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1 Introduction 

1.1 Executive summary 
This document provides an assessment of the end-to-end uncertainty budget the HRLC ECV products are 
associated with. HRLC products are based on a wide range of input data whose uncertainties propagate at 
different levels of dependency according to the data characteristics and the processing steps involved in the 
production. By taking into account the scarce availability of ground-measured reference information and the 
practical impossibility to collect physical measurements on wide areas as those selected for this project, the 
proposed uncertainty models will be, by necessity, theoretical.  

In year 1 of the CCI HRLC Phase 1, the core activity concerning algorithm implementation relates to Algorithm 
development, System Development and a round-robin for the classification algorithms. Many steps of the 
processing chain (e.g., pre-processing, geolocation, etc.) are involving well-known best-performing algorithms 
that come with uncertainty models associated to them. For instance, the classification task is able to output 
probabilistic posteriors that can be managed at the fusion level to infer uncertainty score pixelwise. 

Both uncertainties of input data sets and processing model-related ones must be considered, including error 
propagation dynamics. The nature of the input data sets (discrete classes vs. continuous variables) and the 
associated error characteristics (random error/ bias, error distribution), including potential correlations between 
errors of different input variables should be evaluated. Finally, uncertainties related to the spatial scales of data 
sets, scaling issues related to the validation activity must be accounted for as well. 

1.2 Purpose and scope 
This document provides an overview of the main sources of uncertainty for the HRLC ECV variables, i.e., LC and 
LCC. The global behaviour of error propagation to the uncertainty budget estimation is currently ongoing. Indeed, 
outcomes from internal benchmarking activities are key for drafting a first global model that integrates all the 
sources of error/uncertainty into one product. Therefore, this issue of the document presents a list of all 
potential sources of error, uncertainty and known correlations in the data that will contribute to the global model 
to be delivered in future issues. The structure of the document is thus sequential, listing all the items related to 
the different processing steps. 

1.3 Applicable documents 
Ref. Title, Issue/Rev, Date, ID 

[AD1] CCI HR Technical Proposal, v1.1, 16/03/2018 

1.4 Reference documents 
Ref. Title, Issue/Rev, Date, ID 

1.5 Acronyms and abbreviations 
SAR   Synthetic Aperture Radar 

RMSE  Root mean square error 

RST  Rotation scale translation 

GT  Ground truth 

LOGP  Logarithmic opinion pool 

ATBD  Algorithm Theoretical Basis Document 

MRF  Markov Random Field 

MAP  Maximum a posteriori 
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MPM  Marginal a posteriori modes 

LaSRC  Landsat-8 surface reflectance code 

TOA  Top of Atmposphere 

MODIS   Moderate Resolution Imaging Spectroradiometer 

AOT  Aerosol optical thickness 

LEDAPS  Landsat Ecosystem Disturbance Adaptive Processing System 

OLI  Operational Land Imager 

MSI  Multispectral Instrument 

SWIR  Short-wave infrared 

GRD  Ground Range Detected 

GUM  Uncertainty in Measurement 

DEM  Digital Elevation Model 

UTM  Universal Transverse Mercator 
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2 Optical pre-processing 
Detailed analysis of pre-processing errors/accuracy related to harmonized Sentinel-2 / Landsat products is given 
in [1]. Altough the final processing chain of the CCI HRLC project will not be identical to [1], this work provides 
the most complete reference for the prior modelling of the variables that contribute to pixel-level measurable 
uncertainty of the products coming from an integrated pre-processing stage. 

2.1 Radiometric correction 
LaSRC assumes a Lambertian, plane-parallel atmosphere, and uses the 6S radiative transfer model to invert 
directional surface spectral reflectance from observed top-of-atmosphere reflectance. Several atmospheric 
parameters are required for the inversion including surface pressure, column water vapor, ozone, and aerosol 
properties. LaSRC algorithm assumes two SR ratios, red to blue and red to ultra blue, and uses the difference 
between these assumed ratios and observed TOA reflectance ratios to invert for AOT and Angstrom exponent. 
The two fixed SR ratios for the globe are derived from MODIS and MISR data, and ex-pressed as a function of 
mid-infrared vegetation index. 

Currently, uncertainty estimates for LaSRC are based on comparison with corrections based on in situ 
atmospheric parameters from the Aerosol Robotic Network [1]. These comparisons indicate improved 
performance compared to the LEDAPS algorithm or an alternative version of LEDAPS that used MODIS aerosol 
products as input. For Landsat 8 OLI, overall uncertainty varied from 0.11% absolute reflectance (SWIR1 band) 
to 0.85% absolute reflectance (blue band). For Sentinel-2/MSI, overall uncertainty varied from 0.3% absolute 
reflectance (SWIR1band) to 1.4% absolute reflectance (blue band). 

2.2 Cloud and cloud-shadow detection / restoration 
Cloud and cloud-shadow detection accuracy is intrinsically difficult because of the impossibility of directly 
measuring physical parameters related to clouds. Posterior evaluation of cloud detection accuracy can be figured 
by referencing to appropriate literature, but this does not provide a direct method to quantify uncertainty in a 
pixelwise manner. A possible strategy to mitigate this problem is to associate probabilities in the classification 
step related to cloud identification. This is similar to the idea implemented in processors like sen2cor. 

2.3 Spectral filtering and harmonization 
Given the differing solar and view angles associated with Landsat 8and Sentinel-2, normalizing the BRDF effects 
is desirable. Retrieving the BRDF information directly from medium resolution optical remote sensing data is not 
feasible with the current temporal and angular distribution of the data. Instead, the BRDF information needs to 
be ingested a priori. It is currently on-going revision of the most appropriate technique to achieve this so that 
effects of different illumination conditions may be included in the model. 

3 SAR pre-processing 
The spaceborne synthetic aperture is a powerful key Earth observation technique for large-area monitoring, and 
in recent decades, its all-weather capability and fine ground resolution facilitated the development of a great 
variety of applications, such as the land mapping, for example. Due to the nature of the SAR range mapping and 
reflectance functions, the measurements of multi-channel SAR system can be biased by error originating from 
many deleterious factors in which significantly degrade the quality of SAR image. In this section we quantify 
sources of uncertainty on SAR results, i.e. all those aspects that leading doubts about the validity of the result of 
a measurement (or processing). 
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1.1 SAR processing chain 

Undoubtedly a first uncertainty cause of uncertainty in SAR processing is to be researched in the application of 
techniques for reconstructing the observed scene, such as Level-1 data produced as Single Look Complex (SLC) 
and Ground Range Detected (GRD) from raw data (also so-called Level-0), i.e. the backscattered wave. This may 
be modeled for instance by the Uncertainty in Measurement (GUM) framework, introduced in [2] and used to 
evaluate the uncertainties of the amplitude values pixel by pixel, on the bases of a statistical analysis. 

1.2 Geometric processing 

A second source of uncertainty refers to next steps applied to SAR data sets, such as geometric processing. 
Specifically, radar image processing requires the geometrical overlaying of the remotely data sensed from 
different sensors and/or geometries, in order to mitigate very severe distortions over elevated and sloping 
terrain [3]. Before the change detection and surface classification, these distortions must be mitigated by terrain 
correction. SAR imaging requires precise determination of the relative position and velocity of the radar platform 
with respect to its target at all times. However, this information is not available at the time of imaging, since the 
platform must be moving for the azimuth resolution technique to work. The basic solution is to assume that the 
platform has a uniform velocity over a smooth geoid [4]. To remove the geometric distortions due to terrain 
relief, the radiometric calibration could be applied for compensating all spatial and time dependent variation, as 
well as the cross-track and image to image intensity inconsistencies due to signal attenuation by distance [5]. 
The algorithm is based on a Digital Elevation Model (DEM) and creates a simulated SAR image based on an 
imaging radar model. 

However, this process introduces a level of uncertainty because it simplifies the image creation considerably, 
introducing certain amount of distortions into the results. In fact, when there is significant relief in the area being 
imaged, for example, the DEM model that is being adopted will be based on a proper smooth geoid assumption 
and will lead to pixel placement, rendering it suitable (or not) for a quantitative analysis of terrain features.  

Finally, to correct image orientations, SAR images are geocoded. This phase includes SAR image resampling to a 
spatial representation with known geometric properties. Standard map projections, like the Universal Transverse 
Mercator (UTM) mapping, are used. Processing involves the image rotation and scaling to properly transform it 
into the mapping coordinates chosen [6]. The geocoding represents another uncertainty source, since images 
are taken at varying pass angles, and each resulting image contains an approximately square rotated SAR image 
inside it, with unused image pixels set to black. 

1.3 Speckle noise 

In addition to geometrical features, another limitation of SAR data sets is the speckle noise. The speckle noise is 
an intrinsic feature of SAR data, and it is given by the consistent summation of signals from ground scatters 
randomly and loosely distributed within the scene. The existence of speckle noise in SAR images is an inherent 
and specific random characteristic. This noise has an impact on the interpretation of these images and introduces 
further limitations in applications exploiting SAR time series [7]. The speckle noise reduction has to strictly be 
carried out in order to preserve polarimetric properties, without introducing any image quality degradation and 
corrupting statistical characteristics. Consequently, not using a suitable speckle filtering involves a dramatic 
impact in terrain classification performance [8]. 

Instead, performing a multi-temporal analysis based on multiple images acquired over time, backscattered 
values in can be aggregated in both coherent and incoherent ways to reduce the effect of noise. For classification 
purposes, it has been proved [9] that the use of multitemporal sequences improves the accuracy of the final 
results, either thanks to the fusion at the decision level of the results for each image, or by combining multiple 
SAR images into a single input to the classification procedure. 
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4 Multi-sensor geolocation 
Multi-sensor geolocation [10] aligns data collected from different sensors (a reference and still image and an 
input image to be transformed) in a common reference system in order to process them coherently further in 
the processing chain. Within the CCI+ HRLC processing chain, the two image data sources correspond to optical 
and SAR data. The result of the geolocation process may be more or less precise, yielding uncertainty associated 
with the output images. Such uncertainty generally also affects the subsequent blocks along the processing chain. 

There exist different strategies for assessing the accuracy of the geolocation process: one of the possibilities is 
the computation of the root mean square error (RMSE) in pixel units [11]. In an experimental setup, where the 
correct transformation is known, the RMSE may be computed analytically. Otherwise, it is possible to estimate 
it by means of specific control points or landmarks. 

The control points are identified in both images and the RMSE is computed based on the residual spatial 
distances. Ideally, in case the images are perfectly matched, the distances of the control points in the reference 
and registered images is equal to zero. In all the other cases, the control points may not be perfectly matched, 
and the distances are generally non-zero, although they can be smaller than one-pixel size, on average. 

The following section describes the computation of the RMSE in case the transformation is known and is 
modelled as a “rotation-scale-translation” (RST) transformation. For lower-complexity transformation, like rigid 
or shift transformations, the same computation holds but it is necessary to fix unitary scale (rigid) and the 
rotation angle to zero degrees (shift). 

4.1 An example of RMSE computation 
Let 𝑅𝑅𝑅𝑅𝑅𝑅(𝑥𝑥,𝑦𝑦) and 𝐼𝐼𝐼𝐼(𝑥𝑥,𝑦𝑦), (𝑥𝑥,𝑦𝑦) ∈ Ω ⊂ ℝ2, where Ω is a region of interest, be two images called reference and 
input, respectively. If they are both of size 𝐴𝐴 ×  𝐵𝐵 pixels, then Ω =  [0,𝐴𝐴]  × [0,𝐵𝐵]. In the RST case, 𝑇𝑇𝑝𝑝(𝑥𝑥,𝑦𝑦) is 
the geometric transformation described by the parameter vector 𝑝𝑝 = �𝑡𝑡𝑥𝑥, 𝑡𝑡𝑦𝑦,𝜃𝜃, 𝑘𝑘� and has the form: 

𝑇𝑇𝑝𝑝(𝑥𝑥,𝑦𝑦) = �
𝑘𝑘 cos (𝜃𝜃) 𝑘𝑘 sin (𝜃𝜃) 𝑡𝑡𝑥𝑥
−𝑘𝑘 sin (𝜃𝜃) 𝑘𝑘 cos (𝜃𝜃) 𝑡𝑡𝑦𝑦

� �
 𝑥𝑥 
 𝑦𝑦 
 1 
� 

where �𝑡𝑡𝑥𝑥, 𝑡𝑡𝑦𝑦� determine translations in the 𝑥𝑥 and 𝑦𝑦 directions, 𝜃𝜃 is the rotation angle, and 𝑘𝑘 is the scaling factor. 
Thus, we can write 𝑇𝑇𝑝𝑝(𝑥𝑥,𝑦𝑦) = 𝑄𝑄𝑝𝑝 ∙ [𝑥𝑥,𝑦𝑦, 1]𝑇𝑇, where 𝑄𝑄𝑝𝑝 is the RST transformation matrix given above, and the 
superscript “𝑇𝑇” indicates the transpose operator. There is a one-to-one correspondence between 𝑄𝑄𝑝𝑝 and 𝑝𝑝. To 

register 𝑅𝑅𝑅𝑅𝑅𝑅(𝑥𝑥,𝑦𝑦) and 𝐼𝐼𝐼𝐼(𝑥𝑥,𝑦𝑦) it is necessary to find the value of 𝑝𝑝 such that 𝐼𝐼𝐼𝐼 �𝑇𝑇𝑝𝑝(𝑥𝑥,𝑦𝑦)�, the input 

transformed by 𝑇𝑇𝑝𝑝, best matches the reference (see ATBD). 

When accurate ground truth is available, such as when test images are created synthetically (a typical scenario 
when a geolocation method is developed and is being validated), a standard way of assessing registration 
accuracy is by using the RMSE 𝐸𝐸(𝑝𝑝𝑒𝑒) [11]. Suppose the ground truth (GT) transformation is given by 𝑝𝑝𝐺𝐺𝐺𝐺 =
�𝑡𝑡𝑥𝑥1, 𝑡𝑡𝑦𝑦1,𝜃𝜃1, 𝑘𝑘1� and the computed transformation is 𝑝𝑝 = �𝑡𝑡𝑥𝑥2, 𝑡𝑡𝑦𝑦2,𝜃𝜃2,𝑘𝑘2�, with the two RST matrices 𝑄𝑄𝑝𝑝𝐺𝐺𝐺𝐺 and 
𝑄𝑄𝑝𝑝 respectively. It is possible to define the error transformation 𝑝𝑝𝑒𝑒 = �𝑡𝑡𝑥𝑥𝑥𝑥 , 𝑡𝑡𝑦𝑦𝑦𝑦 ,𝜃𝜃𝑒𝑒 , 𝑘𝑘𝑒𝑒�, along with the 
corresponding RST matrix 𝑄𝑄𝑃𝑃𝑒𝑒, and measure the discrepancy between 𝑝𝑝𝐺𝐺𝐺𝐺 and 𝑝𝑝. 

According to the matrix formulation of the RST transformation, being 𝑄𝑄𝑃𝑃𝑒𝑒 the error transformation matrix, the 
following should hold [11]: 

𝑄𝑄𝑃𝑃𝑒𝑒 = 𝑄𝑄𝑝𝑝 ∙ 𝑄𝑄𝑝𝑝𝐺𝐺𝐺𝐺
−1  

that yields: 
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⎩
⎪
⎨

⎪
⎧ 𝑘𝑘𝑒𝑒 =

𝑘𝑘2
𝑘𝑘1

,   𝜃𝜃𝑒𝑒 = 𝜃𝜃2 − 𝜃𝜃1

𝑡𝑡𝑥𝑥𝑥𝑥 = 𝑡𝑡𝑥𝑥2 − 𝑘𝑘𝑒𝑒�𝑡𝑡𝑥𝑥1 cos(𝜃𝜃𝑒𝑒) + 𝑡𝑡𝑦𝑦1 sin(𝜃𝜃𝑒𝑒)�
𝑡𝑡𝑦𝑦𝑦𝑦 = 𝑡𝑡𝑦𝑦2 − 𝑘𝑘𝑒𝑒�𝑡𝑡𝑦𝑦1 cos(𝜃𝜃𝑒𝑒) − 𝑡𝑡𝑥𝑥1 sin(𝜃𝜃𝑒𝑒)�

 

Now, let (𝑥𝑥,𝑦𝑦) ∈ Ω and let [𝑥𝑥′,𝑦𝑦′]𝑇𝑇 = 𝑄𝑄𝑃𝑃𝑒𝑒 ∙ [𝑥𝑥,𝑦𝑦, 1]𝑇𝑇. This can be equivalently written as: 

�𝑥𝑥
′

𝑦𝑦′� = 𝑘𝑘𝑒𝑒 �
cos(𝜃𝜃𝑒𝑒) sin(𝜃𝜃𝑒𝑒)
−sin(𝜃𝜃𝑒𝑒) cos(𝜃𝜃𝑒𝑒)� �

𝑥𝑥
𝑦𝑦� + �

𝑡𝑡𝑥𝑥𝑥𝑥
𝑡𝑡𝑦𝑦𝑦𝑦� 

Then, the RMS error is defined as: 

𝐸𝐸(𝑝𝑝𝑒𝑒) = �
1
𝐴𝐴𝐴𝐴

� � (𝑥𝑥′ − 𝑥𝑥)2 + (𝑦𝑦′ − 𝑦𝑦)2 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑
𝐴𝐴

0

𝐵𝐵

0
, 

Substituting the formula for 𝑥𝑥′ and 𝑦𝑦′ and solving for 𝐸𝐸2(𝑝𝑝𝑒𝑒) yields: 

𝐸𝐸2(𝑝𝑝𝑒𝑒) =
𝛼𝛼
3

(𝑘𝑘𝑒𝑒2 − 2𝑘𝑘𝑒𝑒 cos(𝜃𝜃𝑒𝑒) + 1) + �𝑡𝑡𝑥𝑥𝑥𝑥2 + 𝑡𝑡𝑦𝑦𝑦𝑦2 � − �𝐴𝐴𝑡𝑡𝑥𝑥𝑥𝑥2 + 𝐵𝐵𝑡𝑡𝑦𝑦𝑦𝑦2 �(1 − 𝑘𝑘𝑒𝑒 cos(𝜃𝜃𝑒𝑒))

− 𝑘𝑘𝑒𝑒�𝐴𝐴𝑡𝑡𝑦𝑦𝑦𝑦 − 𝐵𝐵𝑡𝑡𝑥𝑥𝑥𝑥� sin(𝜃𝜃𝑒𝑒) 

where 𝛼𝛼 = 𝐴𝐴2 + 𝐵𝐵2. This formula is used in this research to measure registration accuracy when the ground 

truth transformation is available. This scenario holds when a geolocation method is being developed and semi-

simulated data sets are used for its tuning and validation. It obviously does not apply to the case in which two 

real image data sets are available because the reference GT transformation is not known. 

4.2 RMSE Computation without GT 
The previous section describes how to compute analytically the RMSE in case ground truth data is available. In 
case no ground truth information is available, it is still possible to compute an estimate of the RMSE through 
control points (landmarks) [10]. 

It is possible to identify well-known control points in both the reference and the registered input image and 
estimate the accuracy of the registration process from them. Hence, a sample estimate of the registration RMSE 
can be computed by averaging the single RMSE computed with respect to each pair of control points, i.e., as a 
sample estimate of the RMSE functional. 

4.3 From Registration Error to Uncertainty 
Once the registration error is estimated, one can indirectly derive information about the uncertainty generated 
by the geolocation process within the overall land-cover mapping process. In particular, it is convenient to 
distinguish two scenarios based on the achieved error. 

4.3.1 Sub-Pixel Registration Error 

There are cases where the registration error is less than a single pixel. Thus, the grid of the two images after 
registration is almost perfectly matched. Indeed, this is the goal of most image registration efforts. 

In this case, every pixel is matched with the corresponding pixel in the other image. Obviously, there may still be 
a residual error. However, achieving sub-pixel accuracy implies that the Earth region associated with a pixel in 
the reference image is almost the same as the Earth region associated with the registered image, i.e., spatial 
mismatch between the optical and SAR sources is smaller than the pixel size after registration. 
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This is the best possible achievement in multi-sensor geolocation, and in this case, no uncertainty is deemed to 
be forwarded to the following processing blocks of the chain. Every pixel is correctly located, and no uncertainty 
needs to be propagated along the overall processing chain. 

4.3.2 Non-sub-pixel Registration Error 

If the registration RMSE is larger than one pixel, the pixels in the reference image are not correctly matched with 
the pixels in the registered image, on average, and the mismatch implies an actual misalignment of the data 
associated with the two pixel grids. Non-sub-pixel errors may cause artefacts in boundary regions, where pixels 
of different classes are superimposed due to the residual shift between the reference and registered images. 
Conversely, in a flat homogeneous image region, registration error may not cause problems, as the mismatch 
may not influence the resulting classification map. 

In this case, the uncertainty is propagated to the data fusion block. Operatively, the probabilistic fusion that takes 
place in the decision fusion module may generally be affected by the residual non-sub-pixel misregistration. The 
goal of the CCI+ HRLC processing chain is to estimate land cover. In principle, the impact of non-sub-pixel 
registration error on land cover uncertainty may be assessed, on each pixel, by making use of the probabilistic 
per-pixel information available to the decision fusion module within a local window, whose size will be 
determined as a function of the registration RMSE. However, residual misregistration is expected to intrinsically 
translate per se into increased uncertainty in the pixelwise posterior probabilities obtained by the HRLC 
processing chain on each pixel. Moreover, the aforementioned local-moving-window process may add 
significantly to the overall computational burden. Therefore, consistently with the goal of assessing the 
uncertainty in the output HRLC product, the impact of residual misregistration on the overall uncertainty will be 
characterized through the pixelwise posterior distribution. The possible use of moving-window processes will be 
considered methodologically or experimentally in a tradeoff with computational burden. 

5 Classification 
Uncertainty is unavoidable in all classification domains: a certain amount of uncertainty is always involved in 
deciding the class a sample is assigned to. The unanimously recognized framework to represent uncertainty is 
probability. Specifically, the Bayesian concept of maximum posterior probability encloses the amount of 
uncertainty (measurable from data) that generates in the probabilistic decision of a classifier. Since no specific 
classifier has been selected yet (both for optical and SAR processing classification), the treatment is given in this 
section in a general way. In Figure 1, the general workflow associated with the classification part of the processing 
chain is recalled. 
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Figure 1. Workflow of the classification process for optical and SAR time series of images. 

To model input of the Decision Fusion block dealing with integration of different sources of uncertainty, here we 
present a general framework to posterior probability definition that is algorithm independent [10]. We can model 
the posterior probabilities using 𝑚𝑚linear classifiers. Each linear classifier implements a hyperplane that separates 
its corresponding class from the other classes. The equation of each hyperplane is 

𝑓𝑓𝑗𝑗(𝒙𝒙) = 𝒘𝒘𝑗𝑗 ∙ 𝒙𝒙 + 𝑏𝑏𝑗𝑗 

where 𝒘𝒘𝑗𝑗 is a weight vector and 𝑏𝑏𝑗𝑗 is a bias term. Each source-specific posterior probability is typically computed 
using the softmax function:  

𝑃𝑃�𝜔𝜔𝑗𝑗�𝒙𝒙𝑖𝑖 ,𝜃𝜃ℎ� =
exp�𝑓𝑓ℎ(𝒙𝒙𝑖𝑖)�

∑ exp�𝑓𝑓𝑘𝑘(𝒙𝒙𝑖𝑖)�𝑚𝑚
𝑘𝑘=1

  

Hence, the parameter set 𝜃𝜃ℎ = (𝒘𝒘ℎ,𝑏𝑏ℎ). For any probabilistic-based classifier, plugging the posterior 
probabilities into the cross-entropy function and solving the equation (gradient methods) is at the core of the 
well-known learning rules and or backpropagation algorithms. 

As widely acknowledged, SAR images are an important source of information but the speckle noise gives SAR 
images a granular appearance that makes interpretation and analysis hard tasks. Furthermore, one of the major 
issues is the assessment of topographic information content in this kind of images that could be extrapolated by 
exploiting classification techniques. Classification accuracy values, which include user’s accuracy (UA), producer’s 
accuracy (PA), and overall accuracy (OA), are strongly influenced by the adopted input model, which could cause 
considerable errors in the model output. 

An image contains an enormous amount of information, and the challenge is how to represent it in a more 
compact way, which is why features are originated. In other words, for a more compact and possibly more 
significant representation of the information embedded in image, it is usually decomposed into several features. 
Specifically, the extraction of spatial features from remotely sensed data and the use of this information as input 
to further processing steps has received considerable attention over the two last decades. Unfortunately, due to 
the complexity of the images and the existence of image noise and disturbances, the information derived from 
an image is always ambiguous. This source of uncertainty makes the following recognition/classification process 
more complex. The accuracy of spatial feature extraction can hardly formulated due to intra-class variation and 
inter-class similarity [12]. This uncertainty of spatial features extraction is of course on top of the other source 
of inaccuracy, common to any image element, such as  positional uncertainty, attribute uncertainty, topological 
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uncertainty, computational inaccuracy, imprecision/inexactitude, inconsistency, incompleteness, repetition, 
vagueness, omission, misinterpretation, misclassification, abnormalities and knowledge uncertainty. 

Land cover maps are generated by the classification of remote sensing data, and are frequently used as input to 
spatially explicit environmental models, and its quality is generally assessed at the global or class-specific. It is 
therefore clear that another uncertainty factor is closely correlated with the used classification algorithms. 
However, a clear assessments of classification accuracy is not easily provided, and several work have been 
proposed to evaluate the technical classification uncertainty [13], [14]. These studies demonstrate that 
uncertainty assessment provides valuable information on the performance of land cover classification models, 
both in space and time. 

Finally, it must be noted that supervised classifiers are always based on class assignment rules that derive from 
a set a multiclass training samples, which consequently introduces another uncertainty level. The training data 
are samples of individual classes and the class assignment rules are derived from the entire study area. A high 
quality training dataset is mandatory to train the classifier model. However, in practice, the label (class name) in 
a training dataset may not be correct (when it is generated by a human interpreter, for instance, mistakes are 
going to happen). Therefore, if the training dataset is not of high quality, it may lead to lower classification 
performances. Thus, classification accuracy is inherently associated with uncertainty [15]. 

6 Decision fusion 
Data fusion methodologies should consider source-specific uncertainties in order to estimate the overall 
uncertainty of the classification result. More in detail, decision fusion combines the posterior probabilities 
associated with the outputs of single classifiers when applied to the single data inputs, here namely optical and 
SAR data. Therefore, multiple decisions are combined into a final result by taking into account the level of 
uncertainty associated with each source, which is intrinsically expressed by the corresponding pixelwise posterior 
probability distribution. 

As described in ATBD-v2, the whole class legend Ω is divided into: Ω𝑂𝑂, the set of classes that are distinguished 
only by using optical data (“optical-exclusive”); Ω𝑆𝑆, the set of classes that are distinguished only by using SAR 
data (“SAR-exclusive”); and Ω𝑐𝑐, the set of classes that are discriminated by the classifiers operating with both 
data modalities (common classes). The optical classifier works on the set of classes Ω𝑂𝑂 ∪ Ω𝐶𝐶, the SAR classifier 
outputs posterior probabilities for the set of classes Ω𝑆𝑆 ∪ Ω𝐶𝐶. The decision fusion stage first merges the optical 
and SAR outputs on the common classes Ω𝐶𝐶, then it takes into account the presence of the exclusive classes Ω𝑂𝑂 
and Ω𝑆𝑆 through a class-specific combination rule. 

The following subsections discuss uncertainty modelling issues with regard to the families of decision fusion 
methods that are developed, i.e., weighted voting and consensus theory, and fusion based on Markovian 
modelling (both families are combined with the aforementioned class-specific combination rules). 

6.1 Uncertainty in Consensus Theory 
Consensus theory [16], [17] involves general procedures with the goal of combining multiple probability 
distributions to summarize their estimates. Since the use of consensus theory simply aims at fusing posterior 
probabilities coming from different classifiers, it is possible to obtain again a probability distribution. The source-
specific uncertainties are therefore directly combined in the process, leading to an overall uncertainty. 

In the case of the HRLC pipeline, the individual information sources correspond to the outputs of the optical and 
SAR processing chains. Since the two classifiers generally work on different sets of classes, this fusion is possible 
on the set of common classes Ω𝐶𝐶  only. Considering this specific case, the two major consensus-theoretic 
approaches, i.e., linear and logarithmic opinion pool (LOP and LOGP) compute functionals 𝒞𝒞�𝜔𝜔𝑗𝑗�𝑥𝑥,Ω𝐶𝐶� and 
ℒ�𝜔𝜔𝑗𝑗�𝑥𝑥,Ω𝐶𝐶� (𝜔𝜔𝑗𝑗 ∈ Ω) that merge the pixelwise posteriors provided by the optical and SAR processing chains, 
conditioned on the common classes Ω𝐶𝐶  and as a function of the multisensor feature vector 𝑥𝑥 (see ATBD-v2). 
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𝒞𝒞 and ℒ do not determine proper probability distributions per se, except in special cases (e.g., when the weights 
sum to one in the case of 𝒞𝒞 or when they are uniform in the case of ℒ). However, both functionals can be 
normalized (linearly in the case of LOP and nonlinearly through a softmax operator in the case of LOGP) to derive 
a probability distribution 𝑃𝑃ℱ�𝜔𝜔𝑗𝑗|𝑥𝑥,Ω𝐶𝐶�, that expresses a pixelwise measure of uncertainty on the set of common 
classes. As proven in ATBD-v2, this measure of pixelwise uncertainty is extended to the whole set of classes as: 

𝑃𝑃ℱ�𝜔𝜔𝑗𝑗|𝑥𝑥� = 𝑃𝑃ℱ�𝜔𝜔𝑗𝑗|𝑥𝑥,Ω𝐶𝐶��𝜆𝜆 𝑃𝑃�Ω𝐶𝐶�𝑂𝑂,Ω𝑂𝑂 ∪ Ω𝐶𝐶� + (1 − 𝜆𝜆)𝑃𝑃�Ω𝐶𝐶�𝑆𝑆,Ω𝑆𝑆 ∪ Ω𝐶𝐶��
+ 𝜆𝜆𝑃𝑃�𝜔𝜔𝑗𝑗�𝑂𝑂,Ω𝑂𝑂�𝑃𝑃�Ω𝑂𝑂�𝑂𝑂,Ω𝑂𝑂 ∪ Ω𝐶𝐶� + (1 − 𝜆𝜆)𝑃𝑃�𝜔𝜔𝑗𝑗�𝑆𝑆,Ω𝑆𝑆�𝑃𝑃�Ω𝑆𝑆�𝑆𝑆,Ω𝑆𝑆 ∪ Ω𝐶𝐶�, 

where purple terms result from consensus-theoretic fusion on the common classes, blue terms are derived from 
the output of the optical chain and regard the optical-exclusive classes, red terms are similarly associated with 
SAR-exclusive classes, and 𝜆𝜆 ∈ [0,1] is a weight computed as a function of the prior probabilities. The resulting 
𝑃𝑃ℱ�𝜔𝜔𝑗𝑗|𝑥𝑥� yields a probability distribution that expresses a pixelwise measure of uncertainty after the consensus 
processing stage. 

6.2 Uncertainty in Markov Random Fields 
Markov random fields (MRFs) are probabilistic graphical models able to include contextual information in the 
form of class interactions between neighbouring pixels. As discussed in the ATBD-v2, an MRF is determined by 
an energy function, whose minimization with respect to the labels is equivalent to the application of the 
maximum a-posteriori (MAP) criterion [18]: 

𝑌𝑌𝑀𝑀𝑀𝑀𝑀𝑀 = argmax
𝑌𝑌

𝑃𝑃(𝑌𝑌|𝑋𝑋), 

where 𝑌𝑌 and 𝑋𝑋 indicate the random fields of all class labels and feature vectors, respectively, across the whole 
pixel grid 𝐼𝐼. In particular, the Hammersley-Clifford theorem specifies the relation between such energy 𝑈𝑈(⋅) and 
the posterior probability 𝑃𝑃(𝑌𝑌|𝑋𝑋): 

𝑃𝑃(𝑌𝑌|𝑋𝑋) =
1
𝑍𝑍

exp�−𝑈𝑈(𝑌𝑌|𝑋𝑋)� , 𝑍𝑍 = � exp�−𝑈𝑈(𝑌𝑌|𝑋𝑋)�
𝑌𝑌

, 

where 𝑍𝑍 is the normalization constant (named partition function). Considering the MRF model in which only up 
to pairwise clique potentials are non-zero, then the energy can be written as: 

𝑈𝑈(𝑌𝑌|𝑋𝑋) = −�𝛼𝛼 log𝑃𝑃ℱ�𝑦𝑦𝑖𝑖|𝑥𝑥𝑖𝑖�
𝑖𝑖∈𝐼𝐼

− 𝛾𝛾 �𝛿𝛿�𝑦𝑦𝑖𝑖 ,𝑦𝑦𝑗𝑗�
𝑖𝑖∈𝐼𝐼
𝑗𝑗∈𝜕𝜕𝜕𝜕

, 

where 𝑦𝑦𝑖𝑖 ∈ Ω is the class label of the 𝑖𝑖th pixel, 𝑥𝑥𝑖𝑖 is its feature vector, 𝜕𝜕𝜕𝜕 is its neighborhood, 𝑃𝑃ℱ�𝑦𝑦𝑖𝑖|𝑥𝑥𝑖𝑖� is derived 
from pixelwise fusion (see above), 𝛼𝛼 and 𝛾𝛾 are weight coefficients, 𝛿𝛿(⋅) is the Kronecker impulse, the first 
summation considers pixelwise contributions, and the second one represents the pairwise interactions.  

The uncertainty associated with the class labels predicted according to such an MRF model can be computed as 
a function of the corresponding energy. Indeed, using the aforementioned Hammersley-Clifford theorem yields  
the global posterior probability 𝑃𝑃(𝑌𝑌|𝑋𝑋) that is not a pixel-wise measure of uncertainty and is generally hard to 
compute because the partition function 𝑍𝑍 is intractable except in special cases [18]. However, the local 

contextual pixelwise probability 𝑃𝑃 �𝑦𝑦𝑖𝑖�𝑥𝑥𝑖𝑖 , �𝑦𝑦𝑗𝑗�𝑗𝑗∈𝜕𝜕𝜕𝜕�, i.e., the distribution of the class label of each pixel, 

conditioned to its observations from all sources and to the labels of the neighbouring pixels, is easily derived 
from the energy [18] and provides a spatial-contextual measure of uncertainty of the predicted land cover. In 
principle, a further possible measure of spatial-contextual pixel-wise uncertainty would be 𝑃𝑃(𝑦𝑦𝑖𝑖|𝑋𝑋), i.e., the 
probability distribution of the label of each pixel, conditioned to all image observations used to compute 
prediction. However, the calculation, estimation, and optimization of 𝑃𝑃(𝑦𝑦𝑖𝑖|𝑋𝑋) corresponds to the use of the 
marginal a-posteriori modes (MPM) criterion to MRF-based classification rather than to the MAP criterion. On 
one hand, MPM formulations for MRF-based classifiers are computationally convenient in the case of multiscale 
quadtree graphs. On the other hand, they are remarkably time-expensive in the case of planar graphs because 
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of the need to iteratively run time-consuming stochastic samplers (Gibbs or Metropolis sampling) [19]. 
Accordingly, the use of this MPM-based uncertainty measure is deemed substantially disadvantageous in the 
HRLC pipeline. More generally, attention is being devoted to identifying the most appropriate uncertainty 
measure in the Markovian case in a compromise between accuracy and execution time. 

6.3 Uncertainty with Deep Learning 

Several formulations involving deep learning are discussed in the ATBD-v2 with regard to classification and fusion 
stages. Deep neural networks [20] allow the computation of pixelwise uncertainty measures. The output of the 
last layer may normally be interpreted probabilistically by using softmax activation functions. Let 𝜎𝜎(𝒛𝒛) be the 
output quantities, where 𝜎𝜎(⋅) is the softmax function and the vector 𝒛𝒛 = [𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝐶𝐶] collects the inputs 
resulting from the last hidden layer, with 𝐶𝐶 being the number of classes. The softmax output is computed as: 

𝜎𝜎(𝒛𝒛)𝑖𝑖 =
𝑒𝑒𝑧𝑧𝑖𝑖

∑ 𝑒𝑒𝑧𝑧𝑗𝑗𝐶𝐶
𝑗𝑗=1

, 𝑖𝑖 = 1,2, … ,𝐶𝐶. 

The softmax function takes as input a vector of real numbers and normalizes it into a new vector of numbers that 
can be interpreted as expressing a probability distribution associated with the predicted label. After applying the 
softmax, each component of the input vector will be in the interval (0, 1), and the components will sum up to 1, 
so that they can be interpreted as probabilities. Accordingly, picking the class that yields the largest value of 
𝜎𝜎(𝒛𝒛)𝑖𝑖 (𝑖𝑖 = 1,2 … ,𝐶𝐶) is interpreted as a formulation of the MAP criterion. 

Such consideration allows the deep learning formulations discussed in the ATBD-v2 to be automatically 
associated with pixelwise uncertainty measures by inspecting the output values of the softmax activation 
function, before thresholding such values in order to determine the class labels. 

7 Multitemporal change detection and trend analysis 
As the last part of the CCI HRLC processing chain, the multitemporal change detection and trend analysis is highly 
influenced by the uncertainties coming from previous steps. In particular, uncertainty is co-related to: i) the 
decision fusion step, ii) the classification maps and iii) the multisensor geolocation part. In consequence, the 
analysis done in previous steps applies in the same way for this last step. 

Since products are developed at pixel-level (see ATBD for further details), uncertainty will be associated in the 
same way but with the three contributions mentioned before. More specifically, it will be associated to the three 
products from this step of the processing chain, being: i) change HRLC maps (30m), ii) inter-annual CD maps 
(30m) and iii) seasonal CD maps, when required/possible. 
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