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Detailed Change Record 

Issue RID Description of discrepancy Sections Change 

1.1 FR-01 The ATBD should report a detailed 
description of the algorithms and 
methodologies (reported in the technical 
proposal) that should be used to achieve 
the objective of the project. 
We understand that RR#1 activities will 
provide better indications on which 
algorithm candidates on classification, but 
a more detailed description of the listed 
methods is needed. 

Sections 
6,7,8 

Sections are integrated with 
more detailed information 
and mathematical insights. 

1.1 FR-02 Why as Global Product to use as reference 
the unique map described is CORINE LC? 
CLC is not global. 

7.1.1 
(removed) 

Mention to CORINE LC 
product as global product 
has been removed. 

1.1 FR-03 Why training the S1 data using as 
reference the 300m CCI-LC maps? We are 
going to lose the HR of S1 data, or am I 
wrong? Please add some reference 
document using this technique 

8 Further clarification has 
been added. 
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1 Introduction 

1.1 Executive summary 
Algorithm development is specifically driven to address the technical requirements as provided by the outcome 
of Task 1 of the project. Best performing algorithms have been selected among proposed candidates through an 
internal benchmarking-testing iteration by the Earth Observing Science (EOS) team. The processing chain as 
developed by the end of the first year of project activity is presented in this version of the document. 

1.2 Purpose and scope 
The Algorithm Theoretical Basis Document (ATBD) details algorithms in the processing chain needed to produce 
the land cover products as presented in the PSD [AD3]. It is intended to provide information for the 
understanding of the processing chain. The ATBD version 2.0 aims at providing the first version of the processing 
chain, as the outcome of the first year of activities devoted to benchmarking and testing. This version of the 
document integrates in the whole project workflow as illustrated in Figure 1. 

 

Figure 1. Concept of the ATBD v1 in the workflow of Task 2 of the CCI+ HRLC project. 

The main blocks of computation can be identified as: 

• Optical pre-processing. 
• SAR pre-processing. 
• Multi-sensor geolocation. 
• Optical data classification. 
• SAR data classification. 
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• Decision fusion. 
• Multitemporal change detection and trend analysis. 

1.3 Applicable documents 
Ref. Title, Issue/Rev, Date, ID 

[AD1] CCI HR Technical Proposal, v1.1, 16/03/2018 
[AD2] CCI Extension (CCI+) Phase 1 – New ECVs – Statement of Work, v1.3, 22/08/2017, ESA-CCI-PRGM-EOPS-

SW-17-0032. 
[AD3] CCI_HRLC_Ph1-PSD, latest version 
[AD4] CCI_HRLC_Ph1-URD, latest version 

1.4 Acronyms and abbreviations 
6S  Second Simulation of a Satellite Signal in the Solar Spectrum 

AC  Atmospheric correction 

AMI  Active Microwave Instrument 

AOT   Aerosol Optical Thickness 

ASAR  Advanced Synthetic Aperture Radar  

ATBD  Algorithm Theoretical Basis Document 

BEAST  A Bayesian Estimator of Abrupt change, Seasonal change, and Trend 

BFAST  Breaks For Additive Seasonal and Trend 

BOA  Bottom of Atmosphere  

BoW  Bag of visual Words 

CCI  Climate Change Initiative 

CD  Change Detection 

CFMask   C Version of Function Of Mask 

CMA  Climate Modeling Grid - Aerosol 

CMG  Climate Modeling Grid 

CNN  Deep Convolutional Neural Network 

CVA  Change Vector Analysis 

DARD  Data Access Requirement Document 

DDV  Dark Dense Vegetation 

DEM  Digital Elevation Model 

DM  Dissimilarity Measure 

DTW  Dynamic Time Warping 

ECV  Essential Climate Variables 

ERS  European Remote Sensing 

ETM  Enhanced Thematic Mapper 

ETM+  Enhanced Thematic Mapper Plus 

FC  Fully Connected 

FS  Feature Space 

GCOS  Global Climate Observing System 

GMM  Gaussian Mixture Model 
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GSFC  Goddard Space Flight Center 

HLS  Harmonized Landsat/Sentinel-2 

HR  High Resolution 

IFK   Improved Fisher Kernel 

INT  Integer 

IRMAD  Iteratively-Reweighted Multivariate Alteration Detection 

L-5/7/8  Landsat-5/7/8 

LandTrendr Landsat-based detection of Trends in Disturbance and Recovery 

LaSRC  Landsat Surface Reflectance Code 

LC  Land Cover 

LCC  Land Cover Change 

LEDAPS  Landsat Ecosystem Disturbance Adaptive Processing System 

LLC   Locality-constrained linear coding 

LOP  Linear Opinion Pool 

LPF  Low Pass Filter 

LSTM  Long Short Term Memory 

LTS  Landsat Time Series 

LUT  Lookup Table 

MDDTW  Multi-Dimension DTW 

MEaSUREs Making Earth Science Data Records for Use in Research Environments 

MF-DTW Multi-Feature DTW 

MGRS  Military Grid Reference System 

MLP-NN  Multi-Layer Perceptron Neural Network 

MMU  Minimum Mapping Unit 

MODIS  Moderate Resolution Imaging Spectroradiometer 

MR   Medium Resolution 

MSS  Multispectral Scanner 

NA  Not Applicable 

NASA  National Aeronautics and Space Administration 

NCEP  National Centers for Environmental Prediction 

NDI  Normalized Difference Index 

NDVI  Normalized Difference Vegetation Index 

NIR  Near infrared 

NSPI   Neighbourhood Similar Pixel Interpolator 

OA  Overall Accuracy 

OLI   Operational Land Imager 

OMI  Ozone Monitoring Instrument,  

PCA  Principal Component Analysis 

PSD  Product Specification Document 

QA  Quality Assessment 

RBF  Radial Basis Function 
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RD  Range Doppler 

REFEREE  Learning a transferable change Rule From a recurrent neural network for change detection 

RF  Random Forest 

RNN  Recurrent Neural Network 

S-1/2  Sentinel-1/2 

S2AC  Sentinel-2 Atmospheric Correction 

SAR  Synthetic Aperture Radar 

SIFT  Scale Invariant Feature Transform 

SITS  Satellite Image Time Series 

SLC  Scan-line corrector 

SM  Similarity Measure 

SoW  Statement of Work 

SR  Surface Reflectance 

SRTM  Shuttle Radar Topography Mission 

SSFA  Supervised Slow Feature Analysis 

ST  Similarity Trend 

STWR  Spatially and temporally weighted regression 

SVM  Support Vector Machine 

SWIR  Short-wave infrared 

TIMESAT Time Series of Satellite data 

TIRS  Thermal Infrared Sensor 

TM  Thematic Mapper 

TOA  Top of Atmosphere 

TOMS  Total Ozone Mapping Spectrometer  

TS  Time Series 

UTM  Universal Transverse of Mercator 

VHR  Very High Resolution 

VLAD   Vector of locally aggregated descriptors 

WGS84  World Geodetic System 1984 

XML  Extensible Markup Language 

 

  



 

Ref CCI_HRLC_Ph1-ATBD 

 
Issue Date Page 

2.rev.0 03/01/2020 8 
 

 
 

2 Processing chain overview 
The CCI HRLC project will deliver to the climate community regional land cover (LC) and land cover change (LCC) 
products over three areas in Africa Sahel band, Amazon and Siberia URD [AD4]. LC maps will be provided at 10m 
resolution for year 2018 (the so-called Static Map) and at 30m resolution for the historical record of LC and LCC 
from 1990 on, every five years. The high-resolution classification legend as agreed by the Consortium is listed in 
URD [AD4]. The processing chain under development, outlined in Figure 2, is novel and it does not rely on already 
existing land cover products.  

 

 

Figure 2. Block-based representation of the processing chain for the production of HRLC maps. 

 

The high-level workflow of the processing chain is presented in Figure 2. Optical multispectral imagery is the 
main source of data as input for the classification. The optical processing chain is consistent with the possibility 
to work mainly with images at 10/30m resolution and generating an output at 10/30m, based on multitemporal 
multispectral data from S-2 and L-8 in the recent years and legacy Landsat-5/7/8 data in the past. The SAR 
processing chain will be implemented mainly for S-1 in the recent years, and ERS and ASAR data sets in the past 
(whenever and wherever HR mode data are available). Microwave data sets are useful for classes where SAR has 
proven to be accurate at medium resolution, such as water bodies and coastal lines, and the option to use SAR 
for urban areas is considered as well. The products obtained by the optical and the SAR processing chains will be 
then integrated in the data fusion module in order to produce the final HRLC products. This design choice of 
fusion at the decision level makes it possible to develop advanced and ad hoc processing approaches for optical, 
SAR, and multisensor data, while keeping the system modular and scalable. The output products will be then 
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analyzed in the multitemporal change detection and trend analysis block for identifying different change 
components to be used for the historical time series HRLC products every 5 years. 

Table 1. Final high resolution land cover classification legend defined by the Climate Research Group for the choice of the 
best performing classification algorithm. 

LC CLASS 
CODE 1st LEVEL CODE 2nd LEVEL CODE 3rd LEVEL CODE 4th LEVEL 

PRIMARILY VEGETATED CLASSES 

Areas where the sum of all vegetation cover exceeds 50 % at the time of fullest development and where the snow and/or 
ice, open water or built-up cover less than 50% of the surface. Areas where the lifeform can be further distinguished into 
trees, shrubs, cropland, grassland and lichens and mosses. 

10 Tree cover evergreen 
broadleaf 

      

20 Tree cover evergreen 
needleleaf 

      

30 Tree cover deciduous 
broadleaf 

      

40 Tree cover deciduous 
needleleaf 

      

50 Shrub cover evergreen       

  51 Broadleaf     

  52 Needleleaf     

60 Shrub cover deciduous       

  61 Broadleaf     

  62 Needleleaf     

70 Grasslands       

  71 Natural or semi-natural     

  72 Managed (pastures)     

80 Croplands       

  81 Winter crops     

    811 Rainfed   

    812 Irrigated   

      8121 Sparkling 
      8122 Flooding 
  82 Summer crops     

    821 Rainfed   

    822 Irrigated   

      8221 Sparkling 
      8222 Flooding 
  83 Multicropping     

    831 Rainfed   

    832 Irrigated   

      8321 Sparkling 
      8322 Flooding 

90 Vegetation aquatic or 
regularly flooded 

      

100 Lichen and Mosses       

PRIMARILY NON VEGETATED CLASSES 
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Areas where the sum of all vegetation cover is below 50 % at the time of fullest development. Snow and/or ice, open 
water or built-up cover less than 50% of the surface. 

110 Bare areas       

  111 Unconsolidated 1111 Sands   

    1112 Bare soil   

  112 Consolidated     

AREAS DOMINATED BY THE BUILT-UP, SNOW/ICE OR WATER COVER CLASSES 

Areas where the snow and/or ice, open water or built-up cover more than 50 % of the surface. Areas where the sum of all 
vegetation cover is below 50 % at the time of fullest development.  

120 Built-up       

  121 Buildings     

  122 Artificial roads     

130 Open Water seasonal       

140 Open Water permanent       

150 Snow and/or Ice       

  151 Snow     

  152 Ice     

3 Optical pre-processing 
Pre-processing operations are intended to correct for sensor- and platform-specific radiometric and geometric 
distortions of data and harmonization. Radiometric corrections may be necessary due to variations in scene 
illumination and viewing geometry, atmospheric conditions, and sensor noise and response. Each of these will 
vary depending on the specific sensor and platform used to acquire the data and the conditions during data 
acquisition. Cloud coverage is a systematic issue related to optical imagery and it requires specific processing 
aimed at precisely locating cloud and shadow pixels, with possible restoring steps to recover spectral information 
over occluded pixel locations. All the steps needed to prepare optical images for classification, see Figure 3, are 
detailed in the following sections.  

 

Figure 3. Optical pre-processing chain. 
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3.1 Atmospheric correction 
Surface Reflectance (SR) is the amount of light reflected by the surface of the Earth. It is a ratio of surface radiance 
to surface irradiance, and as such is unitless, with values between 0-1. Working with SR allows for a meaningful 
comparison between multitemporal images acquired over the same region by compensating for atmospheric 
effects such as aerosol scattering and thin clouds, thus allowing for the detection and characterization of Earth 
surface changes.  

3.1.1 Sentinel-2 – sen2cor 

The sen2cor processor allows calculation of Bottom of Atmosphere (BOA) reflectance from Top of Atmosphere 
(TOA) reflectance images available in Level-1C products. Sentinel-2 atmospheric correction (S2AC) is based on an 
algorithm proposed in [1]. The method performs atmospheric correction based on the LIBRADTRAN radiative 
transfer model presented in [2]. 

The model is run once to generate a large LUT of sensor-specific functions (required for the AC: path radiance, 
direct and diffuse transmittances, direct and diffuse solar fluxes, and spherical albedo) that accounts for a wide 
variety of atmospheric conditions, solar geometries and ground elevations. This database is generated with a 
high spectral resolution (0.6 nm) and then resampled to S-2 spectral responses. This LUT is used as a simplified 
model (running faster than the full model) to invert the radiative transfer equation and to calculate BOA 
reflectance. All gaseous and aerosol properties of the atmosphere are either derived by the algorithm itself or 
fixed to an a priori value. 

S2AC employs Lambert's reflectance law. Topographic effects can be corrected during the surface retrieval 
process using an accurate Digital Elevation Model (DEM). S2AC accounts for and assumes a constant viewing 
angle per tile (sub-scene). The solar zenith and azimuth angles can either be treated as constant per tile or can 
be specified for the tile corners with a subsequent bilinear interpolation across the scene. 

3.1.2 Landsat 5/7/8 – LEDAPS, LaSRC 

Landsat-4/5 TM and Landsat-7 ETM+ Surface Reflectance are generated using the Landsat Ecosystem 
Disturbance Adaptive Processing System (LEDAPS) algorithm, a specialized software originally developed through 
a National Aeronautics and Space Administration (NASA) Making Earth System Data Records for Use in Research 
Environments (MEaSUREs) grant by NASA Goddard Space Flight Center (GSFC) and the University of Maryland 
[3]. The software applies Moderate Resolution Imaging Spectroradiometer (MODIS) atmospheric correction 
routines to Level-1 data products. Water vapor, ozone, geopotential height, aerosol optical thickness, and digital 
elevation are input with Landsat data to the Second Simulation of a Satellite Signal in the Solar Spectrum (6S) 
radiative transfer models to generate TOA reflectance, surface reflectance, TOA brightness temperature, and 
masks for clouds, cloud shadows, adjacent clouds, land, and water. Landsat 8 OLI Surface Reflectance are 
generated using the Landsat Surface Reflectance Code (LaSRC) [4], which makes use of the coastal aerosol band 
to perform aerosol inversion tests, uses auxiliary climate data from MODIS, and a unique radiative transfer 
model. LaSRC hardcodes the view zenith angle to “0”, and the solar zenith and view zenith angles are used for 
calculations as part of the atmospheric correction. 

While both the LEDAPS and LaSRC algorithms produce similar SR products, the inputs and methods to do so 
differ. The table below illustrates both of them. 

Table 2. Differences between Landsat-4/5/7 and Landsat-8 surface reflectance algorithms. 

Parameter Landsat-4/5/7 (LEDAPS) Landsat-8 (LaSRC) 

Global Coverage Yes Yes 

TOA Reflectance Visible (Bands 1–5,7) Visible (Bands 1–7, 9 OLI) 
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TOA Brightness 
Temperature 

Thermal (Band 6) Thermal (Bands 10 & 11 TIRS) 

SR Visible (Bands 1-5, Band 7) Visible (Bandsat 1-7) (OLI only) 

Thermal bands used 
in Surface Reflectance 
processing  

Yes 
(Brightness temperature Band 6 is 
used in cloud estimation) 

No 

Radiative transfer model 6S Internal algorithm 

Thermal correction level TOA only TOA only 

Thermal band units Kelvin Kelvin 

Pressure NCEP Grid Surface pressure is calculated 
internally based on the elevation 

Water vapor NCEP Grid MODIS CMA 

Air temperature NCEP Grid MODIS CMA 

DEM GTOPO5  GTOPO5  

Ozone OMI/TOMS MODIS CMG Coarse resolution ozone 

AOT Correlation between chlorophyll 
absorption and bound water 
absorption of scene 

MODIS CMA 

Sun angle Scene center from input metadata Scene center from input metadata 

View zenith angle From input metadata Hard-coded to "0" 

Undesirable zenith angle 
correction 

SR not processed when solar zenith 
angle 
> 76 degrees 

SR not processed when solar zenith 
angle > 76 degrees 

Pan band processed No No 

XML metadata  Yes Yes 

Top of Atmosphere 
Brightness Temperature 
calculated 

Yes (Band 6 TM/ETM+) Yes (Band 10 & 11 TIRS) 

Cloud mask CFMask CFMask 

Data format INT16 INT16 

Fill values -9999 -9999 

QA bands Cloud 
Adjacent cloud 
Cloud shadow 
DDV 
Fill 
Land water 
Snow 
Atmospheric opacity 

Cloud 
Adjacent cloud 
Cloud shadow 
Aerosols 
Cirrus 
Aerosol In 

https://www.usgs.gov/land-resources/nli/landsat/landsat-surface-reflectance-quality-assessment
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3.2 Cloud and cloud shadow detection 
Identification of clouds, cloud shadows in optical images is necessary. The well-known program named Fmask 
has been designed to accomplish these tasks for use with images from Landsat-4/5/7 [5]. Recently, these results 
have been improved and extended to Landsat-8 and Sentinel-2 [6]. The processing chain will therefore 
implement the last available improvements:  

• improved Fmask algorithm for Landsat-4/5/7; 
• a new version for use with Landsat-8 that takes advantage of the new cirrus band;  
• a prototype algorithm for Sentinel 2 images.  

Though Sentinel 2 images do not have a thermal band to help with cloud detection, the new cirrus band is found 
to be useful for detecting clouds, especially for thin cirrus. By adding a new cirrus cloud probability and removing 
the steps that use the thermal band, the Sentinel-2 scenario achieves noticeable improvements with respect to 
Landsat. 

3.3 Cloud and cloud shadow restoration 
When addressing the presence of clouds, it is necessary to exploit the temporal information. The most accurate 
results have indeed been achieved by hybrid methods, which usually combine the temporal information with 
spatial/spectral features. Recently, different approaches have proposed to solve this issue.  Worth mentioning 
are cloud removal technique based on a modified neighbourhood similar pixel interpolator (MNSPI) [7], and a 
more sophisticated cloud removal method which combines multitemporal and dictionary learning methods [8]. 
Although these methods accurately solve the cloud restoration problem, they are time-consuming and 
inoperable for the project purposes. 

The solution is therefore a fast and effective technique recently proposed that can achieve a good trade-off 
between restoration accuracy and computational burden. In greater detail, the method: 

• automatically detects a short TS (4-5 images) of cloud free image temporally close to the target one; 
• for each non-valid pixel of the target image, it identifies the most similar pixels present in the scene by 

analyzing their temporal patterns; 
• restores invalid pixels using the most similar ground-clear one in the target image.   

To reduce the computational effort, the method exploits a short TS of images and performs the detection of 
similar temporal patterns using an efficient KD-tree search algorithm. 

3.4 Spectral filtering and harmonization 

3.4.1 Landsat-7 SLC-off 

The scan-line corrector (SLC) of the Landsat-7 Enhanced Thematic Mapper Plus (ETM+) sensor failed in 2003, 
resulting in about 22% of the pixels per scene not being scanned. The SLC failure has seriously limited the 
scientific applications of ETM+ data. While there have been several methods developed to fill in the data gaps, 
each method has shortcomings, especially for heterogeneous landscapes. Based on the assumption that the 
same-class neighbouring pixels around the un-scanned pixels have similar spectral characteristics, and that these 
neighbouring and un-scanned pixels exhibit similar patterns of spectral differences between dates, recently, a 
simple and effective method has been developed that interpolates the values of the pixels within the gaps [9]. 
We refer to this method as the Neighborhood Similar Pixel Interpolator (NSPI). Results indicate that NSPI can 
restore the value of un-scanned pixels very accurately, and that it works especially well in heterogeneous regions. 
In addition, it can work well even if there is a relatively long-time interval or significant spectral changes between 
the input and target image. The filled images appear reasonably spatially continuous without obvious striping 
patterns. 

Relevant to the CCI HRLC project is that, supervised classification was done for validation on both gap-filled 
simulated SLC-off data and the original “gap free” data set, and it was found that classification results, including 
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accuracies, were very comparable. This gives nice expectations for this algorithm to provide gap-filled products 
generated by NSPI. In addition, the simple principle and high computational efficiency of NSPI will enable 
processing large volumes of SLC-off ETM+ data. 

3.4.2 Landsat radiometric normalization 

Land-cover changes generally alter the reflectance of the land surface, which can be detected using 
multitemporal Landsat data sets. The analysis of land-cover change using multitemporal Landsat data is 
complicated by the presence of substantial radiometric differences between Landsat scenes. This is due mainly 
to drifting in the radiometric performance of the individual sensors over time [10]. 

Regression techniques are based on the observation that within a given spectral band there is an overall linear 
relationship between the reflectance values for two images acquired on the same ground area. In image pairs 
where such linearity exists, regression analysis can be used to derive a gain and offset for radiometrically 
normalizing the subject image to match the reference image [10]. 

To address radiometric normalization, a recent approach based on spatially and temporally weighted regression 
(STWR) model for cloud removal to produce continuous cloud-free Landsat images [11] is used. This method 
makes full utilization of cloud-free information from input Landsat scenes and employs a STWR model to 
optimally integrate complementary information from invariant similar pixels. Moreover, it integrates a prior 
modification term to minimize the biases derived from the spatially-weighted-regression-based prediction for 
each reference image. 

3.4.3 Sentinel-2 / Landsat data harmonization 

Both project requirements of mapping LC and LCC historically back to 1990 and the backpropagation approach 
(Sentinel-2 Static Map of 2018 as a reference and LCC-drive mapping backward in time) require strong integration 
between Sentinel-2 and Landsat data and call for the application of a concept that has been termed Analysis 
Ready Data (ARD) [12]. Data products must be gridded to a common reference and processed to comparable 
geophysical parameters regardless of their sensor of origin [13]. The Harmonized Landsat and Sentinel-2 (HLS) 
project [14] is a NASA initiative aimed at producing a Virtual Constellation of surface reflectance data acquired 
by the Operational Land Imager (OLI) and Multispectral Instrument (MSI) aboard Landsat-8 and Sentinel-2 
remote sensing satellites, respectively. 

 

Figure 4. Overview of the Harmonized Landsat/Sentinel-2 processor. 

The HLS products are based on a set of algorithms, see Figure 4, to obtain seamless products from both sensors 
(OLI and MSI): atmospheric correction, cloud and cloud-shadow masking, spatial co-registration and common 
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gridding, bidirectional reflectance distribution function normalization and spectral bandpass adjustment. Three 
products are derived from the HLS processing chain:  

• S10: full resolution MSI SR at 10 m, 20 m and 60 m spatial resolutions; 
• S30: a 30 m MSI Nadir BRDF (Bidirectional Reflectance Distribution Function)-Adjusted Reflectance 

(NBAR); 
• L30: a 30 m OLI NBAR. All three products are processed for every Level-1 input products from Landsat 

8/OLI (L1T) and Sentinel-2/MSI (L1C). 

4 SAR pre-processing 
We considered Sentinel-1 data acquired in Interferometric Wide swath (IW) mode and Ground Range Detected 
(GRD) type, which derive from an application of a proper multi-looking and ground range projection based on an 
Earth ellipsoid model. The datasets are in High resolution (HR) and provide images with a native range by azimuth 
resolution 20×22 meters and pixel spacing equals to 10x10 m. Over land surfaces, the orbital period of each 
satellite is about 12 days. Consequently, acquisitions have been available since 2015 for time-periods of 6 or 12 
days depending on the study region. 

For processing and analyzing the data, several codes have been developed in Python programming language, 
which were then deployed by means of dockers, i.e. general automated applications that can be launched in 
every OS. 

 

Figure 5. Block scheme of how SAR pre-processing integrates in the whole SAR processing chain. 

Before applying any classification algorithm on S1 data, a preliminary pre-processing phase is required, and it 
consists in the following basic steps, see also Figure 5: 

• Radiometric calibration of data; 
• Geometric terrain correction; 
• Despeckle filtering. 

4.1 Radiometric calibration 
Radar images are firstly calibrated with respect to their intrinsic sensor and signal acquisition properties, for 
expressing the echoes of distributed target (e.g. grass, dirt, etc.) in terms of the radar backscattering coefficient. 
In other words, the VV and VH intensities are expressed in terms of sigma naught. Generally, this operation was 
performed during the generation of a SAR product, but for the land cover map generation is not recommended 
to use raw data because of the inconsistency of the uncalibrated signal. The radiometric calibration is therefore 
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needed since the grey-value of SAR imagery must be adjusted respect the backscattering signals of the objects 
present into the scene. 

4.2 Geometric terrain correction 
Due to the active nature of the system, every SAR image is acquired in slant looking geometry. If the ground is 
elevated because of hills and valleys, the time of the signal to travel to the Earth surface and back to the sensor 
is distorted, causing geometric shifts in the image (foreshortening, layover and shadow). These can only be 
corrected if a model representing the topography under the image is known. In particular, the Range Doppler 
(RD) Terrain Correction is applied, and it shifts all pixels to their correct locations according to ancillary data 
Shuttle Radar Topography Mission (SRTM) 3 arc sec (i.e. around 20 m of resolution) DEM as input. RD Terrain 
Correction increases the location accuracy of your image. The first two steps of pre-processing phase have been 
conducted using ESA Sentinel-1 toolbox implemented in the official Sentinel Application Platform software 
provided by ESA (for more detailed information, ones should refer to the proper Wiki for Developer 
Documentation to [15]. 

4.3 Despeckle filtering 
The SAR images are inherently affected by speckle that is a "noise like" signal due to the coherent nature of the 
electromagnetic scattering [16]. Even though speckle carries itself information about the illuminated area, it 
degrades the appearance of images and affects the performance of scene analysis tasks carried out by computer 
programs (e.g., segmentation and classification). To mitigate this problem several suitable filtering 
methodologies have been developed for reducing the disturbance significantly and preserve at the same time all 
the relevant scene features, such as radiometric and textural information. The speckle in SAR is a multiplicative 
effect, i.e. it is in direct proportion to the local grey level in any area. Speckle filtering is needed to suppress the 
noise in order to allow better interpretation and backscatter analysis. However, it is essential mentioning that 
the speckle filter not only suppress the noise, but also remove observations that are not affected by noise and 
contain valuable land surface information (i.e. soil moisture, biomass and flood extent). The process of removal 
of speckle in SAR image is very essential for the analyst to interpret. A filter should remove speckle without 
sacrificing image structures. 

There are various speckle removal methods. Speckle removal is necessary for quantitative, analysis but there 
exists a tradeoff between speckle removal and resolution. Speckle Suppression can be done using various 
techniques. The first technique is Lee filter, known for being one of the first approach designed for suppressing 
speckle effect [17]. Second technique is time series-based processing. Proper developed docker containers 
provide both classical Lee method and a better suitable and advanced de-speckle filter (called multitemporal de-
speckle filter) that exploits a SAR time series. Multitemporal denoising methods take advantage of the increasing 
availability of SAR image time-series to solve the spatial denoising problems, for the benefit of a better spatial 
resolution preservation. 

4.3.1 Lee filter 

The Lee filter is an adaptive filter, and reportedly to be the first model-based filter dedicated to speckle noise 
suppression [18]. It is also derived from the Minimum Mean-Square Error (MMSE) algorithm that converts the 
multiplicative model into an additive one, thereby reducing the problem of dealing with speckle to a known 
tractable case (more details are reported in [19]). In Lee filter, the statistical distribution of the values of the 
pixels within the moving kernel is utilized to estimate the value of the pixel of interest. This assumes that the 
mean and variance of the pixel of interest are equal to the local mean and local variance of all pixels within the 
user-selected moving kernel. The resulting grey level value 𝑌𝑌 for the smoothed pixel is: 

𝑌𝑌 = 𝐼𝐼𝑐𝑐𝑊𝑊 + 𝐼𝐼𝑚𝑚(1 −𝑊𝑊), 

where: 
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- 𝑊𝑊 = �1 − 𝐶𝐶𝑢𝑢2

𝐶𝐶𝑖𝑖2
�; 

- 𝐶𝐶𝑢𝑢 = �1 𝐸𝐸𝐸𝐸𝐸𝐸⁄ ; 

- 𝐶𝐶𝑖𝑖 = 𝑆𝑆 𝐼𝐼𝑚𝑚⁄  

- 𝐼𝐼𝑐𝑐 is the central pixel of filter kernel; 

- 𝐼𝐼𝑚𝑚 value is the mean between all pixels falling within kernel; 

- 𝑆𝑆 is the standard deviation of all pixels falling within kernel; 

𝑊𝑊 is the weighting function that measures the estimated noise variation coefficient 𝐶𝐶𝑢𝑢 over the image variation 
coefficient 𝐶𝐶𝑖𝑖. The number of looks parameter ENL is the Equivalent Number of Looks of the radar image, which 
is used to estimate the noise variance and control the amount of smoothing applied to the image by the filter. 
The user may experimentally adjust the ENL value to control the effect of the filter. A small ENL value leads to 
more smoothing while a large ENL preserves more image features.  

Several works [20], [21] have proven, with quantitative assessments, that a good tradeoff between speckle 
suppression, details and textures preservation is achieved with 5x5 or 7x7 moving kernel size. Moreover, the Lee 
filter is reportedly superior in its ability to preserve prominent edges, linear features, point target, and texture 
information, by minimizing either the mean square error or the weighted least square estimation. 

4.3.2 Multitemporal despekle filter 

The proposed approach is a ratio-based multitemporal denoising framework based on the use of a ratio image 
composed of a noisy image and the temporal mean of the stack. This ratio image is easier to denoise than a single 
image thanks to its improved stationarity. Besides, temporally stable thin structures are well preserved thanks 
to the multi-temporal mean [22]. Because of the improved spatial stationarity of the ratio images, denoising 
these ratio images with a speckle-reduction method is more effective than denoising images from the original 
multi-temporal stack. The amount of data that is jointly processed is also reduced compared to other methods 
through the use of the ‘super-image’ that sums up the temporal stack in order to fully exploit the significant 
information of the multi-temporal stack. 

The method consists in three steps that are grouped into the following list and represented in Figure 6: 

1. Super image; 
2. Denoising of the ratio image; 
3. Computation of the final image through the multiplication between denoised ratio and super image. 
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Figure 6. Summary of multitemporal despeckle method applied on SAR time series 

The temporal averaging (also called temporal multi-looking) of SAR time series generates an image with reduced 
speckle and a preserved spatial resolution, that has been identified as ‘super-image’. 

Given a time series of spatially registered and radiometrically calibrated SAR images 𝑇𝑇 amplitude values 
{𝜐𝜐1, 𝜐𝜐2, … , 𝜐𝜐𝑡𝑡 , … , 𝜐𝜐𝑇𝑇}, the super image has been computed the arithmetic mean for its good properties [23], in 
particular in terms of 18odelling the statistics of the super-image [23]. Hence, the arithmetic mean is calculated 
at pixel 𝑝𝑝 by: 

𝑢𝑢�𝑚𝑚(𝑝𝑝) = 1
𝑇𝑇
∑ 𝜐𝜐𝑡𝑡(𝑝𝑝)𝑇𝑇
𝑡𝑡=1  𝑡𝑡 ∈ [1,𝑇𝑇]. 

After temporal averaging the second step consists in using the super-image to form the ratio image 𝜏𝜏𝑡𝑡 between 
the image 𝜐𝜐𝑡𝑡 at time t and the super image 𝑢𝑢�𝑚𝑚, at each spatial location 𝑝𝑝: 

𝜏𝜏𝑡𝑡(𝑝𝑝) =
𝜐𝜐𝑡𝑡(𝑝𝑝)
𝑢𝑢�𝑚𝑚(𝑝𝑝)

 

It contains the residual speckle noise between the two images, and the radiometric shifts when changes occur. 
When the length of the time series increases and in the absence of change, the super image 𝑢𝑢�𝑚𝑚 converges to 𝑢𝑢𝑡𝑡, 
the reflectivity of the scene (the signal of interest). The ratio image 𝜏𝜏𝑡𝑡 then tends to pure speckle (i.e., a collection 
of independent identically distributed random variables with unitary mean and the same number of looks as the 
original image). In contrast, when changes occur in the time series, these changes impact the super image which 
then differs from the reflectivity 𝑢𝑢𝑡𝑡 of the image at time t.  Processing the ratio image 𝜏𝜏𝑡𝑡 is necessary to correctly 
recover the reflectivity 𝑢𝑢𝑡𝑡. Anyway, the ratio image still needs of speckle reduction methodologies since both the 
noisy image 𝜐𝜐𝑡𝑡 and the super-image 𝑢𝑢�𝑚𝑚 suffer from speckle (although speckle in the super-image is strongly 
reduced). The use of this additional spatial filtering step to form the ratio image seems beneficial in terms of 
restoration quality: the obtained image is smoother. 

Finally, in the latter step the filtered image is recovered by multiplying the denoised ratio image with the original 
super image 𝑢𝑢�𝑚𝑚. The estimated image 𝑢𝑢�𝑡𝑡  at location 𝑝𝑝 is given by: 

𝑢𝑢�𝑡𝑡(𝑝𝑝) = 𝑢𝑢�𝑚𝑚(𝑝𝑝) ∙ 𝜌𝜌�𝑡𝑡(𝑝𝑝) 

Based on the processing of SAR stack corrupted by speckle noise, the approach has showed the potential to 
better preserve structures in multi-temporal SAR images while efficiently removing speckle. A classic application 
of this approach has been well reported in Figure 6Multiscale merging. 
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In case we do not have enough IW S-1 data to cover the area of interest, it may become necessary to merge data 
at different spatial resolution. This is achieved by a multi-scale SAR merging following [24]. 

In this work, among all available option, we selected the Discrete Wavelet Transform and Histogram Matching 
framework (DWT/HM) because among all other filters, the DWT is the most common way for dealing the 
multiscale signal representation at pixel-level in simply and effective manner, due its ease implementation and 
the low computational cost [25]. 

Firstly, let us model the vector 𝑿𝑿 = [𝑿𝑿1,𝑿𝑿2, … ,𝑿𝑿𝑘𝑘] that represents a multiscale SAR dataset, with k satellite 
imagery that having different resolution levels. In particular, the elements are arranged in ascending order in 
terms of resolution level, where the data with subscript 1 has finest resolution while the k-th element denotes 
the product with coarsest resolution.  

4.3.3 Discrete Wavelet Transform and Histogram Matching framework (DWT/HM) 

Generally, the wavelet transform decomposes a signal into a set of basis so-called wavelets. The wavelet 
representation provides a way for analyzing signals in both time and frequency domains. This makes it ideal for 
representing non-stationary signals, to which most real-world signals belong. The DWT transforms a discrete 
time signal to a discrete wavelet representation [26]. This procedure carries out a lossy compression, since 
components of signal that are known to be redundant, are discarded. The classical DWT is implemented by 
considering two filters: low-pass (LPF) and high-pass (HPF) filters. The DWT method is implemented also in bi-
dimensional (2D) case. In fact, in image processing, the image 𝑿𝑿𝑚𝑚, with 𝑚𝑚 = 1,2, . . , 𝑘𝑘, is filtered by means a high-
pass and a low-pass filter combination. After the filtering, the outputs are all downscaled by a factor of two. In 
figure 2, a simple diagram that report the basic architecture of the DWT procedure is shown. 

 

Figure 7. Block scheme of 2D DWT algorithm: the 1-Level 2D analysis DWT image decomposition process. 

The original image is decomposed into four sub-band images, it deals with row and column directions separately. 
First, the HPF and the LPF are exploited for each row data, and then are down-sampled by two to get high- and 
low-frequency components of the row. Next, the high- and the low-pass filters are applied again for each high- 
and low-frequency components of the column, and down-sampled by two. By way of the above processing, the 
four sub-band images are generated: 𝑯𝑯𝑯𝑯(𝑚𝑚+1), 𝑯𝑯𝑯𝑯(𝑚𝑚+1), 𝑳𝑳𝑳𝑳(𝑚𝑚+1), and 𝑳𝑳𝑳𝑳(𝑚𝑚+1), with a resolution level equals 
to (𝑚𝑚 + 1) due to the down-sampling (note that we used the round brackets for emphasize that we were passed 
from m to (m+1) resolution by applying the DWT approach). Each sub-band image has its own feature, such as 
the low-frequency information is preserved in the 𝑳𝑳𝑳𝑳(𝑚𝑚+1)-band (named context image also) and the high-
frequency information is almost preserved in the 𝑯𝑯𝑯𝑯(𝑚𝑚+1)-, 𝑯𝑯𝑯𝑯(𝑚𝑚+1)-, and 𝑳𝑳𝑳𝑳(𝑚𝑚+1)-bands.  

The 𝑳𝑳𝑳𝑳(𝑚𝑚+1)-subband image can be further decomposed in the same way (in recursive manner) for the second 
level sub-band image. By using 2D DWT, an image can be decomposed into any level sub-band images, as shown 
in Figure 8. 
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Figure 8. Diagrams of DWT image decomposition: the 2-Level 2D analysis DWT subband. 

For carrying out the data fusion between two images having different resolution levels, 𝑿𝑿𝑖𝑖 and 𝑿𝑿𝑗𝑗, with 𝑖𝑖 < 𝑗𝑗, for 
example, we could be use the DWT in addition to the standard Histogram Matching (HM) method. The HM is a 
transformation used for generating an image that is harmonized from a statistical point of view, since its 
probability distribution function matches a specified histogram [27]. 

In fact, the DWT is recursively applied on the finer image 𝑿𝑿𝑖𝑖 until achieving the desired level 𝑗𝑗, and the 𝑳𝑳𝑳𝑳(𝑗𝑗) 
subimage is hence calculated. Then, the HM is applied on the coarser image 𝑿𝑿𝑗𝑗 in order to obtain the HM image 
version, 𝑿𝑿𝑗𝑗𝐻𝐻𝐻𝐻(calculated respect the target image 𝑳𝑳𝑳𝑳(𝑗𝑗)) for resampling it on a common (much finer) grid. The 
next step provides to substitute  𝑳𝑳𝑳𝑳(𝑗𝑗) with the derived image given by the mean 𝑳𝑳𝑳𝑳(𝑗𝑗) and 𝑿𝑿𝑗𝑗𝐻𝐻𝐻𝐻, i.e. 
(𝑳𝑳𝑳𝑳(𝑗𝑗) + 𝑿𝑿𝑗𝑗𝐻𝐻𝐻𝐻) 2⁄ . Finally, we derive the data fusion result at 𝑖𝑖 − 𝑡𝑡ℎ resolution level by applying the inverse 
DWT, i.e. the reconstruction process, opposite to the decomposition one, is formed by synthesis filters and up-
samplers [28] going back until the finer scale.  

The method can be implemented for the whole multiscale dataset 𝑿𝑿, starting from two images with coarsest 
resolution. The DWT procedure is hence iteratively repeated by using the fused result and the image with the 
finest resolution (among all those still unused for the fusion) as input. The output is a unique final fused image.  

As a backup, in the procedure has been implemented a second method for multi-scale SAR merging, the 
Multiscale Kalman Filter (MKF) can be considered. MKF is a pyramidal approach where the spatial resolution is 
assumed as an independent variable as the time. As described in [29], the MKF algorithm can be applied following 
two different modes respect the DWT one, since the fusion data with different scales might be carrying out 
starting both from finer resolution data to coarser resolution (upward step). 

5 Multi-sensor geolocation 
Given the outputs of the optical and SAR processing chains, a further pre-processing stage, prior to their joint 
use for land cover mapping, is generally necessary to make them spatially aligned. In general terms, the process 
of aligning different sets of image data and of referencing them into a common coordinate system (Figure 9) is 
named image registration. Input data for registration may be multiple photographs, data from different sensors, 
times, or viewpoints [30]. One image is taken as the “reference image”, and all other images are registered to 
the reference image are called “sensed (or input) images”. Besides remote sensing, it is used in computer vision, 
medical imaging, military automatic target recognition, etc. Registration is necessary in order to be able to 
compare or integrate the data corresponding to the same scene but obtained from different measurements. 
Here, the focus is put on multi-sensor geolocation, which corresponds to the case where image registration is 
applied to data gathered by different sensors, namely optical and SAR sensors in the CCI+ HRLC pipeline. 
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Figure 9: Image registration example from aerial photos. 

By definition, multi-sensor geolocation enables the integration of complementary information from different 
sensors. A registration method is broadly  composed of different elements, i.e.: (i) the geometric transformation 
used to warp the input image; (ii) the similarity measure used to compare the reference and input images during 
the registration process; and (iii) the optimization strategy used to minimize or maximize the similarity measure, 
depending on the semantic of the metric. 

 

Figure 10: Building blocks of multi-sensor geolocation. 

The following subsections cover each one of such aspects, focusing on the choices related to the processing steps 
of the multi-sensor geolocation block in the CCI+ HRLC pipeline. Hence, Section 5.1 describes all the geometric 
transformations utilized within multi-sensor geolocation. Section 5.2 details the similarity measures, while 
Section 5.3 deals with the minimization strategies. Finally, Section 5.4 introduces the possibilities of using deep 
learning methods for geolocation purposes. 

5.1 Geometric Transformations 
Image registration assumes a consistent geometric transformation between the sensed and reference images. 
Suppose that the sensed (or input) image 𝐼𝐼𝐼𝐼(𝑥𝑥,𝑦𝑦) is defined over an (𝑥𝑥,𝑦𝑦) coordinate system, while the 
reference image 𝑅𝑅𝑅𝑅𝑅𝑅(𝑋𝑋,𝑌𝑌) is defined over an (𝑋𝑋,𝑌𝑌) coordinate system. The goal of image registration is to find 
the transformation 𝑇𝑇: (𝑋𝑋,𝑌𝑌) ↦ (𝑥𝑥,𝑦𝑦) that modifies the input image so as to be referenced in the same 
coordinate system as the reference image: 

𝑅𝑅𝑅𝑅𝑅𝑅(𝑋𝑋,𝑌𝑌) ≃ 𝐼𝐼𝐼𝐼{𝑇𝑇(𝑋𝑋,𝑌𝑌)} 

Within the CCI+ HRLC pipeline, the focus is put on global transformations, i.e., transformations operating on the 
entire image or on an image patch of non-negligible size. A rather general case is represented by the affine 
transformation. Affine transformations are identified by a vector of six parameters, i.e. translation over the x axis 
𝑇𝑇𝑥𝑥, translation over the y axis 𝑇𝑇𝑦𝑦, rotation angle 𝜃𝜃, scale factor on the x axis 𝑠𝑠𝑥𝑥, scale factor on the y axis 𝑠𝑠𝑦𝑦, and 
shear angle 𝜙𝜙𝑠𝑠ℎ. Particular cases of affine transformations are represented by rotation-scale-translation (RST) 
transformations (similarity transformations), where the shear angle is zero (𝜙𝜙𝑠𝑠ℎ = 0) and the scale factor is equal 
in the two dimensions (𝑠𝑠𝑥𝑥 = 𝑠𝑠𝑦𝑦 = 𝑠𝑠); rigid transformations, a particular case of similarity transformation where 
there is no effect on the scale (𝑠𝑠 = 1); and shift transformations, characterized by a simple translation of the 
image (𝜃𝜃 = 0) [31]. 
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In more details, the transformation 𝑇𝑇: (𝑋𝑋,𝑌𝑌) ↦ (𝑥𝑥,𝑦𝑦) can be formulated as in the following equations, for each 
of the aforementioned cases, starting from the simpler shift transformation and moving to the more complex 
affine transformation. It is worth noting that, with the following convention, all the rotations are intended to be 
counter-clockwise. 

• Shift transformations 
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• Rigid transformations 
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• Similarity transformations (RST) 
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• Affine transformation 
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Together with a given geometric transformation, to complete the mapping between the reference and the input 
image 𝑅𝑅𝑅𝑅𝑅𝑅(𝑋𝑋,𝑌𝑌) ≃ 𝐼𝐼𝐼𝐼{𝑇𝑇(𝑋𝑋,𝑌𝑌)}, it is also necessary to define a resampling strategy [31]. In the case of the CCI+ 
HRLC processing chain, the chosen resampling strategy is the nearest neighbour (NN) interpolation. More in 
detail, considering again the transformation 𝑇𝑇: (𝑋𝑋,𝑌𝑌) ↦ (𝑥𝑥,𝑦𝑦), the value of the output pixel (𝑋𝑋,𝑌𝑌) is chosen 
equal to that of the input pixel (𝑥𝑥′,𝑦𝑦′) whose location is closest to the reverse sampled position (𝑥𝑥,𝑦𝑦) (whose 
components are generally non-integer). The advantage of nearest neighbour resampling is that the output image 
only contains intensity values present in the original image. 

5.2 Similarity Measures 
Image registration is aimed at aligning two images, the input and the reference. The reference image is fixed, 
and the input image is transformed to match the reference image. The matching strategies may be feature-based 
(e.g., speeded-up robust features (SURF) [32], Harris corner detection [33], maximally stable extremal regions 
(MSER) [34], etc.), area-based (cross-correlation, information theoretic measures [35], etc.), or hybrid. Within 
the CCI+ HRLC pipeline we focus on area-based methods and in particular on mutual information [36], [37], [38] 
and cross correlation. Additional details on such strategy are reported in Section 5.2.3. 

5.2.1 Area-based Methods 

Area-based strategies [39], [40] rely on similarity and information-theoretic measures. In general, area-based 
methods are computationally heavier than the feature-based strategies because of the necessity to compute the 
similarity measure taking into consideration the whole image or generally large image regions. Nevertheless, the 
accuracy achievable by such techniques is generally higher than that achieved by feature-based methods [39]. 

As anticipated above, within the HRLC pipeline, two similarity measures are taken into consideration. On one 
hand, mutual information, an information-theoretic measure based on comparing local intensity distributions 
rather than individual pixel values, is particularly suited for multi-sensor geolocation where the images to be 
registered have different statistics and acquisition geometries. The main drawback is that, even though it is more 
robust and less sensitive to noise than the correlation-based measures, statistical distributions are heavier to be 
estimated on large-scale imagery and, in the end, they result in long computation time. On the other hand, 
similarity measures like the cross correlation are faster to compute but less suited for multi-sensor data, as they 
are based on the pixel-wise comparisons of intensity values. 
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5.2.2 Feature-based Methods 

Feature-based methods are generally faster but less accurate than area-based methods, and the accuracy of the 
registration result depends on the accuracy of the feature extraction method that is being used. There exist 
different strategies for the extraction of informative features. In particular, feature-point registration algorithms 
[39] extract a set of distinctive and highly informative individual points from both images, and then find the 
geometric transformation that matches them. Feature points are named in different ways, including control 
points, tie-points, and landmarks.  

Well-known approaches in this area are those based on scale-invariant feature transforms (SIFT) [41], speeded-
up robust features (SURF) [32], maximally stable extremal regions (MSER) [34], and Harris point detectors [33]. 
Other features of interest may be curvilinear and could be extracted by using edge detection algorithms [39], 
generalized Hough transforms [42], or stochastic geometry (e.g., marked point processes) methods [43].  

Within the CCI+ HRLC processing chain, the possible role of feature-based methods within the multi-sensor 
geolocation stage of the pipeline might possibly be involved in the second Round Robin exercise. 

5.2.3 The CCI+ HRLC strategy 

Within the CCI+ HRLC processing chain, where the reference and the input images are the optical and the SAR 
images, the choice is the usage of area-based methods based on the estimation of the mutual information 
between the two images. 

Another common possibility is the usage of cross-correlation as similarity measure; however, such option is 
particularly critical in the multi-sensor case of the CCI+ HRLC chain. The computation of the cross-correlation, 
especially using the strategy based on the fast Fourier transform (FFT) [44], is usually faster and hence more 
convenient in an iterative process like image registration. However, the different statistics of the optical and SAR 
images, together with the different acquisition geometries, prevent the usage of cross-correlation within the 
CCI+ HRLC pipeline. Nevertheless, the usage of cross-correlation and the fast computation through FFT will be 
dealt with in Section 5.4 and Section 5.4.1, where the focus will be put on the possibility of using generative 
adversarial networks (GANs) to perform domain adaptation as a pre-processing step of registration. 

With respect to mutual information MI(𝑅𝑅𝑅𝑅𝑅𝑅, 𝐼𝐼𝐼𝐼) between the reference and the input images, let 𝐼𝐼𝐼𝐼(⋅) and 
𝑅𝑅𝑅𝑅𝑅𝑅(⋅) indicate the input and reference images (which are both assumed composed of 𝑀𝑀 × 𝑁𝑁 pixels), 
respectively. Let also 𝑝𝑝𝑅𝑅𝑅𝑅𝑅𝑅,𝐼𝐼𝐼𝐼 be their joint distribution, and 𝑝𝑝𝑅𝑅𝑅𝑅𝑅𝑅 and 𝑝𝑝𝐼𝐼𝐼𝐼 be their marginal distributions. The 
mutual information is thus computed according to: 

MI(𝑅𝑅𝑅𝑅𝑅𝑅, 𝐼𝐼𝐼𝐼) = ��𝑝𝑝𝑅𝑅𝑅𝑅𝑅𝑅,𝐼𝐼𝐼𝐼(𝑟𝑟, 𝑖𝑖) log
𝑝𝑝𝑅𝑅𝑅𝑅𝑅𝑅,𝐼𝐼𝐼𝐼(𝑟𝑟, 𝑖𝑖)
𝑝𝑝𝑅𝑅𝑅𝑅𝑅𝑅(𝑟𝑟) 𝑝𝑝𝐼𝐼𝐼𝐼(𝑖𝑖)

𝑖𝑖𝑟𝑟

 

There are different methods to compute such quantity. Within the CCI+ HRLC the mutual information is 
estimated by approximating the probability distributions through the normalized histograms. Another option, 
which is computationally heavier, is to estimate such distributions using kernel-based methods like Parzen 
window density estimation [45]. Unfortunately, due to the large scale of the project and the iterative 
optimization process, using heavy estimators is unfeasible because of the registration process requiring multiple 
sequential estimations. 

5.3 Optimization Strategies 
As anticipated in the introduction to this chapter, the registration task is viewed as the combination of the 
following sub-processes [46]: 

1. Selecting a transformation model and a resampling strategy. 
2. Selecting a similarity metric to decide if a transformed input image closely matches the reference image. 
3. Selecting a search strategy, which is used to match the images based on maximizing or minimizing the 

similarity metric. 
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We already discussed points 1 and 2 in the Sections above; here the focus is put on the optimization strategy 
that has been chosen for the CCI+ HRLC multi-sensor geolocation step. The optimization strategies that are 
integrated in the pipeline are the unconstrained Powell’s algorithm and constrained optimization by linear 
approximation (COBYLA) method. On one hand, the unconstrained Powell’s algorithm uses Powell's formulation 
of an approximate conjugate direction method. The objective function does not need to be differentiable, and 
no derivatives are required (differently from the standard conjugate gradient algorithm). The method minimizes 
the function using a bi-directional search along a set of search vectors [47]. Moreover, the bi-directional line 
search is done by Golden-section search and Brent's method [48]. 

On the other hand, COBYLA addresses constrained optimization by a linear approximation. It works by iteratively 
approximating the actual constrained optimization problem with linear programming problems. At each 
iteration, the resulting linear programming problem is solved to obtain a candidate for the optimal solution. The 
candidate solution is evaluated using the original objective and constraint functions, yielding a new data point in 
the optimization space. This information is used to improve the approximating linear programming problem used 
for the next iteration of the algorithm. When no improvement is possible, the step size is reduced, refining the 
search. When the step size becomes sufficiently small, the algorithm stops [49]. 

It is worth noting that the Powell’s algorithm performs well in case of transformations where the input image 
and the reference image are not “very distant,” i.e., when the optimal solution is in the neighborhood of the 
starting point. Conversely, the COBYLA algorithm allows the user to choose the starting search radius. The tuning 
of such parameter allows the registration process to explore regions of the search space that a simple conjugate-
gradient method would never reach. Within the project pipeline, a modified COBYLA method is able to perform 
a grid search for the radius parameter and choose the one that allows best fitting the two images. 

5.4 Multi-sensor Geolocation using Deep Learning Architectures 
Another approach that is taken into consideration within the CCI+ HRLC processing chain is the usage of deep 
learning architectures [50] for multi-sensor geolocation. Deep learning solutions for the registration of multi-
sensor data is becoming of great interest for the remote sensing community.  

In the context of the CCI+ HRLC processing chain, a deep learning solution will be investigated. Such strategy uses 
auto encoders [50] and adversarial networks [51] with the goal of developing a domain adaptation [52] method 
and transform optical images into SAR-like data or vice versa. With such a domain adaptation, the application of 
the aforementioned area-based techniques is significantly favoured because the optical and SAR data are 
brought together in a common homogeneous domain in which they are more directly comparable. The 
adversarial network considered here will be based on the interconnection of convolutional neural networks 
(CNNs), which have been proven highly effective in the application to the semantic segmentation of remote 
sensing images for land cover mapping purposes [53]. 

In particular, as anticipated before, the cross-correlation similarity measure, together with the fast computation 
through FFT, will take the place of the heavier-to-estimate mutual information. Therefore, in the following 
section, the details of such computation through the fast Fourier transform are presented. 

5.4.1 Cross-correlation via Fast Fourier Transform 

Let again 𝐼𝐼𝑛𝑛(⋅) and 𝑅𝑅𝑅𝑅𝑅𝑅(⋅) indicate the input and reference images (which are both assumed composed of 𝑀𝑀 × 𝑁𝑁 
pixels), their cross correlation can be computed according to: 

CC(𝑥𝑥,𝑦𝑦) = � �𝐼𝐼𝐼𝐼(𝑚𝑚,𝑛𝑛) 𝑅𝑅𝑅𝑅𝑅𝑅(𝑚𝑚 − 𝑥𝑥,𝑛𝑛 − 𝑦𝑦)
𝑁𝑁−1

𝑛𝑛=0

𝑀𝑀−1

𝑚𝑚=0

 

There exists a formulation of such quantity computed using the fast Fourier transform [44]. Such process takes 
advantage of the relation between the convolution operation in the spatial or time domain and the product 
operation in the frequency domain. Let ℱ(⋅) denote the Fourier transform operator and let 𝑓𝑓 and 𝑔𝑔 be two 
signals defined in the spatial or time domain. It is straightforward to write the cross-correlation in terms of a 
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convolution operator, which allows taking benefit of the computational efficiency of the FFT [44] and derive the 
cross-correlation by combining transformation, products, and inverse transformations (up to introducing the 
appropriate zero padding): 

ℱ(𝑓𝑓 ∗ 𝑔𝑔) =  ℱ(𝑓𝑓) ∙ ℱ(𝑔𝑔)   →     𝑓𝑓 ∗ 𝑔𝑔 = ℱ−1�ℱ(𝑓𝑓) ∙ ℱ(𝑔𝑔)� 

In more details, to compute the cross-correlation between two images it is necessary to: (i) compute the FFT of 
each image (up to zero padding) to pass from the spatial domain to the frequency domain; (ii) compute the 
complex conjugate of one of the two resulting signals in the frequency domain because of the mirroring 
operation performed during convolution and not during correlation; (iii) multiply the images in the frequency 
domain; and (iv) compute the inverse FFT transform of the product to obtain the cross-correlation of the two 
images in the spatial domain. The flowchart of such computation is provided in Figure 11. 

 

Figure 11: Computation of the cross-correlation via FFT. 

6 Classification algorithms for HR land cover 
Classification is the process that converts multitemporal imagery (both optical and SAR) into land cover maps, 
see the workflow in Figure 12. The selected classification algorithm must achieve the best trade-off between 
classification accuracy and computational burden due to the need of processing a huge amount of data. By 
analysing the recent literature, the team have identified and tested different successful core approaches: (1) 
Support Vector Machine (SVM) classifier, (2) Random Forest (RF), (3) Maximum Likelihood (ML), (4) Multilayer 
Perceptron (MLP) Artificial Neural Network (ANN). According to the classification results obtained by the above-
mentioned classification algorithms, the team selected the SVM as classifier (see PVASR v1.0). However, the team 
is also evaluating the possibility of using sophisticated deep learning technique such as Long Short Term Memory 
classifier [19] or Convolutional Neural Networks (CNN) trained on multitemporal data, to extensively exploit the 
spectral information provided by the long time series of Sentinel 2 images (see ADP v1.0). 
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Figure 12. Workflow of the classification process for optical and SAR time series of images. 

6.1 Random Forest classifier 
The Random Forest (RF) algorithm is a supervised classification method that creates a set of decision trees from 
randomly selected subset of training set. It then aggregates the votes from different decision trees to decide the 
final class of the test object. The bagging method developed in [54] is used for each feature/feature combination 
selected. The idea is to use multiple versions of a predictor or classifier to make an ultimate decision by taking a 
plurality vote among the predictors. Hence, any pixel is classified by taking the most popular voted class from all 
the tree predictors in the forest. In bagging, it has been proved that the accuracy increases with increasing of 
number of trees, i.e. the predictors number [55].  

The effectiveness of decision tree classifier for land cover classification has been assessed in [56].  

The training algorithm for random forests starts with a training set 𝑋𝑋 = 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 with responses 𝑌𝑌 = 𝑦𝑦1, … ,𝑦𝑦𝑛𝑛 
and it iterates 𝐵𝐵 times over repeated random sampling with replacement of the training set while fitting trees to 
these samples. For each 𝑏𝑏 = 1, … ,𝐵𝐵, let us denote these samples (from 𝑋𝑋 and 𝑌𝑌) as 𝑋𝑋𝑏𝑏 and 𝑌𝑌𝑏𝑏, then a 
classification tree 𝑓𝑓𝑏𝑏 is trained over these samples. The number of features used at each node to generate a tree 
and the number of trees to be grown are two user-defined parameters required to generate a random forest 
classifier.   

At each node, only selected features are searched for the best split. Thus, the random forest classifier consists 
of 𝐵𝐵 trees, where 𝐵𝐵 is the number of trees to be grown which can be any value defined by the user. To classify a 
new data set, each case of the data sets is passed down to each of the 𝐵𝐵 trees. The forest chooses a class having 
the most out of 𝐵𝐵 votes, for that case. Finding the optimal number of predictors to generate will yield the highest 
accuracy.  

This bagging procedure leads to better model performance because it decreases the variance of the model, 
without increasing the bias. This means that while the predictions of a single tree are highly sensitive to noise in 
its training set, the average of many trees is not, as long as the trees are not correlated. Simply training many 
trees on a single training set would give strongly correlated trees (or even the same tree many times, if the 
training algorithm is deterministic); bagging sampling is a way of de-correlating the trees by showing them 
different training sets. Moreover, an estimate of the uncertainty of the prediction can be made as the standard 
deviation of the predictions from all the individual regression trees on the sample 𝑥𝑥 as 
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𝐵𝐵 − 1
 

where prediction 𝑓𝑓 is obtained as the sample mean over the 𝑓𝑓𝑏𝑏. 

6.2 Support Vector Machine 
As a classifier, the Support Vector Machine (SVM) is one of the most effective methods in pattern and texture 
classification to the land cover mapping [57]. Its fundamental idea is that the feature of input space is mapped 
into a high-dimensional feature space through nonlinear transformation. The nonlinear transformation is 
implemented by defining proper kernel function. SVM has two important features. Firstly, the upper bound on 
the generalization error does not depend on the dimension of the space. Secondly, the error bound is minimized 
by maximizing the margin, that is, the minimal distance between the hyperplane and the closest data points [58], 
[59]. SVMs are particularly appealing in remote sensing field due to their ability to successfully handle small 
training datasets, often producing higher classification accuracy than traditional methods, as well as to be the 
best algorithm when classes are separable [59]. In contrast, for larger dataset, it requires a large amount of time 
to process.  

SVM implements a classification strategy that exploits a margin-based “geometrical” criterion rather than a 
purely “statistical” criterion. In other words, SVM does not require an estimation of the statistical distributions 
of classes to carry out the classification task. Instead, the classification model exploits the concept of margin 
maximization. The main properties that make SVM particularly attractive in the considered application are the 
following: 

• their intrinsic effectiveness with respect to traditional classifiers thanks to the structural risk minimization 
principle, which results in high classification accuracies and very good generalization capabilities; 

• the possibility to exploit the kernel trick to solve non-linear separable classification problems by projecting 
the data into a high dimensional feature space and separating the data with a simple linear function; 

• the convexity of the objective function used in the learning of the classifier, which results in the possibility 
to solve the learning process according to linearly constrained quadratic programming (QP) characterized 
from a unique solution (i.e., the system cannot fall into sub-optimal solutions associated with local minima); 

• the possibility of representing the convex optimization problem in a dual formulation, where only non-zero 
Lagrange multipliers are necessary for defining the separation hyperplane (which is a very important 
advantage in the case of large datasets). This is related to property of sparseness of the solution. 

 

Let us assume that a training set is given 𝐷𝐷 = {(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)}𝑖𝑖=1𝑁𝑁 , where 𝑥𝑥𝑖𝑖 = (𝑥𝑥𝑖𝑖1, … , 𝑥𝑥𝑖𝑖
𝑗𝑗) is the 𝑖𝑖-th primitive feature 

and 1{ }N
i iy ==  is the corresponding set of labels. Accordingly, let us assume that { 1; 1}iy ∈ + − is the binary label 

of the sample 𝑥𝑥𝑖𝑖. The goal of the binary SVM is to divide the d-dimensional feature space in two subspaces, one 
for each class, through a separating hyperplane 𝐻𝐻:𝑦𝑦 = 〈𝑤𝑤 ⋅ 𝑥𝑥〉 + 𝑏𝑏 = 0. The final decision rule used to find the 
membership of a test sample is based on the sign of the discrimination function 𝑓𝑓(𝑥𝑥) = 〈𝑤𝑤 ⋅ 𝑥𝑥〉 + 𝑏𝑏 associated 
to the hyperplane. Therefore, a generic sample 𝑥𝑥 will be labelled according to the following rule: 𝑦𝑦 = 𝑠𝑠𝑠𝑠𝑠𝑠 𝑓𝑓(𝑥𝑥). 
 
The training of an SVM consists in finding the position of the hyperplane 𝐻𝐻, estimating the values of the vector 
𝑤𝑤 and the scalar b, according to the solution of an optimization problem. From a geometrical point of view, 𝑤𝑤 is 
a vector perpendicular to the hyperplane H and thus defines its orientation. The distance of the 𝐻𝐻 to the origin 
is b w , while the distance of a sample 𝑥𝑥 to the hyperplane is ( )f x w . Let us define the functional margin 

{ }min ( )i iF y f= x , 1,...,i N= and the geometric margin G F= w . The geometric margin represents the 

minimum Euclidean distance between the available training samples and the hyperplane. 
In the case of a linearly separable problems, the learning of an SVM can be performed with the maximal margin 
algorithm, which consists in finding the hyperplane 𝐻𝐻 that maximizes the geometric margin 𝐺𝐺. However, the 
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maximum margin-training algorithm cannot be used in case the available training samples are not linearly 
separable because of noisy samples and outliers. In these cases, the soft margin algorithm is used in order to 
handle nonlinear separable data. This is done by defining the so-called slack variables as: 
 

𝜉𝜉 [(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖), (𝑤𝑤, 𝑏𝑏)] = 𝜉𝜉𝑖𝑖 = max [0,1 − 𝑦𝑦𝑖𝑖(〈𝑤𝑤 ⋅ 𝑥𝑥𝑖𝑖〉 + 𝑏𝑏)] 
 
Slack variables allow one to control the penalty associated with misclassified samples. In this way the learning 
algorithm is robust to both noise and outliers present in the training set, thus resulting in high generalization 
capability. The optimization problem can be formulated as follows: 
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where 0C ≥  is the regularization parameter that allows one to control the penalty associated to errors (if C =∞  
we come back to the maximal margin algorithm), and thus to control the trade-off between the number of 
allowed mislabelled training samples and the width of the margin. If the value of C is too small, many errors are 
permitted and the resulting discriminant function will poorly fit with the data; on the opposite, if C is too large, 
the classifier may overfit the data instances, thus resulting in low generalization ability. A precise definition of 
the value of the C parameter is crucial for the accuracy that can be obtained in the classification step and should 
be derived through an accurate model selection phase. Similarly to the case of the maximal margin algorithm, 
the optimization problem can be rewritten in an equivalent dual form: 
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Because of the constraint introduced by the multipliers { } 1
N

i iα =  that for the soft margin algorithm are bounded 

by the parameter C, the problem is also known as box constrained problem. The Karush–Kuhn–Tucker (KKT) 
complementarity conditions provide useful information about the structure of the solution. They state that the 
optimal solution should satisfy: 
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Varying the values of the multipliers { } 1
N

i iα =  three cases can be distinguished: 
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The support vectors with multiplier i Cα =  are called bound support vectors (BSV) and are associated to slack 

variables 0iξ ≥ ; the ones with 0 i iCα< <  are called non-bound support vectors (NBSV) and lie on the margin 

hyperplane 𝐻𝐻1 or 𝐻𝐻2 ( ( ) 1i iy f =x ). 

 

 
Figure 13: Qualitative example of a separating hyperplane in the case of a non-linear separable classification problem. 

An important improvement to the above-described methods consists in considering nonlinear discriminant 
functions for separating the two information classes. This can be obtained by transforming the input data into a 

high dimension (Hilbert) feature space '( ) dΦ ∈ℜx  ( 'd d> ) where the transformed samples can be better 

separated by a hyperplane (Figure 14). The main problem is to explicitly choose and calculate the function 
'( ) dΦ ∈ℜx  for each training samples. Given that the input points in dual formulation appear in the form of 

inner products, we can do this mapping in an implicit way by exploiting the so-called kernel trick. Kernel methods 
provide an elegant and effective way of dealing with this problem by replacing the inner product in the input 
space with a kernel function such that: 

( , ) ( ( ) ( ) , 1,...,i j i jK x x i j Nφ φ=〈 ⋅ 〉 =x x  (7) 

implicitly calculating the inner product in the transformed space. The soft margin algorithm for nonlinear 
function can be represented by the following optimization problem: 
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And the discrimination function becomes: 

*( ) ( )i i i
i SV

f y k bα
∈

= ⋅ +∑x x x  (9) 

The condition for a function to be a valid kernel is given by the Mercer’s theorem. The most widely used non-
linear kernel functions are the following:  
 
• homogeneous polynomial function: ( , ) ( ) ,p

i j i jk p= ⋅ ∈Ζx x x x   

• inhomogeneous polynomial function: ( , ) ( ( )) , , 0p
i j i jk c p c= + ⋅ ∈Ζ ≥x x x x  
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• Gaussian function: 
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Figure 14: Transformation of the input samples by means of a kernel function into a high dimension feature 
space: a) Input feature space; b) kernel induced high dimensional feature space. 

From an operational perspective, a possible implementation would use the Gaussian kernel since linear and 
polynomial kernels are less time consuming but provide in general less accuracy. The Sigma 𝜎𝜎 parameter is a 
positive parameter whose behavior regulates the fitting property: if its value increases the model gets overfits, 
while decreasing the model underfits. In our implementation, the default value for gamma is initially set equals 
to 1 over the number of features [60], optimal choice can be made in proper training stage. 

6.3 Deep Convolutional Neural Network 
Learning efficient image representations is at the core of the scene classification task of remote sensing imagery. 
The existing methods for solving the scene classification task, based on either feature coding approaches with 
low-level hand-engineered features or unsupervised feature learning, can only generate mid-level image 
features with limited representative ability, which essentially prevents them from achieving better performance. 
Recently, the deep convolutional neural networks (CNNs), which are hierarchical architectures trained on large-
scale datasets, have shown astounding performance in object recognition and detection. 

 

Figure 15. General architecture of a Deep Convolutional Neural Network (CNN) made of subsequent convolutional and 
pooling layers arranged in a cascade. 

The typical architecture of a CNN is composed of multiple cascaded stages. The convolutional (conv) layers and 
pooling layers construct the first few stages, and a typical stage is shown in Figure 15. The convolutional layers 
output feature maps, each element of which is obtained by computing a dot product between the local region 
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(receptive field) it is connected to in the input feature maps and a set of weights (also called filters or kernels). 
In general, an elementwise non-linear activation function is applied to these feature maps. The pooling layers 
perform a down-sampling operation along the spatial dimensions of feature maps via computing the maximum 
on a local region. The fully-connected (FC) layers finally follow several stacked convolutional and pooling layers, 
and the last fully-connected layer is a Softmax layer that computes the scores for each defined class. CNNs 
transform the input image from original pixel values to the final class scores through the network in a 
feedforward manner. The parameters of CNNs (i.e., the weights in convolutional and FC layers) are trained with 
classic stochastic gradient descent based on the backpropagation algorithm [61]. 

6.3.1 CNNs on HR remote sensing imagery 

In contrast to the popularity of the CNN features from FC layers, the features from intermediate convolutional 
layers appear to lack practical use. Although the features of FC layers capture global spatial layout information, 
they are still sensitive to global rotation and scaling, making them less suitable for HR images that greatly differ 
in orientation and scales. Therefore, feature maps produced by convolutional layers should be regarded as dense 
features and aggregated via other coding approaches. 

By removing all FC layers, feature maps all come from the last convolutional layer. Each entity along the feature 
maps can be considered as a “local” feature, and the length of the feature equals the number of feature maps.  

Let the 𝐹𝐹𝑠𝑠
(𝑚𝑚) be the set of dense convolutional features extracted from image 𝑋𝑋𝑚𝑚 at scale index 𝑠𝑠. We then obtain 

a complete feature set by combining all 𝐹𝐹𝑠𝑠
(𝑚𝑚) at different scales, which is denoted as 𝐹𝐹(𝑚𝑚) = [𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑁𝑁]  ∈

𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷 consisting of 𝑁𝑁 separate 𝐷𝐷-dimensional features. Three conventional feature coding methods can be 
considered, locality-constrained linear coding (LLC) [62], improved Fisher kernel (IFK) [63] and vector of locally 
aggregated descriptors (VLAD) [64] to encode the feature set 𝐹𝐹(𝑚𝑚) into a global feature representation for each 
image 𝑋𝑋𝑚𝑚. Note that the LLC and VLAD encode features based on a codebook constructed via K-means, whereas 
the IFK encodes features with a probability density distribution described by the Gaussian mixture model (GMM). 

7 Optical imagery classification 
From analysis of the recent literature related to large-scale land cover mapping problems the following crucial 
aspects must be considered in order to achieve efficient and robust classification of optical high-resolution 
images [65]: 

• automation for efficiency and timeliness; 

• spatial continuity of the maps; 

• temporal coherence between updates of the product; 

• reproducibility of the results; 

• support of changes of nomenclature without changing the system. 

The CCI HRLC project addresses each of these points. To maximize the outcome, the following strategies must 
be implemented and assessed in an operational context of land cover map production at the large-scale: 

• all available images acquired during the reference period are used regardless of the amount of cloud 
cover; 

• the procedure is fully automatic without need for manual operations; 

• the processing chain is implemented using a massively parallel work-flow which achieves a reduced 
computation time allowing timely map production and data reprocessing for ensuring continuity across 
reference years in the case of updating the product specification. 

Project activity for optical imagery classification is so far oriented in two directions: on the one side, internal 
benchmarking activities are entirely devoted to the selection of the best performing classification algorithms; on 
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the other side, a selection of reference/ancillary data to empower and enrich the feature extraction and training 
processes is undergoing. 

 

Figure 16. Optical data processing chain for the prototype production of the HR LC map obtained by classifying the time 
series of Sentinel 2 data. 

Figure 16 depicts the optical data processing chain for the prototype production of the HR LC maps obtained by 
classifying the time series of Sentinel 2 data. The images are first pre-processed in order to perform the 
atmospheric correction and detect the clouds. Then, the best time series of images used to generate the HR 
static LC map is defined by automatically selected the 10 images having the lowest cloud coverage. Due to the 
missed availability of training data, a training set production step is performed to extract the labeled samples 
necessary to train the supervised classification system. Moderate resolution global LC maps are used to create a 
database of weak training samples. Note that at global scale the thematic products available are characterized 
by medium/coarse spatial resolution (e.g., 100m, 300m and 1 km), much coarser than the desired geometrical 
detail (10 m). The maps are analyzed and processed in an unsupervised way to detect and extract the most 
reliable samples which are included in the weak training set. Moreover, the team is planning to add samples by 
photo-interpretation to: (1) integrate the missing information on classes which require HR labeled pixels, and (2) 
increase the reliability of the training set. 

7.1 Classification 
Regardless of what specific type of classifier will be used, the general approach to classification can be 
summarized as depicted in Figure 17. Here, a sequence of temporally adjacent images is loaded to the 
classification module as input of the classification chain. 

 

Figure 17. General approach to multitemporal multispectral image classification. 

Here it follows a description of the classification module steps to be implemented for the classification: 

• First, multitemporal feature extraction is performed. In this stage, a set of salient features and/or 
spectral bands are chosen as primitive characteristics to represent target classes. The aim of a good 
feature extraction phase is reaching a good discriminability of target classes in the resulting feature 
space, so that classification can be performed with low uncertainty. The output of the feature extraction 
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step is a set of pseudo-images 𝑋𝑋𝑡𝑡, with 𝑡𝑡 = 1, … ,𝑇𝑇, each one having as many bands as the extracted 
features. 

• The second stage is devoted to the training of the classifier. Here, labelled samples 𝑌𝑌 associated with 
pseudo-images 𝑋𝑋 are extracted from the training database. The training step is the most intensive one. 
Indeed, this is where the numerical minimization of the classification mathematical problem takes place. 
In practice, the solution of the problem is a partition of the feature space in which every connected 
region represents the feature sub-region each class belongs to. 

• The third and last stage is the classification. Here, each pixel in the time series of images is associated 
to its class according to its membership to a sub-region of the feature space as defined in the training 
step. 
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7.1.1 Training sets from medium resolution map  

Reference data for the land cover classes are used for supervised classifier training. Operational land cover map 
production over large areas cannot rely on field campaigns because huge amounts of costly data would need to 
be collected, most importantly jeopardising the timeliness of the land cover map. The choice is therefore to rely 
on existing databases to build the reference data sets needed for the supervised classification and the final 
products. These data sources will contain fatal errors due to changes in the landscape (intrinsic) and the different 
data generation streams (systematic). Thus, reference data will undergo a preparation step to mitigate for 
possible inconsistencies, while other residual errors are assumed to be handled by the classifier itself. Moreover, 
the team is planning to enlarge the training database by photointerpretation. Although the labelling relies on the 
analyst’s experience, these samples may sharply increase the quality of the training database. 

Table 3 shows the properties of the medium resolution maps available global level. To generate a reliable training 
set the team exploited the 2015 Copernicus Global Land Cover (CGLC) map. This map was selected as the best 
candidate due to its: i) good spatial resolution (100 m), ii) detailed hierarchical legend that includes many classes 
that are in common with CCI+ legend, and iii) relatively recent temporal coverage (2015). Moreover, the CGLC 
provides the fractional cover layers together with the discrete LC map. These layers report the presence of each 
class estimated at pixel level in percentage. For more details please refer to DARD v2.0. 

Figure 18 shows an example of fractional cover layer products provided by the CGLC maps. For each pixel of the 
discrete map (see Figure 18b), the percentage of the grassland and shrubland are available (see Figure 18c and 
Figure 18d, respectively). This ancillary information is used to increase the probability of extracting reliable 
labeled samples from the map. Thus, only samples associated with fractional covers higher than 60% were 
considered. Figure 19b and Figure 19d show examples of pixels discarded (in black) from the CGLC map for tiles 
21KXT and 37PCP, respectively.  

 

Table 3 Properties of the medium resolution maps available global level. 

Land-Cover Maps Available 
Temporal 
Coverage 

Spatial 
Resolution 

Spatial Coverage # Classes 

IGBP-DISCover 1993 1 km Global 17 

University of Maryland Land Cover 1998 1 km Global 13 

GLC-SHARE 2014 2014 1 km Global 11 

MODIS GLC 2012 500 m Global 16 

GlobCover 2010 300 m Global 21 

ESA CCI Land Cover 2015 300 m Global 21 

Copernicus Global Land Cover 2015 100 m Global 23 

GlobeLand30 2010 30 m Global 10 
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  Herbaceous 
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  Unknown closed 
forest type  

 Deciduous Broadleaf 
closed forest  

  Shrubland 
 

Figure 18. Example of fractional cover layer products provided by the CGLC maps: (a) the true color composition of the 
Sentinel 2 image acquired on the 23rd June 2018, (b) the CGLC map, (c) the Grass Fractional Cover, and (d) the Shrubland 
Fractional Cover. 
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broadleaf   Deciduous 
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Vegetation   Built Up 

Figure 19. Example of CGLC map uncertain pixel removal based on the information provided by the fractional layers: (a) 
the CGLC map (tile KXT), (b) the CGLC map after uncertain pixel removal (tile KXT), (c) the CGLC map (tile 37PCP), and (d) 
the CGLC map after uncertain pixel removal (tile 37PCP). 
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To generate the training set, the map is first rescaled at 10 m spatial resolution and its legend converted to the 
required one according to the Land Cover Classification System (LCCS), i.e., the standard common LC language 
for translating and comparing existing legends. Table 4 presents the translation of the 2015 CGLC into the new 
HRLC legend. In order to increase the probability of selecting the most reliable samples for the tree cover classes, 
the proposed procedure gives the priority to the closed forest classes, which are associated with pixels having 
the higher presence of the forest. The open forest classes are considered only if needed, i.e., few samples of 
closed forest classes present in the scene. 

Table 4. Training Set Production: the translation of the CLGC into the desired map legend is reported. 

 CCI-HRLC CGLC (1st choice) CGLC (2nd choice) 

 Tree cover evergreen broadleaf 
Closed forest, evergreen, broad 

leaf 
Open forest, evergreen broad leaf 

 Tree cover evergreen needleleaf 
Closed forest, evergreen needle 

leaf 
Open forest, evergreen needle leaf 

 Tree cover deciduous broadleaf 
Closed forest, deciduous broad 

leaf 
Open forest, deciduous broad leaf 

 Tree cover deciduous needleleaf 
Closed forest, deciduous needle 

leaf 
Open forest, deciduous needle lea 

 

 Shrub cover evergreen Shrubs  

 Shrub cover deciduous Shrubs  

 Grasslands -  

 Croplands 
Cultivated and managed 

vegetation/agriculture (cropland) 
Herbaceous vegetation 

 Vegetation aquatic or regularly 
flooded 

Herbaceous wetland  

 Lichen and Mosses Moss and lichen  

 Bare areas Bare / sparse vegetation  

 Built-up Urban / built up  

 Open Water seasonal -  

 Open Water permanent Permanent water bodies  

aiaaa Snow and/or Ice Snow and Ice  
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7.1.2 Training sets: last version of HRLC map legend analysis 
From Table 4 one can notice that few classes cannot be extracted from the CGLC: (1) grassland, (2) open water 
seasonal and (3) the distinction between evergreen and deciduous shrubland. While the open water seasonal 
class is not present in the CGLC, the grassland class should be linked to the Herbaceous vegetation one. However, 
from the qualitative example reported in Figure 14, the herbaceous vegetation class is mainly associated with 
pixels belonging to crops (see Figure 14a). This is true for most of the pixels of the considered study areas 
(Sentinel 2 tiles 21KXT, 21KUQ, 37PCP, and 42WXS). For this reason, the Herbaceous vegetation is included in 
the cropland class as 2nd choice. The team investigated also the possibility of extracting the grassland samples 
from the 2015 ESA CCI land cover product. Figure 20 shows two examples of ESA CCI land cover map of the KUQ 
tile. Also in this case, most of the pixels associated with the grassland class (i.e., in orange) correspond to cropland 
areas in the Sentinel 2 images. 
Regarding the shrubland class, the team is investigating if there is the possibility to distinguish by 
photointerpretation evergreen and deciduous shrubland. Figure 22 reports an example of the study area where 
the shrubland class is present according to the CGLC map. The complex detection of this class by photo-
interpretation is clearly visible in both the high-resolution product and the Sentinel 2 image. 
 

  

(a) (b) 

  

(c) (d) 
 

  Evergreen 
broadleaf   Evergreen 

needleleaf   Deciduous 
broadleaf   Deciduous 

needle leaf 

  Shrubland   Cropland  Permanent 
water bodies   Grassland 

Figure 20. Example of grassland pixels present in the ESA CCI LC map: (a),(c) the 2015 ESA CCI LC map, (b),(d) the true color 
composition of the Sentinel 2 image acquired on the 23rd June 2018. 
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(a) 

 

(b) 

Figure 21. Example of the considered study area where the shrubland class is present according to the CGLC map (tile 
21KXT): (a) high-resolution optical data, (b) Sentinel 2 image.   
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7.1.3 Training sets: proposed unsupervised automatic extraction  

  

(a) (b) 

  

(c) (d) 
 

  Evergreen 
broadleaf   Evergreen 

needleleaf   Deciduous 
broadleaf   Deciduous 

needle leaf   Cropland 

  Vegetation 
aquatic    Shrubland  Permanent 

water bodies   Grassland   Built Up 

Figure 22. Unsupervised Training Set production: (a) CGLC map after the legend conversion, (b) intermediate map produced 
by the ensemble of five classifiers, (c) weak training samples selected, and (d) true color composition of the high-resolution 
optical image available on the considered study area. 

 
Due to the need of generating a large training database, the weak training set production is completely 
unsupervised and automatic. The method aims to detect in the CGLC map those samples having the highest 
probability of belonging to areas correctly associated with their labels. Although existing thematic maps 
represent a valuable source of information, many difficulties arise when extracting labeled samples from them. 
Due to the medium spatial resolution, the label assigned to mixed pixels can be propagated to the pure pixels of 
Sentinel 2 images. Moreover, the considered maps are outdated and thus, they are not completely reliable.  

To address all these issues, we perform an automatic and unsupervised analysis that extracts from the moderate 
resolution CGLC map, a weak but reliable training set. First, a random stratified sampling is performed by using 
the LC classes as strata. Five training sets are generated via bootstrap statistical method (e.g., without 
replacement) and used to train an ensemble of statistically independent classifiers. This condition allows us to 
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generate an intermediate thematic product obtained at 10 m spatial resolution by classifying the time series of 
Sentinel 2 images. Only the areas where the ensemble of classifiers agrees are kept. This increases the probability 
of selecting reliable samples to produce the final weak training database.  

Figure 22 shows a qualitative comparison over a portion of the study area located in tile 21KUQ (Amazonia) 
between: (a) the coarse CGLC map after the legend conversion, (b) the intermediate product produced by the 
ensemble of five classifiers, (c) the weak training samples selected, and (d) a true color composition of the high-
resolution optical image. The qualitative example demonstrates the importance of generating the intermediate 
product at 10 m spatial resolution. For instance, he geometrical detail of the aquatic vegetation present in the 
scene with respect to the original medium thematic product is sharply improved in the in the intermediate 
product with respect to the original one. This condition allows us to sharply increase the probability of selecting 
samples correctly associated with their labels with respect to the ones that can be directly selected from the 
CGLC map. 

7.1.4 Eco-climatic products 

Ecoregions, in the simplest definition, are ecosystems of regional extent. Specifically, ecoregions represent 
distinct assemblages of biodiversity―all taxa, not just vegetation―whose boundaries include the space required 
to sustain ecological processes. Ecoregions provide a useful basemap for thematic mapping to several extents 
because they draw on natural boundaries, define distinct biogeographic assemblages and ecological habitats 
within biomes, and assist in representation of Earth biodiversity. 

ECOREGIONS 2017 product [66]: The 846 terrestrial ecoregions are grouped into 14 biomes and 8 realms. Six of 
these biomes are forest biomes and remaining eight are non-forest biomes. For the forest biomes, the 
geographic boundaries of the ecoregions and protected areas (UNEP-WCMC 2016) were intersected with the 
Global Forest Change data for the years 2000 to 2015, to calculate percent of habitat in protected areas and 
percent of remaining habitat outside protected areas. Likewise, the boundaries of the non-forest ecoregions and 
protected areas (UNEP-WCMC 2016) were intersected with Anthropogenic Biomes data (Anthromes v2) for the 
year 2000 to identify remaining habitats inside and outside the protected areas. Each ecoregion has a unique ID, 
area (sq. degrees), and NNH (Nature Needs Half) categories 1-4. NNH categories are based on percent of habitat 
in protected areas and percent of remaining habitat outside protected areas. 

 

7.1.5 Remarks 

In order to train a single classifier over a whole region, a huge amount of RAM would be needed. This holds true 
for any of the classifiers described in Section 6, i.e., RF and SVM. Therefore, the training/classification tasks need 
to be split according to well established spatial strategies.  In general, classification methods are robust to 
strategies of this kind, especially RF and SVM. Since RF decision function is the majority vote of a committee of 
decorrelated decision trees, one can train several RF over different subsets of the training set and combine the 
results of each individual RF without much modification of the results. For SVM a similar approach is not 
straightforward. However, including a voting strategy on the outcomes of different subsets of 
training/classification stages is a consolidated approach in literature and gives satisfactory results.  

We aim at defining a processing chain able to perform the training of several classifiers using data coming from 
a subset of the tiles. These subsets can be disjoint, comprise common tiles or contain all the tiles, which would 
result in the trivial case of a single classifier. Once the classifiers are trained, the classification step can implement 
two spatial strategies: 

• each tile is classified using the classifier trained with itself; 
• each tile is classified using several classifiers and the class labels are assigned according to a majority 

vote on their decisions. 
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The choice of the subset of tiles used for training is important. A different classifier per tile could be used or a 
classifier per group of adjacent tiles. The choice of disjoint classifiers trained over randomly selected tiles, 
followed by a majority voting of all classifiers gives a good trade-off between complexity and accuracy. 

One of the main difficulties in the production of land cover maps over very large areas is the intra-class variability. 
Indeed, the same semantic category can have different spectral and temporal signatures depending on the areas. 
On the other hand, some classes are present in certain areas only, which means they are a minority over the 
complete area and they can therefore be difficult to account for by a classifier that is designed to maximise the 
overall accuracy, and therefore giving more weight to majority classes. To mitigate for these issues, supplying 
additional information to the classifier that identify climatic areas can be useful. Eco-climatic maps can be used 
to divide the area to be mapped into different strata that will be processed independently. In terms of 
implementation of the classification, there is no major difference with respect to the tiling approach. The 
intersection of the tile footprints and the eco-climatic areas is used to define the disjoint regions on which 
independent classifiers are trained. Then each region is classified using only the classifier trained over this region. 
In the case of very large regions the training data set is split into smaller subsets and the majority vote strategy 
of the tile-based approach is used. 

8 SAR imagery classification 

8.1 Feature extraction 
To carry out the land cover classification using Sentinel-1 dual-Pol data sets based on the defined classes, 
reported in Table 1, the feature extraction will be based on the polarimetric information of data [67], [68]. 
To improve the ability of classifier to recognize and discriminate the different environment textures and 
morphological structures (e.g. urban areas, agricultural crops, forests, etc.), the amplitude of VH and VV channels 
and their combinations have been assumed. 

Although the S1 data are not fully polarized, we can exploit the polarimetric information arising from the 
intensities of the VH and VV channels by means analysis on single channel (by choosing VH or VH) or on their 
combination (their mean or ratio, for instance). These features contain essential polarimetric information 
provided by the dual-Pol data since the polarimetry combination distinguishes specular scattering from diffuse 
scattering. 

8.1.1 Texture analysis on single polarization 

To analyze and exploring the spatial information contained in a single S1 image (VH or VV), a docker application 
has been developed in order to provide a set of filters that operate especially in spatial domain. The rationale for 
selecting these algorithms is the velocity of the execution. Although they might not be the most accurate ones, 
the possibility to apply them quickly to the SAR images in a large stack in a reasonable amount of time is an 
invaluable asset for wide area processing. The implemented techniques are summarized in the following list: 

• Mean filter is one of the most widely used low-pass filters (LPF). It substitutes the pixel value with 
the average of all the values in the local neighborhood (filter kernel). 

• Median filter, a non-adaptive filter and replaces each pixel value with the median of the pixel values 
in the local neighborhood. 

• Minimum (maximum) filter is a non-linear filter that is located the darkest (brightest) point in an 
image. It is based on median filter since it is defined as his 0th (100th) percentile, i.e. by considering 
the minimum (maximum) of all pixels within a local region of an image. 

• Max-Min filter, blurs the image by replacing each pixel with the difference of the highest pixel and 
the lowest pixel (with respect to intensity) within the specified window-size. 
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8.1.1.1 Mean filter 

The Mean filter is a low-pass filter (LPF) and represents the simplest and easiest method of smoothing images, 
in addition to being very easy to implement. Mean filtering is usually thought of as a convolution filter. Like other 
convolutions it is based around a kernel, which represents the shape and size of the neighborhood to be sampled 
when calculating the mean. The idea of mean filtering is simply to replace each pixel value in an image with the 
mean (“average”) of values belonging to neighborhood, including itself. Then, the filter window will be moved 
pixel-by-pixel until to scanner the whole image.  

It does not remove the speckle from the image but averages it into one. In fact, the noise becomes less apparent, 
but the image looks “softened”. Theoretically, dark and bright speckle pixels within the filter window can cancel 
each other out. The probability of such situations increases with the size of the filter window, 7×7 or 9x9 for 
example. However, it produces image blur, loss of details and, eventually, loss of spatial resolution, giving an 
image with less noise but less high frequency detail. For this reasons, 3x3 or 5x5 size filter are recommended. 
Note that the mean filtering is not suitable in case of pulse and spike noise since the shot noise pixel values are 
often very different from the surrounding values, they tend to significantly distort the pixel average calculated 
by the mean filter. The median filter is successful at removing pulse and spike noise while retaining step and 
ramp functions [69]. 

8.1.1.2 Median filter 

The median filter is normally used to reduce noise in an image, somewhat like the mean filter. However, it often 
does a better job than the mean filter of preserving useful detail in the image. Like the mean filter, the median 
filter considers each pixel in the image in turn and looks at its nearby neighbors to decide whether it is 
representative of its surroundings or not. Instead of simply replacing the pixel value with the mean of neighboring 
pixel values, it replaces it with the median of those values. The median is calculated by first sorting all the pixel 
values from the surrounding neighborhood into numerical order and then replacing the pixel being considered 
with the middle pixel value.  

By calculating the median value of a neighborhood rather than the mean filter, the median filter has two main 
advantages over the mean filter: 

- The median is a more robust average than the mean and so a single very unrepresentative pixel in 
a neighborhood will not affect the median value significantly. 

- Since the median value must be the value of one of the pixels in the neighborhood, the median 
filter does not create new unrealistic pixel values when the filter straddles an edge. For this reason, 
the median filter is much better at preserving sharp edges than the mean filter. 

Hence, the median filter is edge preserving [70] although it may lead to the removal (or suppression) of small 
(also linear) objects from the image, exactly in the same way as it removes (or suppresses) speckle noise. 

Applying a 3×3 median filter produces a noise reduction at the expense of a slight degradation in image quality. 
If we smooth the noisy image with a larger median filter, e.g. 7×7, all the noisy pixels disappear, but the image 
looks a bit "blotchy". 

A good solution is to use 3×3 or 5x5 median filter [71] and passing it over the image more times in order to 
remove all the noise with less loss of detail, alternatively. 

The mean and median filters meet with only limited success when applied to SAR data. One reason for this is the 
multiplicative nature of speckle noise, which relates the amount of noise to the signal intensity. The other reason 
is that they are not adaptive filters in the sense that they do not account for the speckle properties of the image. 
Adaptive filters, such as the Lee filter, assume that the mean and variance of the pixel of interest are equal to 
the local mean and variance of all pixels within the user-selected moving window. 
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8.1.1.3 Minimum and maximum filters 

Minimum and maximum filters, also known as erosion and dilation filters, respectively, are morphological filters 
that work by considering a neighborhood (running window) around each pixel. The running window is an image 
area around a current pixel with a defined radius. For example, if we specify the radius = 1, the running window 
will be a 3x3 square around the target pixel, which is the smallest box size. The maximum and minimum filters 
are shift-invariant. Whereas the minimum filter replaces the central pixel with the darkest one in the running 
window, the maximum filter replaces it with the lightest one. In other words, the minimum filter extends object 
boundaries, whereas the maximum filter erodes shapes on the image. The odd size of the neighborhood 
considered for each pixel. Also in this case, the recommended size are 5x5 or 7x7 in order not to incur in issues 
have been addressed previously, see Section 8.1.1.1. 

The docker offers also the possibility for each user to choose the kernel filter size adapted to its needs, but the 
default dimension is 9x9 because the implemented filter has shown satisfactory results both in terms of 
computational complexity and the quality of output image, due its ability in details preservation, edges 
definition. 

8.1.1.4 Max-Min filter 

The output image is given by the difference between dilation and erosion filters (described in previous section 
8.1.1.3). 

Hiring 𝑋𝑋 as input image, the max-min filtered image is given taking into the account to the following simple 
expression: 

𝑌𝑌 = 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 

where 𝑌𝑌 is the resulting gray level image, whereas 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 are the maximum and minimum filtered 
version of input image 𝑋𝑋, respectively. The Max-Min filter blurs the image by replacing each pixel with the 
difference of the highest pixel and the lowest pixel (with respect to intensity) within a specified window-size (for 
example, the grayscale 3x3 or 5x5 pixel neighborhoods). To preserve much more spatial details and texture 
structures, we have set up window size to 9 by default, also according to the evaluations explained above.     

8.1.2 Texture analysis on dual- polarization 

SAR polarimetry allows for the retrieve of shape, orientation, and dielectric property information of scatterers 
[72],[73]. Since there are multiple polarimetric channels, it provides more information than single-pol SAR data. 
However, the richness of polarimetry is achieved by sacrificing the spatial resolution. To balance the trade-off, 
instead of a fully polarized SAR, Sentinel-1 mission provides partially polarized SAR data, known as dual-Pol data, 
with the VV and VH channels. To extract the polarimetric information of Sentinel-1 data, we used the signal 
acquired from VH and VV channels, and several composite images given by: 

• Ratio, 𝑉𝑉𝑉𝑉 𝑉𝑉𝑉𝑉⁄  
• Sum, 𝑉𝑉𝑉𝑉 + 𝑉𝑉𝑉𝑉 
• Mean,  (𝑉𝑉𝑉𝑉 + 𝑉𝑉𝑉𝑉) 2⁄  
• Difference, 𝑉𝑉𝑉𝑉 − 𝑉𝑉𝑉𝑉 

These four features contain essential polarimetric information provided by the dual-Pol data. This polarimetry 
combination is able to distinguish specular scattering from diffuse scattering [74]. For the purpose of 
classification, these features are highly beneficial to differ classes with different surface roughnesses, such as 
water, plant, building, and soil. The aim is basically exploit the dual-polarization capability of S1 for providing as 
many ground surface information as possible [75]. 

8.1.3 Texture analysis by statistics  
To increase the feature space it is also possible to add texture features by applying the Grey Level Co-occurrence 
matrix (GLCM), in order to retrieve second order textures [76]–[78]. 
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This operation is done before applying the speckle filtering, since the despeckling destroys most of the image 
texture. For example, the classification accuracy related to perennial agroforestry land cover can be improved 
by using less correlated GLCM texture measures: Contrast, Entropy, Correlation, and Variance. The GLCM texture 
can be measured using a 5×5 moving window, one-pixel displacement, for example. In [79] it is shown that the 
GLCM texture measures are appropriated to discriminate vegetation types, and less sensitive to no vegetation 
cover. Is shown that the more informative variables are the VH Variance and Correlation of SAR images acquired 
in a dry season and, and VV Contrast of images in a wet season. 

Instead, [80] highlights the importance of VH image that is the best band for differentiating agricultural land from 
other land cover types. The major differences in vegetation, their vertical structure, are captured in co-polarized 
(VV) band. 

Another way for land-cover classification is to use multi-temporal SAR data (i.e. SAR data time series) analysis 
and extract features by considering the temporal variation of backscattering coefficients and information from 
interferometric data processing. The work [81] exploits the combination of the average backscattering coefficient 
and temporal variability. The average backscattering coefficient permits to classify water and urban areas, since 
they present very low and high signatures, respectively. The temporal variability, which is a main feature in 
multitemporal analysis, can be used to distinguish cultivated areas and water from the forest and urban classes.  

The behavior of VH and VV backscatter signal is different over vegetated areas. Over vegetation land covers, 
there is much volume scattering of the radar signal. And volume scattering tends to cause a depolarization of the 
return signals, which then corresponds to a high backscatter in cross-polarization (VH or HV) bands. Thus, VH 
bands show a higher sensitivity to vegetation. 

For the purposes of classification, these features are highly beneficial to diversify classes with different surface 
roughness, such as water, plants, buildings, and soil. In this manner, the classification maps may achieve high 
classification accuracy values. Specifically, the feature extraction step is preliminary to the classification step in 
the sense that only specific features for peculiar classes may be extracted and used each time. In addition, 
according to the technical literature, we also identified several works describing most performing classification 
methods able to classify different classes (water, urban areas, snow, for example) with a proper combination of 
features set. A preliminary list is reported in the following Table 5. 

Table 5. Preliminary list of SAR features for subsets of classes. 

Class Feature(s) Reference 
Urban Occurrence range, 

DEM slope 
[G. Lisini, A. Salentinig, P. Du, P. Gamba, “SAR-based urban extents 
extraction: from ENVISAT to Sentinel-1”, IEEE J. of Selected Topics in 
Applied Earth Observation and Remote Sensing, doi: 
10.1109/JSTARS.2017.2782180, vol. 11, no. 8, pp. 2683-2691, Aug. 
2018.] 

Water Average backscatter, 
the minimum 
backscatter of a time 
series and 
standard deviation of 
the backscatter 

[Santoro, Maurizio, and Urs Wegmüller. "Multi-temporal SAR 
metrics applied to map water bodies." 2012 IEEE International 
Geoscience and Remote Sensing Symposium. IEEE, 2012. 

Snow 𝜎𝜎0VV band; 
backscattering ratio 

[Tsai, Ya-Lun S., et al. "Wet and Dry Snow Detection Using Sentinel-
1 SAR Data for Mountainous Areas with a Machine Learning 
Technique." Remote Sensing 11.8 (2019): 895.] 

Crop Occurrence variance; 
co-occurrence 
contrast 

[Fontanelli, Giacomo, et al. "Agricultural crop mapping using optical 
and SAR multi-temporal seasonal data: A case study in Lombardy 
region, Italy." 2014 IEEE Geoscience and Remote Sensing 
Symposium. IEEE, 2014.] 

Deciduous 
vegetation 

Temporal signature [Rüetschi, Marius, Michael Schaepman, and David Small. "Using 
multitemporal Sentinel-1 C-band backscatter to monitor phenology 
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and classify deciduous and coniferous forests in northern 
Switzerland." Remote Sensing 10.1 (2017): 55.] 

Evergreen 
vegetation 

VV and VH channels [Abdikan, Saygin, et al. "Land cover mapping using sentinel-1 SAR 
data." The International Archives of Photogrammetry, Remote 
Sensing and Spatial Information Sciences 41 (2016): 757] 

Soil VV and VH channels [Hu, Jingliang, Pedram Ghamisi, and Xiao Zhu. "Feature Extraction 
and Selection of Sentinel-1 Dual-Pol Data for Global-Scale Local 
Climate Zone Classification." ISPRS International Journal of Geo-
Information 7.9 (2018): 379.] 

 

At this point, features are computed according to the following steps: 

a) Initially, the SAR time series is properly pre-processed by means of the methods and filters previously 
introduced in Section 4. 

b) Then, all the de-speckled images in one year are first divided according to the season and then merged 
into one image per season by means of a temporal average.  This step is performed as a thread-off 
between the need to keep multitemporal information and the one to reduce the computational load 
of the classification procedure. 

c) Finally, the features useful for the extraction of the classes reported in the table above are computed 
for the final multitemporal sequence. 

 

8.2 Classification 
The classification procedure implemented in this work is based on a hierarchical extraction of specific classes 
followed by a general classification applied to the rest of the scene. Specifically: 

• First, some of the classes that are recognizable using a specific subset of features are extracted from the 
data by means of unsupervised techniques. This is currently performed for the urban class, but plans 
are to implement a similar approach for water surfaces and snow cover. 

• Then, supervised classifiers, namely Random Forest (RF) and Support Vector Machines with Radial Basis 
Function (RBF) kernel, are applied to the set of features highlighted in Table 3. 

For the latter step, suitable training data are necessary. To avoid the unbearable cost of a manual extraction of 
high-resolution samples, in the following a procedure able to extract samples for many of the desired classes 
from existing maps is highlighted. This procedure must be complemented for specific areas and classes by 
more performing sample extraction methods (manual selection, for example), but it helps to reduce the cost of 
that procedure to a level which is manageable in the context of a global mapping methodology. 

8.2.1 Training sets from medium resolution maps 
To automatically carry out a classification based on a training set extracted from the medium resolution products, 
we start from the assumption to classify in high resolution only pure classes that were recognized in medium 
resolution maps. 

Specifically, the medium resolution maps that were considered are:  

• ESA CCI-LC 2018 (300m): The annual ESA CCI LC maps cover a period of 24 years from 1992 to 2018 at a 
spatial resolution of 300m. These maps describe the Earth’s terrestrial surface in 37 original LC classes 
based on the United Nations Land Cover Classification System (UN-LCCS) [82]. The product that covers 
the 2015 year have been assumed as baseline. 

• GLCNMO (1km): The Global Land Cover by National Mapping Organizations (GLCNMO) is geospatial 
information in raster format which classifies the status of land cover of the whole globe into 20 classes 
at a spatial resolution of 1 km [83]–[85]. The classification is based on LCCS developed by Food and 
Agriculture Organization of the United Nations (FAO). 
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The proposed strategy aims to exploit the information associated only to those MR classes that present a good 
correlation with the high-resolution legend, excluding for instance the MR mixed-classes of ESA CCI-LC product 
reported in Table 4.  

Table 6. Mixed classes list of the ESA CCI-LC 2015 (330m) product 

Values ESA CCI-LC 2015 (300m) labels 

30 Mosaic cropland (>50%)/natural vegetation (tree, shrub, herbaceous cover) (<50%) 

40 Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%)/cropland (<50%) 

100 Mosaic tree and shrub (>50%)/herbaceous cover (<50%) 

110 Mosaic herbaceous cover (>50%) tree and shrub (<50%) 

180 Shrub and herbaceous cover, flooded, fresh/ saline/brakish water 

 

A comparison of the above-mentioned medium resolution map and the desired classes for HR mapping in this 
project has eventually brought to the results summarized in the following table: 

Table 7. List of several medium resolution classes dealing to a training set for a high resolution classes subset 

Value CCI-HR LC classes ESA CCI LC 2018 (300m) 
values GLCNMO (1km) values 

10 Tree cover evergreen broadleaf 50  

20 Tree cover evergreen needleleaf 70, 71, 72  

30 Tree cover deciduous broadleaf 60, 61, 62  
40 Tree cover deciduous needleleaf 80, 81, 82  

50 Shrub cover evergreen 121  

60 Shrub cover  deciduous 122  

70 Grassland 130  

80 Cropland  11,13 

90 Vegetation acquatic or regularly 
flood 160,170,180  

100 Lichens and mosses 140  

110 Bare areas 200,201,202  

111 Sands  17 

112 Rocks  16 

120 Built-up areas Urban extraction 
methodology [22] 

 

130 Water permanent 210  

140 Snow and/or ice 220  

 

In the second and third columns of Table 7, several values of ESA and GLCNMO legends, respectively, are selected 
in a way to provide a redundant yet meaningful set of training points for the corresponding high-resolution 
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classes reported in the first column. For an easier reading of Table 7, the legends of ESA CCI-LC 2015 and GLCNMO 
maps have been shown in Figure 23 and Figure 24, respectively. 

 

Figure 23. The CCI-LC MR maps referred to Amazonian tile 21KUQ (q) Amazonian tile 21KXT (b) classified according to the 
legend of the global CCI-LC maps (c). 
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Figure 24. Legend associated to GLCNMO medium resolution map.  

The final step for training point selection is performed using random sampling. This is performed by first selecting 
the points belonging (for each HR class) to the corresponding classes in the MR maps into binary maps. To avoid 
inaccuracies and collect more reliable samples, a morphological erosion step is applied to this binary map, and 
only its "internal" area is considered. Then, random sampling is applied. The procedure is repeated for each class, 
and a consistent set of training samples is extracted.  

This approach does not reduce the resolution of the final HR map, which is obtained considering the original 
resolution of S-1 data. Moreover, by selecting only classes that are not mixed, it allows to obtain reasonably good 
training samples at a very limited cost. Of course, these samples are as accurate as (in average) the maps from 
which they are taken, and this is the reason why robust classifiers, such as RF and SVM has been selected. 

9 Decision fusion 
Data fusion methodologies, and specifically the sub-class of decision fusion, allow making a common decision in 
case of multiple actors and opinions. Within the CCI+ HRLC pipeline, decision fusion combines the posterior 
probabilities associated with the outputs of the single classifiers that are applied to optical and SAR data 
separately. Therefore, multiple decisions are combined into a final result by taking into account the level of 
uncertainty associated with each source. This uncertainty is expressed precisely by the probabilistic 
characterization provided on a pixelwise basis by the aforementioned posteriors. 

The sets of classes that can be accurately discriminated by using optical and SAR data separately do not coincide 
in general. While optical data are generally expected to be useful to the discrimination of all considered land 
cover classes, SAR data are expected to well discriminate especially built-up classes and water bodies. 
Accordingly, SAR and optical classification algorithms generally work on different, although obviously non-
disjoint, sets of classes. Decision fusion methodologies are aimed at fusing posterior probabilities related to the 
classes in common across the two sets. Hence, a class-specific combination rule has been devised to take this 
into account and, correspondingly, integrate this fusion result on the common classes with the results obtained 
using only optical or SAR data for the remaining classes. 
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Specifically, the whole class legend Ω is divided into three disjoint subsets of thematic classes: Ω𝑂𝑂, the set of 
classes that are distinguished only by using optical data (“optical-exclusive”); Ω𝑆𝑆, the set of classes that are 
distinguished only by using SAR data (“SAR-exclusive”); and Ω𝑐𝑐, the set of classes which are discriminated by the 
classifiers operating with both data modalities (common classes). Accordingly, Ω = Ω𝑂𝑂 ∪ Ω𝑆𝑆 ∪ Ω𝐶𝐶. While the 
optical classifier works on the set of classes Ω𝑂𝑂 ∪ Ω𝐶𝐶, the SAR classifier outputs posterior probabilities for the set 
of classes Ω𝑆𝑆 ∪ Ω𝐶𝐶. 

As a trade-off between computational complexity and expected accuracy, in the context of the CCI+ HRLC 
processing chain the following families of decision fusion methods are developed: weighted voting and 
consensus theoretic methods, and fusion strategies based on Markovian modelling (i.e., Markov and conditional 
random fields). Both families are combined with class-specific combination rules that take into account the 
aforementioned rationale. Details can be found in the following subsections. 

9.1 Consensus Theory and Class-Specific Combination Rule 
Consensus theory [87], [88] involves general procedures with the goal of combining multiple probability 
distributions to summarize their estimates. The problem can be formulated as the combination of different 
opinions. This is represented as the fusion of posterior probabilities coming from different classifiers, each 
associated with a particular data source.  

Under the assumption that all the classifiers can be made into generating Bayesian outputs and that, accordingly, 
their predictions are endowed with a probabilistic characterization, i.e., pixelwise posteriors are available, the 
goal is to produce a single probability distribution that summarizes their estimates. The study of such 
combination procedures is called consensus theory.  

A first well-known consensus rule is the linear opinion pool (LOP). Focusing on the specific case of optical and 
SAR classifiers as sources generating the posterior probabilities and keeping in mind that the two classifiers 
generally work on different sets of classes, let 𝑥𝑥 = �𝑂𝑂, 𝑆𝑆� be the input data vector on a generic pixel, resulting 
from the stacking of optical (𝑂𝑂) and SAR (𝑆𝑆) individual feature vectors, and let 𝜔𝜔𝑗𝑗 be the 𝑗𝑗th information class 
(𝜔𝜔𝑗𝑗 ∈ Ω). The LOP functional can be expressed as: 

𝒞𝒞�𝜔𝜔𝑗𝑗�𝑥𝑥,Ω𝐶𝐶� = 𝛼𝛼 𝑃𝑃�𝜔𝜔𝑗𝑗|𝑂𝑂,Ω𝐶𝐶� + 𝛽𝛽 𝑃𝑃�𝜔𝜔𝑗𝑗|𝑆𝑆,Ω𝐶𝐶�, 

where 𝑃𝑃�𝜔𝜔𝑗𝑗|𝑂𝑂,Ω𝐶𝐶� is the optical posterior probability of 𝜔𝜔𝑗𝑗 conditioned to the common subset of classes Ω𝐶𝐶  
and 𝑃𝑃�𝜔𝜔𝑗𝑗|𝑆𝑆,Ω𝐶𝐶� is the SAR posterior probability conditioned to the same subset Ω𝐶𝐶. 𝛼𝛼 and 𝛽𝛽 are optical and SAR 
source-specific weights, respectively, and control the relative influence of the two sources. We note that the 
pixelwise outputs of the optical-based and SAR-based classification chains are 𝑃𝑃�𝜔𝜔𝑗𝑗|𝑂𝑂,Ω𝑂𝑂 ∪ Ω𝐶𝐶� and 
𝑃𝑃�𝜔𝜔𝑗𝑗|𝑆𝑆,Ω𝑆𝑆 ∪ Ω𝐶𝐶�, respectively, i.e., the pixelwise posteriors associated with the corresponding sets of classes. 
Deriving 𝑃𝑃�𝜔𝜔𝑗𝑗|𝑂𝑂,Ω𝐶𝐶� and 𝑃𝑃�𝜔𝜔𝑗𝑗|𝑆𝑆,Ω𝐶𝐶� (as well as 𝑃𝑃�𝜔𝜔𝑗𝑗|𝑂𝑂,Ω𝑂𝑂� and 𝑃𝑃�𝜔𝜔𝑗𝑗|𝑆𝑆,Ω𝑆𝑆�) is straightforward. 

LOP has several good properties: it is simple, it yields a probabilistic formulation, and the weights 𝛼𝛼 and 𝛽𝛽 can 
reflect the relative expertise of the optical and SAR classifiers, respectively. Moreover, if the data sources have 
absolutely continuous probability distributions, LOP may be related to an absolutely continuous distribution [88]. 
LOP also assumes that all the experts (classifiers) observe the input vector 𝑥𝑥. Therefore, LOP can be viewed as a 
weighted average of the probability distributions from the experts that results in a combined probability 
distribution. Yet, LOP is a simple method and, besides the aforementioned advantages, has also several 
weaknesses [89]. An example is a possible dictatorship when Bayes’ theorem is applied (i.e., a specific data source 
dominates in making a decision). Moreover, not deriving from the joint probabilities using Bayes’ rule, it is also 
not externally Bayesian (does not obey Bayes’ rule). 

Another well-known and usually effective consensus rule, the logarithmic opinion pool (LOGP), has been 
proposed to overcome some of the problems of LOP. In the optical-SAR case addressed here, the LOGP functional 
can be defined as: 

ℒ�𝜔𝜔𝑗𝑗�𝑥𝑥,Ω𝐶𝐶� = 𝛼𝛼 log𝑃𝑃�𝜔𝜔𝑗𝑗|𝑂𝑂,Ω𝐶𝐶� + 𝛽𝛽 log𝑃𝑃�𝜔𝜔𝑗𝑗|𝑆𝑆,Ω𝐶𝐶�  
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LOGP differs from the linear version in that it is usually unimodal and less dispersed. Zeros are considered vetoes: 
if any of the two sources assigns a zero posterior (i.e. 𝑃𝑃�𝜔𝜔𝑗𝑗|𝑂𝑂,Ω𝐶𝐶� = 0 or 𝑃𝑃�𝜔𝜔𝑗𝑗|𝑆𝑆,Ω𝐶𝐶� = 0), then by definition 
ℒ�𝜔𝜔𝑗𝑗�𝑥𝑥,Ω𝐶𝐶� = 0. This dramatic behaviour is a drawback when the single-source predictions are very inaccurate 
and can be generated even by roundoff error. In order to prevent this, all posterior values are increased by the 
machine epsilon (the minimum number that can possibly be represented given a certain data type). 

𝒞𝒞(⋅) and ℒ(⋅) provide probabilistic fusion results associated with the classes in common between the two single-
sensor outputs, although they generally do not take values in the interval [0, 1]. Either can be mapped to proper 
posteriors by suitably transforming to a probabilistic output, which represents a fused posterior probability 
𝑃𝑃ℱ�𝜔𝜔𝑗𝑗�𝑥𝑥,Ω𝐶𝐶�. In the case of LOP, 𝑃𝑃ℱ�𝜔𝜔𝑗𝑗�𝑥𝑥,Ω𝐶𝐶� is computed from 𝒞𝒞�𝜔𝜔𝑗𝑗�𝑥𝑥,Ω𝐶𝐶� by just re-normalizing so that the 
sum over all 𝜔𝜔𝑗𝑗 ∈ Ω𝐶𝐶  is unity. In the case of LOGP, the following softmax operator is appropriate to take into 
account the logarithmic relation between the ℒ(⋅) functional and the original probabilities: 

𝑃𝑃ℱ�𝜔𝜔𝑗𝑗|𝑥𝑥,Ω𝐶𝐶� =
expℒ�𝜔𝜔𝑗𝑗�𝑥𝑥,Ω𝐶𝐶�

∑ expℒ�𝜔𝜔𝑘𝑘�𝑥𝑥,Ω𝐶𝐶�𝜔𝜔𝑘𝑘∈Ω𝑐𝑐
 

This probabilistic fusion output 𝑃𝑃ℱ(⋅) covers the subset of classes in common across the two single-sensor 
classifications. To extend it to the whole set of classes, the posterior probability (unconditional with respect to 
Ω𝐶𝐶) can be defined according to the total probability theorem: 

𝑃𝑃ℱ�𝜔𝜔𝑗𝑗|𝑥𝑥� = 𝑃𝑃�𝜔𝜔𝑗𝑗|𝑥𝑥,Ω𝐶𝐶�𝑃𝑃�Ω𝐶𝐶|𝑥𝑥� + 𝑃𝑃�𝜔𝜔𝑗𝑗�𝑥𝑥,Ω𝑂𝑂�𝑃𝑃�Ω𝑂𝑂�𝑥𝑥� + 𝑃𝑃�𝜔𝜔𝑗𝑗�𝑥𝑥,Ω𝑆𝑆�𝑃𝑃�Ω𝑆𝑆�𝑥𝑥� = 

= 𝑃𝑃ℱ�𝜔𝜔𝑗𝑗|𝑥𝑥,Ω𝐶𝐶�𝑃𝑃�Ω𝐶𝐶|𝑥𝑥� + 𝑃𝑃�𝜔𝜔𝑗𝑗�𝑂𝑂,Ω𝑂𝑂�𝑃𝑃�Ω𝑂𝑂�𝑥𝑥� + 𝑃𝑃�𝜔𝜔𝑗𝑗�𝑆𝑆,Ω𝑆𝑆�𝑃𝑃�Ω𝑆𝑆�𝑥𝑥�, 

where the aforementioned probabilistic fusion result 𝑃𝑃ℱ�𝜔𝜔𝑗𝑗|𝑥𝑥,Ω𝐶𝐶� is used for the common classes, whereas the 
optical-based and SAR-based posteriors 𝑃𝑃�𝜔𝜔𝑗𝑗�𝑂𝑂,Ω𝑂𝑂� and 𝑃𝑃�𝜔𝜔𝑗𝑗�𝑆𝑆,Ω𝑆𝑆� are used for the two sets of exclusive 
classes. The aggregated posteriors of the three subsets of thematic classes Ω𝑂𝑂 ,Ω𝑆𝑆 and Ω𝐶𝐶  are modelled as 
follows:  

𝑃𝑃�Ω𝑂𝑂�𝑥𝑥� = 𝜆𝜆𝜆𝜆�Ω𝑂𝑂�𝑂𝑂,Ω𝑂𝑂 ∪ Ω𝐶𝐶�,           𝑃𝑃�Ω𝑆𝑆�𝑥𝑥� = (1 − 𝜆𝜆)𝑃𝑃�Ω𝑆𝑆�𝑆𝑆,Ω𝑆𝑆 ∪ Ω𝐶𝐶�, 

𝑃𝑃�Ω𝐶𝐶|𝑥𝑥� = 𝜆𝜆 𝑃𝑃�Ω𝐶𝐶�𝑂𝑂,Ω𝑂𝑂 ∪ Ω𝐶𝐶� + (1 − 𝜆𝜆)𝑃𝑃�Ω𝐶𝐶�𝑆𝑆,Ω𝑆𝑆 ∪ Ω𝐶𝐶�, 

where 0 ≤ 𝜆𝜆 ≤ 1. This choice makes sure that the resulting terms correctly sum to unity (for all 𝜆𝜆 ∈ [0,1]), 
combines the optical- and SAR-specific probabilistic outputs using a LOP-like formulation on the common classes, 
and expresses the items associated with the exclusive classes as functions of the output of one of the two single-
sensor processing chains. To determine an appropriate value for 𝜆𝜆, we note that, in the limit case Ω𝑆𝑆 = ∅ (i.e., if 
the set of classes discriminated using SAR is a subset of the set of classes discriminated using optical data), 𝜆𝜆 = 1 
is a desired choice. Vice versa, in the limit case Ω𝑂𝑂 = ∅, a desired value is 𝜆𝜆 = 0. A suitable weight that covers 
both limit cases is: 

𝜆𝜆 =
𝑃𝑃(Ω𝑂𝑂)

𝑃𝑃(Ω𝑂𝑂) + 𝑃𝑃(Ω𝑆𝑆) , 

where the prior probabilities 𝑃𝑃(Ω𝑂𝑂) and 𝑃𝑃(Ω𝑆𝑆) are estimated on the training set. Therefore: 

𝑃𝑃ℱ�𝜔𝜔𝑗𝑗|𝑥𝑥� = 𝑃𝑃ℱ�𝜔𝜔𝑗𝑗|𝑥𝑥,Ω𝐶𝐶��𝜆𝜆 𝑃𝑃�Ω𝐶𝐶�𝑂𝑂,Ω𝑂𝑂 ∪ Ω𝐶𝐶� + (1 − 𝜆𝜆)𝑃𝑃�Ω𝐶𝐶�𝑆𝑆,Ω𝑆𝑆 ∪ Ω𝐶𝐶��
+ 𝑃𝑃�𝜔𝜔𝑗𝑗�𝑂𝑂,Ω𝑂𝑂�𝜆𝜆𝜆𝜆�Ω𝑂𝑂�𝑂𝑂,Ω𝑂𝑂 ∪ Ω𝐶𝐶� + 𝑃𝑃�𝜔𝜔𝑗𝑗�𝑆𝑆,Ω𝑆𝑆�(1 − 𝜆𝜆)𝑃𝑃�Ω𝑆𝑆�𝑆𝑆,Ω𝑆𝑆 ∪ Ω𝐶𝐶�. 

This combination rule is applicable to all cases, independently on the set of classes on which the two classifiers 
works. It is worth noting that, in the fusion of optical and SAR data, a frequent scenario is that one of the two 
sources discriminates among a larger set of classes than the other source. In particular, SAR-based classifiers 
typically work on a set of classes which is a proper subset of the set of classes considered by optical classifiers. 
In this case (consistent with the areas considered for the round robin experiments in PVASR-v1), we have Ω𝑆𝑆 =
∅ and then Ω𝑆𝑆 ∪ Ω𝐶𝐶 = Ω𝐶𝐶 ,Ω𝑂𝑂 ∪ Ω𝐶𝐶 = Ω, and 𝜆𝜆 = 1. Therefore the previous formulation simplifies as follows: 

𝑃𝑃ℱ�𝜔𝜔𝑗𝑗|𝑥𝑥� = 𝑃𝑃ℱ�𝜔𝜔𝑗𝑗|𝑥𝑥,Ω𝐶𝐶�𝑃𝑃�Ω𝐶𝐶�𝑂𝑂,Ω� + 𝑃𝑃�𝜔𝜔𝑗𝑗�𝑂𝑂,Ω𝑂𝑂�𝑃𝑃�Ω𝑂𝑂�𝑂𝑂,Ω�, 

where it is possible to remove the conditioning on the whole set of classes: 
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𝑃𝑃ℱ�𝜔𝜔𝑗𝑗|𝑥𝑥� = 𝑃𝑃ℱ�𝜔𝜔𝑗𝑗|𝑥𝑥,Ω𝐶𝐶�𝑃𝑃�Ω𝐶𝐶�𝑂𝑂� + 𝑃𝑃�𝜔𝜔𝑗𝑗�𝑂𝑂,Ω𝑂𝑂�𝑃𝑃�Ω𝑂𝑂�𝑂𝑂�, 

which is the formulation used in PVASR-v1 to fuse posterior probabilities in the experiments on the round robin 
areas. 

Within the HRLC pipeline, special focus is given to the definition of the weights 𝛼𝛼 and 𝛽𝛽. Several approaches are 
being explored. The first is the use of uniform weights, which formalizes the case in which the decision maker 
has no knowledge on which source is more reliable. On one hand, this is straightforward; on the other hand, it 
does not benefit from the aforementioned properties of optical and SAR data in terms of the capability to 
discriminate the various classes. More accurately, it is possible to assign the weights proportionally to a score 
that is set according to the “goodness” of each source, where a higher score indicates a better (i.e., more reliable) 
source. This scoring may be accomplished by assessing the accuracy of the land-cover predictions coming from 
the optical and the SAR sources. Finally, another solution that is considered is to compute the weights through 
linear or nonlinear optimization [90] [87]. In particular, the method in [17] which is based on the expectation-
maximization (EM) algorithm, can be incorporated into the HRLC pipeline. It regards a LOGP-type model in the 
framework of unsupervised change detection and will be generalized here to the case of supervised land-cover 
classification. 

 

9.2 Markov Random Fields 
Markov random fields (MRFs) are probabilistic graphical models able to include contextual information in the 
form of class interactions between neighbouring pixels. An MRF is determined by an energy function, whose 
minimization with respect to the labels is equivalent to the application of a maximum a-posteriori criterion [91]. 
Considering an MRF model in which only up to pairwise clique potentials are non-zero (comparing items one 
couple of nodes at a time), this energy is composed of two main terms: one characterizing class likelihood at the 
pixel level (depending on per-class scores obtained from any method able to estimate posterior or class-
conditional probability density functions), and another promoting label smoothness in a local neighbourhood  
[91]. This means that the model encourages two neighbouring pixels to be labelled with the same class. 

Let Ω be again the set of thematic classes. Define the regular pixel lattice as 𝐼𝐼, and let 𝑦𝑦𝑖𝑖 be the class label of the 

𝑖𝑖-th pixel (𝑦𝑦𝑖𝑖 ∈ Ω, 𝑖𝑖 ∈ 𝐼𝐼). The MRF considers 𝑦𝑦𝑖𝑖 as sample of the random field 𝑌𝑌 = {𝑦𝑦𝑖𝑖}𝑖𝑖∈𝐼𝐼 of class labels, which is 

discrete-valued. A neighbourhood system {𝜕𝜕𝜕𝜕}𝑖𝑖∈𝐼𝐼, which provides each 𝑖𝑖-th pixel with a set 𝜕𝜕𝜕𝜕 ⊂ 𝐼𝐼 of 
neighbouring pixels, is defined [92]. It is possible to choose different kinds of adjacency systems: the ones that 
have being used the most include the first- and second-order connectivity [92]. In the former, 𝜕𝜕𝜕𝜕 is made of the 
four pixels adjacent to the 𝑖𝑖-th pixel (four-connected) while in the latter the eight pixels surrounding it are 
considered.  

Considering the aforementioned frequently used family of the MRF models in which only up to pairwise clique 
potentials are non-zero, the energy can be written as: 

𝑈𝑈(𝑌𝑌|𝑋𝑋) = −�  𝛼𝛼 log𝑃𝑃�𝑦𝑦𝑖𝑖|𝑥𝑥𝑖𝑖�
𝑖𝑖∈𝐼𝐼

− 𝛾𝛾 �𝛿𝛿�𝑦𝑦𝑖𝑖 ,𝑦𝑦𝑗𝑗�
𝑖𝑖∈𝐼𝐼
𝑗𝑗∈𝜕𝜕𝜕𝜕

. 

where 𝛼𝛼 and 𝛾𝛾 are positive weights and 𝛿𝛿(⋅) is the Kronecker impulse. In the multi-sensor case, a different unary 
term is added for each sensor, so that it is possible to fuse the different posterior probabilities while enforcing 
contextual relationships. The overall equation is: 

𝑈𝑈(𝑌𝑌|𝑋𝑋) = −��𝛼𝛼𝑠𝑠

𝑆𝑆

𝑠𝑠=1

log𝑃𝑃(𝑦𝑦𝑖𝑖|𝑥𝑥𝑖𝑖𝑖𝑖)
𝑖𝑖∈𝐼𝐼

− 𝛾𝛾 �𝛿𝛿�𝑦𝑦𝑖𝑖 ,𝑦𝑦𝑗𝑗�
𝑖𝑖∈𝐼𝐼
𝑗𝑗∈𝜕𝜕𝜕𝜕

, 

where the notation 𝑥𝑥𝑖𝑖𝑖𝑖 indicates the dependence of image data on both the pixel location 𝑖𝑖 and the sensor 𝑠𝑠 
(𝑠𝑠 = 1,2, … , 𝑆𝑆), 𝑆𝑆 is the number of sensors, and {𝛼𝛼𝑠𝑠}𝑠𝑠=1𝑆𝑆  is a set of positive weights. 
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Within the HRLC pipeline, in order to ensure consistency with the aforementioned pixelwise formulation and 
inspired by the similarity between the unary term and LOGP, the MRF approach is applied to the posterior 
probabilities resulting from the pixelwise fusion of the outputs of the optical and SAR classifiers. Therefore, in 
our specific setting, the overall equation becomes: 

𝑈𝑈(𝑌𝑌|𝑋𝑋) = −�𝛼𝛼 log𝑃𝑃ℱ�𝑦𝑦𝑖𝑖|𝑥𝑥𝑖𝑖�
𝑖𝑖∈𝐼𝐼

− 𝛾𝛾 �𝛿𝛿�𝑦𝑦𝑖𝑖 ,𝑦𝑦𝑗𝑗�
𝑖𝑖∈𝐼𝐼
𝑗𝑗∈𝜕𝜕𝜕𝜕

, 

As compared to the previous fusion approaches, the strategy based on MRFs incorporates spatial information, 
an important contribution in the application to high-resolution remote sensing imagery, which is intrinsic in the 
HRLC project. The weights 𝛼𝛼 and 𝛾𝛾 that tune the tradeoff among the various contributions to the energy function 
𝑈𝑈 are optimized by extending to the MRF fusion formulation the approaches previously described, with regard 
to the consensus formulation. 

In the application of MRF-based methods to decision fusion, special focus is devoted to the minimization of the 
energy function 𝑈𝑈 with respect to the random field 𝑌𝑌 of the class labels. First, as an efficient tradeoff between 
accuracy and computational burden, the iterated conditional mode (ICM) algorithm is adopted. It ensures short 
execution times, yet, it converges to a local minimum of the energy, which can be possibly suboptimal [93]. We 
shall investigate, either methodologically or experimentally, the opportunity to make use of global (or near-
global) energy minimization methods based on graph-theoretic concepts (namely, graph cuts [94] and belief 
propagation methods [93]). On one hand, they ensure convergence to minima with stronger optimality 
properties than ICM. On the other hand, their computational burden is significantly higher and needs to be 
properly evaluated according to the data size involved in the HRLC project. 

9.3 Deep Learning Solution 
As an alternative to the aforementioned approaches to decision fusion, the multisensor fusion stage of the HRLC 
processing chain can also benefit from deep learning architectures. In this case, multi-sensor classification and 
fusion are dealt with by a deep convolutional neural network [50], [95], [96], [97] rather than by the specific 
aforementioned formulations. This is promising from the viewpoint of classification performance as confirmed 
by the accuracy gain observed in several recent international contests, in which deep learning solutions have 
overcome previous methods (e.g., recent IEEE GRSS Data Fusion Contests [98], [99] or ISPRS 2D Semantic Labeling 
competitions [100], [101]). On the other hand, the implementation, training, and computational complexity of 
the deep formulation will be significantly higher than those involved by the previous, more traditional, 
approaches. 

In the specific case of the decision fusion block of the HRLC processing chain, an effective deep learning 
formulation would be based on the aforementioned CNN, autoencoder, and adversarial components that have 
been mentioned in previous sections. Adversarial networks are especially promising in this case thanks to their 
domain adaptation capabilities and to the opportunity to use them to map optical and SAR products into a 
homogeneous domain [52] (see also Section 5). 

10 Multitemporal change detection and trend analysis 
In accordance with the SoW [AD2] and as per the lessons learnt from the CCI MRLC, the scheme shown in Figure 
25 is used for the generation of HRLC change products. In particular, the multitemporal change detection (CD) 
and trend analysis processing chain, assumes to have the entire data time series (both optical and SAR) from 
1990-2015 already pre-processed. Additional to this information, this processing chain requires as input the HRLC 
static map (10m) and the 5 years regional HRLC maps (30m). As output from the processing chain, there will be 
the change information at 30 m and yearly time scale. 
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Figure 25. Block-based representation of the processing chain for the multitemporal change detection and trend analysis. 

Changes can be divided into three classes [102]: (1) seasonal changes, impacting plant phenology or proportional 
cover of LC types with different plant phenology; (2) gradual changes such as inter-annual climate variability (e.g., 
trends in mean NDVI) or gradual change inland management or land degradation; and (3) abrupt (or permanent) 
changes, caused by disturbances such as deforestation, urbanization, floods, and fires. 

The CCI HRLC change products will therefore be developed with an emphasis on quantification of the 
variability/changes at: seasonal, inter-annual and longer time scales (abrupt or permanent changes). The analysis 
is performed over the products derived from the multi-sensor geolocation step, plus the HRLC static and 5 years 
regional maps. For seasonal and longer time scales cases, methods that allow for the analysis of time series 
trends are considered. In the inter-annual case (which can be understood as 1-5 years), standard CD algorithms 
available in the literature are to be considered. 

The analysis will be performed in a top-down time scale direction. In other words, abrupt/permanent changes 
occurring at longer time scales will be first identified in an unsupervised way. Knowing between which 5-years 
period this change has occurred, we will be further analysed and searched for inter-annual changes in a 
supervised and/or unsupervised matter. Finally, for plant/vegetation LC types, we will further analyse seasonal 
changes (supervised way). 

10.1 Abrupt/permanent change and trend detection 
A limited number of methods have been developed in the literature that allow the analysis of long time series 
(with 16 days acquisitions) and can be considered as scalable to the spatial resolutions of the available sensors 
in this project. Possible adaptation/combination is foreseen, given the fact that most of state-of-the-art methods: 
(1) have been developed for medium and/or low spatial resolution applications; (2) make use of a single spectral 
value per each evaluated year; and (3) focus on single LC only (e.g., forest and/or vegetation). In order to map 
the abrupt/permanent changes, combination of two main methods are to be considered:  

• Breaks For Additive Seasonal and Trend (BFAST) [81]; 
• A Bayesian Estimator of Abrupt change, Seasonal change, and Trend (BEAST) [103]. 

BFAST is a generic CD approach for time series, involving the detection and characterization of BFAST. BFAST 
integrates the iterative decomposition of time series into trend, seasonal and noise components with methods 
for detecting changes, without the need to select a reference period, set a threshold, or define a change 
trajectory. The main limitation of this method is that it has been developed for MODIS data and tested mainly in 
NDVI index, and a few vegetation indices, and in particular for forest change detection. Adaptation to both HR 
data and other spectral information is thus required. 

BEAST is an ensemble algorithm, and as such it quantifies the relative usefulness of individual decomposition 
models, leveraging all the models via Bayesian model averaging. It has been developed for Landsat and MODIS 
data. BEAST is able to detect change-points, seasonality, and trends in the data reliably; it derives realistic 
nonlinear trends and credible uncertainty measures (e.g., occurrence probability of change-points over time)—
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some information difficult to derive by conventional single-best-model algorithms but critical for interpretation 
of ecosystem dynamics and detection of low-magnitude disturbances. The combination of many models enabled 
BEAST to alleviate model misspecification, address algorithmic uncertainty, and reduce overfitting. BEAST is 
generically applicable to time-series data of all kinds (offering an advantage for the CCI+ problem, where both 
optical and SAR images are to be considered). It offers a new analytical option for robust change-point detection 
and nonlinear trend analysis and helps exploit environmental time-series data for probing patterns and drivers 
of ecosystem dynamics. 

The combination of these two methods [104], plus further improvements, will allow us to: i) detect multiple 
abrupt/permanent changes in the seasonal and trend components of the time series, ii) characterize the gradual 
and abrupt ecosystem changes by deriving the time, magnitude, and direction of change within the trend 
component of the time series; and iii) generate color-coded maps where different colours represent the year in 
which a given change has occurred. The optical and SAR data will be studied in separate ways, focusing in each 
case in particular LCs (e.g., vegetation in optical and cities in SAR), in accordance to the HRLC static map. Figure 
26 shows the general block scheme followed in this case, where features are first extracted from both optical 
and SAR TS (relying on the LC type). As second step, feature TS are regularized to compensate for further errors 
from pre-processing steps. As third step, combination of adapted BFAST and BEAST algorithms will be used to 
generate the color-coded change map. Additional information about the time and duration of the change (if 
found) will be provided as well. 

 

Figure 26. Block-based representation of the processing chain for the abrupt/permanent change and trend detection. 

10.2 Inter-annual change detection 
Opposite to the long time series analysis case, plenty of methods exist in literature that deal with the bi-temporal 
CD problem [105] both from supervised and unsupervised perspectives, in optical and SAR data. Any of these 
methods can be used for the bi-temporal CD part. 

At this stage of the multitemporal CD step, we are aware of when the change occurred, but we are not aware of 
the type of change. As shown in Figure 27, we take advantage of the change HRLC maps (30m), the HRLC static 
map (10m) and the 5 years regional HRLC maps (30m), to map the type of change. To this end, we will focus the 
attention on changes of interest happening over a 5 years span (e.g., between 2010 and 2015). Two situations 
can be presented in here: (1) only one type of change has occurred in the 5-years span or (2) more than one type 
of change has occurred. In the first situation, the solution is straight forward (and supervised): we compare the 
initial and ending HRLC maps to understand the type of change occurred. In the second situation, semi-
supervised CD approaches must be considered, and original optical and SAR data used as extra information. The 
reasons to pick a semi-supervised approach over a supervised or unsupervised one are related to the complexity 
of the problem and the need to know the type of change occurred, respectively. As a result, inter-annual CD 
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maps (30m) showing when and what type of change has occurred will be produced. There remains the limitation 
as per number of images available per year to perform the corresponding analysis. 

 

Figure 27. Block-based representation of the processing chain for the inter-annual change detection. 

10.2.1 A multi-dimensional Dynamic Time Warping (DTW) strategy for change detection in long and dense 
optical time series. 

We propose a semi-supervised procedure for prototyping/modelling the signatures linked to a set of pre-defined 
classes (by the HRLC Static Map for the first year and then by the 5 year Regional HRLC Maps). If the same LC 
class is been compared, temporal signatures and temporal evolution/profiles are expected to be similar, and 
therefore comparable. If the LC class is different, we expect for it to be a change or transition from one class to 
another. The proposed method creates models of the temporal evolution of different LC classes trends in high 
spatial multi-spectral Satellite Image Time Series (SITS) to generate multi-temporal class similarity profiles and 
detect possible changes from a class to another. The similarity between the built prototypes and a given pixel 
temporal signature is exploited by means of a multi-dimensional DTW. 

Figure 28 presents the general block-scheme of the proposed method, where it is possible to identify three main 
steps: (1) time series reconstruction, (2) LC training and (3) LC classification and CD. There are two inputs for all 
these steps, being the first one the HR multi-spectral dense SITS, pre-processed in the previous phases. The pre-
processing step is crucial to ensure all the images composing the SITS to be comparable, mitigating all the 
possible inconsistencies between images acquired at different times. The second input is the training set, an 
ensemble of spatial samples associated with a label (HRLC static map), stable for a sufficiently long period (over 
a year). The training set fidelity is a crucial requirement for the correct execution of the algorithm. The 
information carried by the training set about the stability of a class in a defined period ensures the possibility to 
extract the temporal signatures associated with a label and use them to generate Class Prototypes (CPs). 
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Figure 28. Block-based representation of the proposed approach for CD based on multi-dimensional DTW. 

Let 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = {𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑁𝑁} be a pre-processed Satellite Image Time Series acquired over the same geographical 
area in the period [𝑡𝑡1, 𝑡𝑡𝑁𝑁]. Assume the SITS have non-uniform time sampling, and each image has a total number 
of 𝑃𝑃 pixels. Given an image 𝑋𝑋𝑛𝑛, each pixel value represents the surface reflectance value in a given spatial position 
and a temporal instant 𝑡𝑡𝑛𝑛. Considering all the pixel values in the SITS, it is possible to retrieve the temporal 
signature of a pixel 𝑇𝑇𝑇𝑇𝑝𝑝 (with 1 < 𝑝𝑝 < 𝑃𝑃) in the interval [𝑡𝑡1, 𝑡𝑡𝑁𝑁]. Let 𝐵𝐵 = {𝑏𝑏1,𝑏𝑏2, … , 𝑏𝑏𝐾𝐾} be the set of bands that 
compose the images taken into consideration and 𝐾𝐾 the total number of bands, involving in 𝐾𝐾 temporal 
signatures for each pixel. The temporal signature associated with a spatial position inside the geographical area 
is strictly related to the LC and LU inside the spatial portion represented by the pixel. Assume the LC classes 
discriminable inside the investigated area are 𝐶𝐶 = {𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝐿𝐿}, and the total number of classes is equal to 𝐿𝐿. 
Finally, let 𝑇𝑇𝑇𝑇 = {𝑇𝑇𝑇𝑇1,𝑇𝑇𝑟𝑟2, … ,𝑇𝑇𝑇𝑇𝐿𝐿} be the training set representing the 𝐿𝐿 classes composed by 𝑇𝑇𝑇𝑇𝑐𝑐 =
{𝑇𝑇𝑇𝑇1𝑐𝑐 ,𝑇𝑇𝑇𝑇2𝑐𝑐 , … ,𝑇𝑇𝑇𝑇𝑉𝑉𝑐𝑐

𝑐𝑐 }. All the training samples linked to a spatial position are associated with a LC class and 
characterized by class stability inside a sufficiently long period 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. 𝑉𝑉𝑐𝑐 is the total number of training samples 
for the class 𝑐𝑐, and 𝑉𝑉 is the total number of training samples in the whole 𝑇𝑇𝑇𝑇. The 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 in here is set to 1 year, 
ensuring the maintenance of natural cycle characteristics of spectral temporal signatures. 

10.2.1.1 Time series reconstruction. 

The time series reconstruction stage allows generating a sequence of values, denser than the source signal. The 
temporal signature is expected to be a truthful behaviour smooth and continuous. Moreover, this stage 
combines the original satellite spectral bands in higher Feature Space (FS) to recognize the temporal class 
evolution in a precise way. The spatial position, stability period and class label information carried by 𝑇𝑇𝑇𝑇 allow 
the extraction of the temporal signatures of the training set 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇. The temporal signatures contained in 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 are 
finite-length discrete sequences that describe the behaviour of a particular class. To understand how the 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 
are correlated, a measure to compare the temporal sequences is needed. 

At this stage, the temporal signature is a raw signal characterized by non-equally distributed temporal sampling 
and non-continuous trend, also affected by noisy oscillation not corrected in the pre-processing step. The state 
of the art literature mainly compares vegetative profiles between inner class temporal signatures. The 
behaviours are modelled, taking into account vegetation cycles and cycling harmonics models. The usage of those 
strategies does not fit the case of multiple class trends and fails in the presence of abrupt changes or number of 
cycles different from the pre-established values. The development of an ad-hoc non-parametric strategy to 
reconstruct the temporal signature is needed. The time series reconstruction stage consists of transforming the 
original temporal signal into a harmonious and plausible sampling sequence, proper to perform the successive 
analysis.  

Taking inspiration from [106], a non-parametric regression is used and adapted to produce continuous and 
regularly sampled temporal signatures. To do so, four steps are followed: (1) Computation of Normalized 
Difference Indices (NDI), (2) uniform sampling interpolation, (3) low pass filtering and; (4) non-parametric 
regression through a Multi-Layer Perceptron Neural Network (MLP-NN). First, the spectral temporal signatures 
are combined, generating NDI arrays (FS). The combination of the source signals in the 𝐾𝐾 bands produces an 
increased number of features. The NDI temporal signatures are then interpolated, taking into account the density 
and the shape maintenance requirement. A low pass filter reduces the intensity of high-frequency oscillations 
not usual in the LC temporal signatures, achieving a more smooth behaviour. Last, a non-parametric regression 
captures the temporal signatures trend reducing the profile complexity and arithmetic dependency. 

The choice of a suitable FS is one of the fundamental elements to be able to distinguish the spectral trends 
belonging to the set of classes 𝐶𝐶 labeled in the 𝑇𝑇𝑇𝑇. All possible couples of the available original sensor bands are 
combined to compute the NDIs. This stage transforms the 𝐵𝐵-dimensional FS into an F-dimensional FS (see 
equation (1)). The employment of NDIs, reduces the undesirable oscillations that mark the spectral bands. The 
ratio between various bands is valuable in the analysis between different classes, and the NDI values, included 
in the [−1, 1] interval, are suitable for reliability comparison in a successive step. 
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 𝐹𝐹 =
1
2

(𝐾𝐾 − 1) × 𝐾𝐾 (1) 

10.2.1.2 LC training. 

The temporal signatures associated with the spatial position of the 𝑇𝑇𝑇𝑇 coming from the HRLC static map (or the 
5 year HRLC maps), is used to build a set of CPs that allow to understand the evolution of different pixels in the 
study area. Three challenges are faced in order to generate the CPs: 

1. Understand the similarity between the temporal signatures belonging to the same/different class; 
2. Identify suitable features for the comparison of temporal signatures in a multiple feature (MF) space; 
3. Deal with possible mislabelled classes in 𝑇𝑇𝑇𝑇 as well as with classes presenting multiple temporal 

behaviours (e.g., cropland). 
The LC training step manages those challenges employing a similarity measure based on the DTW and Multi-
Dimension DTW (MDDTW). First, the DTW similarity measure is computed between all possible couples of 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 
in all the NDI features. The output of this operation is a set of SF DTW Similarity Matrices {𝑆𝑆𝑆𝑆1, 𝑆𝑆𝑆𝑆2, … , 𝑆𝑆𝑆𝑆𝐹𝐹}. 
The analysis of the obtained SF 𝑆𝑆𝑆𝑆𝑓𝑓 is required to choose the most suitable features to continue the study and 
fix the Class Clusters Parameters 𝑃𝑃𝐶𝐶𝐶𝐶 required for the CPs generation. The 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 are then reduced by a feature 
selection step and used to compute the MF DTW Similarity Matrix 𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀. The 𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀 is the main ingredient of 
the CPs generation driven by the parameters 𝑃𝑃𝐶𝐶𝐶𝐶. The final output of the LC training step is the set of CPs 
depicting the various behaviours of the classes in a MF space. Usually, the set of classes 𝐶𝐶 labeled in the training 
set is not a sufficient categorization for the analysis of temporal signatures. The LC training aims to prototype 
different trends for the same class 𝑐𝑐 by forming groups (clusters) of similar temporal signatures belonging to 𝑇𝑇𝑇𝑇𝑐𝑐, 
where each temporal signature is linked to a training sample. The clusters are generated following a set of rules 
and must respect boundaries imposed by 𝑃𝑃𝐶𝐶𝐶𝐶. Also, the similarity analysis of 𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀 allows to find of a set of 
meaningful class similarity thresholds Ω convenient to understand the CPs generation results. 

10.2.1.2.1 Dynamic Time Warping (DTW) 
The measure selected for the comparison of the temporal signatures is the DTW [107] similarity measure. The 
DTW can handle the temporal distortion and shifting that characterize the temporal signatures, by exploiting the 
opportunity to find the optimal alignment between sequences. DTW also provides a similarity measure (SM) to 
quantify the similarity of the compared profiles. The introduction of the DTW SM solves the challenges linked to 
possible distortions or shifts of the same behaviour conducted by various temporal signatures. DTW stands out 
from the Euclidean distance thanks to the ability to capture flexible similarities. The aligning procedure of the 
coordinates inside both sequences consists in linking each element of the first sequence with at least one 
element of the second sequence. 

10.2.1.2.2 Feature space analysis and reduction 
The feature space analysis aims at searching the most suitable FS for the comparison of the temporal signatures, 
as well as the best parameters for the generation of the CPs. The strategy models the DTW similarity distributions 
between groups of similarity measures and computes a Dissimilarity Measure (DM) for each couple of classes in 
𝐶𝐶. In this step, the SF SMs are employed separately, and jointly with 𝑆𝑆𝑆𝑆𝑓𝑓. Two input parameters are required to 
carry out the task: 𝑃𝑃𝐴𝐴 and 𝑃𝑃𝐵𝐵. 𝑃𝑃𝐴𝐴 imposes the minimum number of samples per cluster, whereas 𝑃𝑃𝐵𝐵 imposes the 
minimum number of samples per class. In the FS analysis stage, 𝑃𝑃𝐴𝐴 assures the comparison of a number of SM 
bigger than a minimum threshold. 𝑃𝑃𝐵𝐵 guarantees an amount of similarity distributions comparisons higher than 
a minimum threshold. The designed strategy allows simulating the comparison between SM distributions of 
different classes and considers the parameters that are used in successive stages to identify the most suitable 
ones. The two parameters are unknown and need to be found by exploring larger parameter space, computing 
the DMs for a set of possible choices. 
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10.2.1.2.3 Multi-feature DTW (MF-DTW) similarity matrix 
Ones the proper FS is defined, it is time to further analyse the problem. To do so, we assume feature dependence, 
which seems to fit better the problem. While the DTW SM solves the issues linked to possible distortions or shifts 
of the same behaviour conducted by various temporal signatures, it needs to be further studied while considering 
a MF space. One solution would be to define a MF SM as the summation of SMs computed independently in each 
feature. Nevertheless, the MFs composing the temporal signatures are not independent. The idea is to arrange 
the DTW SM to a multi-dimensional space exploiting the features’ dependence. To do so, the summation of the 
absolute difference between couples of samples is considered. 

10.2.1.2.4 Similarity Analysis 
The similarity analysis consists of computing a similarity threshold (Ω) for each class, which allows to understand 
what is the class similarity value for separating the CPs without incurring in incorrect classification of temporal 
signatures. The strategy models the MDDTW similarity distributions between groups of similarity measures and 
computes a Ω for each couple of classes in 𝐶𝐶. Jointly with 𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀 , two input parameters are required to carry out 
the task, likewise in the strategy presented in the subsection (10.2.1.2.2). However, in this stage, the two 
parameters 𝑃𝑃𝐶𝐶𝐶𝐶 = [𝑃𝑃𝐴𝐴,𝑃𝑃𝐵𝐵] are known, since they have been calculated in the feature space analysis step. 

The main ingredient here is the 𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀, which is calculated in the reduced MF space 𝑅𝑅. The similarity distribution 

comparison is translated into an MF space and Ω𝑣𝑣
(𝑖𝑖,𝑗𝑗) are computed. The thresholds point the ideal similarity value 

to avoid confusion between the classes in the CPs generation step. 

10.2.1.2.5 Class Prototypes (CP) generation 
The class prototypes generation stage deals with class training samples clustering and the generation of CPs that 
depict the behaviour of a group of temporal signatures. The classes are handled individually, considering only 
the similarities between same class training temporal signatures. Starting from the 𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀, containing the 
similarity measures between all the possible couples of training samples in the MF space, it is possible to extract 
the similarity matrix 𝑆𝑆𝑆𝑆𝑖𝑖

𝑀𝑀𝑀𝑀 belonging to the generic class 𝑐𝑐𝑖𝑖. To do so, a hierarchical clustering strategy is followed 
[108]. The clustering algorithm is dependent on the insertion order of samples inside the groups. A sampling 
order is defined based on simple rules, driven by the similarity index 𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖. 𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖 is the dynamic value that starts 
as the maximum similarity value and decreases until convergence. Each class sample 𝑣𝑣 (where 1 ≤ 𝑣𝑣 ≤ 𝑉𝑉𝑖𝑖) 
determines a column vector in 𝑆𝑆𝑆𝑆𝑖𝑖

𝑀𝑀𝑀𝑀. The number of elements of the vector greater than 𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖 indicates how 
many correspondences 𝑌𝑌𝑣𝑣 the sample 𝑣𝑣 has with respect to other samples. The mean value of the elements that 
find correspondence for the sample 𝑣𝑣 is 𝜇𝜇𝑣𝑣. The samples are descending ordered for 𝑌𝑌𝑣𝑣 and 𝜇𝜇𝑣𝑣, resulting in an 
ordered vector of samples. This sorting allows inserting first the samples that are most representative for the 
class and then the less representative or possible outliers. 

The clustering process takes as input 𝑆𝑆𝑆𝑆𝑖𝑖
𝑀𝑀𝑀𝑀 and follows the prearranged order, inserting the samples in the 

clusters. The first sample intuitively enters and creates a new group. The following samples are examined with 
respect to the available clusters Θ𝑖𝑖, evaluating the number of cluster elements more similar than 𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖. Let us 
assume that the present clusters are Θ𝑖𝑖 = {Θ1𝑖𝑖 ,Θ2𝑖𝑖 , … ,Θ𝑄𝑄𝑖𝑖 }. The mean value of similarity between the new sample 
and all the elements of the cluster 𝑞𝑞 is 𝜇𝜇𝑣𝑣

𝑞𝑞 (with 1 ≤ 𝑞𝑞 ≤ 𝑄𝑄). A sample can enter the cluster 𝑞𝑞 if 𝑌𝑌𝑣𝑣
𝑞𝑞 is larger than 

a fixed threshold (𝑌𝑌𝑇𝑇𝑇𝑇). In the case of multiple suitable clusters, the one with the higher 𝜇𝜇𝑣𝑣
𝑞𝑞 is chosen. If no clusters 

allow the new sample entrance, the sample forms a new cluster. The operation is repeated until all the samples 
are clustered. 

The result is a set of 𝐶𝐶𝐶𝐶𝑖𝑖 that depict the behaviours of the clusters Θ𝑖𝑖. The CP generation is performed for all the 
classes. This way of clustering ensures the generation of multiple prototypes dealing with multiple inner-class 
behaviours, and ensuring the recognition of different LC trends belonging to the same class. 
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10.2.1.3 LC classification and change detection (CD). 

The goal here is to evaluate the similarity between known class trends (CPs found in previous step) and unknown 
temporal signatures. This is done in the reduced MF space 𝑅𝑅. Figure 29 shows the block scheme of the LC 
classification and CD approach, where a time division strategy is defined in order to have a controlled way to 
compare temporal sequences with minor length temporal signatures shifted in time. The MF-DTW compares the 
temporal sequences associated with time-order intervals and the available CPs in an MF space. The objective of 
the comparison is to derive informative similarity trends (STs) that describe the evolution of the pixel LC to 
highlight the similarity between unknown pixel behaviour and known classes behaviours. The STs drive the 
identification of imposing class in the defined time intervals and a stability correction strategy produces a 
sequence of LC classes, which depict the pixel LC evolution. The CD step identifies the LC class variation to derive 
a CD sequence that highlights the change between classes.  

 

Figure 29. Block-based representation of LC classification and CD strategy. 

10.2.1.3.1 Time division strategy 
The time-division strategy step (see Figure 30) implements an approach for the analysis of pixel temporal 
signatures that aims at understanding the behaviour of the land response associated with a pixel in the period 
[𝑡𝑡1, 𝑡𝑡𝑁𝑁]. It is convenient to discretize the long time interval into periods with shorter duration to compare the 
temporal signatures with the known CPs. The inputs are the temporal signatures linked to a known spatial 
position in the interval [𝑡𝑡1, 𝑡𝑡𝑁𝑁] and the time division parameter 𝑃𝑃𝑇𝑇𝑇𝑇 that drives the time-division scheme required 
to discretize the period [𝑡𝑡1, 𝑡𝑡𝑁𝑁] under analysis. The temporal signatures linked to successive time intervals are 
extracted and time-shifted to produce a set of ordered temporal signatures {𝑇𝑇𝑇𝑇𝑝𝑝1,𝑇𝑇𝑇𝑇𝑝𝑝2, … ,𝑇𝑇𝑇𝑇𝑝𝑝𝑍𝑍}. Every 𝑇𝑇𝑇𝑇𝑝𝑝𝑧𝑧 (1 ≤
𝑧𝑧 ≤ 𝑍𝑍) has a fixed length 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and a time starting point uniform with the CPs. The amount of ordered temporal 
signatures is equal to: 

 
𝑍𝑍 =

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡𝑁𝑁 − 𝑡𝑡1) − 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑃𝑃𝑇𝑇𝑇𝑇
𝑃𝑃𝑇𝑇𝑇𝑇

 (2) 

 



 

Ref CCI_HRLC_Ph1-ATBD 

 
Issue Date Page 

2.rev.0 03/01/2020 61 
 

 
 

 

Figure 30. Block-based representation of time division strategy. 

10.2.1.3.2 Multiple-feature DTW similarity computation 
The obtained temporal signatures (from previous time division strategy) are compared with all the available CPs 
in order to obtain a SM for each couple (𝑇𝑇𝑇𝑇𝑝𝑝𝑍𝑍,𝐶𝐶𝐶𝐶). Given a temporal signature 𝑇𝑇𝑇𝑇𝑝𝑝𝑧𝑧 and a 𝐶𝐶𝐶𝐶𝑞𝑞𝑖𝑖, it is possible to 

compute the MF-DTW similarity measure 𝑆𝑆𝑝𝑝𝑧𝑧
𝑖𝑖𝑞𝑞 . 

 𝑆𝑆𝑝𝑝𝑧𝑧
𝑖𝑖𝑞𝑞 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇𝑇𝑇𝑝𝑝𝑧𝑧,𝐶𝐶𝐶𝐶𝑞𝑞𝑖𝑖) (3) 

The comparison between 𝑇𝑇𝑇𝑇𝑝𝑝𝑧𝑧 and the 𝑄𝑄 CPs of the 𝑖𝑖 class results in a vector of similarity measures 𝑆𝑆𝑝𝑝𝑧𝑧
𝑖𝑖 . The 

maximum value of the 𝑆𝑆𝑝𝑝𝑧𝑧
𝑖𝑖  is considered as the similarity measure between 𝑇𝑇𝑇𝑇𝑝𝑝𝑧𝑧 and 𝑐𝑐𝑖𝑖. The operation is repeated 

for all the 𝐿𝐿 classes to generate a similarity vector 𝑆𝑆𝑝𝑝𝑧𝑧 that contains the similarity measures between the temporal 
signature and each of the 𝐿𝐿 classes. The STs describe how the pixel response is related to the set of classes 
defined by the prototypes originated by the training set temporal signatures. 

10.2.1.3.3 LC classification and CD 
The analysis of the similarity between pixel temporal signatures and classes arises concerns about correct 
classification and detection of stable changes. The STs of the pixel 𝑝𝑝 is a matrix where the rows are the 𝐿𝐿 STs 
evolving in the 𝑍𝑍 (time intervals) columns: 

 

𝑆𝑆𝑆𝑆𝑝𝑝 =

⎣
⎢
⎢
⎢
⎡𝑆𝑆𝑝𝑝1

1 𝑆𝑆𝑝𝑝2
1

𝑆𝑆𝑝𝑝1
2 𝑆𝑆𝑝𝑝2

2 ⋯
𝑆𝑆𝑝𝑝𝑍𝑍
1

𝑆𝑆𝑝𝑝𝑍𝑍
2

⋮ ⋱ ⋮
𝑆𝑆𝑝𝑝1
𝐿𝐿 𝑆𝑆𝑝𝑝2

𝐿𝐿 ⋯ 𝑆𝑆𝑝𝑝𝑍𝑍
𝐿𝐿
⎦
⎥
⎥
⎥
⎤

 (4) 

A strategy identifies the imposing class and possible transitions between different classes. The highest value in a 
generic column 𝑆𝑆𝑆𝑆𝑝𝑝𝑧𝑧, determines the most similar class to the pixel 𝑝𝑝 temporal signature in the time interval 𝑧𝑧. 
The identification of the largest elements for each column builds a sequence of classes. The vector of classes 
could be affected by "false" transitions. The temporal signatures characterized by a class alteration may be 
influenced by the presence of a variable-length time interval where the class with the highest similarity is not 
the "true" LC. It is important to correct potential non-stable changes and produce a sequence of stable classes 
to detect the variations. A simple rule adjusts the classes sequence. A generic class is considered stable if it 
persists as the imposing class for a fixed number of time intervals 𝑇𝑇𝑇𝑇𝑠𝑠. The rule allows to discard the presence of 
"false" transitions and imposes a stability condition for the emerging classes. The output is a sequence of classes 
𝐿𝐿𝐿𝐿𝑝𝑝 dependent on the STs and reviewed by a stability rule. The fixed number 𝑇𝑇𝑇𝑇𝑠𝑠 drives the stability condition 

and is dependent on the ratio 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑃𝑃𝑇𝑇𝑇𝑇� . The last step of the method provides the generation of a sequence of 

CD maps, highlighting the LC changes from a class to another. The algorithm searches for class variation in 𝐿𝐿𝐿𝐿𝑝𝑝 
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and reports it as a sequence of stability (0 value) or variation (ℎ value). The ℎ value is determined by the order 
dependent couple of classes in the transition. The set {𝑔𝑔1,𝑔𝑔2, … ,𝑔𝑔𝐻𝐻} are the possible values, where 𝐻𝐻 =
𝐿𝐿 × (𝐿𝐿 − 1) is the number of possible LC changes. The actual number of relevant changes might differ from 𝐻𝐻 
according to the user/climate requirements. 

10.3 Seasonal changes detection 
When required (according to the type of change) and possible (enough images available in one year), composite 
maps will be built by adapting function fitting methods such as the one used in the TIMESAT program [105] in 
order to derive seasonal changes. If the type of change is related to plant/crop phenology, other approaches to 
build continuous information based on vegetation indices can be used [109]. 

In this case, the analysis will be fully supervised, where the user will request information for the LC of interest. 
The analysis will be carried out at the level of vegetation indices. Therefore, possible setup of a set of thresholds 
as per known ranges of change/disturbance might be required from the user. As an alternative, such thresholds 
can be defined by us in an unsupervised way, allowing the user to know if there has been some 
disturbance/change, but not the type of disturbance/change. 

10.4 A deep learning perspective 
The processing chain for the multitemporal CD and trend analysis could be also analyzed from a Deep Learning 
(DL) perspective (Figure 31). In particular, some works [110]–[114] can be found nowadays in literature that deal 
with rather longer time scale changes or inter-annual changes. The main problem for deep learning approaches 
remains the lack of enough training samples to train the algorithms. This problem is even bigger when we talk 
about CD and long time series. When training samples are available, the potential in terms of accuracy is quite 
remarkable. Some examples of works carried out in literature, rather in Landsat like data or long time series, are 
provided in the next in order to show the potential of DL. Inspiration could be taken from these works in order 
to be applied on the CCI HRLC with some extra work for training data collection. 

 

 

Figure 31. New deep learning block-based representation of the processing chain for the multitemporal change detection 
and trend analysis. 

10.4.1 Learning a Transferable Change Rule from a Recurrent Neural Network (RNN) for Land Cover Change 
Detection (REFEREE). 

The goal of this work is to design an efficient transferable change rule for binary and multi-class CD. To do so, 
the method relies on an improved Long Short-Term Memory (LSTM) model, in a RNN learning framework, that 
acquires and records the change information of long-term sequences of remote sensing data. Experiments were 
carried out in three different datasets/cities (Taizhou, Kunshan and Yancheng in China), with different types of 
changes. The results of REFEREE were compared with non-deep learning approaches such as Change Vector 
Analysis (CVA), Principal Component Analysis (PCA), Iteratively-Reweighted Multivariate Alteration Detection 
(IRMAD) and Supervised Slow Feature Analysis (SSFA). The results, summarized in Table 8, show the high 
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potential of REFEREE over standard methods with an increase of accuracy over 10-30% for the binary CD case 
and over 10-25% for the multiple CD case. 

Table 8. Kappa coefficient and Overall Accuracy (OA) for the three datasets in (a) binary and (b) multiple change 
detection cases. 

 
(a) 

 
(b) 

10.4.2 Forest Change Detection in Incomplete Satellite Images with Deep Neural Network. 

The goal of this work is to detect forest cover changes (deforestation and fire) over a period of 29 years (1987-
2015). The study area is located in Australia and Landsat images are used. This is the closest example to what we 
will face in the CCI HRLC project, both in time span and data type. Given the well-known problem of incomplete 
and contaminated Landsat data, this approach includes the pre-processing steps as well, which are not addressed 
with deep learning approaches. The CD problem is addressed as a classification problem itself, where features 
are learnt using a deep neural network in a data-driven fashion. Based on these highly discriminative 
representations, it is possible to determine forest changes and predict their onset and offset timings. Results are 
compared to state-of-the-art approaches such Support Vector Machines (SVM), Random Forest (RF), Bag of visual 
Words (BoW) and Scale Invariant Feature Transform (SIFT). The proposed approach in this paper showed an 
improvement of about 16-24% for the forest changes (see Table 9) and a mean onset/offset prediction error of 
4.9months (an error reduction of five months – see Table 9 and Figure 32). 

Table 9. Example of classification/change detection and onset/offset detection. Accuracies are given in percentage, 
whereas the error units are months. 
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Figure 32. Sample result of the ground truth onset/offset events. In each plot, the top bar shows ground truth, and the 
bottom bar shows prediction from the proposed approach. 

10.4.3 Long-Term Annual Mapping of Four Cities on Different Continents by Applying a Deep Information 
Learning Method to Landsat Data 

The goal of [113] is to detect long-term urban changes by addressing temporal spectral variance and a scarcity 
of training samples in Landsat images from 1984-2016. Once again, we are in a similar situation to the CCI HRLC 
project. This time the focus is on urban changes, and not on vegetation LC like, which is indeed complementary 
to the paper presented in section 10.4.2. The method is applied to Landsat observations over urban areas in four 
cities in the temperate zone (Beijing, New York, Melbourne, and Munich). The method is trained using 
observations of Beijing collected in 1999, and then used to map urban areas in all target cities for the entire 
1984–2016 period. The method uses two main steps: (1) use of RNN to minimize seasonal urban spectral 
variance; and (2) introduce an automated transfer strategy to maximize information gain from limited training 
samples when applied to new target cities in similar climate zones. The method is compared to other state-of-
the-art methods (SVM, RF and RNN-LSTM), achieving comparable or even better accuracies (see Table 10). The 
overall accuracy of single-year urban maps is approximately 96±3% among the four target cities. 

Table 10. Detection results from state-of-the-art methods and proposed method with OA and run-time. 
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