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1 Introduction 

1.1 Executive summary 

For the success of the project, key is a well-driven and structured selection of best performers among candidate 

algorithms for some blocks of the whole processing chain aimed at generating the HR LC products. With the end 

of the first year of activities, several comparative tests and performance analysis tasks have been carried out by 

the EOS team. For the current version of this document the outcome of these comparative activities is presented 

and indications on best performing algorithms/techniques are provided.  

1.2 Purpose and scope 

The Product Validation and Algorithm Selection Report (PVASR) v1.0 provides detailed information about the 

comparative tasks performed for assessing best performing algorithms and techniques to be included in the 

classification blocks within the overall processing chain. In its current status, PVASR builds upon a list of 

candidates as presented in the ATBD v1.1 [AD5]. Indeed, as summarized in Figure 1, a first version of ATBD was 

planned as preliminary source of information for algorithm choices before edition of the first PVASR version. This 

has been planned as such in order to be able to still produce a document related to algorithms (ATBD v1.1) before 

any comparative analysis took place, while having the time of gathering information from round-robin activities 

and internal benchmark operations to include in PVASR v1.0. In future versions (v2.0 and on), ATBD will only 

include details about the chosen algorithms while candidates will be moved to PVASR. 

 

 

Figure 1. Concept of the PVASR v1 in the workflow of Task 2 of the CCI+ HRLC project. 
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The PVASR document is living, being updated at every project cycle (on annual basis) based on the output of the 

round-robins and internal benchmarking activities. In its current version PVASR v1.0, activities carried on in the 

first cycle are presented. Comparison and benchmarking activities have been devoted towards classification of 

optical and SAR imagery, giving emphasis especially on: 

1. Testing classifiers and evaluating their performance in terms of accuracy, computational efficiency and 

predisposition to model/code modification to meet requirements and implementation needs. 

2. Testing approaches for building reliable training datasets out of already existing products, being them 

sub-optimal in terms of spatial resolution (coarse to medium) and legend detail (incomplete if compared 

to HR LC products legend as detailed in ATBD). 

3. Evaluating sets of multitemporal features provided as input for the classifiers. 

1.3 Applicable documents 

Ref. Title, Issue/Rev, Date, ID 

[AD1] CCI HR Technical Proposal, v1.1, 16/03/2018 

[AD2] CCI Extension (CCI+) Phase 1 – New ECVs – Statement of Work, v1.3, 22/08/2017, ESA-CCI-PRGM-EOPS-

SW-17-0032 

[AD3] Data Standards Requirements for CCI Data Producers, v2.0, 17/09/2018, CCI-PRGM-EOPS-TN-13-0009 

[AD4] User Requirements Document, v1.1, 12/04/2019, CCI_HRLC_Ph1-D1.1_URD 

[AD5] Algorithm Theoretical Basis Document, v1.1., 25/09/2019, CCI_HRLC_Ph1-D2.2_ATBD_v1.1 

1.4 Reference documents 

Ref. Title, Issue/Rev, Date, ID 

[RD1] The Global Climate Observing System: Implementation Needs, 01/10/2016, GCOS-200 

1.5 Acronyms and abbreviations 

ANN  Artificial Neural Network 

ATBD  Algorithm Theoretical Basis Document 

CC  Cross Correlation 

CCI  Climate Change Initiative 

COBYLA  Constrained Optimization BY Linear Approximation 

ESA  European Space Agency 

FFT  Fast Fourier Transform 

GCOS  Global Climate Observing System 

GLC  Global Land Cover 

GLCNMO Global Land Cover by National Mapping Organizations 

GRD  Ground Range Detected 

GT  Ground Truth 

HR  High Resolution 

HPF  High Pass Filter 

ICM  Iterated Conditional Mode 

IWS  Interferometric Wide Swath 

ML  Maximum Likelihood 

LC  Land Cover 

LCCS  Land Cover Classification System 
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LOGP  Logarithmic Opinion Pool 

LOP  Linear Opinion Pool 

LPF  Low Pass Filter 

MI  Mutual Information 

MMSE  Minimum Mean Square Error 

MRF  Markov Random Fields 

PDF  Probability Density Function 

RBF  Radial Basis Function 

RMSE  Root Mean Square Error 

RF  Random Forest 

S1  Sentinel 1 

S2  Sentinel 2 

SAR  Synthetic Aperture Radar 

SNAP  Sentinel’s Application Platform 

SFFS  Sequential Forward Floating Selection 

SoW  Statement of Work 

SVM  Support Vector Machine 

TS  Time Series 

URD  User Requirements Document 
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2 Selection procedure 

The overall procedure for the selection of best performing algorithms and methods is performed according to a 

three-step procedure. The algorithms presented in the Technical Proposal [AD1] and ATBD are considered for 

the comparisons together with a set of proposed solutions for each task such as generating training samples and 

building multitemporal features. The evaluation-selection procedure is devised in such a way that the selected 

algorithms/techniques are the most suitable to satisfy project requirements. 

The three steps of the procedure are the following: 

 Step 1: Qualitative pre-screening of algorithms 

A pre-screening of the algorithms and methods from a State-of-the-art pool of competitors is carried out in 

order to identify the most relevant methodologies with respect to the project objectives. This preliminary 

analysis is driven by the selection criteria described in Section 2.1. In this first step, a high-level qualitative 

evaluation of these criteria is conducted in order to identify techniques that clearly cannot reach a 

satisfactory ranking on several categories of parameters. These techniques are discarded and not considered 

in the next steps. Algorithms and methods that passed the pre-screening are reported in the Technical 

Proposal [AD1] and more in detail in the ATBD [AD5]. In this report only the methods that passed the pre-

screening are considered explicitly. 

 Step 2: Quantitative evaluation of algorithms 

Algorithms that pass the pre-screening in step 1 are analyzed in greater detail with a quantitative 

evaluation. This analysis is based on different parameters, ranging from a scientific and technical analysis to 

possible impacts on the application and users. For each investigated item (algorithm, method, technique, 

etc.) details on the quantitative evaluation of the comparison activities can be found in a dedicated section 

of this document. 

 Step 3: Final decision 

According to the analysis carried out for each individual comparison task, a final decision is taken according 

to the best performer and its relevance with respect to project objectives. Final decision is reported. 

It is worth noting that the pre-processing algorithms are not included in the evaluation and ranking procedure 

because we expect to import in the project basic pre-processing chains already developed for both multispectral 

and SAR data. 

2.1 Criteria 

In this section the criteria adopted for evaluating the relevance of methods and algorithms with respect to project 

requirements are listed. Up to seven categories of parameters are considered divided in different issues. 

 

1. Scientific Background and Technical Soundness – The scientific validity of the algorithms and of the 

methodologies on which the algorithms are based is considered as an important parameter. The rationale is 

that selected algorithms should be based on a solid theoretical background that guarantees the accuracy of 

its results also at an operational level. The guidelines for rating are as follows: 

o The methodology is solid; 

o The methodology is technical convincing; 

o The methodology is at the state-of-the-art; 

o The methodology is published in high quality journals; 

o The methodology is included in several other scientific publications or project technical reports. 

 

2. Robustness and Generality – In order to obtain a reasonable estimation for the robustness and generality 

of the investigated algorithms, different parameters are considered, such as: 

o The method is suitable to be used with different kinds of images (e.g., Sentinel-2, Landsat, SAR, etc.); 
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o The method shows high performance on different images (Sentinel, Landsat, etc.) and over the three 

test areas as described in URD [AD4]; 

o There are software implementations or examples for the implementation available; 

o The algorithm can be used in combination with other methodologies. 

 

3. Novelty – An appropriate candidate algorithm should have been published or reported for the first time 

relatively recently in the literature. It is not required that algorithms are completely innovative; the novelty 

may consist in both combining well established methodologies or applying well-known techniques in a novel 

way. As a main guideline, a tested method should be already applied in literature to solve existing problems. 

 

4. Operational Requirements – The expected operational requirements (in terms of computational 

complexity, time effort, cost, etc.) for the final implementation of an algorithm/technique are evaluated. 

Although no actual constraints are fixed on the algorithm computational complexity, the most optimized 

implementations available in literature are preferred. Other crucial aspects are: 

o The algorithm is prone to architectural modifications; 

o The processing time scaling is likely to be linear with image size; 

o The hardware and disk-storage requirements are appropriate. 

Algorithm/method consistency with project requirements is also extremely relevant, following guidelines 

from GCOS [RD1] and SoW [AD2]: 

o Algorithms and methodologies must be effective for high resolution images (e.g., optical data at 10-30m). 

o Documented accuracy must be within the boundaries imposed by GCOS (see [RD1]) and as reported in 

SoW [AD2]. 

 

5. Accuracy – An algorithm is positively evaluated if able to provide a high absolute accuracy in all test areas, 

especially keeping into account the different climatological conditions and possibly different data availability 

conditions. Accordingly, the following guidelines are used for evaluating accuracy characteristics: 

o Accuracy/uncertainty to be in line with GCOS [RD1] requirements as reported in SoW [AD2]. 

o The algorithm matches the end-user (climatologist and other users from the community) requirements; 

o For unsupervised tasks the accuracy should not depend on the availability/quality of prior information. 

o For supervised tasks the accuracy should be robust to the availability/quality of prior information. 

 

6. Level of Automation – From an operational point of view, it is mandatory that an algorithm runs in a 

completely automatic way. Algorithms requiring any amount of manual work, strong interaction with the 

final users are negatively evaluated. 

 

7. Specific End-users Requirements – From an operational point of view, capability of an algorithm to satisfy 

and meet possible end-user requirements is another important parameter of evaluation. The main 

guidelines for driving this ranking are: 

o The algorithm is robust to the use in several climatological regions; 

o The algorithm can be reasonably included in an operational procedure. 

2.2 Evaluation 

The evaluation procedure of each comparative task aimed at deciding on a specific algorithm/technique is carried 

out by considering all criteria listed before. To each reported activity, a thorough discussion is given regarding 

how these criteria are weighted in the overall evaluation, which aspects are given strong emphasis and which 

ones are considered less relevant. The evaluation activity provides answers about best performing 

algorithms/techniques that are included in the processing chain of the current version of HR LC products. 
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3 Classification algorithms and procedures (year 1) 

Global climate change as well as the protection and management of natural sources have become central topics 

for many scientific initiatives in the Earth surface dynamics. Many works investigated the effectiveness of optical 

and radar data for both local and global scale thematic characterization for Land Cover (LC) analyses [1], [2]. The 

SAR application in remote sensing has been investigated in several studies and a substantial potential for LC 

monitoring has been proven [3], [4]. Synthetic Aperture Radar (SAR) data are utilized especially when weather 

conditions are not suitable for acquiring optical data, because their quality does not depend on weather 

conditions. Contrary to optical satellites, SAR makes it possible to continually collect data despite of light and 

weather conditions, providing "cloud-free" images because the cloud-penetrating capability of C-band signal [5]. 

On the other hand, multispectral optical images provide wide spectral information (ranging from visible to 

infrared wavelengths) from which detailed information of land properties can be retrieved. Moreover, the 

inclusion of optical time series provides detailed information about LC dynamic. Time series of multispectral 

images have proven capacity to characterize trends and environmental phenomena and are widely used for LC 

classification [6], [7]. Within this section a processing chain for the fully production of LC maps using High 

Resolution (HR) optical and SAR images is presented. 

3.1 Optical data 

 

Figure 2. Optical data processing chain for the prototype production of the HR LC map obtained by classifying the time 
series of Sentinel 2 data. 

Figure 2 depicts the optical data processing chain for the prototype production of the HR LC map obtained by 

classifying Sentinel 2 time series. The images are first pre-processed in order to perform the atmospheric 

correction and detect the clouds. Then, the best time series of images used to generate the HR static LC map is 

automatically detected. Due to the missed availability of training data, a training set production step is performed 

to extract the labeled data necessary to train the supervised classification system. Existing thematic product 

available on the considered study area are used to create database of weak training samples. The thematic 

products available are characterized by medium/coarse spatial resolution (e.g., 100m, 300m and 1 km), much 

coarser than the desired geometrical detail (10 m). The maps are analysed and processed in an unsupervised 

way to detect and extract the most reliable samples which are included in the weak training set. Moreover, few 

samples are added by photointerpretation to integrate the missing information on classes which require HR 

labelled pixels (e.g., building or roads). 

Finally, the classification of the time series of Sentinel 2 images is performed to produce the HR LC map for the 

considered study areas. 
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3.1.1 Satellite images  

The considered study areas are located into the following four thematic regions (according to tiling grid of 

Sentinel-2 products): 

 Amazonia area for 21KUQ Sentinel-2 tile; 

 Amazonia area for 21KXT Sentinel-2 tile; 

 Siberia area for 42WXS Sentinel 2 tile; 

 Africa area for 37PCP Sentinel-2 tile. 

2018 Sentinel-2 images downloaded through the Copernicus Open Access Hub 

(https://scihub.copernicus.eu/dhus/#/home) are used over the four CCI-HR LC areas for the year 2018. The 

complete list of images is given in Table 1. 

Table 1. List of Sentinel-2 data 

Area Satellite # Products Date list (2018y) 

Amazonia – 21KUQ S2 8 

2018-04-17;  2018-08-10; 

2018-05-12;  2018-08-30; 

2018-05-22;  2018-10-09; 

2018-07-16;  2018-12-08; 

Amazonia – 21KXT S2 9 

2018-02-23;  2018-06-23; 2018-09-11 

2018-04-29;  2018-07-18; 

2018-05-09;  2018-08-12; 

2018-05-29;  2018-08-27; 

Siberia – 42WXS S2 7 

2018-06-06;  2018-08-27; 

2018-07-06;  2018-09-01; 

2018-07-21;  2018-11-08 

2018-08-22; 

Africa – 37PCP S2 9 

2018-02-06;  2018-09-24;  2018-12-23 

2018-02-16;  2018-10-24; 

2018-03-03;  2018-11-13; 

2018-04-12;  2018-12-18; 

3.1.2 Method/algorithm/technique 

Within this Section, several methods are presented and compared as candidate approaches to be develop and 

implemented in the optical image processing chain according to Figure 2. 

3.1.2.1 Optical data pre-processing 

This step has the purpose of generating a time series of images able to characterize the HR LC classes. First, the 

atmospheric correction is performed by using the specific tools provided by ESA, the Sen2Cor processor for Level 

2A product generation in the Sentinel-2 toolbox [8]. The main goal is to exploit the high revisit time of Sentinel 2 

data to select almost cloud free images available on the considered study area. This condition allows for an 

accurate temporal characterization of the HR LC classes. By analysing the dense time series of images 

atmospherically corrected, the method automatically retrieves the images having low cloud coverage according 

to the available cloud and shadow masks. This is done by using the cloud masks generated by Sen2cor [8]. Small 

cloud gaps are filled according to [9]. 
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The peculiar multi-resolution property of Sentinel 2 images involves four spectral bands acquired at a spatial 

resolution of 10 m, six spectral bands acquired at a spatial resolution of 20 m and three spectral bands acquired 

at a spatial resolution of 60 m. Because the 60 m spectral bands are mainly dedicated to atmospheric corrections 

and cloud screening [10], only the 10 and 20 m bands are used to produce the HR LC maps. A nearest neighbour 

interpolation technique is used to match the spatial resolution of the 20 m bands to the 10 m ones for the entire 

tie series. The nearest neighbour interpolation technique has the drawback of generating smoothed images, thus 

losing in sharpness with respect to more sophisticated interpolation technique such as High Pass Filter (HPF). 

However, no new values are calculated by interpolation. This condition allows us to keep the original spectral 

information recorded by the sensor. Finally, we perform a spectral outlier detection and removal by discarding 

the pixels having values higher than the 0.999 quantile and lower than the 0.001 quantile of the spectral band. 

A radiometric normalization is eventually applied to the interpolated images so that each spectral band is 

rescaled between zero and one. 

3.1.2.2 Training set preparation  

Due to missing training data, existing thematic products available at global scale are considered to produce the 

training set. To extract samples able to represent the LC classes in the legend [AD4], three thematic products are 

considered: (1) the 2015 ESA CCI LC map available at 300m spatial resolution [11], (2) the 2015  Copernicus Global 

Land Cover (GLC) map produced at 100m spatial resolution [12], and (3) the Global Land Cover by National 

Mapping Organizations (GLCNMO) produced at 1 km spatial resolution [13]. 

First, we rescale the existing LC map at 10 m spatial resolution and then to convert the considered legend into 

the required one. To this end, we refer to the Land Cover Classification System (LCCS) [12], which is the standard 

common LC language for translating and comparing existing legends. Table 2 presents the translation of the 

considered thematic products into the HRLC legend. 

Table 2. Training Set Production: the translation of the considered coarse thematic products into the desired map legend 
is reported. Bare rocks, built-up areas and bare soil classes are inserted via photointerpretation. 

CCI-HRLC ESA CCI LC 2015  CGLC  GLCNMO Photo Interpretation 

 Evergreen, broadleaf  3, 9   

 Evergreen needleleaf  1,7   

 Deciduous broadleaf  4,10   

 Deciduous needle leaf  2,8   

 Shrubland  13   

 Permanent cropland  18,14   

 Annual summer cropland   12  

 Grassland 130    

 Lichens and mosses  16   

 Permanent water bodies  21   

 Permanent snow and ice  20   

 Beaches dunes and sands   17  

 Bare soils  16  x 

 Bare rock    x 

 Built-up areas    x 

A weak training set production is performed by selecting from the available thematic maps those samples having 

the highest probability of belonging to areas correctly associated to their label. Many difficulties arise when 

exploiting existing thematic maps generated with RS data characterized by properties different from Sentinel 2 

images. Due to the coarse spatial resolution, the label assigned to mixed pixel is propagated to the pure pixels of 

Sentinel 2 images. Moreover, the considered maps are outdated and thus, they are not completely reliable. To 
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address all these issues, we perform an automatic and unsupervised analysis which extracts from the existing 

thematic maps a weak, but reliable training set. First, a random stratified sampling is performed by using the LC 

classes as strata. Five training sets are generated via bootstrap statistical method (e.g., without replacement) 

and used to train an ensemble of statistically independent classifiers. This condition allows us to generate an 

intermediate thematic product obtained at 10 m spatial resolution by classifying the time series of Sentinel 2 

images. Only the areas where the ensemble of classifiers agree are kept. This condition allows us to increase the 

probability of selecting reliable samples to produce the final weak training database. Finally, few samples were 

added by photointerpretation for the classes that required a geometrical detail higher than the resolution of the 

considered thematic products (e.g., building, roads, small bare soil areas). 

Figure 3 shows a qualitative comparison over a portion of the study area located in tile 21KUQ (Amazonia) 

between: (a) the coarse thematic product obtained by merging the CGLC, ESA CCI 2015 and the GLCNMO after 

the legend conversion, (b) the intermediate product produced by the ensemble of five classifiers, (c) the weak 

training samples selected, and (d) a true colour composition of the Sentinel 2 image acquired on 17th April 2018. 

The qualitative example demonstrates the importance of generating the intermediate product at 10 m spatial 

resolution to sharply increase the probability of selecting samples correctly associated to their labels with respect 

to the ones that can be directly selected from the coarse thematic product. 

  
(a) (b) 

  
(c)  (d) 
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Figure 3. Visual comparison of the: (a) coarse thematic product generated by merging the CGLC, ESA CCI 2015 and the 

GLCNMO after the legend conversion, (b) intermediate HR LC product produced by the ensemble of 5 classifiers, (c) 

extracted weak training samples, and (d) true color composition of the Sentinel 2 image acquired on 17 April 2018. 

3.1.2.3 Classification 

Automatic classification is a crucial processing step to produce accurate LC maps. The selected classification 

algorithm must achieve the best trade-off between classification accuracy and computational burden due to the 

need of processing a huge amount of data.  

By analysing the recent literature, the team identified several successful core approaches to the classification. 

Some of them are now very consolidated, such as the Support Vector Machine (SVM) classifier [14] given the 

almost unanimous consensus obtained on its effectiveness to generate HR LC maps. SVM classifiers are based 
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on kernel methods that have been extensively employed for the classification of RS data. In the considered 

implementation, we exploit SVM with Gaussian Radial Basis Function (RBF) kernels because of its capability of 

dealing with noisy samples in a robust way and to produce sparse solutions. A feature selection step is performed 

to detect the feature subspace where the LC classes are more discriminable. In the considered implementation, 

a Sequential Forward Floating Selection (SFFS) method based on the Jeffreys-Matusita distance as separability 

criterion is used [15]. The optimal kernel parameters (i.e., the regularization parameter C and the spread of the 

kernel 𝛾) are selected by a 3-fold cross-validation The LC maps generated by the SVM classifier are compared 

with the ones obtained by using other classification algorithms widely employed to generate global LC maps: 

Random Forest (RF) [16] and Maximum Likelihood (ML) [17]. RF is a commonly used classifier for LC classification 

due to its capability of being robust to label noise, yielding high classification accuracy with a low computational 

complexity. In the considered implementation we follow the parameter setting suggested by [18]: namely the 

number of trees to build equal to 200; and the number of input features randomly selected by each node equal 

to the square root of total number of features (i.e., the total number of spectral bands of the time series of 

Sentinel 2 images). 

ML is one of the most common basic parametric classifiers based on statistical approach. ML is based on the 

statistical representation of the class distribution, thus achieving good accuracy for data with normal distribution 

and often poor quality for data with non-normal distribution. Although ML are easy to understand and interpret, 

they require a large training set with preferably only pure training samples. The last classifier used to generate 

HR LC maps is the Artificial Neural Network (ANN). Neural networks manage well with large feature space and 

generally obtain high classification accuracy. However, they require a large diversity of training set and are 

computationally expensive. Like other non-parametric methods, they are often a good choice for large LC 

applications where the data distribution is unknown. In the considered implementation, we exploit a simple 

feedforward neural network having one hidden layer characterized by ten neurons. The team is also evaluating 

the possibility of using sophisticated deep learning technique such as Long Short Term Memory classifier [19] to 

extensively exploit the spectral information provided by the long time series of Sentinel 2 images (see ADP v1.0). 

However, ground reference data ate mandatory for the proper training of deep learning architectures. 

The weak training sets automatically generated for the considered study areas are used to train all the above-

mentioned classification algorithms in order to compare their classification performances. Due to the missed 

availability of ground reference data, a qualitative analysis is carried out to determine the classifier able to 

provide the best classification results. 

3.1.3 Qualitative evaluation 

In the following examples of qualitative analysis performed in the different study areas are reported. Figure 4 

reports a comparison of classification results obtained in Amazonia (tile 21KUQ). The low geometrical resolution 

of the coarse thematic map (Figure 4b) is sharply improved in the HR classification maps. By comparing the LC 

classes in the ESRI HR optical images used to perform the qualitative evaluation results (Figure 4a), the best LC 

map is obtained by using the SVM (Figure 4f). It is the only classifier that correctly extracts the build-up areas. 

The worst result is obtained by the ML (Figure 4c), which misclassifies evergreen broadleaf as permanent 

cropland. 

Figure 5 presents examples of classification results obtained in Amazonia (tile 21KXT).  In this case, there is small 

correspondence between the coarse thematic product (Figure 5b) and the LC in the scene (Figure 5a). However, 

the classification results accurately retrieve the geometrical detail of the scene, thus recovering the river, lakes 

and road. All the classifiers correctly detect build up areas, river and lakes and obtain similar classification map. 

To identify the best classifier ground truth data are needed. 
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Figure 4. Visual comparison of the: (a) HR optical image used to evaluate the results obtained; (b) coarse thematic 
product generated by merging the CGLC, ESA CCI 2015 and the GLCNMO after the legend conversion, (c) LC map obtained 

by using ML, (d) LC map obtained by using ANN, (e ) LC map obtained by using RF, and (f) LC map obtained by using the 
SVM. The study area is in Amazonia (Tile 21KUQ). 
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Figure 5. Visual comparison of the: (a) Sentinel 2 image acquired on the 9th May 2018; (b) coarse thematic product 
generated by merging the CGLC, ESA CCI 2015 and the GLCNMO after the legend conversion, (c) LC map obtained by 

using ML, (d) LC map obtained by using ANN, (e ) LC map obtained by using RF, and (f) LC map obtained by using SVM. 
The study area is in Amazonia (Tile T1KXT). 

Figure 6 represents the classification products obtained by the considered classifiers in Africa (tile 37PCP). An 

evident correspondence between coarse thematic products and HR LC maps can be noticed. The classification 

map generated by the ML classifier is the only one where water and shrubland are confused (Figure 6c). One can 

notice that the build-up areas are accurately classified in all the HR maps. 
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Figure 6. Visual comparison of the: (a) Sentinel 2 optical image acquired on the 3rd March 2018; (b) coarse thematic 
product generated by merging the CGLC, ESA CCI 2015 and the GLCNMO after the legend conversion, (c) LC map obtained 
by using ML, (d) LC map obtained by using ANN, (e ) LC map obtained by using RF, and (f) LC map obtained by using SVM. 

The study area is located in Africa (Tile 37PCP). 

Figure 7 reports a comparison between the SVM classifier (Figure 7b and Figure 7e) and the African Prototype 

produced by ESA CCI (Figure 7c and Figure 7f) on two areas located in Africa (tile 37PCP). The African Prototype 

legend is converted into the HRLC one. From a qualitative analysis, one can notice that SVM correctly detects the 

build-up areas, the shrubland and the permanent cropland areas. As expected, the geometrical detail of the HRLC 

map is better than the one provided by the African Prototype. 
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Figure 7. Visual comparison of the: (a)(d) true color composition of Sentinel 2 image acquired on the 3 rd March 2018; 
(b)(e) LC maps obtained by using SVM, (c)(f) African prototype LC maps produced by ESA CCI converted to the HRLC map 

legend. The study area is located in Africa (Tile 37PCP). 

Figure 8 represents the classification products obtained in Siberia (tile 42WXS). Like the other tiles, there is a 

correspondence between the coarse thematic products and the classification results. However, the HR maps 

sharply improve the geometrical detail in the scene thus highlighting the presence of lynches and mosses. All the 

classifiers correctly detect build up areas and lakes. From the visual interpretation point of view, Siberia is the 

most challenging area as expected. This is because the area is mostly covered with permanent water, shrubland, 

lichens and mosses which are difficult to be evaluated without reference data. 
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Figure 8. Visual comparison of the: (a) Sentinel 2 optical image acquired on the 21st July 2018; (b) coarse thematic 
product generated by merging the CGLC, ESA CCI 2015 and the GLCNMO after the legend conversion, (c) LC map obtained 
by using ML, (d) LC map obtained by using ANN, (e ) the LC maps obtained by using RF, and (f) LC map obtained by using 

SVM. The study area is in Siberia (Tile 42WXS). 

3.1.4 Final decision 

According to the qualitative analysis the best LC maps are achieved by SVM and RF classifiers. However, SVM 

better distinguishes between build up areas and bare soil. This is due to the capability of SVM of performing well 

with small training dataset. Thus as training samples of build-up areas are added to the weak training set by 

photointerpretation. ML presents the poorest results, by making many classification mistakes. This is mainly due 

to the fact that the considered HR LC classes do not follow the normal distribution, thus leading to poor 

classification performances. Although these preliminary results are encouraging, ground reference data are 

needed to perform a quantitative evaluation and to achieve better classification results. 
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3.2 SAR data 

According to what is reported in the ATBD document [AD5], Figure 9 reports the general work flow for the kernel 

of the processing chain. 

 

 

Figure 9. Block diagram for SAR data of the land cover map production procedure. 

The reference data is split into a training subset. The image data is proper pre-processed in order to ensure 

spatial and temporal homogeneity and then image features for the classification are extracted. After that, 

classifier training and image classification are performed. 

3.2.1 Satellite images 

The Round Robin has been voted in analysing the following three thematic regions according to tiling grid of 

Sentinel-2 Level-1C products: 

 Amazonia area for 21KUQ S-2 tile; 

 Amazonia area for 21KXT S-2 tile; 

 Siberia area for 42WXS S-2 tile. 

Sentinel-1 is the only source of radar images used in Round Robin. Level-1 data processed into Ground Range 

Detected (GRD) products, acquired in Interferometric Wide Swath (IWS) and available through the Copernicus 

Open Access Hub (https://scihub.copernicus.eu/dhus/#/home) were used over the three Round Robin areas for 

the year 2018. The Level-1 GRD data contained the detected amplitude (phase information is lost) and are multi-

looked to reduce the impact of speckle at a cost of reducing spatial resolution. The products are projected to 

ground range using Earth ellipsoid model, generating images with approximately square resolution pixels and 

square pixel spacing. The complete list of images is given in Table 3. 

The growing availability of “free and open” satellite imagery at 10-30 m spatial resolution encourages the 

development of innovative and advanced methodologies in the context of the climate change initiative. 

3.2.2 Method/algorithm/technique 

Within this Section, several methods are presented and compared as candidate approaches to be develop and 

implemented in the SAR image processing chain in Figure 9. 

3.2.2.1 Training set preparation 

The training set extraction refers to procedure presented in section 8.2 of ATBD document [AD5]. Consistent and 

accurate training data that cover a large area is not available and reference data originate from existing databases 

have been used for classifier trained. Two data sources have been taken into account: 

 ESA CCI-LC 2015 300m [20]; 

 GLCNMO 1km [13]; 

These products were therefore combined in order to ensure a unique reference data set. Then, random sampling 

is applied for extracting a consistent set of training samples, as described in ATBD [AD5]. 
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A set of classes of interest were defined, namely: evergreen broadleaf tree, evergreen needleleaf tree, deciduous 

broadleaf tree, deciduous needleleaf tree, shrubland, permanent cropland, annual summer cropland, grassland, 

lichens and mosses, permanent water bodies, permanent snow and ice, beaches, dunes and sands, bare soils, 

bare rock and built-up areas (Figure 10). 

In this document it is proved that the use of these combined data sources allows obtaining a classification maps 

that is largely independent from the random set of points used for training, hence effectively implementing an 

automatic supervised approach. 

 

Table 3. List of Sentinel-1 data 

Area Section Satellite Band # Products Date list (2018y) 

Amazonia – 21KUQ 

Upper S1B VH and VV 25 

03-10 03-22 04-03 04-15 04-27 

05-09 05-21 06-02 06-1406-26 

07-08 07-20 08-01 08-13 08-25 

09-06 09-18 09-30 10-12 10-24 

11-05 11-17 11-29 12-11 12-23 

Lower S1B VH and VV 25 

02-26 03-10 03-22 04-03 04-15 

04-27 05-09 05-21 06-02 06-14 

06-26 07-08 07-20 08-13 08-25 

09-06 09-18 09-30 10-12 10-24 

11-05 11-17 11-29 12-11 12-23 

Amazonia – 21KXT 

Upper S1B VH and VV 27 

01-16 03-05 03-17 03-29 04-10 

04-22 05-04 05-16 05-28 06-09 

06-21 07-03 07-15 07-27 08-08 

08-20 09-01 09-13 09-25 10-07 

10-19 10-31 11-12 11-24 12-06 

12-18 12-30 

Lower S1B VH and VV 26 

01-04 03-05 03-17 03-29 04-10 

04-22 05-04 05-16 05-28 06-09 

06-21 07-03 07-15 07-27 08-08 

08-20 09-01 09-13 09-25 10-07 

10-19 10-31 11-12 11-24 12-06 

12-18 

Siberia – 42WXS - S1B VH and VV 20 

01-08 03-09 03-21 04-14 05-08 

05-20 06-13 06-25 07-07 07-19 

07-31 08-12 08-24 09-05 09-17 

09-29 10-11 11-04 11-16 12-22 

 



 

Ref CCI_HRLC_Ph1-PVASR 

 
Issue Date Page 

1.rev.0 29/10/2019 20 

 

  
 

 

Figure 10. Land cover classes for Sentinel-1 data classification 

3.2.2.2 Speckle filtering 

The Level-1 products of Sentinel-1 GRD data are calibrated and terrain corrected before any other processing. 

The preprocessing is accomplished by Sentinel’s Application Platform (SNAP) software provided by ESA. For 

speckle reduction two approaches have been compared. The first one is the Lee filter, one of the well-known 

filters for despeckling and enhancing SAR images. It uses the minimum mean square error (MMSE) filtering 

criterion as explained in [21]. The second approach is the multitemporal despeckling method developed by Zhao 

et al. in [22]. This filter is based on the calculation of a super-image exploiting the spatial and temporal 

information of a SAR time series. Both methods aim to enhance the quality of image by means an effective 

speckle reduction and spatial resolution preservation, but they have different impacts on classification 

performance. 

3.2.2.3 Feature extraction 

Feature extraction methods encompass characteristics and texture, structural and graph descriptors. To improve 

the ability of classifier to recognize and discriminate the different environment textures and morphological 

structures (e.g. urban areas, agricultural crops, forests, etc.), the amplitude of VH and VV channels and their 

combinations have been assumed [23]. The feature extraction could be carried out considering both single and 

double bands analysis. 

In single band case, for analyzing and exploring the spatial information contained in satellite images, a set of 

filters that operate especially in spatial domain have been assumed. The rationale for selecting these algorithms 

is especially due to their velocity of the execution and versatility. Although they might not be the most accurate 

one, the possibility to apply them quickly to the SAR images in a large stack in a reasonable amount of time is an 

invaluable asset for wide area processing. The implemented techniques are summarized in the following list: 

 Mean filter is one of the most widely used low-pass filters (LPF). It substitutes the pixel value with the 

average of all the values in the local neighborhood (filter kernel). 

 Median filter, a non-adaptive filter and replaces each pixel value with the median of the pixel values in 

the local neighborhood. 



 

Ref CCI_HRLC_Ph1-PVASR 

 
Issue Date Page 

1.rev.0 29/10/2019 21 

 

  
 

 Lee filter is an adaptive filter based on minimum mean-square error (MMSE) that converts the 

multiplicative model into an additive one, thereby reducing the problem of dealing with speckle to a 

known tractable case. 

 Minimum (maximum) filter is a non-linear filter that locates the darkest (brightest) point in an image. It 

is based on median filter since it is defined as his 0th (100th) percentile, i.e. by considering the minimum 

(maximum) of all pixels within a local region of an image. 

In dual polarimetry analysis case, polarimetric information of Sentinel-1 data were extracted using intensities of 

the VH and VV channels, and several composite images given by: 

 Ratio, VV/VH; 

 Sum, VV+VH; 

 Mean, (VV+VH)/2; 

 Difference, VV-VH. 

In this document, possible combinations of these feature sets (and subset of) are compared and discussed, in 

order to identify a (sub-)set of features for the proper detection of the classes of interest. 

3.2.2.4 Classification 

The global mapping systems using high resolution imagery could implement rule or advanced approaches based 

on the definition of the classes. For classifying satellite images, two supervised classifiers have been considered, 

the Random Forest (RF) and Support Vector Machine (SVM). They are superior to unsupervised methods and 

more robust [16]. Some erroneous reference data (e.g., slightly outdated ones) are acceptable in training [24]. 

The whole classification chain has been investigated on Sentinel-1 time-series data assuming different scenarios. 

Both RF and SVM classifier have been applied. The experiments presented in this documents are carried on two 

sites of continental Amazonian region, see Figure 3, which amounts to about 20.000 Km2. 

 

Figure 11. Study areas (highlighted in red) referring to 21KUQ and 21KXT Sentinel-2 granules. 

The RF was applied for classification performance evaluation in the following cases: 

 Single image, single band analysis (VH band); 

 Single image, double band analysis (VV and VH); 
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 Multitemporal analysis, on the basis of a Sentinel-1 time series. 

The choice of parameters for the RF classifier is not very sensitive for this kind of problem [25], and one-hundred 

trees have been used. 

In single band analysis, the VH channel of a single image has been considered, and the speckle noise was reduced 

applying multitemporal despeckling approach. The classification was carried on features aimed to identify 

textural and spatial information of the scene (described in Section 3.2.2.3). For double band analysis, also VV 

channel has been taken account. The features given by VV and VH combination (mean, ratio and difference) have 

been extracted and used in classification. 

  
(a) (b) 

   
(c) (d) (e) 

   
(f) (g) (h) 

Figure 12. 21KUQ Amazonian tile: the figure shows a comparison among the satellite image (a); ESA CCI LC 2015 
reference data (b), and classification maps using single image-single band (c), single image-double band (d), 

multitemporal sequence (e), multitemporal sequence with majority voting (f), seasonal multitemporal sequence with 
three images per season (g) and seasonal multitemporal sequence with five images per season (h). 

To carry out the multitemporal analysis, a time series of Sentinel-1 VH images has been assumed. All images have 

been divided according to annual seasons: winter, spring, summer and autumn. For each season, a multitemporal 

despeckling filter has been computed and subsequently applied. Hence, three filtered images have been 

randomly chosen for each season (with a total of twelve images) and applied in input to RF classifier. To try and 

improve the performances of classification, more spatial and textural information have been added, by means 

of a seasonal mean image. Two scenarios have been evaluated. In the first case the average of three images per 
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season has been selected, whereas five images have been considered in the second one. The spatial features 

(Lee, Min, Max, Max Min, Mean and Median) of each mean image were then extracted, leading to a total of 

twenty-eight features for classification. Still in the multitemporal analysis framework, also the majority voting 

algorithm has been evaluated as potential rule to be deployed in classification chain. This approach consists in 

applying the whole classification chain for each season, in order to have four classification maps. Hence the 

majority voting is carried out pixel-per-pixel over the maps for accomplishing a single final product. All 

classification results for 21KUQ and 21KXT Amazonian granules are reported in Figure 12 and Figure 13, 

respectively. 

For further comparison, SVM classifier was also applied to carry out a multitemporal analysis (based on mean 

image of five images per season). Results are reported in Figure 14 and Figure 15. 

  
(a) (b) 

   
(c) (d) (e) 

   
(f) (g) (h) 

Figure 13. 21KXT Amazonian tile: the figure shows a comparison among the satellite image (a); ESA CCI LC 2015 reference 

data (b), and classification maps using single image-single band (c), single image-double band (d), multitemporal 

sequence (e), multitemporal sequence with majority voting (f), seasonal multitemporal sequence with three images per 

season (g) and seasonal multitemporal sequence with five images per season (h). 
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(a) (b) 

  
(c) (d) 

Figure 14. Comparison of RF and SVM classification for the 21KUQ Amazonian tile: the satellite image (a), ESA CCI LC 2015 
reference data (b), RF map using a seasonal multitemporal sequence (five image per season) (c) and SVM map with the 

same input (d). 

  
(a) (b) 

  
(c) (d) 

Figure 15. Comparison of RF and SVM classification in 21KXT Amazonian tile: the satellite image (a), ESA CCI LC 2015 
reference data (b), RF map using a seasonal multitemporal sequence (five image per season) (c) and SVM map with the 

same input (d). 

The whole processing chain has also been investigated in terms of despeckling filters. In fact, two experimental 

environments have been considered and the classical Lee speckle filter has been assumed both for single- and 

multi-image analysis. In first case, speckle noise was reduced by Lee filtering applied on single S-1 image. In the 

other one, five images of each season have been separately processed with Lee filter and their average has been 
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calculated. Features have been properly extracted as described in previous analysis and RF classification has 

applied in both times. 

To inquire into the robustness and effective of classification with respect to reference data, several training set 

have been randomly extracted and used in the processing. Once applied multitemporal despeckling over the 

whole SAR dataset, a multitemporal analysis have been carried out by mean RF classification. Resulting maps are 

displayed in Figure 16 and Figure 17. 

The urban class (highlighted in red in reported classification maps) has been separately extracted with the 

developed UEXT algorithm (download is available at tlclab.unipv.it//downloads/1/20171207/UEXT-files.zip.), 

well described and validated by Lisini et al. [26]. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 16. Lee filter applied in RF classification for the 21KUQ Amazonian tile: the satellite image (a), ESA CCI LC 2015 
reference data (b), single image classification with multitemporal despeckling (c), single image classification with Lee 

despeckling (d), multitemporal classification with multitemporal filtering (e) and multitemporal classification with Lee 
filtering (d). 

3.2.3 Qualitative evaluation 

By looking at the maps reported above, the different performance levels of the considered approaches can be 

appreciated. By comparing classification results in Figure 9 with the satellite image (a) and referenced data (b), 

it can be seen that the severe classification noise is gradually mitigated with multi-image analysis. The single-

image case (Figure 12 (c)) shows poor performance in terms of class recognition, as well as attained in double 

band analysis (Figure 12(d)), since images appear very noisy with a lot of classes hard to be visually 

distinguishable. The multitemporal approach produces instead interesting results, with nice classification 

capabilities, confirming the state-of-the-art level of this methodology. In Figure 12 (h) several croplands and 

vegetative areas are very well extracted proving the capability of the approach to produce a more reliable map. 

Moving to the classification maps reported in Figure 13, a similar behaviour can be appreciated, up to the map 

in Figure 13 (h). 

In Figure 14 and Figure 15, a comparison between Random Forest and Support Vector Machine performances is 

reported for the 21KUQ and 21KXT tiles, respectively. In both cases, RF maps (Figure 14 (c) and Figure 15 (c)) 

show a greater capability in class recognition than SVM ones. The performance can be explained due to the 

nature of RF in being inherently multiclass whereas Support Vector Machines need workarounds to deal with 
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classification tasks involving multiple classes. Moreover, RF works well with a mixture of numerical and 

categorical features. In other words, with Random Forest one can use inhomogeneous data without any refined 

pre-processing.  

 
Training set baseline 

   
Training set #1 Training set #2 Training set #3 

   
Training set #4 Training set #5 Training set #6 

   
Training set #7 Training set #8 Training set #9 

Figure 17. Random Forest maps for to the 21KUQ Amazonian tile using randomly selected different training sets. 

Figure 16 can be used to visually assess the effectiveness of speckle reduction when using different filters, in this 

case the Lee and the multitemporal approaches. The Lee filter (Figure 16 (f)) performs a linear combination of 

the observed intensity and the local average intensity value within the fixed window (use of the local statistics). 

By applying the filter, a mild smoothing effect is achieved, and the noise reduction does not appear visually 
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strong. In comparison, the multitemporal filter, applied to a temporal series of Sentinel-1 images (Figure 16(e)), 

gives very good results: the noise is well reduced and image sharpness is remarkable. Multitemporal despeckling 

better preserves spatial structures in multitemporal SAR images while effectively removing speckle. 

Finally, the last test (Figure 17), aim at showing the robustness of the classification approach with respect to 

several randomly extracted training sets. According to the maps, although the maps are obtained using different 

training sets, they visually show similar performance. 

3.2.4 Final decision 

According to the previous subsections and the comparisons, in despeckling, the improvement given by 

multitemporal classification appears evident. The method delivers better performance than the Lee adaptive 

filter, in addition to the capability to be versatile and scalable by jointly processing multiple images, i.e. different 

imaging sequences. 

Moving to classification, RF is state-of-the-art in remote sensing image processing, and yields classification 

accuracies as high as SVM, but with a much lower computational complexity. It is also more stable with respect 

to the choice of parameters [25], and easily provides the probability of belonging to a class (necessary input to 

the data fusion step). This makes it an excellent candidate for operational processing chains. 

Having that said, it has to be underlined that this comparison has been performed only qualitatively, and a 

quantitative analysis should be provided for a better evaluation of the quality. 

3.3 Multi-sensor Optical and SAR Data Fusion 

3.3.1 Multisensor Geolocation Methods 

In the context of multi-sensor geolocation, different image registration methods and strategies have been 

designed and validated on the available dataset, following up on the methodological analysis conducted in the 

deliverables of the previous milestones. 

The multi-sensor geolocation process is composed of different elements (Figure 18), i.e.: (i) the geometric 

transformation used to warp the input image; (ii) the similarity measure used to compare the reference and 

input images during the registration process; and (iii) the optimization strategy used to minimize or maximize 

the similarity measure, depending on the semantic of the metric. 

 

Figure 18. General block diagram of the geolocation process 

According to the CCI proposal, we have developed and validated area-based image registration methods with a 

combination of different geometric transformations, similarity measures, and optimization strategies. 

3.3.1.1 Geometric Transformations 

With respect to the geometric transformations, we have considered: 

 Translation transformations 

[
𝑋
𝑌
1

] = [
1 0 −𝑇𝑥

0 1 −𝑇𝑦

0 0 1

] [
𝑥
𝑦
1

] 

 Rigid transformations 
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[
𝑋
𝑌
1

] = [
1 0 −𝑇𝑥

0 1 −𝑇𝑦

0 0 1

] [
cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0

0 0 1
] [

𝑥
𝑦
1

] 

 Rotation-Scale-Translation (RST) transformations 

[
𝑋
𝑌
1

] = [
1 0 −𝑇𝑥

0 1 −𝑇𝑦

0 0 1

] [
𝑠 0 0
0 𝑠 0
0 0 1

] [
cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0

0 0 1
] [

𝑥
𝑦
1

] 

Here, (𝑥, 𝑦) and (𝑋, 𝑌) indicate the axes of the coordinate frames in the reference and input images, respectively, 

𝑇𝑥  and 𝑇𝑦 are translation parameters, 𝜃 is a rotation angle, and 𝑠 is a scale parameter [27]. 

3.3.1.2 Similarity Measures 

With respect to the similarity measures, we have considered: 

 Cross-correlation 

CC(𝑥, 𝑦) = ∑ ∑ 𝐼𝑛(𝑚, 𝑛) 𝑅𝑒𝑓(𝑚 − 𝑥, 𝑛 − 𝑦)

𝑁−1

𝑛=0

𝑀−1

𝑚=0

 

 Mutual Information 

MI(𝑅𝑒𝑓, 𝐼𝑛) = ∑ ∑ 𝑝𝑅𝑒𝑓,𝐼𝑛(𝑟, 𝑖) log
𝑝𝑅𝑒𝑓,𝐼𝑛(𝑟, 𝑖)

𝑝𝑅𝑒𝑓(𝑟) 𝑝𝐼𝑛(𝑖)
𝑖𝑟

 

Here, 𝐼𝑛(⋅) and 𝑅𝑒𝑓(⋅) indicate the input and reference images (which are both assumed composed of 𝑀 × 𝑁 

pixels), respectively, 𝑝𝑅𝑒𝑓,𝐼𝑛is their joint probability density function (PDF), 𝑝𝑅𝑒𝑓  and 𝑝𝐼𝑛 are their marginal PDFs, 

CC(⋅) is their cross-correlation evaluated on a given pixel location, MI(⋅) is their mutual information [27], [28], 

[29]. 

It is worth noting that the cross correlation is computed through the fast Fourier transform (FFT) algorithm. Such 

process takes advantage of the relation between the convolution operation in the spatial or time domain and 

the product operation in the frequency domain: 

ℱ(𝑓 ∗ 𝑔) =  ℱ(𝑓) ∙ ℱ(𝑔)   →     𝑓 ∗ 𝑔 = ℱ−1(ℱ(𝑓) ∙ ℱ(𝑔)), 

where ℱ(⋅) denotes the Fourier transform operator and 𝑓 and 𝑔 are two signals defined in the spatial or time 

domain. It is straightforward to write the cross-correlation in terms of a convolution operator, which allows 

taking benefit from the computational efficiency of the FFT [30]. 

 

Figure 19. Flowchart of the cross-correlation computation between two images 

In order to compute the cross-correlation between two images it is necessary to: (i) compute the FFT of each 

image to pass from the spatial domain to the frequency domain; (ii) compute the complex conjugate of one of 

the two resulting signals in the frequency domain because of the mirroring operation performed during 

convolution and not during correlation; (iii) multiply the images in the frequency domain; and (iv) compute the 
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inverse FFT transform of the product to obtain the cross-correlation of the two images in the spatial domain. The 

flowchart of such computation is shown in Figure 19. 

3.3.1.3 Optimization Strategies 

With respect to the optimization strategies, we have considered: 

 Powell’s algorithm, for unconstrained minimization. It uses Powell's formulation of an approximate 
conjugate direction method. The objective function does not need to be differentiable, and no 
derivatives are required (differently from the standard conjugate gradient algorithm). The method 
minimizes the function using a bi-directional search along a set of search vectors [31]. Moreover, the bi-
directional line search is done by Golden-section search and Brent's method [32]. 

 Constrained optimization by linear approximation (COBYLA), for constrained minimization. It addresses 
constrained optimization by a linear approximation. It works by iteratively approximating the actual 
constrained optimization problem with linear programming problems. At each iteration, the resulting 
linear programming problem is solved to obtain a candidate for the optimal solution. The candidate 
solution is evaluated using the original objective and constraint functions, yielding a new data point in 
the optimization space. This information is used to improve the approximating linear programming 
problem used for the next iteration of the algorithm. When no improvement is possible, the step size is 
reduced, refining the search. When the step size becomes sufficiently small, the algorithm stops [33]. 

3.3.2 Quantitative evaluation 

Several experiments have been carried out with respect to multi-sensor geolocation. First, experiments with 

synthetic data generated from single-sensor measurements have been performed. Second, the aforementioned 

registration methods have been applied to multi-sensor S1-S2 data. The imagery associated with the first round 

robin were used for experiments 

In particular, the dataset used for the experiments is composed of two S1 SAR tiles and an S2 optical tile. The 

single-sensor synthetic datasets have been built by extracting an area from either an S1 or an S2 tile and by 

transforming it according to predefined transformations (translation, rigid, RST, etc.). This strategy allows to 

quantitatively determine the registration accuracy obtained by registering the resulting couples. 

The multi-sensor dataset has been built by extracting an area from the result of stacking the S1 and S2 tiles. This 

way, it is possible to test the registration methods in a fully real-world scenario, although analytical and 

quantitative results are not available of course, because the “true” ideal matching of the optical and SAR data is 

undefined. In this case, registration accuracy can be qualitatively appreciated using false color representations 

and checkerboard visualizations. 

Finally, the synthetic multi-sensor dataset has been built by registering the S1 and S2 tiles using accurate geo-

referencing information, extracting an area from the stacking of the two georeferenced tiles, and applying a well-

known transformation to one of the two. As for the first scenario, this strategy allows to quantitatively evaluate 

the accuracy of the proposed methods in a multi-sensor scenario as well. 

The experiments that have been carried out are the following: 

 Finding the optimal translation using cross-correlation as metric; 

 Finding the optimal translation using both cross-correlation and mutual information as metrics; 

 Finding the optimal rigid transformation using both cross-correlation and mutual information as 
metrics; 

 Finding the optimal RST transformation using mutual information as a metric. 

In the case of the synthetic dataset, where the ground truth (GT) transformation is known, the root mean square 

error (RMSE) between the real and the resulting transformation is used as a measure of registration accuracy. 

For details on the RMSE computation refer to [34] and [29]. Additionally, the computer used for the experiments 

is a Windows system equipped with a quad-core Intel i7 processor with a working frequency of 3.60GHz and 

24GB of RAM. 

Before analyzing the results in more detail, it is worth anticipating that the usage of cross-correlation as a 

similarity metric is effective and satisfactory only in the case of the single-sensor dataset. In the multi-sensor 
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cases, the different nature of the images prevented the usage of such a similarity metric, because of the overall 

low values achieved by the inter-sensor correlations. On the contrary, the mutual information measure resulted 

to be more robust in this case. 

Therefore, cross-correlation has been experimentally validated only in the cases of translation and rigid 

transformations. The results have been proved satisfactory only in the single-sensor scenarios, with poor 

performance in the multi-sensor cases. Hence, multi-sensor experiments with more challenging scenarios 

(higher-order transformations and multi-step registration) have been focused on the usage of the more 

promising mutual information similarity metric. 

Moreover, another interesting conclusion is the comparison of the two optimization methods used in the 

experiments. As it will be shown, Powell’s algorithm performs well in case of transformations where the input 

image and the reference image are not “very distant,” i.e., when the optimal solution is in the neighborhood of 

the starting point. Conversely, the COBYLA algorithm allows the user to choose the starting search radius. The 

tuning of such parameter allows the registration process to explore regions of the search space that a simple 

conjugate-gradient method would never reach. 

3.3.2.1 Finding the optimal translation using cross-correlation as metric 

This type of registration performed well only in synthetic cases where the translation transformation was 

manually applied. Experiments were carried out with respect to optical-optical, SAR-SAR, and optical-SAR 

matching. Note that from now on, the convention used to represent the parameters of the geometric 

transformation is the following: Transformation = [translation on the x axis, translation on the y axis, rotation 

(deg.), scale factor]. 

3.3.2.1.1 Synthetic Optical-to-optical matching 

Elapsed Time: 0.636 seconds 

True Transformation: [-76, 52, 0, 1] 

Resulting Transformation: [-76.0, 52.0, 0.0, 1.0] 

Registration RMSE: 0.0 pixels 

Figure 20 shows: (i) the reference optical image (left panel); (ii) the input optical image to be registered (central 

panel); and (iii) the resulting cross-correlation with the corresponding point of maximum (right panel). 

 

Figure 20. Synthetic optical-to-optical matching: reference optical image (left), input optical image to be registered 
(center), and cross-correlation (right). 

Figure 21 shows a false color composition of the images before and after registration. The composition uses the 

green and the magenta colors for the input and the reference images (left) and for the transformed input and 

reference images (right), respectively. 
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Figure 21. Synthetic optical-to-optical matching: false color composition of the images before (left) and after registration 
(right) based on translation and cross-correlation metric. 

3.3.2.1.2 Synthetic SAR-to-SAR matching 

Elapsed Time: 0.680 seconds 

True Transformation: [-76, 52, 0, 1] 

Resulting Transformation: [-76.0, 52.0, 0.0, 1.0] 

Registration RMSE: 0.0 pixels 

As in previous case, Figure 22 shows the reference SAR image, the input SAR image to be registered, and the 

resulting cross-correlation with its own point of maximum. 

 

Figure 22. Synthetic SAR-to-SAR matching: reference SAR image (left), input SAR image to be registered (center) and 
cross-correlation (right). 

Figure 23 shows a false color composition of the images before and after registration. The same composition as 

in the Optical-to-Optical case is used. 

In these simple cases of optical-to-optical and SAR-to-SAR registration with only a shift transformation, the cross-

correlation proves indeed a valid metric. 
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Figure 23. Synthetic SAR-to-SAR matching: false color composition of the images before (left) and after registration 
(right) based on translation and cross-correlation metric. 

3.3.2.1.3 Synthetic Optical-to-SAR matching 

Elapsed Time: 0.616 seconds 

True Transformation: [-76, 52, 0, 1] 

Resulting Transformation: [-0.0, 52.0, 0.0, 1.0] 

Registration RMSE: 76.0 pixels 

Figure 24 shows the reference optical image, the input SAR image to be registered, and the resulting cross-

correlation with its point of maximum. 

 

Figure 24. Synthetic Optical-to-SAR matching: reference optical image (left), input SAR image to be registered (center) 
and cross-correlation (right). 

In this case, Figure 25 shows a checkerboard representation of the images before and after registration. On the 

left, alternate rectangles show either the input or the reference images. On the right, alternate rectangles show 

either the transformed input or the reference images. A qualitative assessment of the registration accuracy can 

be achieved by looking at the borders between each rectangle and at the continuity of linear image features 

across those borders. 

Such a result points out the non-satisfactory performance of using cross-correlation as a measure of similarity in 

the multi-sensor case. 
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Figure 25. Synthetic Optical-to-SAR matching: checkerboard of the optical and SAR images before (left) and after 
registration (right) based on translation and cross-correlation. 

3.3.2.2 Finding the optimal translation using both cross-correlation and mutual information as 

metrics 

The difference with respect to the previous case is that, in these experiments, the optimal translation is found 

by maximizing either the cross-correlation or the mutual information. Again, experiments have been carried out 

with respect to both multi-sensor and single-sensor synthetic scenarios. For the sake of brevity, we report here 

the results obtained for the SAR-to-SAR and for the Optical-to-SAR registration using the COBYLA optimization 

method. The experiments with the optical-to-optical and with the Powell optimization methods showed 

comparable results. It is worth noting that COBYLA usually outperforms Powell’s method when the solution is far 

from initialization (for a complete analysis refer to the experiments with the RST transformation below). 

3.3.2.2.1 Synthetic SAR-to-SAR matching 

The results obtained by using cross-correlation or mutual information are similar in this synthetic case. What it 

is worth noting is the required time needed for convergence, which is longer in the mutual information case.  

Cross-correlation 

This experiment is like the one reported above, but here the cross-correlation is maximized using COBYLA and 

not by computing the whole cross-correlation function through the FFT. Figure 26 shows the result using the 

false-color composite defined for the previous single-sensor experiments. 

Elapsed Time: 21.172 seconds 

True Transformation: [-76, 52, 0, 1] 

Resulting Transformation: [-75.9, 51.9, 0.0, 1.0] 

Registration RMSE: 5.65 e-4 pixels 

Mutual Information 

Elapsed Time: 42.221 seconds 

True Transformation: [-76, 52, 0, 1] 

Resulting Transformation: [-76.0, 51.9, 0.0, 1.0] 

Registration RMSE: 5.33 e-4 pixels 

The false color composition in Figure 27 points out the accuracy of the registration result obtained. As 

anticipated, the accuracy when using either cross-correlation or mutual information is similar. The difference is 

the computation time, which is longer in the mutual information case, thus suggesting a preference for the cross-

correlation metric in the single-sensor case. 
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Figure 26. Synthetic SAR-to-SAR matching: false color composition of the images before (left) and after registration 
(right) based on translation, COBYLA, and cross-correlation metric. 

 

Figure 27. Synthetic SAR-to-SAR matching: false color composition of the images before (left) and after registration 
(right) based on translation, COBYLA, and mutual information metric. 

3.3.2.2.2 Synthetic Optical-to-SAR matching 

This experiment, in combination with the one considering cross-correlation through FFT in the optical-to-SAR 

matching case, highlights the importance of using mutual information as a similarity measure in the multi-sensor 

scenario [35], [36]. 

Mutual Information 

Elapsed Time: 7.59 seconds 

True Transformation: [-76, 52, 0, 1] 

Resulting Transformation: [-81.5, 49.6, 0.0, 1.0] 

Registration RMSE: 5.99 pixels 

The checkerboard representation of the images before and after registration shown in Figure 28 highlights that, 

even in the multi-sensor case, the mutual information is effective for determining the optimal translation. 
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Figure 28. Synthetic Optical-to-SAR matching: checkerboard of the images before (left) and after registration (right) 
based on translation, COBYLA, and mutual information metric. 

3.3.2.3 Finding the optimal Rigid transformation using both cross-correlation and mutual 

information as metrics 

As in the case above, in these experiments, the optimal transformation is found by maximizing either the cross-

correlation or the mutual information using COBYLA. The difference is in the geometric transformation, since 

here the model is considered as a rigid transformation (i.e., translation + rotation). 

For the sake of brevity, the experiments reported here consider: (i) using cross-correlation with synthetic single-

sensor data; (ii) using mutual information with real multi-sensor data. It is worth noting that, according to its 

poor results in the multi-sensor case, cross-correlation will not be considered for the further experiments in this 

document. Conversely, experiment (ii) shows the satisfactory accuracy achievable in the synthetic case through 

the mutual information, but also confirms that the rigid transformation is often a too restrictive model for the 

application to real S1-S2 data. 

3.3.2.3.1 Synthetic Optical-to-Optical Matching 

Cross-correlation 

Elapsed Time: 37.39 seconds 

True Transformation: [-45, 26, 1.1, 1] 

Resulting Transformation: [-44.39, 25.34, 1.14, 1.0] 

Registration RMSE: 1.48 pixels 

As expected, and as pointed by the following false color composition (Figure 29), an accurate registration was 

obtained in this case of rigid transformation of a single-sensor image pair. 
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Figure 29. Synthetic Optical-to-Optical matching: false color composition of the images before (left) and after registration 
(right) based on rigid transformation, COBYLA, and cross-correlation metric. 

3.3.2.3.2 Real Optical-to-SAR matching 

Mutual information 

Elapsed Time: 13.52 seconds 

Resulting Transformation: [66.44, -44.43, -0.75, 1.0] 

Figure 30 shows a checkerboard representation of the images before and after registration. Well-registered areas 

are highlighted in green, while areas that still suffer from unprecise registration are highlighted in red. 

 

Figure 30. Real Optical-to-SAR matching: checkerboard of the images before (left) and after registration (right) based on 
rigid transformation, COBYLA, and mutual information metric. 

As anticipated above, on one hand, the registration through the mutual information improved as compared to 

the initial georeferencing. A particularly effective alignment can be noted in the green circles. Nevertheless, the 

resulting rigid transformation is not globally accurate, as it can be noted by inspecting the crop fields in the lower 

left corner of the image, together with the other areas highlighted in red. 

3.3.2.4 Finding the optimal RST transformation using mutual information as a metric 

The following experiments consider the more general case of rotation-scale-translation transformations. The 

experiments reported in the following sections do not consider anymore the synthetic single-sensor cases to 

focus on the HRLC multi-sensor scenario.  
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Also in this case, the performance is evaluated both quantitatively, with synthetic data where the true 

transformation is known, and visually-qualitatively in the case of the real dataset. The following experiments are 

also aimed at testing the registration method on different areas of the available Amazonian tile. Three separate 

areas (1000x1000 pixels each) have been registered using the RST transformation and the COBYLA and Powell’s 

optimization strategies. 

As anticipated in the “Quantitative Evaluation” section, it is worth noting here that the Powell’s algorithm 

performs well in the cases where the solution of the registration process falls in a neighborhood of the starting 

point. Conversely, the COBYLA method, with the initial search radius parameter, allows to better explore the 

search space and usually grants better convergence properties. This is shown especially in Areas from 2 to 4 in 

the following experiments, where the solution is significantly far away from the initialization and Powell 

algorithm fails to converge. 

3.3.2.4.1 Synthetic Optical-to-SAR Matching 

Elapsed Time: 23.81 seconds 

True Transformation: [-45, 42, 2.1, 0.98] 

Resulting Transformation: [-35.26, 43.02, 1.82, 0.97] 

Registration RMSE: 5.16 pixels 

The checkerboard representation of the images before and after registration is shown in Figure 31. For all the 

experiments within the synthetic optical-to-SAR matching, the COBYLA optimization method has been used. 

 

Figure 31. Synthetic Optical-to-SAR matching: checkerboard of the images before (left) and after registration (right) 
based on RST transformation, COBYLA, and mutual information metric. 
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Figure 32. Synthetic Optical-to-SAR matching (scaling factor of 0.98): checkerboard of the images before (left) and after 
registration (right) based on RST transformation, COBYLA, and mutual information metric. 

This result is comparable in accuracy with the case of rigid transformation. Nevertheless, it is worth noting that 

for the registration process to converge to a qualitative satisfactory result, the scaling factor should not be too 

large (or small). An experimental example is reported here, where a scaling factor of 0.9 prevented the 

registration to succeed. During the experiments, all the other parameters were kept constant and the scaling 

factor was reduced from 0.98 to 0.90. With a scale factor reduced from 0.98 to 0.95 (Figure 32), the rigid 

transformation still converged to a satisfactory result. 

Scaling even further to 0.92 still granted acceptable results (Figure 33). 

 

Figure 33. Synthetic Optical-to-SAR matching (scaling factor of 0.92): checkerboard of the images before (left) and after 
registration (right) based on RST transformation, COBYLA, and mutual information metric. 

However, further tests failed to converge effectively. An example is reported in Figure 34, where the scaling 

factor was chosen equal to 0.9 and the other parameters were kept constant. 

 

Figure 34. Synthetic Optical-to-SAR matching (scaling factor of 0.90): checkerboard of the images before (left) and after 
registration (right) based on RST transformation, COBYLA, and mutual information metric. 

This analysis is important especially with respect to the COBYLA minimization method. Indeed, such technique 

allows defining constraints in the search space, thus preventing the scale parameter to assume excessive values. 

This consideration is also consistent with the project, as the available images are not expected to be 

characterized by a large-scale difference. Indeed, as the input S1 and S2 data are first georeferenced on pixel 

grids associated with the same nominal pixel spacing of 10 m, the possible scaling factor is indeed expected to 

take values in a narrow neighborhood of unity. 
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3.3.2.4.2 Real Optical-to-SAR Matching: Area 1 

Elapsed Time: 13.24 seconds 

Resulting Transformation: [76.40, -44.31, -0.17, 0.99] 

The checkerboard in Figure 35 points out that this result is comparable with the one obtained in the case of rigid 

transformation (i.e., only translation and rotation) in the application to the real multi-sensor dataset as well. The 

scale factor does not have great importance in the registration process of this dataset, as it is suggested by the 

convergence value of 0.99 and in accordance with the aforementioned comments on the expected behavior of 

this parameter. COBYLA is used for minimization both for Area 1 and for all the following experiments considering 

other areas. 

 

Figure 35. Real Optical-to-SAR matching – Area 1: checkerboard of the images before (left) and after registration (right). 

3.3.2.4.3 Real Optical-to-SAR Matching: Area 2 

Elapsed Time: 13.39 seconds 

Resulting Transformation: [77.52, -62.89, 0.16, 1.03] 

 

Figure 36. Real Optical-to-SAR matching – Area 2: checkerboard of the images before (left) and after registration (right). 

 

The same comments made for Area 1 hold with regard to Area 2 as well. In particular, the green ellipses in the 

checkerboard (see Figure 36) emphasize regions where accurate registration of linear image features is especially 

evident.  
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3.3.2.4.4 Real Optical-to-SAR Matching: Area 3 

In this area, the spatial difference between the reference and input images is large, especially in the translation 

along the x axis. COBYLA was able to reach an effective registration result, though, while Powell’s method failed 

to converge due to the large distance between the solution and the initialization point. The green and red ellipses 

superimposed to the following two sets of checkerboards emphasize this significant difference in performance. 

COBYLA 

Elapsed Time: 15.12 seconds 

Resulting Transformation: [222.11, -3.23, 0.48, 1.00] 

 

Figure 37 Real Optical-to-SAR matching – Area 3: checkerboard of the images before (left) and after registration (right) 
using COBYLA. 

POWELL 

Elapsed Time: 46.29 seconds 

Resulting Transformation: [28.07, 16.23, 0.06, 1.00] 

 

Figure 38 Real Optical-to-SAR matching – Area 3: checkerboard of the images before (left) and after registration (right) 
using Powell’s algorithm. 
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3.3.2.4.5 Real Optical-to-SAR Matching: Area 4 

As for Area 3, also Area 4 is characterized by a large spatial difference, which is even larger than the previous 

case. Nevertheless, COBYLA succeed to find a good transformation fitting the input and the reference images, 

and outperformed Powell’s method.  

Another experimental advantage of COBYLA is a lower time needed for convergence, most probably due in this 

case to the fact that Powell failed to find a good matching. However, the short convergence time suggests the 

possibility of tuning online the “initial search radius” parameter. Indeed, it should be possible to implement a 

new version of such registration procedure that integrates a grid search on that parameter. The resulting 

similarity metrics could be compared to decide which value of such parameter is able to grant the best 

registration result for the dataset at hand. 

COBYLA 

Elapsed Time: 13.33 seconds 

Resulting Transformation: [270.68, -55.25, 0.51, 1.02] 

 

Figure 39 Real Optical-to-SAR matching – Area 4: checkerboard of the images before (left) and after registration (right) 
using COBYLA. 

POWELL 

Elapsed Time: 38.93 seconds 

Resulting Transformation: [3.63, -1.58, 0.01, 1.00] 

 

Figure 40 Real Optical-to-SAR matching – Area 4: checkerboard of the images before (left) and after registration (right) 
using Powell’s algorithm. 
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3.3.3 Final decision 

The experimental analysis conducted with respect to multi-sensor geolocation and the Round Robin dataset 

pointed out a list of guidelines helpful to decide which registration strategy to pursue and to identify where to 

focus the future work on the topic. The following list enumerates such consideration and gives some insight in 

each of the points: 

 The choice of the similarity metric. Both cross-correlation and mutual information have been 
experimented with. The results pointed out that cross-correlation is valuable in the single-sensor case, 
while mutual information should be preferred in the multi-sensor scenarios. As a result, within the CCI+ 
HRLC product, mutual information should be prioritized. Different implementations and approximations 
of such metric will be considered (e.g., Parzen window estimation, Parzen window applied to a random 
selection of sample to reduce the computation time, etc.). Moreover, other metrics will be studied in 
the future Round Robin. 

 The choice of the geometric transformation. The experiments pointed out that, at least with respect to 
the available dataset, a simple translation transformation is not enough to find a good match between 
the input and reference images. However, rigid and RST transformations performed equally, as the 
available dataset was not affected by a consistent scale factor between the input couple. The last two 
transformations will therefore be considered in the future, with the exploration of additional higher-
order transformations (e.g., affine transformation) in the future Round Robin. 

 The choice of the optimization strategy. Both Powell’s method and COBYLA performed effectively when 
the spatial difference between the reference and input images is not large. Conversely, COBYLA 
outperformed Powell’s method in the other case, due to the possibility to control the starting search 
radius. Future work will focus more on this last minimization method, with details on the possibility of 
integrating a strategy for the optimization of the starting search radius in the registration process. Other 
more sophisticated minimization methods (e.g., global search methods like genetic algorithms and 
simulated annealing) will be considered within the next Round Robin. In this case, the focus will be in 
analyzing the time versus accuracy tradeoff. 

3.3.4 Decision Fusion Methods 

Decision fusion methodologies are used in the HRLC project in order to combine the posterior probabilities 

coming from the disjoint classification of SAR and optical images. Within the first year of CCI+ HRLC, different 

families of decision fusion methods have been implemented and experimentally compared, including consensus-

theoretic methods and fusion strategies based on Markovian modelling (i.e., Markov random fields), and 

combined with a class-specific matching rule. Experimental comparisons have been focused on the Amazon 

round robin area, thanks to the availability of both the optical-based and the SAR-based classification outputs on 

this area. 

Specifically, the posterior probabilities coming from the optical and SAR processing chains are quantized and 

coded into unsigned integers using 8 bits per class and per pixel. This choice is aimed at minimizing memory 

requirements without any expected loss in appreciable precision. As discussed in the deliverables of the previous 

milestones, the sets of classes that can be accurately discriminated by using optical and SAR data exclusively 

generally do not coincide. SAR data are expected to well discriminate especially built-up classes and water 

bodies. Accordingly, SAR and optical classification algorithms work on different sets of classes (see also the 

previous sections of the present document). Decision fusion methodologies are aimed at fusing posterior 

probabilities related to the common classes. Hence, a class-specific combination rule has been devised to take 

this into account. Specifically, with respect to the HRLC project, for what concerns the Amazon round robin areas, 

the posterior probabilities coming from optical-based classification relate to 8 classes, corresponding to numbers 

1, 3, 5, 6, 7, 8, 10, 15 in the following table.  
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Figure 41 Class legend for the classification experiments with optical, SAR, and multi-sensor data 

Therefore the optical set of classes is Ω𝑜 = {1,3, 5, 6, 7, 8, 10, 15} . SAR classification is performed on 7 classes: 

1, 3, 5, 6, 7, 8, 10 in the previous table. The SAR class set is therefore, in the Amazonian case, a strict subset of 

the optical one (Ω𝑠 = {1,3, 5, 6, 7, 8, 10} ⊂ Ω𝑜). For that reason, optical posterior probabilities are divided into 

two subsets:  

 Ω𝑠, including the 7 common classes (1,3, 5, 6, 7, 8, 10). 

 Ω̅𝑠 = Ω𝑜 − Ω𝑠, including class 15 only.  

The next sections focus on the consensus (non-contextual) and Markovian (contextual) approaches. The class-

specific combination is explained together with the former. 

3.3.4.1 Consensus Theory and class-specific combination 

Consensus theory [37],[38] involves general procedures with the goal of combining multiple probability 

distributions to summarize their estimates in a non-contextual manner. Under the assumption that both the SAR 

and the optical classifiers can be made into generating Bayesian outputs and that, accordingly, their predictions 

are endowed with a probabilistic characterization, i.e., pixelwise posteriors are available, the goal is to produce 

a single probability distribution that summarizes their estimates. The most common consensus theory methods 

are linear opinion pool (LOP) and logarithmic opinion pool (LOGP) [37],[38]. Both these methods were 

implemented and tested within the first year of CCI+ HRLC in combination with the aforementioned class-specific 

rule.  

Let 𝑥 = [𝑂, 𝑆] be the input data vector on a generic pixel, resulting from the stacking of optical (𝑂) and SAR (𝑆) 

individual feature vectors, and let 𝜔𝑗  be the 𝑗th information class (𝑗 = 1,2, … , 𝑀). The LOP functional can be 

expressed as: 

𝒞(𝜔𝑗|𝑥, Ω𝑠) = 𝛼 𝑃(𝜔𝑗|𝑂, Ω𝑠) + 𝛽 𝑃(𝜔𝑗|𝑆, Ω𝑠) 
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where 𝑃(𝜔𝑗|𝑂, Ω𝑠) is the optical posterior probability of 𝜔𝑗  conditioned to the common subset of classes Ω𝑠 and 

𝑃(𝜔𝑗|𝑆, Ω𝑠) is the SAR posterior probability conditioned to the same subset Ω𝑠. In the Amazon RR experiments, 

𝑃(𝜔𝑗|𝑆, Ω𝑠) = 𝑃(𝜔𝑗|𝑆) because Ω𝑠 includes all classes in the SAR legend, while (𝜔𝑗|𝑂, Ω𝑠) can be derived from 

the posteriors 𝑃(𝜔𝑗|𝑂) associated with the classes in Ω𝑜  through straightforward probability manipulations. 𝛼 

and 𝛽 are optical and SAR source-specific weights, respectively, and control the relative influence of the two 

sources. 

According to the same definitions, the logarithmic opinion pool (LOGP) functional can be defined as: 

ℒ(𝜔𝑗|𝑥, Ω𝑠) = 𝛼 log 𝑃(𝜔𝑗|𝑂, Ω𝑠) + 𝛽 log 𝑃(𝜔𝑗|𝑆, Ω𝑠)  

LOGP differs from the linear version in that it is usually unimodal and less dispersed. Zeros are considered vetoes: 

if any of the two sources assigns a zero posterior, then by definition ℒ(𝜔𝑗|𝑥, Ω𝑠) = 0. This dramatic behaviour is 

a drawback when the single-source predictions are very inaccurate and can be generated also by roundoff error. 

In order to prevent this, all posterior values are increased by the machine epsilon (the minimum number that 

can possibly be represented given a certain data type). 

𝒞(⋅) and ℒ(⋅) provide probabilistic fusion results associated with the classes in common between the two single-

sensor outputs, although they generally do not take values in the interval [0, 1]. Either can be mapped to proper 

posteriors by suitably transforming to a probabilistic output, which represents a fused posterior probability 

𝑃ℱ(𝜔𝑗|𝑥, Ω𝑠). In the case of LOP, 𝑃ℱ(𝜔𝑗|𝑥, Ω𝑠) is computed from 𝒞(𝜔𝑗|𝑥, Ω𝑠) by just re-normalizing so that the 

sum over all 𝜔𝑗 ∈ Ω𝑠  is unity. In the case of LOGP, the following softmax operator is appropriate to take into 

account the logarithmic relation between the ℒ(⋅) functional and the original probabilities: 

𝑃ℱ(𝜔𝑗|𝑥, Ω𝑠) =
exp ℒ(𝜔𝑗|𝑥, Ω𝑠)

∑ exp ℒ(𝜔𝑘|𝑥, Ω𝑠)𝜔𝑘∈Ω𝑠

 

This probabilistic fusion output 𝑃ℱ(⋅) covers the subset of classes in common across the two single-sensor 

classifications. To extend it to the whole set of classes, the posterior probability (unconditional with respect to 

Ω𝑠) can be defined according to the total probability theorem: 

𝑃ℱ(𝜔𝑗|𝑥) = 𝑃(𝜔𝑗|𝑥, Ω𝑠)𝑃(Ω𝑠|𝑥) + 𝑃(𝜔𝑗|𝑥, Ω𝑠)𝑃(Ω𝑠|𝑥) = 

= 𝑃ℱ(𝜔𝑗|𝑥, Ω𝑠)[1 − 𝑃(Ω𝑠|𝑂)] + 𝑃(𝜔𝑗|𝑂, Ω𝑠)𝑃(Ω𝑠|𝑂), 

where the quantities associated with Ω𝑠 are conditioned only on the optical observations 𝑂. 

It is worth noting that, while this class-specific rule is consistent with the peculiarities of the optical and SAR 

classification results on the Amazon round robin data set, this combination rule is applicable to all cases in which 

one of the two sources discriminates among a larger set of classes than the other source – as expected in the 

fusion of optical and SAR data.  

3.3.4.2 Markov Random Fields 

Markov random fields (MRFs) can include contextual information in the form of class interactions between 

neighbouring pixels. An MRF is determined by an energy function, composed of two main terms: one 

characterizing class likelihood at the pixel level (depending on per-class scores obtained by the optical and SAR 

classification methods), and another promoting label smoothness in a local neighbourhood. This means that the 

model encourages two neighbouring pixels to be labelled with the same class and that the fusion processing 

stage allows incorporating spatial-contextual information as well. 

Define the regular pixel lattice as 𝐼, and let 𝑦
𝑖
 be the class label of the 𝑖-th pixel (𝑦

𝑖
∈ Ω𝑜, 𝑖 ∈ 𝐼). The MRF consider 

𝑦
𝑖
 as a sample of the random field 𝑌 = {𝑦𝑖}𝑖∈𝐼 of class labels, which is discrete-valued. A neighbourhood system 

{𝜕𝑖}𝑖∈𝐼, which provides each 𝑖-th pixel with a set 𝜕𝑖 ⊂ 𝐼 of neighbouring pixels, is defined [39]. In this case, 𝜕𝑖 

was chosen to be made of the four pixels adjacent to the 𝑖-th pixel (four-connected). 
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Considering the frequently used family of the MRF models in which only up to pairwise clique potentials are non-

zero, the energy is written as: 

𝑈(𝑌|𝑋) = − ∑  log 𝑃ℱ(𝑦𝑖|𝑥𝑖)

𝑖∈𝐼

− 𝛾 ∑ 𝛿(𝑦𝑖 , 𝑦𝑗)
𝑖∈𝐼

𝑗∈𝜕𝑖

, 

where 𝑋 = {𝑥𝑖}𝑖∈𝐼 is the random field of all optical and SAR observations (𝑥𝑖 = [𝑂𝑖 , 𝑆𝑖] on each pixel 𝑖 ∈ 𝐼), 

𝑃ℱ(𝑦𝑖|𝑥𝑖) is the pixelwise fusion output described in the previous section, and the spatial energy contribution 

has been modelled using the Potts model [39]. 

In the application of MRF-based methods to decision fusion, special focus has been devoted to the minimization 

of the energy function 𝑈 with respect to the random field 𝑌 of the class labels. For that reason, the iterated 

conditional mode (ICM) algorithm has been applied, since it represents an efficient trade-off between accuracy 

and computational burden [40]. Moreover, a lot of effort was spent to make the implementation of ICM as fast 

as possible. This was achieved by making use of convolution-like operations only, which have a very fast 

implementation in the Python environment. That way it was possible to speed-up the computations, at a cost of 

a slight increase in memory occupation, and make MRF feasible to be applied to large scale dataset as the one 

of HRLC. 

3.3.5 Qualitative evaluation 

The aforementioned approaches to multi-sensor fusion were experimentally evaluated on the case study of the 

Amazonian S2 tile 21kuq and of the S1 images that spatially overlap with it. The area of spatial intersection 

between these S1 and S2 sources was obviously considered for the fusion experiments. Analogous results with 

other input data will be progressively generated as soon as the corresponding optical and SAR inputs become 

available. 

Figure 42 collects a detail of the classification maps obtained by the optical and SAR processing chains (the color 

legend is reported at the beginning of the current section). 

    

Figure 42 Details of the classification maps obtained from the classification of optical (left) and SAR data (right). 

As expected, the two results differ in spatial regularity (smoother in the optical-based case than in the SAR-based 

case, because of the influence of residual speckle), class legend (see above) and in the labels assigned by the 

classification of the two sources to several areas. While optical data are expected to be fundamental in 

discriminating the considered land cover classes, the following figure provides an example of a case in which 

residual impact of cloud cover may affect the optical-based map but obviously not the SAR-based map. 
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Figure 43 Details of the classification maps obtained from the classification of optical (top left) and SAR data (top right), 
indicating the impact of a residual cloud on the former. A true-color composite of the optical image is also shown 

(bottom). 

3.3.5.1 Results - Consensus Theory 

The results of applying linear opinion pool to the posterior probabilities associated with the aforementioned 

maps is shown in Figure 44. 

In particular, LOP was applied by giving slightly larger weight to the optical source than to the SAR source (𝛼 =

0.6 and 𝛽 = 0.4), consistently with the expected reliability of the corresponding land cover classification output. 

Indeed, linear opinion pool made minor changes as compared to the optical-based classification map. It is 

however the fastest method among those described above, requiring around 30 seconds on a 8200x8200 tile on 

a standard desktop machine (no GPU). In particular, it does not compensate for the impact of the 

aforementioned residual cloud on the classification map. Indeed, the stronger influence of the optical-based 

result than of the SAR-based result on the fusion map is consistent with both the expected contribution of each 

type of sensor to class discrimination and of the different behaviour of the corresponding posteriors. The 

posterior probabilities obtained from the optical source on a given pixel most often indicate the most probable 

class membership with higher confidence as compared to the posteriors obtained from the SAR source. 
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Accordingly, they more strongly affect the pixelwise decision fusion outcome. The results of logarithmic opinion 

pool are shown in  Figure 45. 

     
Figure 44 Details of the classification map obtained by LOP in the same areas as in  

Figure 42 (left) and Figure 43 (right; cloudy area on the right)  

 
Figure 45 Details of the classification map obtained by LOGP in the same areas as in  

Figure 42 (left) and Figure 43 (right; cloudy area on the right) 

In the case of the logarithmic opinion pool, while the overall classification output is still significantly influenced 

by the optical source, it is worth noting that the erroneously labelled residual cloud is mostly corrected thanks 

to the SAR source, thus confirming the relevance of fusing the two separate classification results. LOGP required 

around 50 seconds to run on the 8200x8200 tile. Hyper-parameter setting was addressed for LOGP analogously 

to the case of LOP. 

In both cases of LOP and LOGP, the spatial regularity of the output classification map was similar to that of the 

optical-based result. On one hand, this suggests that the two fusion strategies are not negatively affected by the 

impact of residual speckle on the SAR-based result. On the other hand, further smoothness is obviously not 

achieved by LOP or LOGP, because they are fully non-contextual approaches.  
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3.3.5.2 Results – Markov Random Fields 

While the previous methods make no use of contextual information, Markov random fields model this type of 

information explicitly. Here, consistently with the results discussed in the previous subsection, the adopted MRF 

used a unary energy term derived according to LOGP, while the contextual term depending on a 4-connected 

neighbourhood was given by the Potts model. A unary based on LOP is not presented for brevity as it could 

benefit less than LOGP from the fusion of the two sources, as argued in the previous subsection. The classification 

map obtained by applying ICM to this Markovian energy is shown in  Figure 46. 

 
Figure 46. Details of the classification map obtained by MRF-ICM in the same areas as in  

Figure 42 (left) and Figure 43 (right; cloudy area on the right). 

MRF required around 7 minutes to run on the 8200x8200 tile. It is possible to appreciate the spatial regularization 

achieved with MRF as compared to the previous classification map. On one hand, the comments made in the 

previous section with regard to LOGP and its relation to the optical-based and SAR-based individual outputs hold 

in this case as well. In particular, the impact of the residual cloud is significantly mitigated in the MRF result, too. 

On the other hand, the Markovian output is overall smoother than the aforementioned pixel-wise results. In 

particular, these maps were obtained by setting the spatial parameter 𝛾 to 0,8. Stronger spatial regularization 

can as well be achieved increasing the value of 𝛾. That way, a spatially even smoother result can be achieved, 

although at the cost of a minor degradation of small-scale spatial details. On one hand, this trade-off can be 

tuned by applying automatic hyper-parameter optimization methods that determine an optimal value for 𝛾 

through mean-square-error or Bayesian approaches [5], [6]. Moreover, alternate spatial models, including 

contrast sensitive conditional random fields, mitigate the possible degradation in small-scale details. On the 

other hand, the opportunity to explicitly tune the trade-off between spatial smoothness and detail provides 

further flexibility in the generation of an output HRLC product that meets the requirements of the climate 

community. 

3.3.6 Final decision 

Both LOP and LOGP are fast since they are one-shot non-iterative pixel-wise methods. However, data fusion 

performed that way does not benefit from contextual information, which can be crucial in order to remove noise 

and favour the spatial regularity of the output map. Between LOP and LOGP, the experiments suggest a stronger 

potential of the latter in taking benefit from both input sources.  

Markov Random fields can also capture local spatial information, thus providing more spatial regularization at a 

cost of a comparatively higher, yet still quite short, computational time. 
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Overall, LOGP and MRF-ICM are identified here as appropriate solutions for HRLC, in combination with the 

aforementioned class-specific combination strategy. In this framework, further development may regard the 

automatic optimization of the hyper-parameters of these methods (weights of the various information sources), 

the integration of edge-preserving / contrast-sensitive spatial terms in the Markovian approach, and the 

evaluation of the potential of alternate energy minimization algorithms based on graph theory. The last item is 

possibly promising from the viewpoint of classification accuracy, although at the cost of significantly longer 

computation time. This time-vs-accuracy trade-off will be addressed carefully. 
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