the uncertainty information since in situ uncertainty and 
representativity uncertainty are poorly known for lakes: experience from the ocean suggests in 
situ/representativity uncertainty of order 0.2 K, but for lakes this may be an underestimate.  An 
initial analysis suggests 0.5 K is closer to the case.  

The LSWT and uncertainty validation show that the quality level accompanying the LSWT are a very 
important variable for the proper use of the data. Quality levels provide the confidence on the LSWT 
retrieval. We recommend to use quality levels 4 and 5 for lake-climate applications. 

Manual inspection of all products for more than 1000 water bodies is impossible and in most cases 
requires local knowledge. The validation of the products is, and always will be, based on a small 
sample of well-studied areas. Users of these products are therefore advised to inspect the results for 
their area of interest before generating derivative products and any feedback to Lakes_cci would be 
most useful. 
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5. Lake Ice Cover (LIC) parameter 

Lake ice cover (LIC) refers to the extent (or area) of a lake covered by ice. In Lakes_cci, LIC is a daily merged 
level 3 (L3) product generated from MODIS Terra/Aqua Calibrated Radiance 5-Min L1B Swath 
(MOD02/MYD02), Collection 6.1, data (see ATBD for details). In the LIC product, each pixel is assigned one of 
four possible class labels: water (value=1), ice (value=2), cloud (value=3), and bad (value=4; case where a 
retrieval was not possible due to poor data quality). Only pixels labelled as water, ice or cloud are considered in 
product validation. It is important to note that validation is performed on Terra and Aqua derived LIC 
individually, before merging into the daily Terra/Aqua L3 product and before aggregating into the ca. 1 km 
harmonized grid. 

Product validation can be performed following three approaches: (1) comparison against ground-based 
nearshore observations; (2) comparison with LIC products generated by other algorithms/groups such as 
NASA’s MODIS Snow Cover products from Terra and Aqua (MOD10/MYD10); and (3) validation against groups 
of pixels (Areas Of Interest or AOI) extracted for a selection of lakes from visual interpretation of original 
MODIS Terra and Aqua imagery used as input into the LIC retrieval algorithm (i.e. MOD02/MYD02). Here, 
validation involved a mix of approaches (2) and (3) whereby the thematic accuracy (water, ice and cloud) of 
Lakes_cci LIC (Aqua and Terra severally) was evaluated, and results of Lakes_cci LIC and NASA’s MODIS Snow 
Cover products were compared by visual inspection. Approach (1) was not considered herein since ground-
based nearshore observations were unavailable or non-existent at the time of writing of this report; however, 
most importantly, such observations are of a more limited value than the two other approaches for lake-wide 
validation of the LIC product. 

5.1 Data description 

5.1.1. MODIS Terra/Aqua Calibrated Radiances Level 1B product (MOD02/MYD02) 

MODIS Terra/Aqua Calibrated Radiances L1B 5-Min Swath, Collection 6.1 (MODIS Characterization Support 
Team , 2017) – MOD02/MYD02 false color composites (R: band 2, G: band 2, B: band 1) with a 250 m spatial 
resolution were used as reference images to manually collect AOIs with assigned labels (lake ice, open water, 
and cloud) to assess the accuracy of the Lakes_cci LIC. MODIS band 1 is centered at 645nm (red) and band 2 at 
865 nm (near-IR). In addition to false color composites, true color composites were also used for visual 
inspection (R: band 1, G: band 4, B: band 3). MODIS band 3 is centered at 469nm (blue) and band 4 at 555nm 
(green) with 500m. 

5.1.2. MODIS Snow Cover product (MOD10/MYD10) 

MODIS Terra/Aqua Snow Cover 5-Min L2 Swath 500 m, Collection 6.1 (C6.1), daily products (MOD10/MYD10) 
were also validated and compared with the Lakes_cci LIC product. In MOD10/MYD10, lake ice cover is 
identified using a similar criteria as snow over land (i.e. Normalized Difference Snow Index (NDSI) ≥ 10 and data 
screens) and a land/water mask provided in MOD/MYD03 products (Riggs et al., 2019). The NDSI is derived 
from MODIS radiance data acquired by Terra/Aqua satellites (i.e. MODIS Level 1B product (MOD02/MYD02) 
top-of-the-atmosphere (TOA) calibrated radiance/reflectance data). MODIS Cloud Mask products 
(MOD/MYD35_L2) have been also applied to filter cloud cover for MOD10/MYD10 products. Input data to the 
Snowmap algorithm used in the production of MOD10/MYD10 are shown in Table 37. Therefore, four labels 
(i.e., ice, water, cloud, other) are presented in MOD10/MYD10 snow maps to indicate ice cover over lake areas. 
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Table 37. MODIS data inputs for the collection 6.1 (C6.1) snow algorithm (adapted from Riggs et al., 2019) 

Input Data Product Description 

MOD/MYD02HKM Calibrated Radiances (500 m)  

MOD/MYD021KM Calibrated Radiances (1 km) 

MOD/MYD03 Geolocation Fields (1 km) 

MOD/MYD35_L2 Cloud Mask and Spectral Test Results (250 m and 1 km) 

* Depends on platform, MOD indicates Terra, MYD indicates Aqua 

 

The MODIS Snow Cover product experiences issues in differentiating between clouds and snow/ice, and both 
errors of commission and omission can be found in the product. Omission occurs when the MODIS cloud mask 
(MOD/MYD 35) identifies an area of snow/ice as certain cloud, therefore excluding it from the MODIS snow 
product (Riggs et al., 2019). Errors of commission can occur on the periphery of cloud cover or where clouds 
appear similar to snow/ice and are excluded from the cloud mask and instead identified as snow/ice (Riggs et 
al., 2019). Cloud cover can be removed from the product by extracting the classification value from the 
previous and proceeding pixel to determine the possible classification of a cloud covered pixel. High solar 
zenith angle can also prevent accurate classification of snow/ice cover, which is important when studying 
freeze-up at northern high latitudes. Pixels are screened using a solar zenith angle mask of > 70° and pixels 
with a solar zenith angle ≥ 85° are classified as night. 

5.2 Comparison methods 

Validation of the Lakes_cci LIC product and NASA MODIS Snow Cover product (also used for comparison) has 
been performed through computation of confusion matrices built on independent statistical validation. The 
reference data for validation were collected for water, ice and cloud as AOIs from the visual interpretation of 
the false colour composite surface reflectance images (MOD09/MYD09), as described in section 5.1.1, over 
three ice seasons (freeze-up and break-up periods) interspersed across the 20-year MODIS record by skilled ice 
analysts. 

In addition to statistical validation, comparison of the Lake_cci LIC product and NASA MODIS Snow Cover 
product was performed through visual inspection. The reference data include false colour composite and true 
colour composite images. 

5.3 Description of work 

Work on product validation and intercomparison is comprised of three parts. The first part includes algorithm 
development and validation for the Lakes_cci LIC product derived from MODIS Terra. Validation for the 
Lakes_cci LIC product generated from MODIS Aqua is presented in the second part. The last part shows 
intercomparison of the Lakes_cci LIC and NASA Snow cover products by visual inspection. 

In the first part, a total of 17 lakes have been selected across the Northern Hemisphere to serve for the 
purpose of both development and validation of the Lakes_cci LIC product derived from MODIS Terra (Figure 
121). Samples were collected for three ice seasons (2002-2003, 2009-2010, 2016-2017) as to include MODIS 
data from Terra (2000-present) and Aqua (2002-present), and provide a good temporal spread over the full 
record to ensure algorithm stability. For each lake, one image from the freeze-up period and one image from 
the break-up period were selected for both Terra and Aqua images if available. False color composites (R: Band 
2, G: Band 2, B: Band 1) with a 250 m spatial resolution were used as reference images to manually extract 
AOIs with labels (ice, water, and cloud). In total 54 images (20 from FU, 34 from BU) were selected and 276,003 
pixels were sampled from the selected AOIs. A 100-fold cross-validation was used to conduct model 
comparison and examine model transferability. In order to evaluate the performance of the algorithm for the 
freeze-up and break-up periods separately, additional samples from MODIS Terra were collected for a full ice 
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season (2018 - 2019) from Great Slave Lake and Lake Ladoga. A total of 10,075,081 pixels taken from 229 
swaths over the two lakes were used to present classification performance by confusion matrices.  

The second part shows the validation of the Lake_cci LIC product generated by MODIS Aqua. Similar to the 
work for the Lake_cci LIC product from MODIS Terra, 1,665,188 samples were collected based on false colour 
composite images produced from the MYD02 Aqua product over Great Slave Lake (156 swaths), Lake Ladoga 
and Lake Onega (61 swaths) in 2020. A confusion matrix computed by using the samples is provided to present 
the classification performance. 

In the last part, the Lakes_cci LIC product is compared with the NASA MODIS Snow Cover product through 
visual inspection. Several classification challenges for the two products, such as thin ice detection, thin 
cloud/fog retrieval, and confusion between ice and cloud are examined. 

 

 

Figure 121. Geographical distribution of lakes used for Lakes_cci LIC algorithm development and validation 

5.4 Result analysis 

Figure 122 shows the accuracies computed from a 100-fold cross-validation (CV) using the samples of MODIS 
Terra from the 17 lakes. Random forest (RF) was found to outperform two other machine learning algorithms 
(multinomial logistic regression, MLR, and support vector machine, SVM) and comparable to gradient boosting 
trees (GBT) for lake ice cover, open water and cloud classification in a recent paper by the developers of the 
current LIC product (Wu et al. 2021). Furthermore, RF provided consistent results based on a comprehensive 
accuracy assessment (random k-fold as well as spatial and temporal CV as shown in Table 38).   
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Figure 122. Comparison of accuracies (%) obtained using random 100-fold CV across classifiers for the ice, 
water and cloud classes individually, and overall (OA) (Wu et al., 2021) 

 

Table 38. Accuracy assessment using temporal and spatial CV methods (adapted from Wu et al., 2021) 

 MLR SVM RF GBT 

Temporal CV accuracy 93.21% 83.00% 95.49% 95.15% 

Spatial CV accuracy 90.98% 79.36% 95.64% 95.26% 

 

Table 39 provides the accuracies reached by the Lakes_cci LIC product with input from MODIS Terra for the 
break-up (BU) and freeze-up (FU) periods taken individually. There is no notable difference in the accuracy of 
the Lakes_cci LIC product between the BU (OA: 98.14%) and FU (OA: 96.83%) periods, and the classification 
accuracies are consistent across classes. Table 40 presents classification results for MODIS Aqua Lake_cci LIC, 
which are comparable to the performance of MODIS Terra Lake_cci LIC shown in Table 39. 

 

Table 39. Confusion matrices with retrieval accuracies for Lakes_cci LIC derived from MODIS Terra (break-up 
and freeze-up periods individually) (adapted from Wu et al., 2021) 

 
Freeze-Up Break-Up 

RF (classification) RF (classification) 

Lakes_cci LIC Terra Ice Water Cloud Accuracy Ice Water Cloud Accuracy 

U
se

r-

d
ef

in
ed

 Ice 740,105 3,305 15,520 97.52% 774,412 1,213 14,537 98.01% 

Water 613 509,797 4,863 98.94% 927 776,296 4,350 99.32% 

Cloud 154,578 15,790 4,700,459 96.50% 45,418 6,475 2,306,423 97.80% 

 Overall Accuracy: 96.83% Overall Accuracy: 98.14% 
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Table 40. Confusion matrices with retrieval accuracies for Lakes_cci LIC derived from MODIS Aqua 

Lakes_cci LIC Aqua 
RF (classification) 

Ice Water Cloud Accuracy 

U
se

r-
d

ef
in

ed
 

Ice 246,032 2,487 4,751 97.14% 

Water 1,743 538,668 4,655 98.83% 

Cloud 19,738 5,324 841,790 97.11% 

Overall Accuracy: 97.68% 

 

In NASA’s MOD10/MYD10 products, lake ice cover is estimated as snow cover with the scenario where NDSI is 
greater than 10 (Riggs et al., 2019). Besides NDSI, low visible reflectance screen thresholds of band 2 ≤ 0.10 or 
band 4 ≤ 0.11 are applied by the MODIS Snowmap algorithm in inland water bodies to detect lake ice cover 
(Riggs et al., 2019). Therefore, congelation ice with low visible reflectance is misclassified as open water in 
MOD10/MYD10 as shown in Figure 123,Figure 124, Figure 125, and Figure 126. Congelation ice usually occurs 
in the early ice formation or late melting period. Therefore, the performance of congelation ice detection 
affects the quality of lake ice phenology estimation in MOD10/MYD10. The Lakes_cci LIC product presents 
more accurate classification results of lake ice cover in the four cases below. 

 

Figure 123. MODIS true RGB colour composite (a), MODIS false RGB colour composite (b), MODIS-derived 
Lakes_cci LIC (c), and MODIS Snow Cover product (d) for Great Slave Lake (Canada) on 19 
June 2020 (UTC 19:25) by Aqua 

 

Figure 124. MODIS true RGB colour composite (a), MODIS false RGB colour composite (b), MODIS-derived 
Lakes_cci LIC (c), and MODIS Snow Cover product (d) for Lake Ladoga (Russia) on 26 April 
2019 (UTC 09:45) by Terra  
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Figure 125. MODIS true RGB colour composite (a), MODIS false RGB colour composite (b), MODIS-derived 
Lakes_cci LIC (c), and MODIS Snow Cover product (d) for Namtso Lake (China) on 9 May 
2020 (UTC 04:40) by Terra 

 

Figure 126. MODIS true RGB colour composite (a), MODIS false RGB colour composite (b), MODIS-derived 
Lakes_cci LIC (c), and MODIS Snow Cover product (d) for Qinghai Lake (China) on 4 January 
2020 (UTC 04:25) by Terra 

 

As mentioned in section 5.1.2, the MODIS Cloud Cover product (MOD/MYD35_L2) is used in the generation of 
MOD10/MYD10. Hence, the omission and commission errors of the MODIS Cloud Cover product lead to 
misclassification in MOD10/MYD10. Figures Figure 127 and Figure 128 show two cases of misclassification of 
thin ice in the MODIS snow cover product due to cloud overestimation by MOD/MYD35_L2. In contrast, the 
Lakes_cci LIC product can detect the lake ice cover in the two cases correctly. Moreover, as Figure 129 
illustrates, the commission errors of cloud cover in MOD10 also occur under high solar zenith conditions, 
whereas the Lakes_cci LIC product performs better in the classification of lake ice cover. 

 

Figure 127. MODIS true RGB colour composite (a), MODIS false RGB colour composite (b), MODIS-derived 
Lakes_cci LIC (c), and MODIS Snow Cover product (d) for Lake Erie (Canada) on 2 February 
2004 (UTC 15:50) by Terra 
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Figure 128. MODIS true RGB colour composite (a), MODIS false RGB colour composite (b), MODIS-derived 
Lakes_cci LIC (c), and MODIS Snow Cover product (d) for Lake Huron (Canada) on 10 
February 2005 (UTC 18:30) by Aqua  

 

Figure 129. MODIS true RGB colour composite (a), MODIS false RGB colour composite (b), MODIS-derived 
Lakes_cci LIC (c), and MODIS Snow Cover product (d) for Great Slave Lake (Canada) on 30 
December 2018 (UTC 19:20) by Terra under high solar zenith angle conditions (higher than 
80 degrees)  

 

The Lakes_cci LIC product also captures better the spatial distribution of cloud cover compared to 
MYD10/MOD10 (Figures Figure 130 and Figure 131). MOD10/MYD10 Snow Cover products underestimate 
cloud cover on two dates for the lakes shown as examples. With omission errors of cloud detection occurring, 
MYD10/MOD10 misclassify the thin cloud pixels to ice/snow cover because of high NDSI values as Figure 130 
shows. Furthermore, MOD/MYD35_L2 can mislabel low-level clouds and/or fog as "clear sky", resulting in 
classification errors of cloud to ice in MOD10/MYD10 as shown in Figure 131. However, Lakes_cci LIC can 
tackle the two classification challenges properly.  

 

Figure 130. MODIS true RGB colour composite (a), MODIS false RGB colour composite (b), MODIS-derived 
Lakes_cci LIC (c), and MODIS Snow Cover product (d) for Khyargas Lake (Mongolia) on 13 
May 2020 (UTC 04:10) by Terra  
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Figure 131. MODIS true RGB colour composite (a), MODIS false RGB colour composite (b), MODIS-derived 
Lakes_cci LIC (c), and MODIS Snow Cover product (d) for Siling Lake (China) on 1 July 2020 
(UTC 04:50) by Terra  

 

The basic assumption where a water body is deep and clear, thus absorbing solar radiation incident upon it, is 
employed by the Snowmap algorithm for surface classification over inland water bodies for MOD10/MYD10 
(Riggs et al., 2019). Therefore, water with high turbidity or algal blooms can be incorrectly classified as ice 
cover. As Figure 132 shows, the Lakes_cci LIC product retrieves the water area that is misclassified as ice by 
MOD10. 

 

Figure 132. MODIS true RGB colour composite (a), MODIS false RGB colour composite (b), MODIS-derived 
Lakes_cci LIC (c), and MODIS Snow Cover product (d) for Lake Balkhash (Kazakhstan) on 25 
March 2020 (UTC 06:45) by Terra  

 
Another source of error for the MODIS Snow Cover (MOD10/MYD10) product is the geolocation of some lakes. 
MOD10/MYD10 employs the MODIS Geolocation L1A product in order to mask land and water (Riggs et al., 
2019). However, as shown in Figure 133, the MODIS Snowmap algorithm classifies the majority of Lake 
Nettilling (Canada) as ocean resulting in no classification for the ice cover on the lake. However, the more 
accurate lake area mask used for the generation of the Lakes_cci LIC product provides correct classification of 
the ice conditions on that day.     
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Figure 133. MODIS true RGB colour composite (a), MODIS false RGB colour composite (b), MODIS-derived 
Lakes_cci LIC (c), and MODIS Snow Cover product (d) for Lake Nettilling (Canada) on 25 July 
2020 (UTC 15:45). The red colour corresponds to “ocean” in this MODIS Snow Cover 
product 

5.5 Conclusions and recommendations 

For Lakes_cci, LIC CDRP V2.0 is generated from a threshold-based retrieval algorithm using MODIS Terra/Aqua 
Calibrated Radiance 5-Min L1B Swath (MOD02/MYD02), Collection 6.1, as primary data input. Lakes_cci LIC is a 
gridded product where cells are assigned one of four possible labels: water, ice, or bad (case where a retrieval 
was not possible due to poor data quality). 

Validation of the Lakes_cci LIC product was performed via computation of confusion matrices built on 
independent statistical validation. Reference data for validation of class labels (water, ice, cloud) were 
collected from three dataset of samples collected through visual interpretation of the false color composite 
surface reflectance images (MOD02/MYD02) by skilled ice analysts. The reference data also served to validate 
lake ice/water/cloud retrievals contained in NASA’s MODIS Terra/Aqua Snow Cover products 
(MOD10/MYD10), which were then compared to those from Lakes_cci LIC.  

Results show that the retrieval algorithm (RF) implemented for Lakes_cci LIC production provides robust 
classification of lake ice cover. Retrieval accuracies are also found to be more consistent between classes and 
also ice periods for the Lakes_cci algorithm. Moreover, RF also produced comparable classification results from 
MODIS Terra and Aqua. Individual class accuracies are all above 90% (errors less than 10%) for LIC CDRP V2.0 
which meet uncertainty requirements of 10% set by GCOS for LIC ECV (see E3UB document for details on 
determination of errors and uncertainty in LIC product). Additionally, according to visual inspection, compared 
to NASA’s MODIS snow cover product (MYD10/MOD10), the Lakes_cci LIC product performs more accurately in 
several difficult classification cases illustrated in section 5.4. 

Further assessment of the Lakes_cci LIC product and its comparison with ice products other than NASA’s 
MOD10/MYD10 is planned in the future. This includes comparison with: 1) nearshore in situ ice/open water 
observations if such observations are available for any of the 2024 lakes forming ice cover in LIC CDRP V2.0 
release; 2)  NOAA’s Interactive Multisensor Snow and Ice Mapping System (IMS) daily 1 km global product 
(available since December 2014); 3) daily ice charts of the Great Lakes produce by the North American Ice 
Service; and 4) weekly ice fraction product from the Canadian Ice Service. Ice cover observations from these 
various sources will also be valuable for further assessing the quality of LIC CDRP V2.0 following its release. 
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6. Lake Water-Leaving Reflectance (LWLR) parameter 

Lake Water-Leaving Reflectance (LWLR), also referred to as water colour, is the measurement of the quantity 
of sunlight reaching the remote detector after interaction with the water column. The validation and 
comparison of the LWLR products, including LWLR, chlorophyll-a (Chl-a) and total suspended matter (either as 
TSM or expressed as Turbidity), is based on matchups between in situ and satellite measurements.  

Lake Water-Leaving Reflectance (LWLR) is the result of atmospheric correction of top-of-atmosphere radiance 
over water pixels. This correction is the result of model optimization and subject to the possibility of 
ambiguous solutions. The main effects that introduce uncertainty are mixing of reflectance from water and 
nearby land in the atmosphere, bottom effects, in-water bio optical model ambiguities and limited sensor band 
configurations to bound the mentioned numerical optimisation. A lack of in situ reference data and a bias 
favouring turbid, productive and large lakes in the data sets that do exist, further hampers uncertainty 
characterisation over a range of water types and lake geophysical and geospatial characteristics.  

The problem of lacking in situ data is somewhat overcome when the end-to-end validation of biogeochemical 
products derived from LWLR is concerned. Here, a spatio-temporal sampling bias still exists with most of the 
available in situ data having been collected since the launch of MERIS. Systematic error in the LWLR retrieval 
can be compensated in algorithm calibration. 

In this update, to fill the gap between MERIS and OLCI, independent validation and comparison of LWLR and 
water quality products was performed on MODIS.  

6.1. Data description 

6.1.1. In situ data 

The validation dataset used in this study comprised 17 individual datasets from lakes and inland water bodies 
across the globe requested from the LIMNADES repository. This combined data set consisted of 1982 individual 
observations of remote sensing reflectance (Rrs, sr-1), 28726 for Chl-a (mg/m3) and 6955 of total suspended 
matter (TSM, mg/m3).  TSM measurements were more numerous than Turbidity observations. In the satellite 
products the two are interchangeable through a single conversion factor so results will be comparable. 

6.1.2. Satellite data 

Due to scarcity of recent in situ data for the OLCI observation period, the validation study described in this 
section is still based on MERIS. The 3rd reprocessing of MERIS full resolution L1B data was used for CDRP V1.0. 
These were processed to LWLR by applying radiometric calibration (SNAP toolbox, see ATBD for details) and 
Polymer (v4.6; Steinmetz et al. (2011)). We note that the version of Polymer used in the CDRP v1.0 is the latest 
(v4.12) but this does not cause differences in the handling of MERIS data. MODIS L1B data were obtained from 
the National Aeronautics and Space Administration (NASA) for the period 2009-2019, providing overlap with 
MERIS and OLCI to evaluate inter-sensor bias. The L1B data were masked using a combination of L1B and 
Idepix flags (see ATBD for details). The masks applied were Cosmetic, duplicated, glint risk, suspect, 
land/ocean, bright, coastline, and invalid from the L1B product and invalid, cloud, cloud ambiguous, cloud sure, 
cloud buffer, cloud shadow, snow ice, bright, white, coastline, land and glint risk from Idepix.  

6.2. Comparison methods 

Product validation of the LWLR and derived products (Chl-a and TSM) is based on comparison against in situ 
observations. Results presented here are for in situ validation carried out against satellite observations with 
the MERIS sensor, for which the most in situ data are available by far. 
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The satellite matchups were extracted from 3×3 pixel windows with a temporal window of 3 days. The mean 
value was calculated from the macro-pixel for the MERIS and MODIS paths which most closely matched the 
time of the observations. If the same satellite pass was found to be a valid match-up for multiple in situ 
observations from the same location, then the nearest in situ value in time was selected for the match-up. 

Depending on which product was being validated, statistical measures of performance included the coefficient 
of determination (R2), Root-Mean-Square difference (RMS), Normalized RMS difference (NRMS), Mean 
Absolute Percentage difference (MAP) and bias.  

6.3. Description of work 

6.3.1. Lake Water-Leaving Reflectance 

For water-leaving reflectance, comparisons between the in situ and satellite measurements were performed 
for each band. In this report, the atmospheric-corrected MERIS water-leaving reflectance were converted to 
remote sensing reflectance (Rrs =  Rw/π [sr-1]) to facilitate the comparison between the in situ and satellite 
measurements. 

6.3.2. Chlorophyll-a and TSM 

6.3.2.1 MERIS algorithms and their assignment to OWTs 

After extensive product validation in the GloboLakes project, the water constituent retrieval algorithms listed 
in Table 41 were identified as showing individual best performance against sets of Optical Water Types (Neil et 
al. 2019). For Chl-a, the algorithms included for validation are Gons05 (Gons et al. 2005), the NASA OC2 
algorithm (O'Reilly et al. 1998), R708/R665 (Gilerson et al. 2010), and QAA (Mishra et al. 2013a; Mishra et al. 
2013b). For TSM, the algorithms include those of Zhang et al. (2014), Vantrepotte et al. (2011), and Binding et 
al. (2010).  

These algorithms are mapped to pixels depending on their similarity to a set of Optical Water Types (OWT), 
determined from in situ reflectance data in the GloboLakes project (Spyrakos et al. 2018). The assignment of 
algorithms to each OWT is shown in Table 41, which also provides the calibrated algorithm coefficients. It is 
noted that while the methodology of algorithm tuning is as described in Neil et al. (2019), tuned coefficients 
may differ since the former are derived from in situ reflectance data against LIMNADES while Calimnos uses 
coefficients optimized for satellite-derived Polymer-corrected water-leaving reflectance (Rw). 

Table 41 Chlorophyll-a/TSM algorithms per optical water type and tuned parameters for MERIS 

Product Algorithm Optical 
Water Type 
number 

Parameters Tuned 

Chl-a OC2 
oceancolor.gsfc.nasa.gov/cms/atbd/chlor_a 

3, 9, 10, 13 a0, a1, a2, a3, 
a4 

0.1731, -3.9630, -
0.5620, 4.5008, -
3.0020 

708/665 empirical band ratio based on 
Gilerson et al. (2010)  

2, 8, 11, 12 a, b, c 79.62, 0.7393, -
54.99 

Semi-analytical NIR-Red band algorithm for 
MERIS based on Gons et al. (2005). 

1, 4, 5, 6 aph* 0.025 

Adapted QAA algorithm according to Mishra 
et al. (2013) 

7 SCDOM 0.0135 

TSM Based on Zhang et al. (2014) 1, 7, 10 a, b 2524, 1.113 

Based on Vantrepotte et al. (2011) 2, 4, 6, 8, a, b, c 206.4, 20460, 
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12 0.7921 

Based on Binding et al. (2010) 3, 5, 9, 11, 
13 

b*SPM 0.664 

 

6.3.2.2 MODIS algorithms and their assignment to OWTs 

A Round-robin comparison was performed to assess the selected algorithms for MODIS. For Chla, a total of 9 
algorithms were compared, including three blue-green band ratio algorithms, two NIR-red band ratio 
algorithms, one peak height algorithm, and two semi-analytical algorithms (Table 42). For TSM, a total of 11 
algorithms were included in the comparison, which were all empirical algorithms of red or/and NIR bands 
(Table 43). 

 

Table 42 Summary of validated Chl-a models tested for MODIS  

Model Architectural 
approach 

Bands Original training 
range (mg.m-3)  

Reference 

OC3 Blue-green 
band ratio 

min[443, 488], 
547 

0.012 - 77 https://oceancolor.gsfc.nasa.gov/atbd/chlor_a/ 

OC2 Blue-green 
band ratio 

488, 547 0.012 - 77 https://oceancolor.gsfc.nasa.gov/atbd/chlor_a/ 

OC2_HI Blue-green 
band ratio 

469, 555 0.012 - 77 https://oceancolor.gsfc.nasa.gov/atbd/chlor_a/ 

R748_6
67 

NIR-red band 
ratio 

748, (667 or 
678) 

4 - 240 (Dall'Olmo et al. 2005; Gitelson 1992; Gitelson 
et al. 2008; Gitelson et al. 2007; Gurlin et al. 
2011)  

Shi NIR-red band 
ratio 

645, 859 6.6 - 113.7 (Shi et al. 2015a) 

Appel  645, 859, 469 2.9 - 91 (El-Alem et al. 2012) 

FLH Peak height 665, 677, 746 1 - 10 (Letelier and Abbott 1996) 

QAA_v6 Semi-analytical \ 0 ~ 70 https://www.ioccg.org/groups/Software_OCA/
QAA_v6_2014209.pdf 

GSM Semi-analytical \ 0.02 - 10 (Maritorena et al. 2002) 

 

Table 43 Summary of validated TSM models tested for MODIS 

Model Architectural 
approach 

 Bands Original training range Reference 

Petus single red band 645 TSM <30 mg L-1 (Petus et al. 2010)  

ChenS NIR-red ratio  log(859)/log(645) 5.8 ~ 577.2 mg L-1 (Chen et al. 2015)  

Wang single NIR band 869 Turb 1~300 NTU (Wang et al. 2012)  

Doxaran NIR-red ratio 859/645 Turb 77.4 ~2193 NTU 

TSM 77 ~ 2182 mg L-1 

(Doxaran et al. 2009)  

Dogliotti red or NIR 645, 859  Turb 1.8 ~ 988 FNU (Dogliotti et al. 2015)  

Miller single red band 645 0 ~ 55 mg L-1 (Miller and McKee 2004; 
Sipelgas et al. 2006)  
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Shi single red band 645 0 ~ 300  mg L-1 (Shi et al. 2015b; Zhao et al. 
2011)  

Ondrusek single red band 645 0 ~ 16 mg L-1 (Ondrusek et al. 2012)  

ChenZ single red band 645 Turb 0.9 ~ 8 NTU (Chen et al. 2007)  

Hu red and NIR 645-859 0 ~ 12 mg L-1 (Hu et al. 2004)  

Zhang three bands 488, 555, 645 1~ 300 mg L-1 (Zhang et al. 2010) 

 

The above listed Chl-a/TSM algorithms were evaluated in three different forms: 

• Original form (denoted as ORG), which adopts the proposed original parameterization of the model 
coefficients from the literature. 

• Calibrated form (denoted as CAL), model coefficients were tuned for each model using the entire in-
situ training dataset. 

• Clustered form (denoted as CLUS), coefficients were fitted using a subset of the dataset for each OWT 
to estimate Chl-a/TSM. For Chl-a, the matchups with top-40% of membership scores for each OWT 
were adopted in the algorithm tuning; while for TSM, matchups with top-70% of membership scores 
for each OWT were used in the algorithm tuning. 

Afterward, the MODIS water constituent retrieval algorithms listed in Table 44 were identified as showing 
individual best performance against the assigned OWTs. For Chla, the algorithms included in the per-OWT 
blending and validation were the NASA OC2, OC3, OC2_HI algorithms (O'Reilly et al. 1998), and R748_667 
algorithm (Dall'Olmo et al. 2005). For TSM, the algorithms included in the per-OWT blending and validation 
were Miller (Miller and McKee 2004), Ondrusek (Ondrusek et al. 2012), ChenZ (Chen et al. 2007), Petus (Petus 
et al. 2010), and Zhang (Zhang et al. 2010). For all of the selected MODIS algorithms, it is notated that they 
were specifically tuned for each OWT using matchups with relatively high membership scores (top-40% for 
Chla and top-70% for TSM), meaning that the tuned coefficients vary between OWTs even for the same 
algorithm. 

 

Table 44 Chlorophyll-a/TSM algorithms per optical water type and tuned parameters for MODIS 

Product Algorithm Optical Water Type 
number 

Chl-a OC2 oceancolor.gsfc.nasa. gov/cms/atbd/chlor_a 1, 5, 7, 9, 12,13 

OC3 oceancolor.gsfc.nasa. gov/cms/atbd/chlor_a 2, 3, 8 

708/665 empirical band ratio based on Gilerson et al. (2010) 4, 6, 11 

OC2_HI oceancolor.gsfc.nasa. gov/cms/atbd/chlor_a 10 

TSM Based on Miller and McKee (2004) 1, 12 

Based on Ondrusek et al. (2012) 2, 6, 11, 13 

Based on Chen et al. (2007) 3, 5, 9 

Based on Petus et al. (2010) 4, 8, 10 

Based on Zhang et al. (2010) 7 

 

6.3.2.3 Weighted-blending procedureThe satellite retrieved water constituent products provided in the 

CDRP are based on a weighted blending procedure, recombining the individual algorithm results with the 
weighting determined by their OWT membership scores. The selected algorithms are mapped to individual 
satellite measurement (per pixel) from the OWTs with the top-3 classification scores. The algorithm results 
corresponding to those three OWTs are averaged using the membership score as weighting factor, after 
normalizing the scores between 0 and 1 where 1 is the highest score and 0 is the score of the 4th ranking OWT. 

http://oceancolor.gsfc.nasa.gov/cms/atbd/chlor_a
http://oceancolor.gsfc.nasa.gov/cms/atbd/chlor_a
http://oceancolor.gsfc.nasa.gov/cms/atbd/chlor_a
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The derived Chl-a or TSM satellite products following this procedure were compared with the in situ matchups 
for validation for this analysis.  

In this report, the validation of the selected algorithms is performed based on the in situ TSM observations. 
Turbidity is obtained using a conversion factor of 1.17 NTU/g m-3 as formulated by (Nechad et al. 2016; Nechad 
et al. 2010). 

6.4. Validation results 

6.4.1. Validation results for MERIS 

6.4.1.1. Validation of LWLR 

Previous round-robin comparisons of atmospheric correction algorithms for MERIS carried out in GloboLakes 
showed that Polymer yielded the statistically most robust retrieval of reflectances, although a systematic 
negative bias was observed. This led to Polymer being adopted as the state-of-the-art atmospheric correction 
processor for Lakes_cci to provide LWLR. Erreur ! Source du renvoi introuvable. shows Rrs matchup results for 
MERIS in 11 lakes at 11 wavebands from 412 nm to 779 nm, for which in situ data were available in LIMNADES. 
In general, significant linear relationships were found between the MERIS and in situ Rrs, with the highest R of 
0.83 returned in the 560 nm band and outliers in the blue bands associated with the hypereutrophic 
HARTBEESPOORT-Reservoir leading to the relatively worst performance. Systematic underestimation of MERIS 
Rrs is still observed. From inspecting the individual components of the atmospheric correction procedure, the 
underestimation is understood to be the result of overestimating the atmospheric path radiance with 
increasingly turbid waters, rather than a failure of the in-water bio-optical model or glint retrieval.  

 

Figure 134 Comparison between in situ and MERIS Rrs in each band 

 

To show the level of spectral consistency in the validation data set, Figure 135 presents averaged spectra of all 
Rrs matchups for each individual lake. There is general agreement between the in situ and satellite derived 
reflectance spectra, with the exception of the Cuerda-del-Pozo Reservoir. 
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Figure 135 Spectral comparison of in situ and MERIS Rrs 

6.4.1.2. Validation of chlorophyll-a products 

Scatter plots of Chl-a validation results for each pre-tuned algorithm are shown in Figure 136, using the whole 
data set regardless of optical water type classification. For the OC2 algorithm, although it returned the highest 
Normalized Root Mean Squared Error (NRMS) of 172%, the differences are evenly distributed around unity 
resulting in a slope of linear regression line close to 1. Saturation of the algorithm appears, as may be 
expected, at concentrations > 10 mg m-3. Algorithms R708_R665, Gons05, and QAA show a general 
overestimation at low Chl-a values, and an underestimation at high Chl-a values. The highest R2 of 0.42 and 
lowest Normalized-Root-Mean-Squared-Error (NRMS) of 38% are returned by the QAA among the four 
algorithms. 
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Figure 136 Comparison between in situ and MERIS-derived chlorophyll-a using the (a) OC2, (b) 
R708_R665, (c) Gons05, and (d) QAA algorithms. 

 

The agreement between in situ and satellite retrieved Chl-a improves dramatically when the 
input algorithms are blended according to the per-pixel Optical Water Type membership (Figure 

137). The regression line is close to unity, with an R2 of 0.69 and NRMS of 78%, both measured in 
log space. 
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Figure 137 Comparison between in situ and top-3 blended chlorophyll-a derived from MERIS. 

 

6.4.1.3.  Validation of Total Suspended Matter products 

The performance of individual TSM algorithms is shown in Figure 138, comparing in situ TSM measurements to 
those retrieved from MERIS matchup data. A general underestimation at the high TSM section was observed 
for all of the three algorithms. The slope of the regression line (expressed in linear scaling) for the Zhang 
algorithm approached unity with an intercept of -0.296 g m-3 suggesting systematic underestimation. The 
Vantrepotte algorithm showed the lowest NRMS (58%) among the three algorithms, although the lowest R2 
(0.29) was also returned by this algorithm indicating it lacks broad sensitivity. The Binding algorithm showed 
the highest R2 of 0.65 and with the largest NRMS of 65%. The Binding algorithm shows no decrease in 
sensitivity with increasing concentrations, despite the increasing bias. These results suggest that a re-tuning of 
the Zhang and Binding algorithms from the original analysis carried out in the GloboLakes project would likely 
improve overall performance.  

 

Figure 138 Comparison between in situ and retrieved TSM using the (a) Zhang, (b) Vantrepotte, and (c) 
Binding algorithms. 
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Agreement between the in situ and satellite retrieved TSM slightly improved with algorithm blending by OWT 
membership (Figure 139). Negative bias at the high TSM values is significant and confirms that re-turning of 
the algorithms, particularly the Binding algorithm, will likely improve the results. At present, the R2 is 0.61 with 
NRMS = 54%.  

 

Figure 139 Comparison between in situ and top-3 blended TSM 

6.4.2. Validation results for MODIS 

 Validation of LWLR 

Two atmospheric correction algorithms were performed and validated for MODIS: Polymer and l2gen. l2gen is 
the current operational atmospheric correction algorithm for Ocean Color by NASA. The performance of 
Polymer-corrected MODIS Rrs matchups was assessed with in situ Rrs at 11 bands from 412 nm to 748 
nm (Figure 130). Significant linear correlations were found for all bands between Polymer-corrected and in situ 
Rrs, with the highest R of 0.83 returned in 547 nm. A systematic underestimation was observed with Bias 
ranging from -0.004 sr-1 in 412 nm to -0.023 sr-1 in 555 nm.  
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Figure 140 POLYMER v4.12 matchups of MODIS with in situ reflectance data in LIMNADES, using 
a ±3 day matchup window and 3x3 pixel extraction window. 

 

The performance of l2gen was also evaluated against the in situ reflectance data for 11 bands from 412 to 748 
nm (Figure 141). Similar to the validation results of Polymer, significant linear correlations were found for all 
bands (Figure 141). The highest R of 0.85 was returned at band 555nm and the lowest R of 0.33 was returned 
in band 748 nm. A systematic underestimation was observed with bias ranging from -0.005 sr-1 in band 748 nm 
to -0.027 sr-1 in band 555 nm. 
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Figure 141 l2gen matchups of MODIS with in situ reflectance data in LIMNADES, using a ±3 day 
matchup window and 3x3 pixel extraction window. 

 

Correlation analysis between Polymer- and l2gen- corrected reflectance show significant linear relationships 
for bands between 412 nm and 748 nm, with highest R of 0.974 returned at band 555 nm (Figure 142). The 
Scatters distributes close to unity for bands between 469 nm and 678 nm, with high R values (>0.8). Polymer-
corrected reflectance is lower than that of l2gen-corrected in short wavebands (bands 412 nm and 443 nm), 
while for red-NIR bands (748 nm, 859 nm, and 869 nm) Polymer-corrected reflectance is generally higher than 
that of l2gen-corrected reflectance.   
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Figure 142 comparison between Polymer and l2gen corrected reflectances 

 

 Validation of chlorophyll-a products 

Figure 143 shows Round-robin comparison results of Chla generated from each of the examined algorithms 
against the in situ measurements. Corresponding error metrics are shown in Figure 144. It is found that OCX, 
R748_667, and QAA algorithms demonstrate the availability on Chla retrieving. Notably, algorithms OC2 and 
OC3 produce R values of 0.66 and NRMS of ~40% when compared to in situ measurements. Algorithms Shi, 
Appel, and FLH are shown to perform poorly on the retrieving of Chla at the concentrations observed. The 
apparent failures that occur with algorithms Shi and Appel may be related to the usage of Rw(859) leading to 
negative estimates of the calculated index. Among the three model forms, the CLUS model produces most 
accurate estimation of Chla for almost all algorithms. 



D4.1: Product Validation and Intercomparison Report 

     

 

  128/152 

 

Figure 143 Comparison of in situ measured and algorithm retrieved Chla for MODIS. The 1:1 line 
between in situ measured and algorithm retrieved Chla is represented by a red 

dashed line.  
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Figure 144 Error metrics calculated between in situ measured and algorithm retrieved Chla for 
MODIS 
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Based on the Round-robin comparison shown above, four Chla algorithms were selected and tuned per-OWT 
for the Chla retrieving, including NASA OC2(O'Reilly et al. 1998), OC3, OC2_HI algorithms (O'Reilly et al. 1998), 
and R748_667 algorithm (Dall'Olmo et al. 2005). Following the weighted-blending procedure described in 
section 6.3.2.3, the satellite retrieved Chla were calculated and blended according to per-pixel OWT 
membership scores. The comparison between in situ and satellite retrieved Chla is shown in Figure 145, the 
scatters are close to the unity, with R value of 0.69 and NRMS of 43%. 

 

Figure 145 Comparison between in situ and top-3 blended Chla for MODIS. Color coding shows the 
dominant OWT. 

 Validation of Total Suspended Matter products 

Figure 146 shows Round-robin comparison results of TSM generated from each of the examined algorithms 
against the in situ measurements, with corresponding error metrics shown in Figure 147. It is found that Miller, 
Ondrusek, ChenZ, Petus, and Zhang algorithms demonstrate the availability on TSM retrieving, especially after 
per-OWT tunning. Algorithms ChenS, Wang, Doxaran, Dogliotti, Shi, and Hu are shown to perform poorly on 
the retrieving of Chla at the concentrations observed. Several algorithms yielded a limited number of valid 
retrievals (e.g., ChenS, Wang, and Dogiliotti), which may be related to the usage of 859 nm leading to negative 
estimations. Among the ORG, CAL, and CLUS algorithm forms, the CLUS model produces more accurate 
estimation of TSM for almost all algorithms. 
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Figure 146 Comparison of in situ measured and algorithm retrieved TSM for MODIS. The 1:1 line 
between in situ measured and algorithm retrieved TSM is represented by a red 

dashed line. 
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Figure 147 Error metrics calculated between in situ measured and algorithm retrieved TSM for 
MODIS 
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From the Round-robin experiment conducted above, several TSM algorithms were identified as having 
potential for TSM retrieval from MODIS, including Miller (Miller and McKee 2004), Ondrusek (Ondrusek et al. 
2012), ChenZ (Chen et al. 2007), Petus (Petus et al. 2010), and Zhang (Zhang et al. 2010). These algorithms 
were per-OWT tuned for best performance, the satellite retrieved TSM were then calculated and blended 
according to per-pixel OWT membership scores, following the blending procedure described in section 6.3.2.3. 
The comparison between in situ and satellite retrieved Chla is shown in Figure 148, with a slope of 0.59 and an 
intercept of 0.34. It is found that the OWT 3 (Clear water) is exhibiting large disperse between in situ and 
satellite retrieved TSM. 

 

 

Figure 148 Comparison between in situ and top-3 blended TSM for MODIS. Color coding shows the 
dominant OWT. 

 

6.5. Conclusions and recommendations 

The Lakes_cci has inherited a large body of work to dynamically map algorithms to optical water types from 
the GloboLakes project. However, much of this work has not yet been fully published while the availability of in 
situ data has somewhat improved since. Thus it comes as no surprise that further algorithm optimisation is 
essential.  

1) MERIS (and OLCI) 

A systematic negative bias was observed in the Rrs, due to the challenges that are faced with accurately 
performing atmospheric correction in optically complex inland waters. This underestimation in Rrs is 
propagated to the derived Chl-a and TSM, but corrected again by end-to-end algorithm tuning. This is a 
necessary extra step because in situ matchup data of Chl-a and TSM are far more numerous than those 
including Rrs. 
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Validation of the Chl-a algorithms shows that the weighted-blending procedure dramatically improved the 
retrieval performance compared to that of the individual algorithms. For TSM, the agreement between the 
in situ and satellite retrieved TSM slightly improved after the blending stage compared to the individual 
algorithms, which show room for individual improvement using currently available data sets.  

The validation presented in this report is only based on the MERIS matchups, because of the scarce in situ 
data availability for OLCI. Analyses completed in the Copernicus Land Monitoring Service, which uses the 
same configuration of Calimnos, have shown that there is consistency between per-lake time series of Chl-a 
and Turbidity observed with MERIS (2002-2012) and OLCI (2016-present), which strongly suggests that the 
same algorithms may be applied to both sensors until further in situ reference data become available. 
However, the additional bands available on OLCI may well be able to improve on aspects of the retrieval of 
both LWLR and the derived biogeochemical products.  

2) MODIS 

Validations on MODIS reflectance and water quality products show the capability of using MODIS products 
to fill the data gaps between MERIS and OLCI. Polymer was evaluated against the NASA operational 
atmospheric correction algorithm for MODIS (l2gen), both showed a systematic negative bias in the Rrs for 
the bands evaluated, due to the challenges for accurately performing atmospheric correction over inland 
optical complex waters. Polymer was found to produce almost double of valid matchup numbers with in 
situ measurements than that of l2gen, demonstrating its capability of handling optical complex waters, and 
therefore adopted by us. In the meantime, it is admitted that there is still a risk of resulting in unnecessary 
masking or loss of valid data using Polymer in extremely turbid waters.  

Validation of Chla and TSM algorithms shows that the per-OWT tuning and weighted-bending procedure 
dramatically improved the retrieval performance compared to that of the individual algorithms. The overall 
performance of Chla and TSM algorithms for MODIS was relatively poor compared to that of MERIS, which 
is reasonable considering that MODIS is more prioritized to oceanic waters. 

By combining MODIS into CRDP v2, an uninterrupted global inland water quality data set can be generated. 
The current plan is to firstly include the MODIS dataset for a set of selected large lakes, which are believed 
to provide more reliable observations and less suffering from land adjacency effects. An evaluation of 
product consistency over time with MERIS and OLCI for selected lakes is pending, before this work can be 
fully expanded to all lakes in CRDP v2. 

 

Finally, it should be noted that, thus far, algorithm calibration, validation and uncertainty characterisation have 
made use of all available data for each analysis. In future, data sets of sufficient density will need to be split 
into calibration and validation data sets, with the latter contributing to the characterisation of product 
uncertainty.  
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Appendix A. Hydrolare Comparison 
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Appendix B. Water Office Canada Comparison 
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