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1 Introduction

1.1 Purpose and scope

The objective of this Product Validation Plan (PVP) is to describe the strategies and selected for the validation,
benchmarking and scaling analysis of the European Space Agency (ESA) Climate Change Initiative (CCl) High
Resolution (HR) Land Cover (LC) products: 10-m Round Robin (RR) local LC prototypes for the year 2018, a 10-m
static sub-continental LC maps for the year 2018 and 30-m regional historical (1990-2015) LC maps.

1.2 Applicable documents

[AD1]

CCI_HRLC_Ph1-D2.3_E3UB, v1.0, 03/07/2019

1.3 Acronyms and abbreviations

ALOS Advanced Land Observing Satellite

ASAP Anomaly Hotspots of Agricultural Production
C3S Copernicus Climate Change Service

ccl Climate Change Initiative

CEOS Committee on Earth Observation Satellites
CcMC Climate Modelling Community

E3UB End-to-End ECV Uncertainty Budget

ECV Essential Climate Variables

EO Earth Observation

ESA European Space Agency

ETM Enhanced Thematic Mapper

FAO Food and Agriculture Organization

G GeoEye

GCOS Global Climate Observing System

GEO Group for Earth Observation

GLC Global Land Cover

GLS Global Land Survey

GOFC-GOLD Global Observation of Forest Cover — Global Observation of Land Dynamics
HR High Resolution

| IKONOS

IFOV Instantaneous Field of View

IKONOS Commercial Earth Observation Satellite
JRC Joint Research Centre

LC Land Cover

LCC Land Cover Change

LCCS Land Cover Classification System

LCML Land Cover Meta-Language

LPVS Land Product Validation Subgroup

MMU Minimum Mapping Unit

MR Medium Resolution

NASA National Aeronautics and Space Administration
NDVI Normalized Difference Vegetative Index
OA Overall Accuracy

PA Producer Accuracy
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PSU Primary Sampling Unit

PVP Product Validation Plan

ROC Relative Operating Characteristics

RR Round Robin

S2 Sentinel-2

SPOT Satellite Pour I'Observation de la Terre

SSuU Secondary Sampling Unit

™ Thematic Mapper

TPM Third Party Mission

TREES Tropical Ecosystem Environment Observations by Satellite

UA User Accuracy

UCLouvain Université catholique de Louvain

USGS United States Geological Survey

VHR Very High Resolution

WGCV CEOS Working Group on Calibration & Validation

Y WorldView

2 CCI HRLC products to be validated thematically

2.1.1 Three types of CCI HRLC outputs

Three types of land cover products will be generated and validated thematically within the ESA CClI HRLC
project:
- 10-m Round Robin local LC prototypes for the year 2018, produced through a Round Robin (RR)
exercise during which optical and SAR classifications will be benchmarked.
- 10-m static sub-continental LC maps for the year 2018. The algorithms from the RR exercise with the
best accuracy figures will be selected and applied at the sub-continental scale.
- 30-m regional historical (1990-2017) LC maps, generated every five years, since 1990 on reduced
areas. Change will first be detected on an annual basis on Landsat time series. It will then be used to
backdate, on a 5-year basis back to 1990, the detailed spatio-temporal 10-m static LC map.

All three types of land cover products will be generated over three areas selected through key users’
consultation, with varying extents (Figure 1). The RR sites, in black, cover 3 Sentinel-2 (S2) tiles located in the
Amazonian region (21KUQ, 21KXT) and in Siberia (42WXS). One additional tile has been finally been included in
Sahel. The static LC maps, in red, will cover the regions of Amazon (including Mato Grosso), Sahel and Siberia.
The historical LC maps are restricted to the blue areas.

[ Static land cover map 2018 at 10 m
[_JHistorical land cover maps, every 5 years from 1990 to 2015, at 30 m

Figure 1: Distribution of the study sites per type of CCl HRLC product.
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Table 1 summarizes the extents and areas of each region according to the land cover classification activity.

Table 1. Spatial extents to which the various HRLC products will be generated.

Region CCI HRLC outputs Extent S
[km?]
Round robin site 1 S2 tile 21KUQ 10000 -23 -59 -22 -58
Amazon Round robin site 2 S2 tile 21KXT 10000 -21 -56 -20 -55
LC map 2018 Full extent 11450200 -24 -62 9 -34
Historical LC maps Reduced extent 2230570 -24 -62 -12 43.5
Round robin site S2 tile 37PCP 10000 12 37 13 38
Sahel LC map 2018 Full extent 14099000 0 -18 18 43.5
Historical LC maps Reduced extent 2453620 16 44 4 27
Round robin site S2 tile 42WXS 10000 64 71 72 65
Siberia LC map 2018 Full extent 25763000 52 65 79 142
Historical LC maps Reduced extent 3643260 74 86 60 65

2.1.2 HRLClegend

The Food and Agriculture Organization (FAO) Land Cover Classification System (LCCS) was found pertinent to
support the description of the CCl HRLC maps. Based on key user consultations and after adaptation to the FAO
LCCS framework, a set of 15 main classes is proposed for the LC mapping at 10 m spatial resolution (Table 2).

Table 2. FAO LCCS description of the 1st level of land cover classes selected for the CClI HRLC products.
Region CCI HRLC outputs

Primarily vegetated areas with a tree canopy cover of more than 50 % at the time of
fullest development. Snow and/or ice, open water or built-up areas cover less than 50% of

Tree cover . . . . . .
the area. A tree is a woody, perennial plant with a simple and well-defined stem, bearing
E\rlz;i:(:z: a more or less defined crown [1] and a minimum height of 5 m. Tree canopy cover
composed of trees that are never entirely without green foliage [1]. Trees are
broadleaved and come from the Angiospermae group.
Primarily vegetated areas with a tree canopy cover of more than 50 % at the time of
Tree cover fullest development. A tree is a woody, perennial plant with a simple and well-defined
evergreen stem, bearing a more or less defined crown [1] and a minimum height of 5 m. Tree canopy
needleleaf cover composed of trees that are never entirely without green foliage [1]. Trees carry
typical needle-shaped leaves and come from the Gymnospermae group.
Primarily vegetated areas with a tree canopy cover of more than 50 % at the time of
Tree cover fullest development. Snow and/or ice, open water or built-up areas cover less than 50% of
deciduous the area. A tree is a woody, perennial plant with a simple and well-defined stem, bearing
broadleaf a more or less defined crown [1] and a minimum height of 5 m. Tree canopy cover
composed of trees that are leafless for a certain period during the year [1]. Trees are
broadleaved and come from the Angiospermae group.
Primarily vegetated areas with a tree canopy cover of more than 50 % at the time of
Tree cover fullest development. Snow and/or ice, open water or built-up areas cover less than 50% of
deciduous the area. A tree is a woody, perennial plant with a simple and well-defined stem, bearing
a more or less defined crown [1] and a minimum height of 5 m. Tree canopy cover
needleleaf

composed of trees that are leafless for a certain period during the year [1]. Trees carry
typical needle-shaped leaves and come from the Gymnospermae group.
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Shrub
evergreen

cover

Primarily vegetated areas with a shrub canopy cover of more than 50 % at the time of
fullest development. Snow and/or ice, open water or built-up areas cover less than 50% of
the area. A shrub is a woody perennial plant with persistent woody stems and without
any defined main stem [1], being less than 5 m tall. Shrub canopy cover composed of
shrubs that are never entirely without green foliage [1].

Shrub
deciduous

cover

Primarily vegetated areas with a shrub canopy cover of more than 50 % at the time of
fullest development. Snow and/or ice, open water or built-up areas cover less than 50% of
the area. A shrub is a woody perennial plant with persistent woody stems and without
any defined main stem [1], being less than 5 m tall. shrub canopy cover composed of
shrubs that are leafless for a certain period during the year [1].

Grassland

Primarily vegetated areas with an herbaceous cover of more than 50% at the time of
fullest development. Snow and/or ice, open water or built-up areas cover less than 50% of
the surface. Herbaceous plants are defined as plants without persistent stem or shoots
above ground and lacking definite firm structure [2].

Croplands

Primarily vegetated areas with a herbaceous cover of more than 50 % at the time of
fullest development. Snow and/or ice, open water or built-up areas cover less than 50%.
Croplands are mainly herbaceous plants are sowed/planted and harvestable at least once
within the 12 months after the sowing/planting date. Herbaceous plants are defined as
plants without persistent stem or shoots above ground and lacking definite firm structure
[2]. Cropland includes rain fed crops, irrigated crops, aquatic crops and annual pastures. It
is an adaptation of the Joint Experiment for Crop Assessment and Monitoring (JECAM)
cropland definition [3]. Croplands exclude permanent crops like woody plantations that
are part of the tree or shrub classes.

Vegetation
aquatic

or

regularly flooded

Primarily vegetated areas with trees, shrubs, grasslands or lichens and mosses covering
more than 50 % of the area flooded by water for more than 4 months throughout the
year. The water can be saline, fresh or brackish.

Lichen
mosses

and

Primarily vegetated areas with a cover of more than 50% at the time of fullest
development. Snow and/or ice, open water or built-up areas cover less than 50% of the
surface. Mosses are a group of photo-autotrophic land plants without true leaves, stems
or roots [4]. Lichens are composite organisms formed from the symbiotic association of
fungi and algae [4].

Bare

areas

Areas where the sum of vegetation cover is less than 50% at the time of fullest
development. Snow and/or ice, open water or built-up areas cover less than 50% of the
surface. Bare rock areas, sands and deserts are classified as bare areas. Extraction sites
(open mines and quarries) and salt flats covered by water for less than 5 months are
classified as bare areas.

Built-up

Areas where any predominant type of linear and non-linear artificial surface covers at
least 50%. Snow and/or ice, and open water cover less than 50% of the surface. Built-up
areas include buildings, roads, airports, greenhouses, etc. but may, however, exclude
temporary settlements.

Open
seasonal

Water

Areas where open water covers at least 50% of the surface and remains between 5 and 9
months a year, except in special circumstances (particularly dry year, construction of
dams, etc.). Snow and/or ice and built-up areas cover less than 50% of the surface. Water
bodies can be natural or artificial. Water can be saline, fresh or brackish.
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Areas where open water covers at least 50% of the surface and remains for more than 9
Open Water months a year, except in special circumstances (particularly dry year, construction of
permanent dams, etc.). Snow and/or ice and built-up areas cover less than 50% of the surface. Water
bodies can be natural or artificial. Water can be saline, fresh or brackish.

Snow Areas where snow and/or ice cover at least 50% of the surface for more than 9 months a
and/or Ice year. Built-up areas and open water cover less than 50% of the surface.

2.1.3 Definition of change

Definition of what is meant by “change” is equally important as the definition of the LC classes for the
validation. The list of expected change transitions between the different HRLC classes .

3 Overall validation process

The validation is an essential step for providing high-quality products, endorsed by the ESA climate modelling
and broader user community. The current validation exercise is based on the lessons learned from previous
projects like the Global Land Cover (GLC) 2000 [5], Globcover [6], [7], the CCI LC 1992-2015/C3S 2016-2017
maps [7]. It is also intended to reflect state-of-the-art standard protocols of land cover validation such as the
CEOS Working Group on Calibration and Validation (LC validation subgroup). In particular, the design and
implementation of the validation plan and the creation of the reports follows the general recommendations of
the GOFC-GOLD validation report [8] and other scientific publications from these groups [5], [9], [10].

The overall validation process follows accepted state-of-the-art methodologies (see section 4) and includes an
independent statistical quantitative validation of the three HRLC outputs and a benchmarking of the static and
historic HRLC maps to other existing products (Figure 2). The methodology is fine-tuned to the specific
challenges in validating each type of product. The aim of the RR exercise is to select the pre-processing and
classification algorithms providing the best results and that will eventually be upscaled to the sub-continental
extent. Accuracy figures need to clearly discriminate the quality of the various RR prototypes and a sampling
design biased towards error-prone areas and highlighting differences between maps is selected [11]. The
validation of the static HRLC map aims at quantifying and reporting the quality of the product from an overall,
producer and user accuracy point of view. Validating the historic HRLC maps represents the most significant
challenges of this exercise as, to the knowledge of the consortium, building a statistically sound validation of
change in the context of multiple LC classes has not been tackled yet by the community. For all types of
products, the validation process is composed of 4 steps (section 4.2.3): the collection of Very-High-Resolution
(VHR) imagery, the sampling design, the response design and the reporting.

The activity of benchmarking (i.e. comparing) between the HRLC static and historic maps and other LC products
will be performed in the second year of this project so that the PVP will be updated accordingly in due time.
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Round-Robin
prototypes

HRLC static
maps

HRLC historic
maps

Independent validation of the CClI HRLC products

Statistical validation focusing% State-of-the-art statistical Statistical validation

on error-prone areas | validation of LC maps focusing on change

Collection of VHR imagery
Sampling design

Independent interpretation

Benchmarking

Comparison with other existing LC products

Collection of LC products

Reporting

Harmonization of products
Comparison of products

Reporting

Figure 2. Detailed description of the different validation components of the CClI HRLC project.

4 State-of-the art of accuracy assessment methodology

4.1 Definition and standard protocols

There are several definitions of validation available from various agencies but within the CCl program, the
definition from the Committee on Earth Observing Satellites Working Group on Calibration and Validation
(CEOS-WGCV) was adopted. It defines validation as: “The process of assessing, by independent means, the
quality of the data products derived from the system outputs”.

It is assumed that the term “data products” in the above definition refers to both the geophysical parameter
(i.e. the Level-4 LC classification) and its uncertainties. Information related to the characterization of
uncertainties is documented in the End-to-End ECV Uncertainty Budget (E3UB) [AD1].

4.1.1 Validation stages

The Committee on Earth Observation Satellites (CEOS), recognized as the space arm of the Group for Earth
Observation (GEO), plays a key role in coordinating the land product validation process that depends on the
temporal and spatial coverage of available reference data, thus providing a confidence estimate for each
product even if there is little or no in situ data (Table 3). The CEOS-WGCV has defined initially three validation
stages. However, in response to the evolving ECV monitoring activities, validation stage 4 was included to
define an operational component to ensure that time-series of land products are systematically validated.

We propose to fill the CEOS WGCV stage 3 within this project as no systematic and operational validation
updates are planned.
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Table 3. Four levels of validation adopted by the Committee on Earth Observation Satellites Working Group on
Calibration and Validation.

Stage 1 Product accuracy is assessed from a small (typically < 30) set of locations and time periods by
comparison with reference in situ and/or higher resolution airborne or satellite data. Spatial and
temporal consistency of the product and consistency with similar products has been evaluated over
selected locations and time periods.

Stage 2 Product accuracy is estimated over a significant set of locations and time periods by comparison
with reference in situ and/or higher resolution airborne or satellite data.

Spatial and temporal consistency of the product and consistency with similar products has been
evaluated over globally representative locations and time periods. Results are published in the
peer-reviewed literature.

Stage 3 Uncertainties in the product and its associated structure are well-quantified from comparison with
reference in situ and higher resolution airborne and satellite data. Uncertainties are characterized
in a statistically robust way over multiple locations and time periods representing global conditions.
Spatial and temporal consistency of the product and consistency with similar products has been
evaluated over globally representative locations and periods. Results are published in the peer-
reviewed literature.

Stage 4 Validation results for stage 4 are systematically and operationally updated by independent actors
for comparative assessment of existing products when new products are released and as the time-
series expands.

4.1.2 Validation requirements

The validation procedure of the HRLC maps is also driven by the main GCOS requirements [12], summarized in
Table 4.

Table 4. Maps of high-resolution land cover terrestrial ECV product requirements from GCOS.

COVERAGE AND SAMPLING

GEOGRAPHIC COVERAGE Regional

TEMPORAL SAMPLING 5 years
TEMPORAL EXTENT 1990 - present
RESOLUTION
GEOMETRICAL

10/30 m
RESOLUTION

ERROR/UNCERTAINTY

5% (max. error of omission and commission in mapping individual classes), location

ACCURACY-UNCERTAINTY accuracy better than 1/3 IFOV with target IFOV 10-30 m

STABILITY As above, per decade.

With these requirements in mind, the validation procedure will highlight the following aspects:

e A per-class accuracy analysed in the light of the expected rate of omission and commission error
e The need for a stable accuracy should be reflected in implementing an accuracy assessment of LC change,
at least per decade.

4.2 Good practices of accuracy assessment

4.2.1 Independence of the validation process

The RR prototypes, the static HRLC map and the historical LC, will be validated using a transparent traceable
validation procedure relying on statistical quantities, independent from the production process to be
considered a scientifically credible input for climate assessments and modelling. The validation procedure
follows defined protocols approved by the CEOS Land Product Validation Subgroup (LPVS)
(http://lpvs.gsfc.nasa.gov/) [8], [10].
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The independence of the validation process adopted in this PVP is two-fold:

1. In situ, other suitable reference datasets and auxiliary dataset used for validation should not have
been used during the production of the products to be validated. As [13] state it, the accuracy
assessment is conducted independently of classifier training.

N

The validation is carried out by staff not involved in the generation of the LC products.

4.2.2 Reference data specification

The collection of ground information (i.e. through field surveys) is considered as the best option to support the
validation of remote sensing products. The cost of manpower and logistics to organize field visits to remote
areas with difficult or impossible access if historical LC maps need to be validated makes the collection of
ground truth data not feasible for a large number of plots distributed over large areas.

Reference data should be of an equal or finer level of detail than the data used to create the map [10]. Existing
“reference data sources” like VHR imagery interpreted by experts are good surrogates to “ground truth”.

4.2.3 Sampling frame requirements
To satisfy requirements of design-based inference, the sampling design should be a probability sampling
design, and the estimators should be constructed following the principle of a consistent estimation [14].

The sampling scheme will be designed with the following general requirements:

e to be statistically valid for accuracy assessment of the CCI HRLC products;

e to be reusable for future products of a similar type;

e to be designed before (i.e. independently) the CCl HRLC product;

e to use the most recent picture of global land cover distribution (as the best proxy of the current LC
distribution);

e to be scale-independent to allow the evaluation of scaling issues between the CClI HRLC and MRLC
products;

e totake into account the availability of reference VHR resolution imagery for the recent and historical years.

4.2.3.1 Number of sample plots

The sample size required for a given confidence level and a given acceptable error in the sample can be

g

where n is the number of sample plots, E is the allowable error in the sample, z, is drawn from the normal

calculated from the binomial distribution [15]:

distribution for the given level of confidence, p is the required accuracy and g is 1-p.

The allowable error stands for the error that is made when validating the product using a sampling strategy
(instead of exhaustively assessing the product in any locations). For example, if the allowable error has been
set at 5% and the validation process (based on a given sample) yields to a result of 77% successes, then it is
safe to claim that an accuracy value between 72% and 82% would have been obtained if the whole accuracy
had been validated.

The z-value (z) is directly related to the statistical normal distribution and a certain level of confidence. This
level of confidence expresses the percentage that indicates how often a validation performed on the basis of a
given sample dataset would yield a result that lies within the confidence interval. Considering the previous
example (allowable error of 5% and accuracy of 77%) and adding the concept of this level of confidence (set at
95% for instance), we could say that we are 95% sure that the quality of the product falls between 72% and
82%.
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The number of samples is also constrained the time for interpreting the data. The GlobCover/CCl MRLC
validation exercise showed that experts can interpret between 30 and 50 sample plots per day. Finally, the
availability of VHR resolution imagery for validation is the third parameter constraining the sample size.

4.2.3.2 Sampling designs for LC change assessment

While large-scale validation standards are well recognised in the international community, the validation of LC
change remains very open. Validating broad-scale change products is often challenging because it is subject to
a twofold constraint. First, change is a rare event [16]. The commission rate is easy to quantify by examining
objects identified as having changed but it is much more complex to estimate the omission rate among large
numbers of objects identified as unchanged [8]. Second, the availability (and quality) of reference data
decreases when going back in time and the poor match between observation dates, i.e. validation versus
detection, is a source of uncertainty.

4.2.4 Response design

The reference data sources are then intended to be interpreted over each sample by LC experts in a
standardized manner. Land cover experts have should have the following criteria:

e Recognized expertise on land cover over large areas;

e  Familiarity with the interpretation of remote sensing imagery;
e Good understanding the of LC legend of the products;

e Good understanding the definition of LC change.

Based on the GlobCover [17], [18] and CClI MRLC validation experience, the process of samples interpretation
can be ambiguous for the following reasons: (i) inadequate quality of the reference imagery; (ii) heterogeneity
of the landscape, (iii) limited knowledge by the expert and (iv) ambiguity of the LC legend. An image
interpretation protocol ensures each sample unit is interpreted — i.e. labelled — by the expert in a systematic
and consistent way:

e [f the expert cannot derive the land cover because of the poor quality of reference imagery, the sample has
to be skipped. The expert must specify that no land cover class have been assigned to the sample because
of the insufficient quality of the data.

e If the landscape is heterogeneous, the expert has to explicitly specify that the landscape is complex. The
segmentation procedure tackles this heterogeneity issue and will generate many small polygons in
heterogeneous landscapes.

e If the expert is not sure how to interpret the sample, he/she can indicate a lower level of certainty. When
there is serious doubt about the exact land cover class, the expert needs to indicate the classes from which
the expert cannot choose with certainty. It is clear that more attributes than the dominant land cover
classes are relevant, especially for the analysis of observed discrepancies between classification and
expert’s labelling.

4.2.5 Reporting

4.2.5.1 The error matrix

This validation report will analyse in detail the various parameters describing the accuracy of the map:
contingency matrix, user’s and producer’s accuracy, Kappa statistics and area statistics. The confusion matrix is
recognised to efficiently organize and summarize the agreement between the maps and reference classification
[13](Figure 3).
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Figure 3. Layout of a typical confusion or error matrix, showing the computation of user’s and producer’s accuracies
(from [8]). The fields in grey mark the correspondence between classification and labelling by the expert.

A shortcoming of the overall accuracy is that it does not account for chance agreement. A complete random
classification would also generate a certain level of accuracy. Cohen’s Kappa is an index used to make this
comparison. It expresses the proportionate reduction in error generated by a classification process, compared
with the error of a completely random classification. The closer Kappa gets to 1.0, the higher the accuracy of
the data. A value of 1.0 would imply that the classification process was avoiding all of the errors that a
completely random classification would generate. This Kappa index is frequently written as follows:

— AccOverall_PFOb

chance
X =
o ] —Pr Obchance

where Accoveral = Overall accuracy and Probchance = Probability that the agreement is due to chance.

Finally, the F-score will also be reported. It represents for a class k the harmonic mean of the user and producer
accuracies and ranges between 0 and 1.

UAy * PA,

F — Score, = 2% %k
Ok = “*Ua, + PA,

4.2.5.2 Reporting accuracy figures and area

To calculate the overall accuracy of the product when the sampling design is not equal probability [13], each
class should be weighted by the area it represents in the map.

5 Accuracy assessment tailored to each CClI HRLC products

This section presents how the state-of-the art of accuracy assessment methodology will be actually applied in
the context of this project.

5.1 Reference data sources collection

Several types of high and VHR geolocalized imagery with spatial resolutions below 10 m have been identified
for the purpose of validation. Their specifications are detailed in Table 5. Planet data are ignored in this study
due to current uncertainties in the geolocation accuracy and consistency of the images.

Table 5. Specifications of the potential very high-resolution imagery suitable for validation.
Product Spatial Coverage Temporal Coverage Resolution (m)
WorldView-1/-2/-3 Global 2007 - present 0.5, 046, 0.31

Pleiades Global 2011 - present 0.5
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Product Spatial Coverage Temporal Coverage Resolution (m)
GeoEye-1 Global 2008 - present 0.41, 1.65

IKONOS 65N,9S,8W,75E 1999 - 2008 0.82
RapidEye Global 2008 - present 5
SPOT1-5 Global 1986 - 2011 20
SPOT6-7 Global 2012 - present 1.5

5.1.1 ESA Third Party Mission collections

Table 6 summarizes the VHR imagery availability from the various ESA TPM collections. No matter the sensor,
the quantity, spatial and temporal distributions of the images do not allow properly validating any of the CCl
HRLC products. Annex 1 provides the full details of investigation.

Table 6. Evaluation of the availability of images from ESA TPM data archives per type of CCl HRLC products.
HRLC

Year Region Pleiades SPOT1-5 SPOT6-7 Rapideye Deimos IKONOS2 TropForest

product
7
3 (2000, 3
2018 | Amazon 2001, (2x2015, 24 0 0 0
StaticLC | or (2013+2x2016) | 5 5106, 2016)
map 2018 | more 2x2007)
recent 248 (1980- 1
Sahel 0 >011) (2014) 17 0 0 0
Siberia 0 0 0 0 0 0 0
Lo ora,
Bolivia and .
2 1 Paraguay Bolivia and
o Amazon | 5013,2016) 0 (2016) | (2013-2015) 0 0 | Paraguay
Historical | 2015,- . samples on
+1time
LC 5,1990 . 2009-2010
series
170 (1980- : .
Sahel 0 2011) 0 4 time series 0 0 0
Siberia 0 0 0 0 0 0 0
S2 tile
21KUQ 0 0 0 0 0 0 0
(Amazon)
S2 tile
Rour.1d 2018 21KXT 0 0 0 0 0 0 0
Robin
(Amazon)
S2 tile
42WXS 0 0 0 0 0 0 0
(Siberia)

5.1.2 Availability of Airbus data archives investigated for validation

Given the insufficient amount of the VHR imagery from the ESA TPM collection, the SPOT and Pleiades archives
of the Airbus Geostore have been investigated first with ideal criteria of cloud cover and incidence angles set to
0 and minus 5°, respectively. Then, criteria were relaxed to cloud cover in a 0-10% range and incidence angles
in a 0-15° range according to the amount of results. Figure 4, Figure 5 and Figure 6 localize the various types of
VHR imagery with spatial resolution in the 0-10m range for the regions of Amazon, Africa and Siberia,
respectively. Table 7 to Table 10 include the number and surface covered by the VHR imagery, per type of CCl
HR LC product.
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[JAmazon_RR1_LC2018_2018 (14)
[JAmazon_RR2_LC2018_2019 (26)

[] Amazon_Hist_LC1990_2017_SPOT_inc5 (51)

[ Amazon_Hist_LC1990_2017_Pleiades (759)
[JAmazon_Static_LC2018_2019 (200)

Figure 4. Footprints of the images available from the Airbus Geostore for the validation of the RR, static and historic

maps of Amazon.

[ Sahel_Hist_LC1990_2017_Pleiades (690)

[Sahel_Hist_LC1990_2017_Spot (827)
[JSahel_Static_LC2018-2019 (460)

Figure 5. Footprints of the images available from the Airbus Geostore for the validation of the static and historic maps of

Sahel.

[Jsiberia_RR_LC2018-2019 (6)
[ Siberia_Static_LC2018-2019 (481)

[ Siberia_Hist_LC1990_2017_Spot (718)

opo
ﬁI]

[~] Siberia_Hist_LC1990_2017_Pleiades (160)

Figure 6. Footprints of the images available from the Airbus Geostore for the validation of the RR, static and historic

Table 7. Historic HRLC maps of Siberia. Number and spatial distribution of the Airbus Geostore VHR imagery with spatial

maps of Siberia.

resolution in the 0-20 m for the validation of the most critical periods: 1990_2005 and 2006-2012.

1990-2005 (110 images)

2006-2012 (746 images)
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Table 8. Historic HRLC maps of the Sahelian study area. Number and spatial distribution of the Airbus Geostore VHR
imagery with spatial resolution in the 0-20 m for the validation of the most critical periods: 1990_2005 and 2006-2012.

1990-2005 (7893) 2006-2012 (7772)
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Table 9. Historic HRLC maps of Amazon. Number and spatial distribution of the Airbus Geostore VHR imagery with spatial

resolution in the 0-20 m for the validation of the most critical periods: 1990_2005 and 2006-2012.

1990-2005 (1178)

2006-2012 (3841)
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Table 10. Number of VHR imagery and surface of non-overlapping images from the Airbus Geostore suitable for the
validation of the RR and Static HRLC products.

HRLC product Region Total images % of study area covered
S2 tile 21KUQ (Amazon) 14 100
Round Robin 2018 S2 tile 21KXT (Amazon) 26 100
S2 tile 42WXS (Siberia) 6 35
Amazon 200 3
Static LC map 2018 | 2018 or more recent Sahel 460 8
Siberia 481 13

5.1.3

To complement the VHR images possibly made available to the project and according to the quantity and

Auxiliary information

location of these, other types of information will be used.

First, the image interpretation protocol will rely on very high spatial resolution data available from Google
Earth. However, it has to be noted that their use could be limited because the level of details can vary from site
to site.

In addition, the possibility to consult multi-temporal annual profiles of spectral indices will also be
recommended in order to characterize the seasonal variations of the various LC. Indeed, S2 vegetation indices
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profiles can be extracted on a yearly basis with Google Earth Engine or other web interfaces like the Joint
Research Centre (JRC) Anomaly Hotspots of Agricultural Production (ASAP) High-Resolution viewer.

Finally, the Global Land Survey (GLS) was derived from orthorectified and geodetically accurate global land
dataset of Landsat TM (30 m x 30 m) and Enhanced Thematic Mapper (ETM+) (30 m x 30 m) satellite images
with global coverage. It was created from the epochs circa 1990, circa 2000 and 2005 by NASA at the global
scale. Although the spatial resolution of 30 m cannot be used to validate the CCl historical HRLC maps at 30 m
due to geolocation issues, it could be exploited to determine if a change has occurred between the 5-year
epochs. The accuracy of the land cover label should be derived from imagery with higher spatial accuracy than
the HRLC product itself. The GLS datasets present the advantages of wall-to-wall standardized imagery but
should be used with care to evaluate the change as the GLS time indications stand, roughly, for the period of
1986 — 1993 for GLS-1990 and of 1999 — 2001 for GLS-2000.

5.2 Sampling designs
More specifically to the type of CCl HRLC product, the sampling scheme needs:

e to highlight accuracies that allow comparing RR prototypes and select the best algorithms;

e to address the issue of rare classes with a strong impact on the climate system (urban areas, wetlands,
etc.) in the CCI HRLC static maps;

e toaddress the issue of rare events of change in LC.

Following these requirements, three aspects of the sampling design will be addressed: the number of sample
plots, their size and the way they are selected from the total population.

5.2.1 For the Round Robin prototypes

The assessment of 2018 RR prototypes will derive the overall accuracy and per-class accuracy with the aim of
selecting the best classification method to generate the static LC maps at the regional scale in a second step.

The area validated is constrained by the availability of VHR imagery, price and minimum order size area of 100
km? from the Airbus Geostore (Table 11). For Amazon, where each S2 tile is fully covered by VHR imagery, it is
proposed to select nine footprints of 100 km? spread as illustrated in Figure 7. Fore Siberia, where only 35% of
the tile is covered, the 9 footprints of 100 km? will be selected randomly but ensuring there is no overlap.

Table 11. Surface of non-overlapping images from the Airbus Geostore suitable for the validation of the RR HRLC

products.
% / km? of study area Surface [km?] selected
HRLC product vear overed by VHR images for validation
S2 tile 21KUQ (Amazon) 100 / ~12000 900
Round Robin 2018 S2 tile 21KXT (Amazon) 100/ ~12000 900
S2 tile 42WXS (Siberia) 35/ 4200 900
100 km
| I_L L [l110 km
-
—

HoHe
| |

Figure 7. Distribution of the 9 footprints of 100 km? (blue) distributed within each S2 tiles of the Amazon RR.

47
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Within the validation area, a stratified random sampling is tailored for a quality assessment when reference
data is scarce and the objective is to highlight differences between products.

It is expected that most prototypes should accurately describe most LC classes, especially in homogeneous
areas such as stretches of intact broadleaf evergreen forest. With marginal differences between prototypes,
using random samplings will bring similar high accuracy figures for each prototype, thus making the selection of
the best RR prototype impossible. Two strata are defined, based on the stratification from [11], where one
class was marginally distributed. Stratum 1 is biased towards areas of discrepancies between RR prototypes
and stratum 2 focuses on areas where prototypes agree. Within stratum 1, the sample random selection is
further stratified per LC classes to ensure that even the rare LC classes are represented. This second-stage
stratification is defined by an external LC product, the Finer Resolution Observation and Monitoring of Global
Land Cover (FROM-GLC) 2017 [19], which includes similar LC classes as the CCl HRLC legend.

Samples allocation is not proportional to the area of each stratum as we expect higher accuracy in areas of
agreement and therefore fewer samples are necessary to maintain narrow confidence intervals of 5%. The
number of samples per stratum is defined according to equation 1 (Table 3). The total number per sample is
then evenly distributed among the 10 LC classes under assessment.

Table 12. Number of samples per stratum for the evaluation of each RR prototype deduced from the choice of
parameters from equation 1.

Stratum p q \ E Za n n/class
1 0.65 0.35 0.03 1.96 971 ~100
2 0.85 0.15 0.03 1.96 544 ~55

5.2.2 For the HRLC static maps

The sampling scheme dedicated to the assessment of the HRLC static maps takes advantage of the systematic
sampling of the Tropical Ecosystem Environment Observations by Satellite (TREES) dataset built on a two-stage
stratified clustered sampling. The 2600 Primary Sampling Units (PSUs) were optimally selected based on
latitude and landscape fragmentation and composition [5]. 5 Secondary Sampling Units (SSUs) were defined
within a square 20-km x 20-km, one SSU at the centre and the others spread towards the box corners
separated by a distance of 4-km from the centre. A total of 596, 811 and 1273 SSUs are therefore available as
potential samples for the validation of the Amazon, Sahel and Siberia HRLC maps, respectively (Figure 8).

The number of SSUs per region will be defined according to eq. 1 using the overall accuracy of the selected RR
algorithm per region and a confidence interval of 5%. SSUs will be randomly selected until an equal class
distribution is reached.

Figure 8. Potential sampling units derived from the TREES dataset from which actual samples will be selected to meet an
equal class distribution.
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5.2.3 For the HRLC historical maps

Considering the specificities of change validation (see section 4.2.3.2), the sampling should be stratified in
space in order to ensure a significant representation of the areas known to be experiencing high rates of
change [20] (in [8]) and in time, to account for reference data availability.

A two-stage stratified sampling scheme is therefore proposed, with 2005 considered as a sensible landmark
year for data availability. Before 2005, scarce very high spatial resolution reference data imply defining
sampling scheme driven by the availability of SPOT and Pleiades. After 2005, it becomes feasible to rely on a
theoretical sampling that prioritizes the likely places for change to occur.

Based on the definition of change that will prevail in the CCI HRLC product, stratification layers will be
generated based:

a-priori knowledge of the location of hot-spots of change;

distance to change (change is more likely to occur close to an already changed area);

distance to roads;

resistance to change (natural factors like altitude or slope lower the probability of change occurrence);

(] etc.

Table 13 presents the number of samples per stratum, following eq. 1.

Table 13. Number of samples per stratum for the evaluation of the CCl HRLC historic LC maps derived from the choice of
parameters from equation 1.

1%t stage stratum ‘ 2"d stage stratum p q E Za n
1.1: change 0.65 0.35 0.05 1.96 350
1: 1990 - 2004
1.2: no change 0.85 0.15 0.05 1.96 196
2.1: change 0.65 0.35 0.05 1.96 350
2:2005- 2018
2.2: no change 0.85 0.15 0.05 1.96 196

5.3 Response design

5.3.1 Choice of the sample spatial unit

The spatial resolution of the CCl HRLC RR and Static products is a pixel of 10 m x 10 m, with change detected at
30 m x 30 m spatial resolution for historical LC maps.

However, based on the lessons learnt from the GLC200, GlobCover and CClI MRLC experiences, it seems unwise
to match the sample spatial unit of interpretation for the validation to the size of the pixel for the following
reasons:

e  Geo-location accuracy of the information. The absolute positional accuracy of the LC product is targeted to

1/3 pixel dimension;
e S2 and Landsat time series may result in radiometric information coming from a few adjacent pixels;

For the validation of the GLC2000 product, GlobCover and CCl MRLC products, blocks of 3 x 3 pixels, blocks of
5x5 pixels and blocks of 3x3 pixels were analyzed, respectively [5]. For the present exercise, it is envisaged to
interpret plots of 3x3 pixels, of size of 10 m x 10 m for the validation of the CCI HRLC RR prototypes and static
maps and of 30 m x 30 m for the validation of the CClI HRLC historical maps.

5.3.2 Labelling protocol

For each sampling unit, a set of attributes are recorded in a consistent manner. Table 14 presents an optimum
attribute table designed for this validation exercise.
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Table 14. Information included in the validation database for each SSU.

Field name Details

For each sampling unit

SSU ID Unique identifier
PSU ID Identifier of the associated PSU (if applicable)
Lat/ Long Centre coordinates of the observational unit to interpret
Level of certainty (certain, reasonable, doubtful) associated with the interpretation of

Level of certainty
the expert

Land cover change |Presence/absence of LC change within the sample (if applicable)

Year when LC change has occurrence. If not possible due to sparse temporal sampling of
VHR imagery, an indication of the 5-year epoch of change (if applicable)

Comments given by the expert to explain/detail its interpretation (e.g. for indication why

Year of change

Comments the labelling was not successful, or to give the local nhame used for the concerned LC
type)

For each object in the sample and year/epoch

Object ID Unique identifier

SSU ID Identifier of the associated SSU

PSU ID Identifier of the associated PSU (if applicable)

Object geometry Area and perimeter

Land cover class The class ID of the LC legend (Table 4) associated with each object, for each year/epoch

Although error-free validation database do not exist, a rigorous validation protocol is a prerequisite to build it
as closed as possible to “ground truth”. First, the legend of the LC and LCC classes should be described
exhaustively and be well understood by the interpreter. The ground, as visible on very-high resolution imagery,
can be complex spatially and include a mixture of classes within the sampling spatial unit or evolve temporarily
in ways that requires auxiliary information to make accurate LC interpretations. A graphical validation interface
is a valuable tool to gather evidences that effectively help the interpreter converge towards the best guess.

5.3.3 Graphical interface for image interpretation

The scale-independent validation tool developed for hosting this interpretation process, based on the
experience gained during the previous validation exercises has been successfully used in the CCl MRLC
validation and for the recent SIGMA validation experiment. The validation tool provides an online interface
available to the expert on the reception of the URL. Figure 9 presents this interface, highlighting different
functionalities. Note that time series of vegetation profiles can be generated with S2 at the sample centroid for
recent years.
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Figure 9. Main page of the validation tool, with the following functionalities: 1) Layer box to display different layouts; 2)
Zooming functionalities; 3) Tools box to activate navigation, display NDVI profile, select objects or assign a LC class; 4)
Legend description; 5) Comments box to include free text that should help understanding the labelling choices.

Figure 10 and Figure 11 illustrate the interfaces developed for the two main steps of the interpretation process:
the LC classes’ interpretation based on very high spatial resolution data available from Google Satellite/Virtual
Earth and the LC change evaluation using the 3 Landsat TM or ETM+ images obtained from the GLS datasets.

Figure 10. Example of segmented SSU over Brazil. Figure 11. Example of segmented SSU over Brazil to be
interpreted for 3 periods (the right panel providing the 3
Landsat images to validate the historical HRLC maps every
5 years.

6 Benchmarking with other existing products

The comparison with other HRLC products (based on international requirements) has the objective of building
confidence in the CCl HRLC products, thus increasing their use (i.e. for non-climate model applications) and
integrating the results into other land cover monitoring efforts. It is planned to perform benchmarking (inter-
comparison) of static map and historical maps. However, the feasibility of this procedure highly depends on the
availability of the other high-resolution land cover products with similar spatial and temporal resolution.
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6.1 Existing high-resolution land cover maps

Collection of existing HRLC data is currently in its initial phase. The data collected so far are mostly global HRLC,

because these datasets are of global interest, and usually available online or upon a request. On the opposite,

local datasets are rarely available online, and sometimes subject to legal restrictions. Therefore, collection of

local datasets is more challenging with respect to global datasets. Nevertheless, few local HRLC have been

collected as a result of contacting national mapping authorities.

Besides the difficulties related to the collection of local HRLC, another critical point is availability of HRLC for

benchmarking of historical maps, especially ones derived from satellite imagery with acquisition date older

than year 2000.

Collected HRLC are shown in the Table 15.

Table 15. Existing HRLC for benchmarking

Name of LC map Resolution Year Spatial coverage
Globeland30 (GL30) ** 30m 2000, 2010,2015 Global
FROM-GLC * 30m 2010, 2015 Global
Global Urban Footprint *** 12m 2011 Global
Global Human Settlement Layer (GHS
20m 2016 Global
BUILT-UP GRID S1) *
Global Surface Water * 30m 1984 - 2015 Global
2007 -2010
Forest / Non-Forest map * 25m Global
2015 - 2016
Tree canopy cover * 30m 2000 Global
Global forest cover gain * 30m 2000-2012 Global
Global forest cover loss * 30m 2000-2015 Global
TerraClass Dataset* 30m 2004, 2008, 2010, 2012, 2014 Brazilian Amazon
National LC of Suriname* 30m 2015 and 2017 Country
National LC of Senegal** 30m 2010 Country
National LC of Senegal** 10 m 2016 Country
Cities in Nigeria,
Brazil, Uganda,
Atlas of Urban Expansion* 30m 1984-2015 Sudan, Ghana,
Mali, Russia,
Ethiopia

*Freely available

**Available upon agreement

*** Freely available upon request for non-commercial and scientific purpose
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6.2 Methodology

Benchmarking or inter-comparison will be pixel-by-pixel comparison of a project output and an existing HRLC. It
means that agreement/disagreement between the two maps will be computed based on all pixels available in
the region of interest in both the maps.

To compare two maps pixel-by-pixel it is necessary for maps to have same spatial resolution. Since it will not
always be the case, the map with the lower resolution will be resampled to the resolution of the other map.

Moreover, for inter-comparison it is required that the two maps have the same legend. In the absence of a
standard that regulates land cover legends, existing HRLC have different legends with respect to the legend
that is planned for project outputs. Therefore, it will be needed to carefully match different legends. This may
imply merging several classes of one map into one class in order to match legend of another map.

Inter-comparison will analyse both, similarities and dissimilarities between project outputs (static and historical
maps) and existing HRLC.

Similarity between project output and existing HRLC will be computed based on accuracy indexes. More in
detail, Overall Accuracy, Producer’s Accuracy and User’s Accuracy, described in the Section 3.4, will be
computed. Although the names of the indexes are referring to the accuracy, in case of inter-comparison they
will be expressing agreement between the products. Confusion matrix will serve as a base for computing
mentioned indexes.

Dissimilarities or disagreement between project output and existing land cover map will be analysed in terms
of disagreement pattern. Analyses will be done on difference image i.e. map of all disagreements, as well as on
each combination of class disagreement separately. The aim is to understand if the disagreement has a
meaningful pattern which can help in understanding a cause of disagreement. Furthermore, analysis of spatial
pattern might be useful to point out if some areas are more prone to disagreement than the others.

Taking into consideration that the area of interest is rather large, and that inter-comparison is pixel-by-pixel,
assessment of disagreement pattern will be computationally intensive. Therefore, in case that multiple
datasets are available for the same region, disagreement pattern will be analysed for one dataset with the
highest accuracy indexes (similarity).

7 Investigating scaling issues between the HRLC and MRLC products

The role of the spatial-temporal resolution on the consistency of the land cover classification will be
investigated as a basis for understanding the variability in classifications as resolution spatially degrades. This
research question will be addressed along with three different components.

First, a conceptual approach will deal with the land cover typology evolving across spatial scales to propose the
most appropriate HRLC typology compatible with the already existing 300 m CCI MRLC time series. Secondly, an
empirical approach will proceed based on the respective HRLC and MRLC maps to analyse the conditions of
their consistency, to explain their discrepancies and to document their complementarities.

Thirdly, the resolution impact on the accuracy assessment metrics will be investigated thanks to two different
methods specifically designed to quantify the scaling issues. On one hand, the Pareto boundary approach [21]
will be used to disentangle the error related to the spatial resolution and the error related to the classifier. On
the other hand, the ROC (Relative Operating Characteristics) Curve analytical framework [22] will support the
validation and the scale impact assessment on the LC change detection across scales. Both analytical
frameworks, i.e. the Pareto boundaries and the ROC curve, will be respectively applied on three subsets of 10
km x 10 km representative of the main landscape patterns of the 3 selected regions of interest. This empirical
analysis should be supported by the VHR imagery described in section 3.1 which will be downscaled
progressively to coarser resolution (e.g. from 1 m to 300 m) taking into account typical point spread function
distribution.
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7.1 LCML-LCCS3 nomenclature to address the semantic interoperability across
scales

The graded and fuzzy nature of common LC categories derived from traditional classifications/legends has been
recognized for a long time by the remote sensing community, however limited efforts to sort out semantic
uncertainty in land cover studies has been proposed. As described in [23], the LCML-LCCS3 framework
demonstrates that alternative solutions of LC data representation and functional management of their
semantic Interoperability exists, this is particularly important with the increasing need to capture as much as
possible the diversity of information of “real world” features. LCCS works by creating a set of standard
attributes (called classifiers) to create or describe different LC classes. The classifiers act as standardized
building blocks and can be combined to describe the more complex semantics of each LC class. Each LC class is
no longer described by a name and a text but by a set of clearly quantifiable attributes. The CCl MRLC typology
is built on the LCCS2 which prescribed a fixed threshold for each classifier. The evolution of LCCS2 to the LCML-
LCCS3 takes advantage of the database flexibility. The meta-language operates by representing LC features in
terms of the subtypes of LCML “basic elements” (or a set of them) with associated attributes and
characteristics. The LCML “basic Elements” (LCElements) form the basic building blocks of any Land feature
representation. This integrated system for LC observation provides worldwide consistency and links local and
global levels of observation. Both have been recognized as international standards developed to address
classification systems in general (ISO 19144-1 Classification Systems) and to address LC (ISO 19144-2 Land
Cover Meta Language). The theoretical concept of the latter assumes that there is an observational continuity
across all observation scales and products are consistent and compatible, using common approaches to
characterize, describe and compare LC information (standardization, harmonization, and validation) and to
facilitate the joint use of mapping products [24].

Both “building blocks” approaches allow translating an existing typology into another one, in spite of some
ambiguities. For instance, the Mosaic classes, much reduced in the last version of the CCI MRLC dataset, cannot
be allocated to one or another class in a rigorous manner and could rely partly on its spatial context to reduce
the uncertainty. Based on this theoretical reflection, the Climate Users Requirements and the CClI MRLC
typology, this first step has contributed to the definition of the HRLC typology relevant for the 10 to 30 m
resolution products. The 10 m resolution is close to the typical size of common landscape features like a tree, a
road, or a house introducing probably a difference with the 30m classically related to a forest cover, an
impervious surface or an urban fabric. This should allow defining a first target HRLC typology shortly after the
Climate Users Requirements deliverable and useable for the round robin activities.

The two most recent global reference databases, respectively developed by UCLouvain in the context of the CCI
MRLC validation and by the FP7-SIGMA project, are scale-independent and rely on object-based delineated on
VHR imagery. These databases will be exploited to assess the impact the different HRLC typologies at the
different spatial resolution and their compatibility with the MRLC typology.

In a second step, the compatibility of these typologies will be tested directly from classified VHR images,
progressively downgrade to 300 m resolution. In a third step, the HRLC reference database to be developed for
the product validation will be used along the classified VHR images to quantify the proportion of the different
landscape features in order to fine-tune the HRLC typology, to characterize quantitatively the MRLC typology,
and to update the cross-walking table translating the LC classes into Plant Functional Types distribution [25].
The current absence of objective quantification has been recently identified as a key source of uncertainty in
the climate model simulation.

7.2 Pareto boundary analysis to assess quantitatively the spatial resolution impact

Confusion matrices do not consider contextual influence of mixed pixels on the product accuracy [21]. Besides,
when validating a coarse resolution product with an HR reference map, the assumption of equal spatial
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resolution between the reference and the product is violated. The Pareto boundary method is an alternative to
deal with these shortcomings. The number of low-resolution pixels covering multiple classes is closely linked to
the ground features (reference data) and is a function of their shape, size and spatial patterns [26], [27]. The
difference in spatial resolution between high and low-resolution data is referred to as the low-resolution bias
[21]. The resolution bias sets down the omission and commission errors (OE and CE) as conflicting objectives.
Effectively, residual error after classification cannot be avoided. Any attempt to reduce the commission errors
will inevitably lead to an increase of the omission errors and conversely.

Therefore, in the OE/CE bi-dimensional space, a region of unreachable accuracy limited by the Pareto boundary
separates the errors due to the spatial resolution and the method. The Pareto boundary determines the
maximum user and producer’s accuracy values that could he attained jointly and represents such a lower limit
as a boundary. To generate the Pareto boundary, the HR binary reference map is degraded to the low-
resolution pixel size (Figure 12). Each new pixel value corresponds to the percentage of HR pixels of the class of
interest. A set of low-resolution products is obtained by thresholding the low-resolution reference map. For
each threshold defining the percentage for which a pixel is considered as vegetation, the pair of efficient error
rates OE/CE is computed. The line joining all these points defines the Pareto boundary of a specific HR
reference to a defined low-resolution pixel size. The distance between the product and the boundary indicates
the performance of the method. The area under the efficient solution curve indicates the accuracy of the
detection algorithm.
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Figure 12. The procedure for generating a discrete set of points belonging to the Pareto Boundary, starting from the HR
map, for a desired low spatial resolution. (a) A low-resolution grid is overlaid on the HR reference map. (b) The
percentage of class w; is computed for each cell. (c) A set of low-resolution products is generated by thresholding the
percentage of class w1; threshold t varies in the interval (0, 1). These maps are efficient solutions according to Pareto’s
criterion. The map generated with t = 100% will have no commission (no mixed pixels included) but large omission, and
the map with t = 1% will have no omission (all the mixed pixels are included) but large commission; in general, the higher
t, the lower the commission and the higher the omission. (d) The confusion matrix is produced for each one of these
maps. Omission error and commission error are derived and plotted in the omission error/commission error space [21].

As proposed by [28], the resolution-dependent error can be quantified based on the Pareto boundary approach
of [21]. Its computation includes two steps. First, a Very High Resolution (VHR) map is aggregated to a coarser
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resolution so that the low-resolution pixels reflect the sub-pixel proportion of the class of interest. Second, the
omission and commission errors that occur at different sub-pixel proportion thresholds are calculated. Once
reported in the OE/CE bi-dimensional space, they delineate the Pareto boundary. Hypothetical Pareto
boundaries for a higher and a coarser spatial resolution are presented in red and blue in Figure 13. The
resolution error (E) is derived at the intersection of the 1:1 line with the Pareto boundary, i.e., omission and
commission errors were given equal weights. The increase in resolution-dependent error (AE) when moving
from a fine scale to a coarser one is represented by the length of the green line in Figure 13. It should be noted
that the methodology does not require a threshold on the sub-pixel class proportion to define whether a pixel
corresponds to one class or the other.

Commission error

Omission error
Figure 13. Pareto boundaries for a high and a low spatial resolution in red and blue, respectively. The area below the
boundary is a region of unreachable accuracy because of resolution-dependent errors. The resolution error E
corresponds to the intersection between the Pareto boundary and the 1:1 line. The distance between the resolution
error for the low and the high resolution is the resolution-dependent error AE (represented in green) [28].

7.3 ROC curves analysis to quantify the change detection performance at different
scales

[22] introduced the concept of “accuracy assessment curve”, which plots the accuracy figures derived from a
standard confusion matrix (e.g., overall accuracy) against the threshold values used to classify the changed
areas (Figure 14a). The different accuracy figures are continuously represented across the range of tested
threshold values but there is no explicit link between them. In this respect, the ROC curve should receive
considerable attention [29]. The ROC curve plots the false-positive fraction (i.e., the unchanged data
erroneously classified as changed) against the true-positive fraction (i.e., the correctly classified changed data)
for all possible threshold values (Figure 14b).

The optimal threshold value is not directly provided by the ROC curve but may be easily expressed in terms of
ROC curve parameters. The curve shape illustrates the relationship between omission and commission errors
and the area under the curve (AUC) measures the method’s performance independently of the selected
threshold value. The AUC provides a single integrated measure of overall accuracy that is not dependent upon
a particular threshold value and that therefore gives information on the method’s performance [30]].
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Figure 14. (a) Accuracy assessment curves, which show the relationship between the different accuracy figures and the
threshold value (1- a) used to detect changed areas. (b) ROC curves, in which the true-positive fraction (on the y-axis) is



Ref CCI_HRLC_Ph1-PVP : ;
(s = e high resolution
i\&\%esa Issue Date Page ." land cover
l.rev.l 16/10/2019 27 =

plotted against the false-positive fraction (on the x-axis) for all possible settings of the decision criterion. The area under
the curve (AUC) informs about the method’s performance, independently of the threshold value.
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9 Annex 1 - Investigating reference data source requirements

9.1 Ideal reference data requirements

o  Type of very-high-resolution imagery

For each CClI HRLC product and regions (Amazon, Sahel and Siberia), Table 6 specifies the ideal requirements in
terms of data quantity and time period concerned. Given the high quality and spectral resolution of the
WorldView (WV) data, it is preferred for the validation of the RR prototypes of the year 2018, the static LC map
2018 as well as the validation of the scattered landscape of the Sahel back to 2010. For 2000 and 2005, and for
1995 and 1990, only IKONOS (l) and SPOT (S) data are available, respectively. Among the potential very high-
resolution imagery, no preference is shown among WYV, Pleiades (P) or GeoEye (G) data for the validation of the
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Amazon and Siberia areas in 2015 and 2010. This would leave some flexibility for the repartition of TPM quota
of data.

e Number of VHR image footprints per region

To validate each CCl HRLC product, various combinations of footprint quantities and number of images along
the year have been defined, depending on the region and the vegetation seasonality. The static LC map 2018
corresponds to the largest extent and 50 footprints per region are suggested. Historical LC maps will be
processed on a reduced extent and therefore 25 footprints would be sufficient, corresponding to less than 5%
of the total area. The choice of the classification algorithms for the whole project will be selected on the
accuracy of the RR prototypes. In this case, the suggested number of footprints remains 25 but covers 68% of
the RR sites.

e Number of images along the year

Over these footprints, 1, 2 or 3 images distributed along the year would ideally be required for Siberia,
Amazon, and the Sahel, respectively. These numbers would allow to visually interpreting distinct LC classes
(e.g. the distinction between grassland and cropland) according to the vegetation seasonality and complexity of
the landscapes. The number of images per year and the preferable months of acquisition are derived from the
preliminary analysis of aggregated Normalized Difference Vegetative Index (NDVI) profiles, as illustrated in
Figure 15. Each figure represents, in green, the seasonality of the vegetation present in Siberia, Amazon and
Sahel and, in grey, the probability of having cloud-free observations along the year. In Siberia, clear
observations are expected to be retrieved from June to October due to solar illumination constraints. One
image acquisition along the year, centred in August, would be ideal. In Amazon, the seasonal pattern of
vegetation along the year is more visible. Two images, acquired around September and around March would
allow discriminating the land cover classes, even taking into account the high latitudinal gradient from North to
South of the selected area (Figure 15), 2. (a) compared to 2. (c)). Sahelian landscapes show a high
fragmentation, spatial heterogeneity of LC classes, high diversity of the cropping systems, mosaics of cropland,
fallow and natural grassland [31]-[33] so that a set of 3 images along the year would be preferred. Vegetation
profiles from Figure 15, 3. (a to c), show that one image around March, one around June and one around
September could offer good discrimination of land covers. Table 6 summarizes the ideal data requirement for
VHR imagery for the validation and scaling issue investigation.

1. Siberia 2. Amazon 3. Sahel
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Figure 15. Representative vegetation profiles from the three areas of LC map production defined in the ESA CClI HRLC
project.
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Table 16. Summary characteristics of the TPM data that could be used for the CCI+HRLC product evaluation. WorldView (WV), Pleiades (P), GeoEye (G), lkonos (1) and SPOT (S). Multiple
sources of VHR data are indicated by order of preference, starting from the ideal sensor. # stands for “number of”.

Region Region area Sensor Im. footprint [km?] # Footprints Total Footprint Prop.ortion of #im.perper Months ‘I.'OTAL #

[km?] [km?2] region area year [1-12] images
2018 or Amazon 11450200 WV 268.96 50 13448 0.001 2 3,9 100

Static LC map

5018 more Sahel 14099000 WV 268.96 50 13448 0.001 3 3,6,9 150
recent Siberia 25763000 WV 268.96 50 13448 0.001 1 8 50
Amazon 2230570 WVorPorG 268.96 25 6724 0.003 2 3,9 50
2015 Sahel 2453620 wv 268.96 25 6724 0.003 3 3,6,9 75
Siberia 3643260 WVorPorG 268.96 25 6724 0.002 1 8 25
Amazon 2230570 WVorPorG 268.96 25 6724 0.003 2 3,9 50
2010 Sahel 2453620 wv 268.96 25 6724 0.003 3 3,6,9 75
Siberia 3643260 WVorPorG 268.96 25 6724 0.002 1 8 25
Amazon 2230570 | 121 25 3025 0.001 2 3,9 50
2005 Sahel 2453620 | 121 25 3025 0.001 3 3,6,9 75
Historical LC Siberia 3643260 | 121 25 3025 0.001 1 8 25
Amazon 2230570 | 121 25 3025 0.001 2 3,9 50
2000 Sahel 2453620 | 121 25 3025 0.001 3 3,6,9 75
Siberia 3643260 | 121 25 3025 0.001 1 8 25
Amazon 2230570 S 3600 25 90000 0.040 2 3,9 50
1995 Sahel 2453620 S 3600 25 90000 0.037 3 3,6,9 75
Siberia 3643260 S 3600 25 90000 0.025 1 8 25
Amazon 2230570 S 3600 25 90000 0.040 2 3,9 50
1990 Sahel 2453620 S 3600 25 90000 0.037 3 3,6,9 75
Siberia 3643260 S 3600 25 90000 0.025 1 8 25
S2 tile 21KUQ 10000 Y 268.96 25 6724 0.672 2 3,9 50
Round Robin 2018 | S2tile 21KXT 10000 Y 268.96 25 6724 0.672 2 3,9 50
S2 tile 42WXS 10000 Y 268.96 25 6724 0.672 1 8 25
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Availability of ESA Third Party Mission open archives investigated for

validation

ESA has a collection of VHR imagery archives that is available through the L-OADS online dissemination
service at https://tpm-ds.eo.esa.int/oads/access/collection/. The ESA collection archive of Pleiades,
SPOT1-5, SPOT 6-7, Rapideye, Deimos, IKONOS2 and the Tropforest 2010 dataset have been browsed
in search of suitable images for the validation of the CCI HRLC products.

In total, the SPOT1-5 ESA collection includes 248 products covering the Sahelian extent of the static LC
map and among those, 170 images are available over the reduced extent dedicated to the historic LC
maps. Unfortunately, the Image distribution is clustered in space (Figure 16) and in time (Figure 17).
SPOT images are evenly spread over the CCl HRLC extent: along the Atlantic coastline of Africa, at the
border between Niger and Nigeria and in East Sudan. The most recent images available date back to
2011 and the temporal distribution of images does not allow validating the historical LC maps before
2003. As for the SPOT 6-7 ESA collection, three images are available over the Amazon static LC map
extent, including 1 image falling in the historic LC map extent. Over Africa, only one image was found
across the Mbam River in Cameroun.

Collection SPOT1-5_ESA

8POT 1-5 ESA archive. More details

Collection SPOT1-5_ESA

SPOT 1-5 ESA archive. More details
Search result page 1 of & pages (50 of 248 records found in 1.732 seconds).
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Figure 16. Spatial distribution of the images from the ESA SPOT1-5 archives over the Sahelian static LC map extent (left)
and historic LC map extent (right).
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Figure 17. Temporal distribution of the images from the ESA SPOT1-5 archives over the Sahelian static LC map extent
(left) and historic LC map extent (right).

The ESA RapidEye collection comes in a series of 4 datasets: the Planet - PlanetScope and SkySat data
familiarisation phase, the RapidEye ESA archive, the RapidEye South America and the RapidEye time
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series for S2. No image from the ESA Planet collection can be used in the context of the CCl HRLC
project because acquisitions are limited to three European demonstration sites. The RapidEye ESA
archive includes 107 VHR imagery of which 83 are located in the Africa HRLC static extent and 24 in
the Amazon HRLC static extent. Among these images, 17 and 8 images can be used to validate the
historic LC maps of Africa and Amazon, respectively. The RapidEye time series for Sentinel-2 consists in
5-day time series multispectral L3A orthorectified imagery at 5 m spatial resolution, acquired in 2013
and in 2015 and located over 24 sites around the world (Figure 18). Four times series acquired for sites

in Mauritania, Ethiopia, Gabon and Congo can be used for the validation
and one time series over Bolivia. As illustrated in Figure 19, images fro

of the HRLC maps of Africa
m the ESA RapidEye South

America collection available from 2013 to 2015 overlap partially the extent of the Amazon HRLC maps,

including Bolivia and Paraguay.

Collection RapidEye Sentinel

RapidEye time series for Sentinel 2. More details

Select an active grid-cell to proceed to the next static map lavel.

Static map node (latitude from -90 to 90 dg, longitude from -180 to 180 dg).

Figure 18. Spatial distribution of the images from the ESA RapidEye time
series for Sentinel-2.

Collection RapidEye_SouthAmerica

RapidEye South America. Hore detais.

Select an active grid-cell o the next static map level

Static map node (ittude from -55 10 20 dg, -om -90 to 28 dg)

Figure 19. Spatial distribution of the
images from the ESA RapidEye
collection of South America.

Pleiades ESA collection offers three images centred on Kuru that could be used to validate the Amazon
HRLC maps. The Deimos 1-2 and IKONOS 2 ESA collections were also investigated but none of the

images covered our regions of interest (see Figure 20).

Collection Deimos1-2 Collection IKONOS2
Deimos 1-2 ESA archive. More details here. IKONOS ESA archive. More details.

Select an active grid-cell fo proceed to the next static map level

\ & AN,

Select an active grid-cell to proceed to the next static map level

Figure 20. Spatial distribution of the images from the ESA Deimos 1-2 (left) and IKONOS 2 (right) collections.

The ESA category-1 project entitled “TropForest 2010” allowed the acquisition of high spatial
resolution satellite imagery for South America and South East Asia for the 2010 period. For the 1° x 1°
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confluence points, satellite imagery from the Advanced Land Observing Satellite (ALOS) Advanced
Visible and Near-Infrared Radiometer (AVNIR) 2 sensor (at 10 m x 10 m resolution) or from DEIMOS-1
sensor (at 22 m x 22 m resolution) have been be acquired (circa 85% covered by AVNIR-2 and 15% by
DEIMOS-2). For the 2° x 2° confluence points, satellite at 4 m x 4 m resolution have been acquired
(presently 60% of 2° x 2° confluence points are covered). This dataset is very much suited to validate
the HRLC historic map over Amazon for the year 2010.

Figure 21. Location of the high-resolution satellite imagery available through the ESA CAT-1 “TropForest 2010”
project (https://earth.esa.int/web/guest/-/tropforest).

10 Annex 2 - HRLC legend - level 2, level 3 and level 4.

Table 17 presents the 2" level of LC classes of the CCI HRLC legend.
Table 17. Description of the level-2 categories of the HRLC legend.

LC class Description

Shrub cover
The evergreen shrubs are broadleaved and come from the Angiospermae group.
evergreen broadleaf

Shrub cover The evergreen shrub cover is composed of shrubs carrying typical needle-shaped
evergreen needleleaf leaves (Gymnospermae group) that are never entirely without green foliage [1]

Shrub cover The deciduous shrub cover is composed of broadleaved shrubs coming from the
deciduous broadleaf ~ Angiospermae group.

Shrub cover The deciduous shrub cover is composed of shrubs carrying typical needle-shaped
deciduous needleleaf leaves (Gymnospermae group) that are never entirely without green foliage [1]

Herbaceous areas not planted by humans but that can be influenced by human actions
Natural grassland to some extent. Generally, low yields and high biodiversity value natural or semi-
natural herbaceous covers can be grazed extensively [34].

Managed grassland  Herbaceous areas sowed/planted by humans and that are sowed and planted at least

(pastures) twice a year
Winter crops Sowed/planted herbaceous areas present at spring time
Summer crops Sowed/planted herbaceous cover not present before spring time
Multicropping Several crop cycles a year.

Unconsolidated bare . . .
Bare areas with an unconsolidated aspect (e.g. bare soil, sands)
areas
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Consolidated bare
areas

Bare areas with a consolidated aspect (e.g. made of rocks, hard pans)

Buildings

Built-up areas where buildings cover at least 50% of the surface

Artificial roads

Built-up areas where roads cover at least 50% of the surface

Snow

Permanent snow

Glaciers

A glacier is defined as a perennial mass of ice, and possibly firn and snow, originating
on the land surface from the recrystallization of snow or other forms of solid

precipitation and showing evidence of past or present flow

At third level, we add the rainfed and irrigated classes for the 3 crop categories (Table 18).

Table 18. Description of the level-3 categories of the HRLC legend.

LC class

Rainfed

Description

Sowed/planted herbaceous areas that are harvestable at least once within the 12

months after the sowing/planting date that depends on rainfall to grow

Irrigated

Sowed/planted herbaceous areas that are harvestable at least once within the 12
months after the sowing/planting date that depends on artificial water supply to grow

And at fourth level, the type of irrigation could be specified between sparkling and flooding categories (Table

19).

Table 19. Description of the level-4 categories of the HRLC legend.

LC class

Sparkling

Description

In sprinkler or overhead irrigation, water is piped to one or more central
locations within the field and distributed by overhead high-pressure sprinklers

or guns.

Flooding

In surface (flood or level basin) irrigation systems, water moves across the
surface of an agricultural lands, in order to wet it and infiltrate into the soil.

11 Annex 3 - List of land cover transitions required by the climate modellers.

The main land cover changes on the Amazonian, African and Siberian regions are indicated in Table 20, Table
21 and Table 22, respectively.

Table 20. Transition classes expected on the Amazonian historical region (SW part of Amazonia). Double crosses indicate
the transitions which should require more attention from the climate modellers point of view.

Year N EBT | ENT | DBT | DNT | ShrE | ShrD | Grass | Crops | Flood | Li&Mo | Bare | Built | OpWs [ OpWp | Sn&lc
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Year(N+1)
10 X X

20
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30 X X

40

50 X X X X X XX X

60 X X X XX X

70 X X X X X X XX X

80 XX XX XX XX XX X XX X

90 X X X X X X

100

110 X X X X X X X

120 XX XX XX XX XX XX XX

130 X X

140 X

150

Table 21. Transition classes expected on the African historical region (Ethiopia). Double Crosses indicate the transitions
which should require more attention from the climate modellers point of view.

Year N EBT | ENT | DBT | DNT | ShrE | ShrD | Grass | Crops | Flood | Li&Mo | Bare | Built | OpWs | OpWp | Sn&lc
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
YearN+1
10 X X X X
20
30 X X X X
40
50 X X XX X
60 X X XX X
70 X X X X X XX X
80 XX XX XX XX XX XX X
90 X
100
110 XX XX XX XX XX XX
120 XX XX XX XX X X XX
130 X X
140 X X
150

Table 22. Transition classes expected on the Siberian historical region (Western Siberia). Double Crosses indicate the

transitions which should require more attention from the climate modellers point of view.

Year N

EBT

ENT

DBT DNT | ShrE

ShrD | Grass | Crops

Flood | Li&Mo

Bare

Built

OpWs

OpWp

Sn&lc
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10 20 30 40 50 60 70 80 90 100 | 110 | 120 | 130 140 150
YearN+1
10
20 XX
30
40 XX
50 X X X XX X X
60 X X X XX X X
70 X X X X X XX XX X X
80 X X X X X X
90
100
110 X X X X X X X X
120 X X X X X X X
130 XX | XX | XX XX XX XX
140 XX
150




